defconfig: exynos9610: Re-add dropped Wi-Fi AP options lost
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / crypto / Kconfig
CommitLineData
b2441318 1# SPDX-License-Identifier: GPL-2.0
685784aa
DW
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6 tristate
7
1da177e4 8#
9bc89cd8 9# async_tx api: hardware offloaded memory transfer/transform support
1da177e4 10#
9bc89cd8 11source "crypto/async_tx/Kconfig"
1da177e4 12
9bc89cd8
DW
13#
14# Cryptographic API Configuration
15#
2e290f43 16menuconfig CRYPTO
c3715cb9 17 tristate "Cryptographic API"
1da177e4
LT
18 help
19 This option provides the core Cryptographic API.
20
cce9e06d
HX
21if CRYPTO
22
584fffc8
SS
23comment "Crypto core or helper"
24
ccb778e1
NH
25config CRYPTO_FIPS
26 bool "FIPS 200 compliance"
f2c89a10 27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
1f696097 28 depends on (MODULE_SIG || !MODULES)
ccb778e1
NH
29 help
30 This options enables the fips boot option which is
31 required if you want to system to operate in a FIPS 200
32 certification. You should say no unless you know what
e84c5480 33 this is.
ccb778e1 34
cce9e06d
HX
35config CRYPTO_ALGAPI
36 tristate
6a0fcbb4 37 select CRYPTO_ALGAPI2
cce9e06d
HX
38 help
39 This option provides the API for cryptographic algorithms.
40
6a0fcbb4
HX
41config CRYPTO_ALGAPI2
42 tristate
43
1ae97820
HX
44config CRYPTO_AEAD
45 tristate
6a0fcbb4 46 select CRYPTO_AEAD2
1ae97820
HX
47 select CRYPTO_ALGAPI
48
6a0fcbb4
HX
49config CRYPTO_AEAD2
50 tristate
51 select CRYPTO_ALGAPI2
149a3971
HX
52 select CRYPTO_NULL2
53 select CRYPTO_RNG2
6a0fcbb4 54
5cde0af2
HX
55config CRYPTO_BLKCIPHER
56 tristate
6a0fcbb4 57 select CRYPTO_BLKCIPHER2
5cde0af2 58 select CRYPTO_ALGAPI
6a0fcbb4
HX
59
60config CRYPTO_BLKCIPHER2
61 tristate
62 select CRYPTO_ALGAPI2
63 select CRYPTO_RNG2
0a2e821d 64 select CRYPTO_WORKQUEUE
5cde0af2 65
055bcee3
HX
66config CRYPTO_HASH
67 tristate
6a0fcbb4 68 select CRYPTO_HASH2
055bcee3
HX
69 select CRYPTO_ALGAPI
70
6a0fcbb4
HX
71config CRYPTO_HASH2
72 tristate
73 select CRYPTO_ALGAPI2
74
17f0f4a4
NH
75config CRYPTO_RNG
76 tristate
6a0fcbb4 77 select CRYPTO_RNG2
17f0f4a4
NH
78 select CRYPTO_ALGAPI
79
6a0fcbb4
HX
80config CRYPTO_RNG2
81 tristate
82 select CRYPTO_ALGAPI2
83
401e4238
HX
84config CRYPTO_RNG_DEFAULT
85 tristate
86 select CRYPTO_DRBG_MENU
87
3c339ab8
TS
88config CRYPTO_AKCIPHER2
89 tristate
90 select CRYPTO_ALGAPI2
91
92config CRYPTO_AKCIPHER
93 tristate
94 select CRYPTO_AKCIPHER2
95 select CRYPTO_ALGAPI
96
4e5f2c40
SB
97config CRYPTO_KPP2
98 tristate
99 select CRYPTO_ALGAPI2
100
101config CRYPTO_KPP
102 tristate
103 select CRYPTO_ALGAPI
104 select CRYPTO_KPP2
105
2ebda74f
GC
106config CRYPTO_ACOMP2
107 tristate
108 select CRYPTO_ALGAPI2
109
110config CRYPTO_ACOMP
111 tristate
112 select CRYPTO_ALGAPI
113 select CRYPTO_ACOMP2
114
cfc2bb32
TS
115config CRYPTO_RSA
116 tristate "RSA algorithm"
425e0172 117 select CRYPTO_AKCIPHER
58446fef 118 select CRYPTO_MANAGER
cfc2bb32
TS
119 select MPILIB
120 select ASN1
121 help
122 Generic implementation of the RSA public key algorithm.
123
802c7f1c
SB
124config CRYPTO_DH
125 tristate "Diffie-Hellman algorithm"
126 select CRYPTO_KPP
127 select MPILIB
128 help
129 Generic implementation of the Diffie-Hellman algorithm.
130
3c4b2390
SB
131config CRYPTO_ECDH
132 tristate "ECDH algorithm"
29921827 133 select CRYPTO_KPP
6755fd26 134 select CRYPTO_RNG_DEFAULT
3c4b2390
SB
135 help
136 Generic implementation of the ECDH algorithm
802c7f1c 137
2b8c19db
HX
138config CRYPTO_MANAGER
139 tristate "Cryptographic algorithm manager"
6a0fcbb4 140 select CRYPTO_MANAGER2
2b8c19db
HX
141 help
142 Create default cryptographic template instantiations such as
143 cbc(aes).
144
6a0fcbb4
HX
145config CRYPTO_MANAGER2
146 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
147 select CRYPTO_AEAD2
148 select CRYPTO_HASH2
149 select CRYPTO_BLKCIPHER2
946cc463 150 select CRYPTO_AKCIPHER2
4e5f2c40 151 select CRYPTO_KPP2
2ebda74f 152 select CRYPTO_ACOMP2
6a0fcbb4 153
a38f7907
SK
154config CRYPTO_USER
155 tristate "Userspace cryptographic algorithm configuration"
5db017aa 156 depends on NET
a38f7907
SK
157 select CRYPTO_MANAGER
158 help
d19978f5 159 Userspace configuration for cryptographic instantiations such as
a38f7907
SK
160 cbc(aes).
161
326a6346
HX
162config CRYPTO_MANAGER_DISABLE_TESTS
163 bool "Disable run-time self tests"
00ca28a5
HX
164 default y
165 depends on CRYPTO_MANAGER2
0b767f96 166 help
326a6346
HX
167 Disable run-time self tests that normally take place at
168 algorithm registration.
0b767f96 169
584fffc8 170config CRYPTO_GF128MUL
08c70fc3 171 tristate "GF(2^128) multiplication functions"
333b0d7e 172 help
584fffc8
SS
173 Efficient table driven implementation of multiplications in the
174 field GF(2^128). This is needed by some cypher modes. This
175 option will be selected automatically if you select such a
176 cipher mode. Only select this option by hand if you expect to load
177 an external module that requires these functions.
333b0d7e 178
1da177e4
LT
179config CRYPTO_NULL
180 tristate "Null algorithms"
149a3971 181 select CRYPTO_NULL2
1da177e4
LT
182 help
183 These are 'Null' algorithms, used by IPsec, which do nothing.
184
149a3971 185config CRYPTO_NULL2
dd43c4e9 186 tristate
149a3971
HX
187 select CRYPTO_ALGAPI2
188 select CRYPTO_BLKCIPHER2
189 select CRYPTO_HASH2
190
5068c7a8 191config CRYPTO_PCRYPT
3b4afaf2
KC
192 tristate "Parallel crypto engine"
193 depends on SMP
5068c7a8
SK
194 select PADATA
195 select CRYPTO_MANAGER
196 select CRYPTO_AEAD
197 help
198 This converts an arbitrary crypto algorithm into a parallel
199 algorithm that executes in kernel threads.
200
25c38d3f
HY
201config CRYPTO_WORKQUEUE
202 tristate
203
584fffc8
SS
204config CRYPTO_CRYPTD
205 tristate "Software async crypto daemon"
206 select CRYPTO_BLKCIPHER
b8a28251 207 select CRYPTO_HASH
584fffc8 208 select CRYPTO_MANAGER
254eff77 209 select CRYPTO_WORKQUEUE
1da177e4 210 help
584fffc8
SS
211 This is a generic software asynchronous crypto daemon that
212 converts an arbitrary synchronous software crypto algorithm
213 into an asynchronous algorithm that executes in a kernel thread.
1da177e4 214
1e65b81a
TC
215config CRYPTO_MCRYPTD
216 tristate "Software async multi-buffer crypto daemon"
217 select CRYPTO_BLKCIPHER
218 select CRYPTO_HASH
219 select CRYPTO_MANAGER
220 select CRYPTO_WORKQUEUE
221 help
222 This is a generic software asynchronous crypto daemon that
223 provides the kernel thread to assist multi-buffer crypto
224 algorithms for submitting jobs and flushing jobs in multi-buffer
225 crypto algorithms. Multi-buffer crypto algorithms are executed
226 in the context of this kernel thread and drivers can post
0e56673b 227 their crypto request asynchronously to be processed by this daemon.
1e65b81a 228
584fffc8
SS
229config CRYPTO_AUTHENC
230 tristate "Authenc support"
231 select CRYPTO_AEAD
232 select CRYPTO_BLKCIPHER
233 select CRYPTO_MANAGER
234 select CRYPTO_HASH
e94c6a7a 235 select CRYPTO_NULL
1da177e4 236 help
584fffc8
SS
237 Authenc: Combined mode wrapper for IPsec.
238 This is required for IPSec.
1da177e4 239
584fffc8
SS
240config CRYPTO_TEST
241 tristate "Testing module"
242 depends on m
da7f033d 243 select CRYPTO_MANAGER
1da177e4 244 help
584fffc8 245 Quick & dirty crypto test module.
1da177e4 246
a62b01cd 247config CRYPTO_ABLK_HELPER
ffaf9156 248 tristate
266d0516
HX
249 select CRYPTO_CRYPTD
250
251config CRYPTO_SIMD
252 tristate
ffaf9156
JK
253 select CRYPTO_CRYPTD
254
596d8750
JK
255config CRYPTO_GLUE_HELPER_X86
256 tristate
257 depends on X86
065ce327 258 select CRYPTO_BLKCIPHER
596d8750 259
735d37b5
BW
260config CRYPTO_ENGINE
261 tristate
262
584fffc8 263comment "Authenticated Encryption with Associated Data"
cd12fb90 264
584fffc8
SS
265config CRYPTO_CCM
266 tristate "CCM support"
267 select CRYPTO_CTR
f15f05b0 268 select CRYPTO_HASH
584fffc8 269 select CRYPTO_AEAD
1da177e4 270 help
584fffc8 271 Support for Counter with CBC MAC. Required for IPsec.
1da177e4 272
584fffc8
SS
273config CRYPTO_GCM
274 tristate "GCM/GMAC support"
275 select CRYPTO_CTR
276 select CRYPTO_AEAD
9382d97a 277 select CRYPTO_GHASH
9489667d 278 select CRYPTO_NULL
1da177e4 279 help
584fffc8
SS
280 Support for Galois/Counter Mode (GCM) and Galois Message
281 Authentication Code (GMAC). Required for IPSec.
1da177e4 282
71ebc4d1
MW
283config CRYPTO_CHACHA20POLY1305
284 tristate "ChaCha20-Poly1305 AEAD support"
285 select CRYPTO_CHACHA20
286 select CRYPTO_POLY1305
287 select CRYPTO_AEAD
288 help
289 ChaCha20-Poly1305 AEAD support, RFC7539.
290
291 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
292 with the Poly1305 authenticator. It is defined in RFC7539 for use in
293 IETF protocols.
294
584fffc8
SS
295config CRYPTO_SEQIV
296 tristate "Sequence Number IV Generator"
297 select CRYPTO_AEAD
298 select CRYPTO_BLKCIPHER
856e3f40 299 select CRYPTO_NULL
401e4238 300 select CRYPTO_RNG_DEFAULT
1da177e4 301 help
584fffc8
SS
302 This IV generator generates an IV based on a sequence number by
303 xoring it with a salt. This algorithm is mainly useful for CTR
1da177e4 304
a10f554f
HX
305config CRYPTO_ECHAINIV
306 tristate "Encrypted Chain IV Generator"
307 select CRYPTO_AEAD
308 select CRYPTO_NULL
401e4238 309 select CRYPTO_RNG_DEFAULT
3491244c 310 default m
a10f554f
HX
311 help
312 This IV generator generates an IV based on the encryption of
313 a sequence number xored with a salt. This is the default
314 algorithm for CBC.
315
584fffc8 316comment "Block modes"
c494e070 317
584fffc8
SS
318config CRYPTO_CBC
319 tristate "CBC support"
db131ef9 320 select CRYPTO_BLKCIPHER
43518407 321 select CRYPTO_MANAGER
db131ef9 322 help
584fffc8
SS
323 CBC: Cipher Block Chaining mode
324 This block cipher algorithm is required for IPSec.
db131ef9 325
584fffc8
SS
326config CRYPTO_CTR
327 tristate "CTR support"
db131ef9 328 select CRYPTO_BLKCIPHER
584fffc8 329 select CRYPTO_SEQIV
43518407 330 select CRYPTO_MANAGER
db131ef9 331 help
584fffc8 332 CTR: Counter mode
db131ef9
HX
333 This block cipher algorithm is required for IPSec.
334
584fffc8
SS
335config CRYPTO_CTS
336 tristate "CTS support"
337 select CRYPTO_BLKCIPHER
338 help
339 CTS: Cipher Text Stealing
340 This is the Cipher Text Stealing mode as described by
341 Section 8 of rfc2040 and referenced by rfc3962.
342 (rfc3962 includes errata information in its Appendix A)
343 This mode is required for Kerberos gss mechanism support
344 for AES encryption.
345
346config CRYPTO_ECB
347 tristate "ECB support"
91652be5
DH
348 select CRYPTO_BLKCIPHER
349 select CRYPTO_MANAGER
91652be5 350 help
584fffc8
SS
351 ECB: Electronic CodeBook mode
352 This is the simplest block cipher algorithm. It simply encrypts
353 the input block by block.
91652be5 354
64470f1b 355config CRYPTO_LRW
2470a2b2 356 tristate "LRW support"
64470f1b
RS
357 select CRYPTO_BLKCIPHER
358 select CRYPTO_MANAGER
359 select CRYPTO_GF128MUL
360 help
361 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
362 narrow block cipher mode for dm-crypt. Use it with cipher
363 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
364 The first 128, 192 or 256 bits in the key are used for AES and the
365 rest is used to tie each cipher block to its logical position.
366
584fffc8
SS
367config CRYPTO_PCBC
368 tristate "PCBC support"
369 select CRYPTO_BLKCIPHER
370 select CRYPTO_MANAGER
371 help
372 PCBC: Propagating Cipher Block Chaining mode
373 This block cipher algorithm is required for RxRPC.
374
f19f5111 375config CRYPTO_XTS
5bcf8e6d 376 tristate "XTS support"
f19f5111
RS
377 select CRYPTO_BLKCIPHER
378 select CRYPTO_MANAGER
12cb3a1c 379 select CRYPTO_ECB
f19f5111
RS
380 help
381 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
382 key size 256, 384 or 512 bits. This implementation currently
383 can't handle a sectorsize which is not a multiple of 16 bytes.
384
1c49678e
SM
385config CRYPTO_KEYWRAP
386 tristate "Key wrapping support"
387 select CRYPTO_BLKCIPHER
388 help
389 Support for key wrapping (NIST SP800-38F / RFC3394) without
390 padding.
391
584fffc8
SS
392comment "Hash modes"
393
93b5e86a
JK
394config CRYPTO_CMAC
395 tristate "CMAC support"
396 select CRYPTO_HASH
397 select CRYPTO_MANAGER
398 help
399 Cipher-based Message Authentication Code (CMAC) specified by
400 The National Institute of Standards and Technology (NIST).
401
402 https://tools.ietf.org/html/rfc4493
403 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
404
584fffc8
SS
405config CRYPTO_HMAC
406 tristate "HMAC support"
407 select CRYPTO_HASH
23e353c8 408 select CRYPTO_MANAGER
23e353c8 409 help
584fffc8
SS
410 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
411 This is required for IPSec.
23e353c8 412
584fffc8
SS
413config CRYPTO_XCBC
414 tristate "XCBC support"
584fffc8
SS
415 select CRYPTO_HASH
416 select CRYPTO_MANAGER
76cb9521 417 help
584fffc8
SS
418 XCBC: Keyed-Hashing with encryption algorithm
419 http://www.ietf.org/rfc/rfc3566.txt
420 http://csrc.nist.gov/encryption/modes/proposedmodes/
421 xcbc-mac/xcbc-mac-spec.pdf
76cb9521 422
f1939f7c
SW
423config CRYPTO_VMAC
424 tristate "VMAC support"
f1939f7c
SW
425 select CRYPTO_HASH
426 select CRYPTO_MANAGER
427 help
428 VMAC is a message authentication algorithm designed for
429 very high speed on 64-bit architectures.
430
431 See also:
432 <http://fastcrypto.org/vmac>
433
584fffc8 434comment "Digest"
28db8e3e 435
584fffc8
SS
436config CRYPTO_CRC32C
437 tristate "CRC32c CRC algorithm"
5773a3e6 438 select CRYPTO_HASH
6a0962b2 439 select CRC32
4a49b499 440 help
584fffc8
SS
441 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
442 by iSCSI for header and data digests and by others.
69c35efc 443 See Castagnoli93. Module will be crc32c.
4a49b499 444
8cb51ba8
AZ
445config CRYPTO_CRC32C_INTEL
446 tristate "CRC32c INTEL hardware acceleration"
447 depends on X86
448 select CRYPTO_HASH
449 help
450 In Intel processor with SSE4.2 supported, the processor will
451 support CRC32C implementation using hardware accelerated CRC32
452 instruction. This option will create 'crc32c-intel' module,
453 which will enable any routine to use the CRC32 instruction to
454 gain performance compared with software implementation.
455 Module will be crc32c-intel.
456
7cf31864 457config CRYPTO_CRC32C_VPMSUM
6dd7a82c 458 tristate "CRC32c CRC algorithm (powerpc64)"
c12abf34 459 depends on PPC64 && ALTIVEC
6dd7a82c
AB
460 select CRYPTO_HASH
461 select CRC32
462 help
463 CRC32c algorithm implemented using vector polynomial multiply-sum
464 (vpmsum) instructions, introduced in POWER8. Enable on POWER8
465 and newer processors for improved performance.
466
467
442a7c40
DM
468config CRYPTO_CRC32C_SPARC64
469 tristate "CRC32c CRC algorithm (SPARC64)"
470 depends on SPARC64
471 select CRYPTO_HASH
472 select CRC32
473 help
474 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
475 when available.
476
78c37d19
AB
477config CRYPTO_CRC32
478 tristate "CRC32 CRC algorithm"
479 select CRYPTO_HASH
480 select CRC32
481 help
482 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
483 Shash crypto api wrappers to crc32_le function.
484
485config CRYPTO_CRC32_PCLMUL
486 tristate "CRC32 PCLMULQDQ hardware acceleration"
487 depends on X86
488 select CRYPTO_HASH
489 select CRC32
490 help
491 From Intel Westmere and AMD Bulldozer processor with SSE4.2
492 and PCLMULQDQ supported, the processor will support
493 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
494 instruction. This option will create 'crc32-plcmul' module,
495 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
496 and gain better performance as compared with the table implementation.
497
68411521
HX
498config CRYPTO_CRCT10DIF
499 tristate "CRCT10DIF algorithm"
500 select CRYPTO_HASH
501 help
502 CRC T10 Data Integrity Field computation is being cast as
503 a crypto transform. This allows for faster crc t10 diff
504 transforms to be used if they are available.
505
506config CRYPTO_CRCT10DIF_PCLMUL
507 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
508 depends on X86 && 64BIT && CRC_T10DIF
509 select CRYPTO_HASH
510 help
511 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
512 CRC T10 DIF PCLMULQDQ computation can be hardware
513 accelerated PCLMULQDQ instruction. This option will create
514 'crct10dif-plcmul' module, which is faster when computing the
515 crct10dif checksum as compared with the generic table implementation.
516
b01df1c1
DA
517config CRYPTO_CRCT10DIF_VPMSUM
518 tristate "CRC32T10DIF powerpc64 hardware acceleration"
519 depends on PPC64 && ALTIVEC && CRC_T10DIF
520 select CRYPTO_HASH
521 help
522 CRC10T10DIF algorithm implemented using vector polynomial
523 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
524 POWER8 and newer processors for improved performance.
525
146c8688
DA
526config CRYPTO_VPMSUM_TESTER
527 tristate "Powerpc64 vpmsum hardware acceleration tester"
528 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
529 help
530 Stress test for CRC32c and CRC-T10DIF algorithms implemented with
531 POWER8 vpmsum instructions.
532 Unless you are testing these algorithms, you don't need this.
533
2cdc6899
HY
534config CRYPTO_GHASH
535 tristate "GHASH digest algorithm"
2cdc6899 536 select CRYPTO_GF128MUL
578c60fb 537 select CRYPTO_HASH
2cdc6899
HY
538 help
539 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
540
f979e014
MW
541config CRYPTO_POLY1305
542 tristate "Poly1305 authenticator algorithm"
578c60fb 543 select CRYPTO_HASH
f979e014
MW
544 help
545 Poly1305 authenticator algorithm, RFC7539.
546
547 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
548 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
549 in IETF protocols. This is the portable C implementation of Poly1305.
550
c70f4abe 551config CRYPTO_POLY1305_X86_64
b1ccc8f4 552 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
c70f4abe
MW
553 depends on X86 && 64BIT
554 select CRYPTO_POLY1305
555 help
556 Poly1305 authenticator algorithm, RFC7539.
557
558 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
559 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
560 in IETF protocols. This is the x86_64 assembler implementation using SIMD
561 instructions.
562
584fffc8
SS
563config CRYPTO_MD4
564 tristate "MD4 digest algorithm"
808a1763 565 select CRYPTO_HASH
124b53d0 566 help
584fffc8 567 MD4 message digest algorithm (RFC1320).
124b53d0 568
584fffc8
SS
569config CRYPTO_MD5
570 tristate "MD5 digest algorithm"
14b75ba7 571 select CRYPTO_HASH
1da177e4 572 help
584fffc8 573 MD5 message digest algorithm (RFC1321).
1da177e4 574
d69e75de
AK
575config CRYPTO_MD5_OCTEON
576 tristate "MD5 digest algorithm (OCTEON)"
577 depends on CPU_CAVIUM_OCTEON
578 select CRYPTO_MD5
579 select CRYPTO_HASH
580 help
581 MD5 message digest algorithm (RFC1321) implemented
582 using OCTEON crypto instructions, when available.
583
e8e59953
MS
584config CRYPTO_MD5_PPC
585 tristate "MD5 digest algorithm (PPC)"
586 depends on PPC
587 select CRYPTO_HASH
588 help
589 MD5 message digest algorithm (RFC1321) implemented
590 in PPC assembler.
591
fa4dfedc
DM
592config CRYPTO_MD5_SPARC64
593 tristate "MD5 digest algorithm (SPARC64)"
594 depends on SPARC64
595 select CRYPTO_MD5
596 select CRYPTO_HASH
597 help
598 MD5 message digest algorithm (RFC1321) implemented
599 using sparc64 crypto instructions, when available.
600
584fffc8
SS
601config CRYPTO_MICHAEL_MIC
602 tristate "Michael MIC keyed digest algorithm"
19e2bf14 603 select CRYPTO_HASH
90831639 604 help
584fffc8
SS
605 Michael MIC is used for message integrity protection in TKIP
606 (IEEE 802.11i). This algorithm is required for TKIP, but it
607 should not be used for other purposes because of the weakness
608 of the algorithm.
90831639 609
82798f90 610config CRYPTO_RMD128
b6d44341 611 tristate "RIPEMD-128 digest algorithm"
7c4468bc 612 select CRYPTO_HASH
b6d44341
AB
613 help
614 RIPEMD-128 (ISO/IEC 10118-3:2004).
82798f90 615
b6d44341 616 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
35ed4b35 617 be used as a secure replacement for RIPEMD. For other use cases,
b6d44341 618 RIPEMD-160 should be used.
82798f90 619
b6d44341 620 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6d8de74c 621 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
82798f90
AKR
622
623config CRYPTO_RMD160
b6d44341 624 tristate "RIPEMD-160 digest algorithm"
e5835fba 625 select CRYPTO_HASH
b6d44341
AB
626 help
627 RIPEMD-160 (ISO/IEC 10118-3:2004).
82798f90 628
b6d44341
AB
629 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
630 to be used as a secure replacement for the 128-bit hash functions
631 MD4, MD5 and it's predecessor RIPEMD
632 (not to be confused with RIPEMD-128).
82798f90 633
b6d44341
AB
634 It's speed is comparable to SHA1 and there are no known attacks
635 against RIPEMD-160.
534fe2c1 636
b6d44341 637 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6d8de74c 638 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
534fe2c1
AKR
639
640config CRYPTO_RMD256
b6d44341 641 tristate "RIPEMD-256 digest algorithm"
d8a5e2e9 642 select CRYPTO_HASH
b6d44341
AB
643 help
644 RIPEMD-256 is an optional extension of RIPEMD-128 with a
645 256 bit hash. It is intended for applications that require
646 longer hash-results, without needing a larger security level
647 (than RIPEMD-128).
534fe2c1 648
b6d44341 649 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6d8de74c 650 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
534fe2c1
AKR
651
652config CRYPTO_RMD320
b6d44341 653 tristate "RIPEMD-320 digest algorithm"
3b8efb4c 654 select CRYPTO_HASH
b6d44341
AB
655 help
656 RIPEMD-320 is an optional extension of RIPEMD-160 with a
657 320 bit hash. It is intended for applications that require
658 longer hash-results, without needing a larger security level
659 (than RIPEMD-160).
534fe2c1 660
b6d44341 661 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6d8de74c 662 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
82798f90 663
584fffc8
SS
664config CRYPTO_SHA1
665 tristate "SHA1 digest algorithm"
54ccb367 666 select CRYPTO_HASH
1da177e4 667 help
584fffc8 668 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
1da177e4 669
66be8951 670config CRYPTO_SHA1_SSSE3
e38b6b7f 671 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
66be8951
MK
672 depends on X86 && 64BIT
673 select CRYPTO_SHA1
674 select CRYPTO_HASH
675 help
676 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
677 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
e38b6b7f 678 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
679 when available.
66be8951 680
8275d1aa 681config CRYPTO_SHA256_SSSE3
e38b6b7f 682 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
8275d1aa
TC
683 depends on X86 && 64BIT
684 select CRYPTO_SHA256
685 select CRYPTO_HASH
686 help
687 SHA-256 secure hash standard (DFIPS 180-2) implemented
688 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
689 Extensions version 1 (AVX1), or Advanced Vector Extensions
e38b6b7f 690 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
691 Instructions) when available.
87de4579
TC
692
693config CRYPTO_SHA512_SSSE3
694 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
695 depends on X86 && 64BIT
696 select CRYPTO_SHA512
697 select CRYPTO_HASH
698 help
699 SHA-512 secure hash standard (DFIPS 180-2) implemented
700 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
701 Extensions version 1 (AVX1), or Advanced Vector Extensions
8275d1aa
TC
702 version 2 (AVX2) instructions, when available.
703
efdb6f6e
AK
704config CRYPTO_SHA1_OCTEON
705 tristate "SHA1 digest algorithm (OCTEON)"
706 depends on CPU_CAVIUM_OCTEON
707 select CRYPTO_SHA1
708 select CRYPTO_HASH
709 help
710 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
711 using OCTEON crypto instructions, when available.
712
4ff28d4c
DM
713config CRYPTO_SHA1_SPARC64
714 tristate "SHA1 digest algorithm (SPARC64)"
715 depends on SPARC64
716 select CRYPTO_SHA1
717 select CRYPTO_HASH
718 help
719 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
720 using sparc64 crypto instructions, when available.
721
323a6bf1
ME
722config CRYPTO_SHA1_PPC
723 tristate "SHA1 digest algorithm (powerpc)"
724 depends on PPC
725 help
726 This is the powerpc hardware accelerated implementation of the
727 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
728
d9850fc5
MS
729config CRYPTO_SHA1_PPC_SPE
730 tristate "SHA1 digest algorithm (PPC SPE)"
731 depends on PPC && SPE
732 help
733 SHA-1 secure hash standard (DFIPS 180-4) implemented
734 using powerpc SPE SIMD instruction set.
735
1e65b81a
TC
736config CRYPTO_SHA1_MB
737 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
738 depends on X86 && 64BIT
739 select CRYPTO_SHA1
740 select CRYPTO_HASH
741 select CRYPTO_MCRYPTD
742 help
743 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
744 using multi-buffer technique. This algorithm computes on
745 multiple data lanes concurrently with SIMD instructions for
746 better throughput. It should not be enabled by default but
747 used when there is significant amount of work to keep the keep
748 the data lanes filled to get performance benefit. If the data
749 lanes remain unfilled, a flush operation will be initiated to
750 process the crypto jobs, adding a slight latency.
751
9be7e244
MD
752config CRYPTO_SHA256_MB
753 tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
754 depends on X86 && 64BIT
755 select CRYPTO_SHA256
756 select CRYPTO_HASH
757 select CRYPTO_MCRYPTD
758 help
759 SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
760 using multi-buffer technique. This algorithm computes on
761 multiple data lanes concurrently with SIMD instructions for
762 better throughput. It should not be enabled by default but
763 used when there is significant amount of work to keep the keep
764 the data lanes filled to get performance benefit. If the data
765 lanes remain unfilled, a flush operation will be initiated to
766 process the crypto jobs, adding a slight latency.
767
026bb8aa
MD
768config CRYPTO_SHA512_MB
769 tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
770 depends on X86 && 64BIT
771 select CRYPTO_SHA512
772 select CRYPTO_HASH
773 select CRYPTO_MCRYPTD
774 help
775 SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
776 using multi-buffer technique. This algorithm computes on
777 multiple data lanes concurrently with SIMD instructions for
778 better throughput. It should not be enabled by default but
779 used when there is significant amount of work to keep the keep
780 the data lanes filled to get performance benefit. If the data
781 lanes remain unfilled, a flush operation will be initiated to
782 process the crypto jobs, adding a slight latency.
783
584fffc8
SS
784config CRYPTO_SHA256
785 tristate "SHA224 and SHA256 digest algorithm"
50e109b5 786 select CRYPTO_HASH
1da177e4 787 help
584fffc8 788 SHA256 secure hash standard (DFIPS 180-2).
1da177e4 789
584fffc8
SS
790 This version of SHA implements a 256 bit hash with 128 bits of
791 security against collision attacks.
2729bb42 792
b6d44341
AB
793 This code also includes SHA-224, a 224 bit hash with 112 bits
794 of security against collision attacks.
584fffc8 795
2ecc1e95
MS
796config CRYPTO_SHA256_PPC_SPE
797 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
798 depends on PPC && SPE
799 select CRYPTO_SHA256
800 select CRYPTO_HASH
801 help
802 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
803 implemented using powerpc SPE SIMD instruction set.
804
efdb6f6e
AK
805config CRYPTO_SHA256_OCTEON
806 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
807 depends on CPU_CAVIUM_OCTEON
808 select CRYPTO_SHA256
809 select CRYPTO_HASH
810 help
811 SHA-256 secure hash standard (DFIPS 180-2) implemented
812 using OCTEON crypto instructions, when available.
813
86c93b24
DM
814config CRYPTO_SHA256_SPARC64
815 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
816 depends on SPARC64
817 select CRYPTO_SHA256
818 select CRYPTO_HASH
819 help
820 SHA-256 secure hash standard (DFIPS 180-2) implemented
821 using sparc64 crypto instructions, when available.
822
584fffc8
SS
823config CRYPTO_SHA512
824 tristate "SHA384 and SHA512 digest algorithms"
bd9d20db 825 select CRYPTO_HASH
b9f535ff 826 help
584fffc8 827 SHA512 secure hash standard (DFIPS 180-2).
b9f535ff 828
584fffc8
SS
829 This version of SHA implements a 512 bit hash with 256 bits of
830 security against collision attacks.
b9f535ff 831
584fffc8
SS
832 This code also includes SHA-384, a 384 bit hash with 192 bits
833 of security against collision attacks.
b9f535ff 834
efdb6f6e
AK
835config CRYPTO_SHA512_OCTEON
836 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
837 depends on CPU_CAVIUM_OCTEON
838 select CRYPTO_SHA512
839 select CRYPTO_HASH
840 help
841 SHA-512 secure hash standard (DFIPS 180-2) implemented
842 using OCTEON crypto instructions, when available.
843
775e0c69
DM
844config CRYPTO_SHA512_SPARC64
845 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
846 depends on SPARC64
847 select CRYPTO_SHA512
848 select CRYPTO_HASH
849 help
850 SHA-512 secure hash standard (DFIPS 180-2) implemented
851 using sparc64 crypto instructions, when available.
852
53964b9e
JG
853config CRYPTO_SHA3
854 tristate "SHA3 digest algorithm"
855 select CRYPTO_HASH
856 help
857 SHA-3 secure hash standard (DFIPS 202). It's based on
858 cryptographic sponge function family called Keccak.
859
860 References:
861 http://keccak.noekeon.org/
862
584fffc8
SS
863config CRYPTO_TGR192
864 tristate "Tiger digest algorithms"
f63fbd3d 865 select CRYPTO_HASH
eaf44088 866 help
584fffc8 867 Tiger hash algorithm 192, 160 and 128-bit hashes
eaf44088 868
584fffc8
SS
869 Tiger is a hash function optimized for 64-bit processors while
870 still having decent performance on 32-bit processors.
871 Tiger was developed by Ross Anderson and Eli Biham.
eaf44088
JF
872
873 See also:
584fffc8 874 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
eaf44088 875
584fffc8
SS
876config CRYPTO_WP512
877 tristate "Whirlpool digest algorithms"
4946510b 878 select CRYPTO_HASH
1da177e4 879 help
584fffc8 880 Whirlpool hash algorithm 512, 384 and 256-bit hashes
1da177e4 881
584fffc8
SS
882 Whirlpool-512 is part of the NESSIE cryptographic primitives.
883 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1da177e4
LT
884
885 See also:
6d8de74c 886 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
584fffc8 887
0e1227d3
HY
888config CRYPTO_GHASH_CLMUL_NI_INTEL
889 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
8af00860 890 depends on X86 && 64BIT
0e1227d3
HY
891 select CRYPTO_CRYPTD
892 help
893 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
894 The implementation is accelerated by CLMUL-NI of Intel.
895
584fffc8 896comment "Ciphers"
1da177e4
LT
897
898config CRYPTO_AES
899 tristate "AES cipher algorithms"
cce9e06d 900 select CRYPTO_ALGAPI
1da177e4 901 help
584fffc8 902 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1da177e4
LT
903 algorithm.
904
905 Rijndael appears to be consistently a very good performer in
584fffc8
SS
906 both hardware and software across a wide range of computing
907 environments regardless of its use in feedback or non-feedback
908 modes. Its key setup time is excellent, and its key agility is
909 good. Rijndael's very low memory requirements make it very well
910 suited for restricted-space environments, in which it also
911 demonstrates excellent performance. Rijndael's operations are
912 among the easiest to defend against power and timing attacks.
1da177e4 913
584fffc8 914 The AES specifies three key sizes: 128, 192 and 256 bits
1da177e4
LT
915
916 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
917
b5e0b032
AB
918config CRYPTO_AES_TI
919 tristate "Fixed time AES cipher"
920 select CRYPTO_ALGAPI
921 help
922 This is a generic implementation of AES that attempts to eliminate
923 data dependent latencies as much as possible without affecting
924 performance too much. It is intended for use by the generic CCM
925 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
926 solely on encryption (although decryption is supported as well, but
927 with a more dramatic performance hit)
928
929 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
930 8 for decryption), this implementation only uses just two S-boxes of
931 256 bytes each, and attempts to eliminate data dependent latencies by
932 prefetching the entire table into the cache at the start of each
e867d756
EB
933 block. Interrupts are also disabled to avoid races where cachelines
934 are evicted when the CPU is interrupted to do something else.
b5e0b032 935
1da177e4
LT
936config CRYPTO_AES_586
937 tristate "AES cipher algorithms (i586)"
cce9e06d
HX
938 depends on (X86 || UML_X86) && !64BIT
939 select CRYPTO_ALGAPI
5157dea8 940 select CRYPTO_AES
1da177e4 941 help
584fffc8 942 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1da177e4
LT
943 algorithm.
944
945 Rijndael appears to be consistently a very good performer in
584fffc8
SS
946 both hardware and software across a wide range of computing
947 environments regardless of its use in feedback or non-feedback
948 modes. Its key setup time is excellent, and its key agility is
949 good. Rijndael's very low memory requirements make it very well
950 suited for restricted-space environments, in which it also
951 demonstrates excellent performance. Rijndael's operations are
952 among the easiest to defend against power and timing attacks.
1da177e4 953
584fffc8 954 The AES specifies three key sizes: 128, 192 and 256 bits
a2a892a2
AS
955
956 See <http://csrc.nist.gov/encryption/aes/> for more information.
957
958config CRYPTO_AES_X86_64
959 tristate "AES cipher algorithms (x86_64)"
cce9e06d
HX
960 depends on (X86 || UML_X86) && 64BIT
961 select CRYPTO_ALGAPI
81190b32 962 select CRYPTO_AES
a2a892a2 963 help
584fffc8 964 AES cipher algorithms (FIPS-197). AES uses the Rijndael
a2a892a2
AS
965 algorithm.
966
967 Rijndael appears to be consistently a very good performer in
584fffc8
SS
968 both hardware and software across a wide range of computing
969 environments regardless of its use in feedback or non-feedback
970 modes. Its key setup time is excellent, and its key agility is
54b6a1bd
HY
971 good. Rijndael's very low memory requirements make it very well
972 suited for restricted-space environments, in which it also
973 demonstrates excellent performance. Rijndael's operations are
974 among the easiest to defend against power and timing attacks.
975
976 The AES specifies three key sizes: 128, 192 and 256 bits
977
978 See <http://csrc.nist.gov/encryption/aes/> for more information.
979
980config CRYPTO_AES_NI_INTEL
981 tristate "AES cipher algorithms (AES-NI)"
8af00860 982 depends on X86
85671860 983 select CRYPTO_AEAD
0d258efb
MK
984 select CRYPTO_AES_X86_64 if 64BIT
985 select CRYPTO_AES_586 if !64BIT
54b6a1bd 986 select CRYPTO_ALGAPI
85671860 987 select CRYPTO_BLKCIPHER
7643a11a 988 select CRYPTO_GLUE_HELPER_X86 if 64BIT
85671860 989 select CRYPTO_SIMD
54b6a1bd
HY
990 help
991 Use Intel AES-NI instructions for AES algorithm.
992
993 AES cipher algorithms (FIPS-197). AES uses the Rijndael
994 algorithm.
995
996 Rijndael appears to be consistently a very good performer in
997 both hardware and software across a wide range of computing
998 environments regardless of its use in feedback or non-feedback
999 modes. Its key setup time is excellent, and its key agility is
584fffc8
SS
1000 good. Rijndael's very low memory requirements make it very well
1001 suited for restricted-space environments, in which it also
1002 demonstrates excellent performance. Rijndael's operations are
1003 among the easiest to defend against power and timing attacks.
a2a892a2 1004
584fffc8 1005 The AES specifies three key sizes: 128, 192 and 256 bits
1da177e4
LT
1006
1007 See <http://csrc.nist.gov/encryption/aes/> for more information.
1008
0d258efb
MK
1009 In addition to AES cipher algorithm support, the acceleration
1010 for some popular block cipher mode is supported too, including
1011 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
1012 acceleration for CTR.
2cf4ac8b 1013
9bf4852d
DM
1014config CRYPTO_AES_SPARC64
1015 tristate "AES cipher algorithms (SPARC64)"
1016 depends on SPARC64
1017 select CRYPTO_CRYPTD
1018 select CRYPTO_ALGAPI
1019 help
1020 Use SPARC64 crypto opcodes for AES algorithm.
1021
1022 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1023 algorithm.
1024
1025 Rijndael appears to be consistently a very good performer in
1026 both hardware and software across a wide range of computing
1027 environments regardless of its use in feedback or non-feedback
1028 modes. Its key setup time is excellent, and its key agility is
1029 good. Rijndael's very low memory requirements make it very well
1030 suited for restricted-space environments, in which it also
1031 demonstrates excellent performance. Rijndael's operations are
1032 among the easiest to defend against power and timing attacks.
1033
1034 The AES specifies three key sizes: 128, 192 and 256 bits
1035
1036 See <http://csrc.nist.gov/encryption/aes/> for more information.
1037
1038 In addition to AES cipher algorithm support, the acceleration
1039 for some popular block cipher mode is supported too, including
1040 ECB and CBC.
1041
504c6143
MS
1042config CRYPTO_AES_PPC_SPE
1043 tristate "AES cipher algorithms (PPC SPE)"
1044 depends on PPC && SPE
1045 help
1046 AES cipher algorithms (FIPS-197). Additionally the acceleration
1047 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1048 This module should only be used for low power (router) devices
1049 without hardware AES acceleration (e.g. caam crypto). It reduces the
1050 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1051 timining attacks. Nevertheless it might be not as secure as other
1052 architecture specific assembler implementations that work on 1KB
1053 tables or 256 bytes S-boxes.
1054
584fffc8
SS
1055config CRYPTO_ANUBIS
1056 tristate "Anubis cipher algorithm"
1057 select CRYPTO_ALGAPI
1058 help
1059 Anubis cipher algorithm.
1060
1061 Anubis is a variable key length cipher which can use keys from
1062 128 bits to 320 bits in length. It was evaluated as a entrant
1063 in the NESSIE competition.
1064
1065 See also:
6d8de74c
JM
1066 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1067 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
584fffc8
SS
1068
1069config CRYPTO_ARC4
1070 tristate "ARC4 cipher algorithm"
b9b0f080 1071 select CRYPTO_BLKCIPHER
584fffc8
SS
1072 help
1073 ARC4 cipher algorithm.
1074
1075 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1076 bits in length. This algorithm is required for driver-based
1077 WEP, but it should not be for other purposes because of the
1078 weakness of the algorithm.
1079
1080config CRYPTO_BLOWFISH
1081 tristate "Blowfish cipher algorithm"
1082 select CRYPTO_ALGAPI
52ba867c 1083 select CRYPTO_BLOWFISH_COMMON
584fffc8
SS
1084 help
1085 Blowfish cipher algorithm, by Bruce Schneier.
1086
1087 This is a variable key length cipher which can use keys from 32
1088 bits to 448 bits in length. It's fast, simple and specifically
1089 designed for use on "large microprocessors".
1090
1091 See also:
1092 <http://www.schneier.com/blowfish.html>
1093
52ba867c
JK
1094config CRYPTO_BLOWFISH_COMMON
1095 tristate
1096 help
1097 Common parts of the Blowfish cipher algorithm shared by the
1098 generic c and the assembler implementations.
1099
1100 See also:
1101 <http://www.schneier.com/blowfish.html>
1102
64b94cea
JK
1103config CRYPTO_BLOWFISH_X86_64
1104 tristate "Blowfish cipher algorithm (x86_64)"
f21a7c19 1105 depends on X86 && 64BIT
64b94cea
JK
1106 select CRYPTO_ALGAPI
1107 select CRYPTO_BLOWFISH_COMMON
1108 help
1109 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1110
1111 This is a variable key length cipher which can use keys from 32
1112 bits to 448 bits in length. It's fast, simple and specifically
1113 designed for use on "large microprocessors".
1114
1115 See also:
1116 <http://www.schneier.com/blowfish.html>
1117
584fffc8
SS
1118config CRYPTO_CAMELLIA
1119 tristate "Camellia cipher algorithms"
1120 depends on CRYPTO
1121 select CRYPTO_ALGAPI
1122 help
1123 Camellia cipher algorithms module.
1124
1125 Camellia is a symmetric key block cipher developed jointly
1126 at NTT and Mitsubishi Electric Corporation.
1127
1128 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1129
1130 See also:
1131 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1132
0b95ec56
JK
1133config CRYPTO_CAMELLIA_X86_64
1134 tristate "Camellia cipher algorithm (x86_64)"
f21a7c19 1135 depends on X86 && 64BIT
0b95ec56
JK
1136 depends on CRYPTO
1137 select CRYPTO_ALGAPI
964263af 1138 select CRYPTO_GLUE_HELPER_X86
0b95ec56
JK
1139 select CRYPTO_LRW
1140 select CRYPTO_XTS
1141 help
1142 Camellia cipher algorithm module (x86_64).
1143
1144 Camellia is a symmetric key block cipher developed jointly
1145 at NTT and Mitsubishi Electric Corporation.
1146
1147 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1148
1149 See also:
d9b1d2e7
JK
1150 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1151
1152config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1153 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1154 depends on X86 && 64BIT
1155 depends on CRYPTO
1156 select CRYPTO_ALGAPI
1157 select CRYPTO_CRYPTD
801201aa 1158 select CRYPTO_ABLK_HELPER
d9b1d2e7
JK
1159 select CRYPTO_GLUE_HELPER_X86
1160 select CRYPTO_CAMELLIA_X86_64
1161 select CRYPTO_LRW
1162 select CRYPTO_XTS
1163 help
1164 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1165
1166 Camellia is a symmetric key block cipher developed jointly
1167 at NTT and Mitsubishi Electric Corporation.
1168
1169 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1170
1171 See also:
0b95ec56
JK
1172 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1173
f3f935a7
JK
1174config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1175 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1176 depends on X86 && 64BIT
1177 depends on CRYPTO
1178 select CRYPTO_ALGAPI
1179 select CRYPTO_CRYPTD
801201aa 1180 select CRYPTO_ABLK_HELPER
f3f935a7
JK
1181 select CRYPTO_GLUE_HELPER_X86
1182 select CRYPTO_CAMELLIA_X86_64
1183 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1184 select CRYPTO_LRW
1185 select CRYPTO_XTS
1186 help
1187 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1188
1189 Camellia is a symmetric key block cipher developed jointly
1190 at NTT and Mitsubishi Electric Corporation.
1191
1192 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1193
1194 See also:
1195 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1196
81658ad0
DM
1197config CRYPTO_CAMELLIA_SPARC64
1198 tristate "Camellia cipher algorithm (SPARC64)"
1199 depends on SPARC64
1200 depends on CRYPTO
1201 select CRYPTO_ALGAPI
1202 help
1203 Camellia cipher algorithm module (SPARC64).
1204
1205 Camellia is a symmetric key block cipher developed jointly
1206 at NTT and Mitsubishi Electric Corporation.
1207
1208 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1209
1210 See also:
1211 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1212
044ab525
JK
1213config CRYPTO_CAST_COMMON
1214 tristate
1215 help
1216 Common parts of the CAST cipher algorithms shared by the
1217 generic c and the assembler implementations.
1218
1da177e4
LT
1219config CRYPTO_CAST5
1220 tristate "CAST5 (CAST-128) cipher algorithm"
cce9e06d 1221 select CRYPTO_ALGAPI
044ab525 1222 select CRYPTO_CAST_COMMON
1da177e4
LT
1223 help
1224 The CAST5 encryption algorithm (synonymous with CAST-128) is
1225 described in RFC2144.
1226
4d6d6a2c
JG
1227config CRYPTO_CAST5_AVX_X86_64
1228 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1229 depends on X86 && 64BIT
1230 select CRYPTO_ALGAPI
1231 select CRYPTO_CRYPTD
801201aa 1232 select CRYPTO_ABLK_HELPER
044ab525 1233 select CRYPTO_CAST_COMMON
4d6d6a2c
JG
1234 select CRYPTO_CAST5
1235 help
1236 The CAST5 encryption algorithm (synonymous with CAST-128) is
1237 described in RFC2144.
1238
1239 This module provides the Cast5 cipher algorithm that processes
1240 sixteen blocks parallel using the AVX instruction set.
1241
1da177e4
LT
1242config CRYPTO_CAST6
1243 tristate "CAST6 (CAST-256) cipher algorithm"
cce9e06d 1244 select CRYPTO_ALGAPI
044ab525 1245 select CRYPTO_CAST_COMMON
1da177e4
LT
1246 help
1247 The CAST6 encryption algorithm (synonymous with CAST-256) is
1248 described in RFC2612.
1249
4ea1277d
JG
1250config CRYPTO_CAST6_AVX_X86_64
1251 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1252 depends on X86 && 64BIT
1253 select CRYPTO_ALGAPI
1254 select CRYPTO_CRYPTD
801201aa 1255 select CRYPTO_ABLK_HELPER
4ea1277d 1256 select CRYPTO_GLUE_HELPER_X86
044ab525 1257 select CRYPTO_CAST_COMMON
4ea1277d
JG
1258 select CRYPTO_CAST6
1259 select CRYPTO_LRW
1260 select CRYPTO_XTS
1261 help
1262 The CAST6 encryption algorithm (synonymous with CAST-256) is
1263 described in RFC2612.
1264
1265 This module provides the Cast6 cipher algorithm that processes
1266 eight blocks parallel using the AVX instruction set.
1267
584fffc8
SS
1268config CRYPTO_DES
1269 tristate "DES and Triple DES EDE cipher algorithms"
cce9e06d 1270 select CRYPTO_ALGAPI
1da177e4 1271 help
584fffc8 1272 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
fb4f10ed 1273
c5aac2df
DM
1274config CRYPTO_DES_SPARC64
1275 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
97da37b3 1276 depends on SPARC64
c5aac2df
DM
1277 select CRYPTO_ALGAPI
1278 select CRYPTO_DES
1279 help
1280 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1281 optimized using SPARC64 crypto opcodes.
1282
6574e6c6
JK
1283config CRYPTO_DES3_EDE_X86_64
1284 tristate "Triple DES EDE cipher algorithm (x86-64)"
1285 depends on X86 && 64BIT
1286 select CRYPTO_ALGAPI
1287 select CRYPTO_DES
1288 help
1289 Triple DES EDE (FIPS 46-3) algorithm.
1290
1291 This module provides implementation of the Triple DES EDE cipher
1292 algorithm that is optimized for x86-64 processors. Two versions of
1293 algorithm are provided; regular processing one input block and
1294 one that processes three blocks parallel.
1295
584fffc8
SS
1296config CRYPTO_FCRYPT
1297 tristate "FCrypt cipher algorithm"
cce9e06d 1298 select CRYPTO_ALGAPI
584fffc8 1299 select CRYPTO_BLKCIPHER
1da177e4 1300 help
584fffc8 1301 FCrypt algorithm used by RxRPC.
1da177e4
LT
1302
1303config CRYPTO_KHAZAD
1304 tristate "Khazad cipher algorithm"
cce9e06d 1305 select CRYPTO_ALGAPI
1da177e4
LT
1306 help
1307 Khazad cipher algorithm.
1308
1309 Khazad was a finalist in the initial NESSIE competition. It is
1310 an algorithm optimized for 64-bit processors with good performance
1311 on 32-bit processors. Khazad uses an 128 bit key size.
1312
1313 See also:
6d8de74c 1314 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1da177e4 1315
2407d608 1316config CRYPTO_SALSA20
3b4afaf2 1317 tristate "Salsa20 stream cipher algorithm"
2407d608
TSH
1318 select CRYPTO_BLKCIPHER
1319 help
1320 Salsa20 stream cipher algorithm.
1321
1322 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1323 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
974e4b75
TSH
1324
1325 The Salsa20 stream cipher algorithm is designed by Daniel J.
2407d608 1326 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1da177e4 1327
c08d0e64
MW
1328config CRYPTO_CHACHA20
1329 tristate "ChaCha20 cipher algorithm"
1330 select CRYPTO_BLKCIPHER
1331 help
1332 ChaCha20 cipher algorithm, RFC7539.
1333
1334 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1335 Bernstein and further specified in RFC7539 for use in IETF protocols.
1336 This is the portable C implementation of ChaCha20.
1337
1338 See also:
1339 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1340
c9320b6d 1341config CRYPTO_CHACHA20_X86_64
3d1e93cd 1342 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
c9320b6d
MW
1343 depends on X86 && 64BIT
1344 select CRYPTO_BLKCIPHER
1345 select CRYPTO_CHACHA20
1346 help
1347 ChaCha20 cipher algorithm, RFC7539.
1348
1349 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1350 Bernstein and further specified in RFC7539 for use in IETF protocols.
1351 This is the x86_64 assembler implementation using SIMD instructions.
1352
1353 See also:
1354 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1355
584fffc8
SS
1356config CRYPTO_SEED
1357 tristate "SEED cipher algorithm"
cce9e06d 1358 select CRYPTO_ALGAPI
1da177e4 1359 help
584fffc8 1360 SEED cipher algorithm (RFC4269).
1da177e4 1361
584fffc8
SS
1362 SEED is a 128-bit symmetric key block cipher that has been
1363 developed by KISA (Korea Information Security Agency) as a
1364 national standard encryption algorithm of the Republic of Korea.
1365 It is a 16 round block cipher with the key size of 128 bit.
1366
1367 See also:
1368 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1369
1370config CRYPTO_SERPENT
1371 tristate "Serpent cipher algorithm"
cce9e06d 1372 select CRYPTO_ALGAPI
1da177e4 1373 help
584fffc8 1374 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1da177e4 1375
584fffc8
SS
1376 Keys are allowed to be from 0 to 256 bits in length, in steps
1377 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1378 variant of Serpent for compatibility with old kerneli.org code.
1379
1380 See also:
1381 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1382
937c30d7
JK
1383config CRYPTO_SERPENT_SSE2_X86_64
1384 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1385 depends on X86 && 64BIT
1386 select CRYPTO_ALGAPI
341975bf 1387 select CRYPTO_CRYPTD
801201aa 1388 select CRYPTO_ABLK_HELPER
596d8750 1389 select CRYPTO_GLUE_HELPER_X86
937c30d7 1390 select CRYPTO_SERPENT
feaf0cfc
JK
1391 select CRYPTO_LRW
1392 select CRYPTO_XTS
937c30d7
JK
1393 help
1394 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1395
1396 Keys are allowed to be from 0 to 256 bits in length, in steps
1397 of 8 bits.
1398
1e6232f8 1399 This module provides Serpent cipher algorithm that processes eight
937c30d7
JK
1400 blocks parallel using SSE2 instruction set.
1401
1402 See also:
1403 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1404
251496db
JK
1405config CRYPTO_SERPENT_SSE2_586
1406 tristate "Serpent cipher algorithm (i586/SSE2)"
1407 depends on X86 && !64BIT
1408 select CRYPTO_ALGAPI
341975bf 1409 select CRYPTO_CRYPTD
801201aa 1410 select CRYPTO_ABLK_HELPER
596d8750 1411 select CRYPTO_GLUE_HELPER_X86
251496db 1412 select CRYPTO_SERPENT
feaf0cfc
JK
1413 select CRYPTO_LRW
1414 select CRYPTO_XTS
251496db
JK
1415 help
1416 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1417
1418 Keys are allowed to be from 0 to 256 bits in length, in steps
1419 of 8 bits.
1420
1421 This module provides Serpent cipher algorithm that processes four
1422 blocks parallel using SSE2 instruction set.
1423
1424 See also:
1425 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
7efe4076
JG
1426
1427config CRYPTO_SERPENT_AVX_X86_64
1428 tristate "Serpent cipher algorithm (x86_64/AVX)"
1429 depends on X86 && 64BIT
1430 select CRYPTO_ALGAPI
1431 select CRYPTO_CRYPTD
801201aa 1432 select CRYPTO_ABLK_HELPER
1d0debbd 1433 select CRYPTO_GLUE_HELPER_X86
7efe4076
JG
1434 select CRYPTO_SERPENT
1435 select CRYPTO_LRW
1436 select CRYPTO_XTS
1437 help
1438 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1439
1440 Keys are allowed to be from 0 to 256 bits in length, in steps
1441 of 8 bits.
1442
1443 This module provides the Serpent cipher algorithm that processes
1444 eight blocks parallel using the AVX instruction set.
1445
1446 See also:
1447 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
251496db 1448
56d76c96
JK
1449config CRYPTO_SERPENT_AVX2_X86_64
1450 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1451 depends on X86 && 64BIT
1452 select CRYPTO_ALGAPI
1453 select CRYPTO_CRYPTD
801201aa 1454 select CRYPTO_ABLK_HELPER
56d76c96
JK
1455 select CRYPTO_GLUE_HELPER_X86
1456 select CRYPTO_SERPENT
1457 select CRYPTO_SERPENT_AVX_X86_64
1458 select CRYPTO_LRW
1459 select CRYPTO_XTS
1460 help
1461 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1462
1463 Keys are allowed to be from 0 to 256 bits in length, in steps
1464 of 8 bits.
1465
1466 This module provides Serpent cipher algorithm that processes 16
1467 blocks parallel using AVX2 instruction set.
1468
1469 See also:
1470 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1471
1b5dd710
EB
1472config CRYPTO_SPECK
1473 tristate "Speck cipher algorithm"
1474 select CRYPTO_ALGAPI
1475 help
1476 Speck is a lightweight block cipher that is tuned for optimal
1477 performance in software (rather than hardware).
1478
1479 Speck may not be as secure as AES, and should only be used on systems
1480 where AES is not fast enough.
1481
1482 See also: <https://eprint.iacr.org/2013/404.pdf>
1483
1484 If unsure, say N.
1485
584fffc8
SS
1486config CRYPTO_TEA
1487 tristate "TEA, XTEA and XETA cipher algorithms"
cce9e06d 1488 select CRYPTO_ALGAPI
1da177e4 1489 help
584fffc8 1490 TEA cipher algorithm.
1da177e4 1491
584fffc8
SS
1492 Tiny Encryption Algorithm is a simple cipher that uses
1493 many rounds for security. It is very fast and uses
1494 little memory.
1495
1496 Xtendend Tiny Encryption Algorithm is a modification to
1497 the TEA algorithm to address a potential key weakness
1498 in the TEA algorithm.
1499
1500 Xtendend Encryption Tiny Algorithm is a mis-implementation
1501 of the XTEA algorithm for compatibility purposes.
1502
1503config CRYPTO_TWOFISH
1504 tristate "Twofish cipher algorithm"
04ac7db3 1505 select CRYPTO_ALGAPI
584fffc8 1506 select CRYPTO_TWOFISH_COMMON
04ac7db3 1507 help
584fffc8 1508 Twofish cipher algorithm.
04ac7db3 1509
584fffc8
SS
1510 Twofish was submitted as an AES (Advanced Encryption Standard)
1511 candidate cipher by researchers at CounterPane Systems. It is a
1512 16 round block cipher supporting key sizes of 128, 192, and 256
1513 bits.
04ac7db3 1514
584fffc8
SS
1515 See also:
1516 <http://www.schneier.com/twofish.html>
1517
1518config CRYPTO_TWOFISH_COMMON
1519 tristate
1520 help
1521 Common parts of the Twofish cipher algorithm shared by the
1522 generic c and the assembler implementations.
1523
1524config CRYPTO_TWOFISH_586
1525 tristate "Twofish cipher algorithms (i586)"
1526 depends on (X86 || UML_X86) && !64BIT
1527 select CRYPTO_ALGAPI
1528 select CRYPTO_TWOFISH_COMMON
1529 help
1530 Twofish cipher algorithm.
1531
1532 Twofish was submitted as an AES (Advanced Encryption Standard)
1533 candidate cipher by researchers at CounterPane Systems. It is a
1534 16 round block cipher supporting key sizes of 128, 192, and 256
1535 bits.
04ac7db3
NT
1536
1537 See also:
584fffc8 1538 <http://www.schneier.com/twofish.html>
04ac7db3 1539
584fffc8
SS
1540config CRYPTO_TWOFISH_X86_64
1541 tristate "Twofish cipher algorithm (x86_64)"
1542 depends on (X86 || UML_X86) && 64BIT
cce9e06d 1543 select CRYPTO_ALGAPI
584fffc8 1544 select CRYPTO_TWOFISH_COMMON
1da177e4 1545 help
584fffc8 1546 Twofish cipher algorithm (x86_64).
1da177e4 1547
584fffc8
SS
1548 Twofish was submitted as an AES (Advanced Encryption Standard)
1549 candidate cipher by researchers at CounterPane Systems. It is a
1550 16 round block cipher supporting key sizes of 128, 192, and 256
1551 bits.
1552
1553 See also:
1554 <http://www.schneier.com/twofish.html>
1555
8280daad
JK
1556config CRYPTO_TWOFISH_X86_64_3WAY
1557 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
f21a7c19 1558 depends on X86 && 64BIT
8280daad
JK
1559 select CRYPTO_ALGAPI
1560 select CRYPTO_TWOFISH_COMMON
1561 select CRYPTO_TWOFISH_X86_64
414cb5e7 1562 select CRYPTO_GLUE_HELPER_X86
e7cda5d2
JK
1563 select CRYPTO_LRW
1564 select CRYPTO_XTS
8280daad
JK
1565 help
1566 Twofish cipher algorithm (x86_64, 3-way parallel).
1567
1568 Twofish was submitted as an AES (Advanced Encryption Standard)
1569 candidate cipher by researchers at CounterPane Systems. It is a
1570 16 round block cipher supporting key sizes of 128, 192, and 256
1571 bits.
1572
1573 This module provides Twofish cipher algorithm that processes three
1574 blocks parallel, utilizing resources of out-of-order CPUs better.
1575
1576 See also:
1577 <http://www.schneier.com/twofish.html>
1578
107778b5
JG
1579config CRYPTO_TWOFISH_AVX_X86_64
1580 tristate "Twofish cipher algorithm (x86_64/AVX)"
1581 depends on X86 && 64BIT
1582 select CRYPTO_ALGAPI
1583 select CRYPTO_CRYPTD
801201aa 1584 select CRYPTO_ABLK_HELPER
a7378d4e 1585 select CRYPTO_GLUE_HELPER_X86
107778b5
JG
1586 select CRYPTO_TWOFISH_COMMON
1587 select CRYPTO_TWOFISH_X86_64
1588 select CRYPTO_TWOFISH_X86_64_3WAY
1589 select CRYPTO_LRW
1590 select CRYPTO_XTS
1591 help
1592 Twofish cipher algorithm (x86_64/AVX).
1593
1594 Twofish was submitted as an AES (Advanced Encryption Standard)
1595 candidate cipher by researchers at CounterPane Systems. It is a
1596 16 round block cipher supporting key sizes of 128, 192, and 256
1597 bits.
1598
1599 This module provides the Twofish cipher algorithm that processes
1600 eight blocks parallel using the AVX Instruction Set.
1601
1602 See also:
1603 <http://www.schneier.com/twofish.html>
1604
2ad5939e
BK
1605config CRYPTO_DISKCIPHER
1606 bool "Diskcipher support"
1607 default n
1608 help
1609 Diskcipher support the crypt operation of the block host device
1610 that has inline crypto engine.
1611
49e3bbe3
BK
1612config CRYPTO_DISKCIPHER_DUN
1613 bool "Diskcipher use dun"
1614 default y
1615 depends on CRYPTO_DISKCIPHER && F2FS_FS_ENCRYPTION
1616 help
1617 support Diskcipher use dun(device unit number)
1618
37cd97e0
BK
1619config CRYPTO_DISKCIPHER_DEBUG
1620 bool "Diskcipher debug support"
1621 default n
1622 depends on CRYPTO_DISKCIPHER
1623 help
1624 support Diskcipher debug
1625
584fffc8
SS
1626comment "Compression"
1627
1628config CRYPTO_DEFLATE
1629 tristate "Deflate compression algorithm"
1630 select CRYPTO_ALGAPI
f6ded09d 1631 select CRYPTO_ACOMP2
584fffc8
SS
1632 select ZLIB_INFLATE
1633 select ZLIB_DEFLATE
3c09f17c 1634 help
584fffc8
SS
1635 This is the Deflate algorithm (RFC1951), specified for use in
1636 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1637
1638 You will most probably want this if using IPSec.
3c09f17c 1639
0b77abb3
ZS
1640config CRYPTO_LZO
1641 tristate "LZO compression algorithm"
1642 select CRYPTO_ALGAPI
ac9d2c4b 1643 select CRYPTO_ACOMP2
0b77abb3
ZS
1644 select LZO_COMPRESS
1645 select LZO_DECOMPRESS
1646 help
1647 This is the LZO algorithm.
1648
35a1fc18
SJ
1649config CRYPTO_842
1650 tristate "842 compression algorithm"
2062c5b6 1651 select CRYPTO_ALGAPI
6a8de3ae 1652 select CRYPTO_ACOMP2
2062c5b6
DS
1653 select 842_COMPRESS
1654 select 842_DECOMPRESS
35a1fc18
SJ
1655 help
1656 This is the 842 algorithm.
0ea8530d
CM
1657
1658config CRYPTO_LZ4
1659 tristate "LZ4 compression algorithm"
1660 select CRYPTO_ALGAPI
8cd9330e 1661 select CRYPTO_ACOMP2
0ea8530d
CM
1662 select LZ4_COMPRESS
1663 select LZ4_DECOMPRESS
1664 help
1665 This is the LZ4 algorithm.
1666
1667config CRYPTO_LZ4HC
1668 tristate "LZ4HC compression algorithm"
1669 select CRYPTO_ALGAPI
91d53d96 1670 select CRYPTO_ACOMP2
0ea8530d
CM
1671 select LZ4HC_COMPRESS
1672 select LZ4_DECOMPRESS
1673 help
1674 This is the LZ4 high compression mode algorithm.
35a1fc18 1675
17f0f4a4
NH
1676comment "Random Number Generation"
1677
1678config CRYPTO_ANSI_CPRNG
1679 tristate "Pseudo Random Number Generation for Cryptographic modules"
1680 select CRYPTO_AES
1681 select CRYPTO_RNG
17f0f4a4
NH
1682 help
1683 This option enables the generic pseudo random number generator
1684 for cryptographic modules. Uses the Algorithm specified in
7dd607e8
JK
1685 ANSI X9.31 A.2.4. Note that this option must be enabled if
1686 CRYPTO_FIPS is selected
17f0f4a4 1687
f2c89a10 1688menuconfig CRYPTO_DRBG_MENU
419090c6 1689 tristate "NIST SP800-90A DRBG"
419090c6
SM
1690 help
1691 NIST SP800-90A compliant DRBG. In the following submenu, one or
1692 more of the DRBG types must be selected.
1693
f2c89a10 1694if CRYPTO_DRBG_MENU
419090c6
SM
1695
1696config CRYPTO_DRBG_HMAC
401e4238 1697 bool
419090c6 1698 default y
419090c6 1699 select CRYPTO_HMAC
826775bb 1700 select CRYPTO_SHA256
419090c6
SM
1701
1702config CRYPTO_DRBG_HASH
1703 bool "Enable Hash DRBG"
826775bb 1704 select CRYPTO_SHA256
419090c6
SM
1705 help
1706 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1707
1708config CRYPTO_DRBG_CTR
1709 bool "Enable CTR DRBG"
419090c6 1710 select CRYPTO_AES
35591285 1711 depends on CRYPTO_CTR
419090c6
SM
1712 help
1713 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1714
f2c89a10
HX
1715config CRYPTO_DRBG
1716 tristate
401e4238 1717 default CRYPTO_DRBG_MENU
f2c89a10 1718 select CRYPTO_RNG
bb5530e4 1719 select CRYPTO_JITTERENTROPY
f2c89a10
HX
1720
1721endif # if CRYPTO_DRBG_MENU
419090c6 1722
bb5530e4
SM
1723config CRYPTO_JITTERENTROPY
1724 tristate "Jitterentropy Non-Deterministic Random Number Generator"
2f313e02 1725 select CRYPTO_RNG
bb5530e4
SM
1726 help
1727 The Jitterentropy RNG is a noise that is intended
1728 to provide seed to another RNG. The RNG does not
1729 perform any cryptographic whitening of the generated
1730 random numbers. This Jitterentropy RNG registers with
1731 the kernel crypto API and can be used by any caller.
1732
03c8efc1
HX
1733config CRYPTO_USER_API
1734 tristate
1735
fe869cdb
HX
1736config CRYPTO_USER_API_HASH
1737 tristate "User-space interface for hash algorithms"
7451708f 1738 depends on NET
fe869cdb
HX
1739 select CRYPTO_HASH
1740 select CRYPTO_USER_API
1741 help
1742 This option enables the user-spaces interface for hash
1743 algorithms.
1744
8ff59090
HX
1745config CRYPTO_USER_API_SKCIPHER
1746 tristate "User-space interface for symmetric key cipher algorithms"
7451708f 1747 depends on NET
8ff59090
HX
1748 select CRYPTO_BLKCIPHER
1749 select CRYPTO_USER_API
1750 help
1751 This option enables the user-spaces interface for symmetric
1752 key cipher algorithms.
1753
2f375538
SM
1754config CRYPTO_USER_API_RNG
1755 tristate "User-space interface for random number generator algorithms"
1756 depends on NET
1757 select CRYPTO_RNG
1758 select CRYPTO_USER_API
1759 help
1760 This option enables the user-spaces interface for random
1761 number generator algorithms.
1762
b64a2d95
HX
1763config CRYPTO_USER_API_AEAD
1764 tristate "User-space interface for AEAD cipher algorithms"
1765 depends on NET
1766 select CRYPTO_AEAD
72548b09
SM
1767 select CRYPTO_BLKCIPHER
1768 select CRYPTO_NULL
b64a2d95
HX
1769 select CRYPTO_USER_API
1770 help
1771 This option enables the user-spaces interface for AEAD
1772 cipher algorithms.
1773
ee08997f
DK
1774config CRYPTO_HASH_INFO
1775 bool
1776
1da177e4 1777source "drivers/crypto/Kconfig"
964f3b3b 1778source crypto/asymmetric_keys/Kconfig
cfc411e7 1779source certs/Kconfig
1da177e4 1780
cce9e06d 1781endif # if CRYPTO