[SCSI] block: Introduce new blk_queue_update_dma_alignment interface
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / block / ll_rw_blk.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10/*
11 * This handles all read/write requests to block devices
12 */
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/backing-dev.h>
16#include <linux/bio.h>
17#include <linux/blkdev.h>
18#include <linux/highmem.h>
19#include <linux/mm.h>
20#include <linux/kernel_stat.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
ff856bad
JA
29#include <linux/interrupt.h>
30#include <linux/cpu.h>
2056a782 31#include <linux/blktrace_api.h>
c17bb495 32#include <linux/fault-inject.h>
f565913e 33#include <linux/scatterlist.h>
1da177e4
LT
34
35/*
36 * for max sense size
37 */
38#include <scsi/scsi_cmnd.h>
39
65f27f38 40static void blk_unplug_work(struct work_struct *work);
1da177e4 41static void blk_unplug_timeout(unsigned long data);
b238b3d4 42static void drive_stat_acct(struct request *rq, int new_io);
52d9e675 43static void init_request_from_bio(struct request *req, struct bio *bio);
165125e1 44static int __make_request(struct request_queue *q, struct bio *bio);
b5deef90 45static struct io_context *current_io_context(gfp_t gfp_flags, int node);
9dfa5283 46static void blk_recalc_rq_segments(struct request *rq);
66846572
N
47static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
48 struct bio *bio);
1da177e4
LT
49
50/*
51 * For the allocated request tables
52 */
e18b890b 53static struct kmem_cache *request_cachep;
1da177e4
LT
54
55/*
56 * For queue allocation
57 */
e18b890b 58static struct kmem_cache *requestq_cachep;
1da177e4
LT
59
60/*
61 * For io context allocations
62 */
e18b890b 63static struct kmem_cache *iocontext_cachep;
1da177e4 64
1da177e4
LT
65/*
66 * Controlling structure to kblockd
67 */
ff856bad 68static struct workqueue_struct *kblockd_workqueue;
1da177e4
LT
69
70unsigned long blk_max_low_pfn, blk_max_pfn;
71
72EXPORT_SYMBOL(blk_max_low_pfn);
73EXPORT_SYMBOL(blk_max_pfn);
74
ff856bad
JA
75static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
76
1da177e4
LT
77/* Amount of time in which a process may batch requests */
78#define BLK_BATCH_TIME (HZ/50UL)
79
80/* Number of requests a "batching" process may submit */
81#define BLK_BATCH_REQ 32
82
83/*
84 * Return the threshold (number of used requests) at which the queue is
85 * considered to be congested. It include a little hysteresis to keep the
86 * context switch rate down.
87 */
88static inline int queue_congestion_on_threshold(struct request_queue *q)
89{
90 return q->nr_congestion_on;
91}
92
93/*
94 * The threshold at which a queue is considered to be uncongested
95 */
96static inline int queue_congestion_off_threshold(struct request_queue *q)
97{
98 return q->nr_congestion_off;
99}
100
101static void blk_queue_congestion_threshold(struct request_queue *q)
102{
103 int nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) + 1;
106 if (nr > q->nr_requests)
107 nr = q->nr_requests;
108 q->nr_congestion_on = nr;
109
110 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
111 if (nr < 1)
112 nr = 1;
113 q->nr_congestion_off = nr;
114}
115
1da177e4
LT
116/**
117 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
118 * @bdev: device
119 *
120 * Locates the passed device's request queue and returns the address of its
121 * backing_dev_info
122 *
123 * Will return NULL if the request queue cannot be located.
124 */
125struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
126{
127 struct backing_dev_info *ret = NULL;
165125e1 128 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
129
130 if (q)
131 ret = &q->backing_dev_info;
132 return ret;
133}
1da177e4
LT
134EXPORT_SYMBOL(blk_get_backing_dev_info);
135
1da177e4
LT
136/**
137 * blk_queue_prep_rq - set a prepare_request function for queue
138 * @q: queue
139 * @pfn: prepare_request function
140 *
141 * It's possible for a queue to register a prepare_request callback which
142 * is invoked before the request is handed to the request_fn. The goal of
143 * the function is to prepare a request for I/O, it can be used to build a
144 * cdb from the request data for instance.
145 *
146 */
165125e1 147void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
1da177e4
LT
148{
149 q->prep_rq_fn = pfn;
150}
151
152EXPORT_SYMBOL(blk_queue_prep_rq);
153
154/**
155 * blk_queue_merge_bvec - set a merge_bvec function for queue
156 * @q: queue
157 * @mbfn: merge_bvec_fn
158 *
159 * Usually queues have static limitations on the max sectors or segments that
160 * we can put in a request. Stacking drivers may have some settings that
161 * are dynamic, and thus we have to query the queue whether it is ok to
162 * add a new bio_vec to a bio at a given offset or not. If the block device
163 * has such limitations, it needs to register a merge_bvec_fn to control
164 * the size of bio's sent to it. Note that a block device *must* allow a
165 * single page to be added to an empty bio. The block device driver may want
166 * to use the bio_split() function to deal with these bio's. By default
167 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
168 * honored.
169 */
165125e1 170void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
1da177e4
LT
171{
172 q->merge_bvec_fn = mbfn;
173}
174
175EXPORT_SYMBOL(blk_queue_merge_bvec);
176
165125e1 177void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
ff856bad
JA
178{
179 q->softirq_done_fn = fn;
180}
181
182EXPORT_SYMBOL(blk_queue_softirq_done);
183
1da177e4
LT
184/**
185 * blk_queue_make_request - define an alternate make_request function for a device
186 * @q: the request queue for the device to be affected
187 * @mfn: the alternate make_request function
188 *
189 * Description:
190 * The normal way for &struct bios to be passed to a device
191 * driver is for them to be collected into requests on a request
192 * queue, and then to allow the device driver to select requests
193 * off that queue when it is ready. This works well for many block
194 * devices. However some block devices (typically virtual devices
195 * such as md or lvm) do not benefit from the processing on the
196 * request queue, and are served best by having the requests passed
197 * directly to them. This can be achieved by providing a function
198 * to blk_queue_make_request().
199 *
200 * Caveat:
201 * The driver that does this *must* be able to deal appropriately
202 * with buffers in "highmemory". This can be accomplished by either calling
203 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
204 * blk_queue_bounce() to create a buffer in normal memory.
205 **/
165125e1 206void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
1da177e4
LT
207{
208 /*
209 * set defaults
210 */
211 q->nr_requests = BLKDEV_MAX_RQ;
309c0a1d
SM
212 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
213 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1da177e4
LT
214 q->make_request_fn = mfn;
215 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
216 q->backing_dev_info.state = 0;
217 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
defd94b7 218 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
1da177e4
LT
219 blk_queue_hardsect_size(q, 512);
220 blk_queue_dma_alignment(q, 511);
221 blk_queue_congestion_threshold(q);
222 q->nr_batching = BLK_BATCH_REQ;
223
224 q->unplug_thresh = 4; /* hmm */
225 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
226 if (q->unplug_delay == 0)
227 q->unplug_delay = 1;
228
65f27f38 229 INIT_WORK(&q->unplug_work, blk_unplug_work);
1da177e4
LT
230
231 q->unplug_timer.function = blk_unplug_timeout;
232 q->unplug_timer.data = (unsigned long)q;
233
234 /*
235 * by default assume old behaviour and bounce for any highmem page
236 */
237 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
1da177e4
LT
238}
239
240EXPORT_SYMBOL(blk_queue_make_request);
241
165125e1 242static void rq_init(struct request_queue *q, struct request *rq)
1da177e4
LT
243{
244 INIT_LIST_HEAD(&rq->queuelist);
ff856bad 245 INIT_LIST_HEAD(&rq->donelist);
1da177e4
LT
246
247 rq->errors = 0;
1da177e4 248 rq->bio = rq->biotail = NULL;
2e662b65
JA
249 INIT_HLIST_NODE(&rq->hash);
250 RB_CLEAR_NODE(&rq->rb_node);
22e2c507 251 rq->ioprio = 0;
1da177e4
LT
252 rq->buffer = NULL;
253 rq->ref_count = 1;
254 rq->q = q;
1da177e4
LT
255 rq->special = NULL;
256 rq->data_len = 0;
257 rq->data = NULL;
df46b9a4 258 rq->nr_phys_segments = 0;
1da177e4
LT
259 rq->sense = NULL;
260 rq->end_io = NULL;
261 rq->end_io_data = NULL;
ff856bad 262 rq->completion_data = NULL;
abae1fde 263 rq->next_rq = NULL;
1da177e4
LT
264}
265
266/**
267 * blk_queue_ordered - does this queue support ordered writes
797e7dbb
TH
268 * @q: the request queue
269 * @ordered: one of QUEUE_ORDERED_*
fddfdeaf 270 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
1da177e4
LT
271 *
272 * Description:
273 * For journalled file systems, doing ordered writes on a commit
274 * block instead of explicitly doing wait_on_buffer (which is bad
275 * for performance) can be a big win. Block drivers supporting this
276 * feature should call this function and indicate so.
277 *
278 **/
165125e1 279int blk_queue_ordered(struct request_queue *q, unsigned ordered,
797e7dbb
TH
280 prepare_flush_fn *prepare_flush_fn)
281{
282 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
283 prepare_flush_fn == NULL) {
284 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
285 return -EINVAL;
286 }
287
288 if (ordered != QUEUE_ORDERED_NONE &&
289 ordered != QUEUE_ORDERED_DRAIN &&
290 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
291 ordered != QUEUE_ORDERED_DRAIN_FUA &&
292 ordered != QUEUE_ORDERED_TAG &&
293 ordered != QUEUE_ORDERED_TAG_FLUSH &&
294 ordered != QUEUE_ORDERED_TAG_FUA) {
295 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
296 return -EINVAL;
1da177e4 297 }
797e7dbb 298
60481b12 299 q->ordered = ordered;
797e7dbb
TH
300 q->next_ordered = ordered;
301 q->prepare_flush_fn = prepare_flush_fn;
302
303 return 0;
1da177e4
LT
304}
305
306EXPORT_SYMBOL(blk_queue_ordered);
307
1da177e4
LT
308/*
309 * Cache flushing for ordered writes handling
310 */
165125e1 311inline unsigned blk_ordered_cur_seq(struct request_queue *q)
1da177e4 312{
797e7dbb
TH
313 if (!q->ordseq)
314 return 0;
315 return 1 << ffz(q->ordseq);
1da177e4
LT
316}
317
797e7dbb 318unsigned blk_ordered_req_seq(struct request *rq)
1da177e4 319{
165125e1 320 struct request_queue *q = rq->q;
1da177e4 321
797e7dbb 322 BUG_ON(q->ordseq == 0);
8922e16c 323
797e7dbb
TH
324 if (rq == &q->pre_flush_rq)
325 return QUEUE_ORDSEQ_PREFLUSH;
326 if (rq == &q->bar_rq)
327 return QUEUE_ORDSEQ_BAR;
328 if (rq == &q->post_flush_rq)
329 return QUEUE_ORDSEQ_POSTFLUSH;
1da177e4 330
bc90ba09
TH
331 /*
332 * !fs requests don't need to follow barrier ordering. Always
333 * put them at the front. This fixes the following deadlock.
334 *
335 * http://thread.gmane.org/gmane.linux.kernel/537473
336 */
337 if (!blk_fs_request(rq))
338 return QUEUE_ORDSEQ_DRAIN;
339
4aff5e23
JA
340 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
341 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
797e7dbb
TH
342 return QUEUE_ORDSEQ_DRAIN;
343 else
344 return QUEUE_ORDSEQ_DONE;
1da177e4
LT
345}
346
165125e1 347void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
1da177e4 348{
797e7dbb
TH
349 struct request *rq;
350 int uptodate;
1da177e4 351
797e7dbb
TH
352 if (error && !q->orderr)
353 q->orderr = error;
1da177e4 354
797e7dbb
TH
355 BUG_ON(q->ordseq & seq);
356 q->ordseq |= seq;
1da177e4 357
797e7dbb
TH
358 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
359 return;
1da177e4
LT
360
361 /*
797e7dbb 362 * Okay, sequence complete.
1da177e4 363 */
4fa253f3
JA
364 uptodate = 1;
365 if (q->orderr)
366 uptodate = q->orderr;
1da177e4 367
797e7dbb 368 q->ordseq = 0;
4fa253f3 369 rq = q->orig_bar_rq;
1da177e4 370
797e7dbb
TH
371 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
372 end_that_request_last(rq, uptodate);
1da177e4
LT
373}
374
797e7dbb 375static void pre_flush_end_io(struct request *rq, int error)
1da177e4 376{
797e7dbb
TH
377 elv_completed_request(rq->q, rq);
378 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
379}
1da177e4 380
797e7dbb
TH
381static void bar_end_io(struct request *rq, int error)
382{
383 elv_completed_request(rq->q, rq);
384 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
385}
1da177e4 386
797e7dbb
TH
387static void post_flush_end_io(struct request *rq, int error)
388{
389 elv_completed_request(rq->q, rq);
390 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
391}
1da177e4 392
165125e1 393static void queue_flush(struct request_queue *q, unsigned which)
797e7dbb
TH
394{
395 struct request *rq;
396 rq_end_io_fn *end_io;
1da177e4 397
797e7dbb
TH
398 if (which == QUEUE_ORDERED_PREFLUSH) {
399 rq = &q->pre_flush_rq;
400 end_io = pre_flush_end_io;
401 } else {
402 rq = &q->post_flush_rq;
403 end_io = post_flush_end_io;
1da177e4 404 }
797e7dbb 405
4aff5e23 406 rq->cmd_flags = REQ_HARDBARRIER;
797e7dbb 407 rq_init(q, rq);
797e7dbb 408 rq->elevator_private = NULL;
c00895ab 409 rq->elevator_private2 = NULL;
797e7dbb 410 rq->rq_disk = q->bar_rq.rq_disk;
797e7dbb
TH
411 rq->end_io = end_io;
412 q->prepare_flush_fn(q, rq);
413
30e9656c 414 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
1da177e4
LT
415}
416
165125e1 417static inline struct request *start_ordered(struct request_queue *q,
797e7dbb 418 struct request *rq)
1da177e4 419{
797e7dbb
TH
420 q->orderr = 0;
421 q->ordered = q->next_ordered;
422 q->ordseq |= QUEUE_ORDSEQ_STARTED;
423
424 /*
425 * Prep proxy barrier request.
426 */
427 blkdev_dequeue_request(rq);
428 q->orig_bar_rq = rq;
429 rq = &q->bar_rq;
4aff5e23 430 rq->cmd_flags = 0;
797e7dbb 431 rq_init(q, rq);
4aff5e23
JA
432 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
433 rq->cmd_flags |= REQ_RW;
4fa253f3
JA
434 if (q->ordered & QUEUE_ORDERED_FUA)
435 rq->cmd_flags |= REQ_FUA;
797e7dbb 436 rq->elevator_private = NULL;
c00895ab 437 rq->elevator_private2 = NULL;
797e7dbb
TH
438 init_request_from_bio(rq, q->orig_bar_rq->bio);
439 rq->end_io = bar_end_io;
440
441 /*
442 * Queue ordered sequence. As we stack them at the head, we
443 * need to queue in reverse order. Note that we rely on that
444 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
bf2de6f5
JA
445 * request gets inbetween ordered sequence. If this request is
446 * an empty barrier, we don't need to do a postflush ever since
447 * there will be no data written between the pre and post flush.
448 * Hence a single flush will suffice.
797e7dbb 449 */
bf2de6f5 450 if ((q->ordered & QUEUE_ORDERED_POSTFLUSH) && !blk_empty_barrier(rq))
797e7dbb
TH
451 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
452 else
453 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
454
30e9656c 455 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
797e7dbb
TH
456
457 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
458 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
459 rq = &q->pre_flush_rq;
460 } else
461 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
1da177e4 462
797e7dbb
TH
463 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
464 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
465 else
466 rq = NULL;
467
468 return rq;
1da177e4
LT
469}
470
165125e1 471int blk_do_ordered(struct request_queue *q, struct request **rqp)
1da177e4 472{
9a7a67af 473 struct request *rq = *rqp;
bf2de6f5 474 const int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
1da177e4 475
797e7dbb
TH
476 if (!q->ordseq) {
477 if (!is_barrier)
478 return 1;
1da177e4 479
797e7dbb
TH
480 if (q->next_ordered != QUEUE_ORDERED_NONE) {
481 *rqp = start_ordered(q, rq);
482 return 1;
483 } else {
484 /*
485 * This can happen when the queue switches to
486 * ORDERED_NONE while this request is on it.
487 */
488 blkdev_dequeue_request(rq);
489 end_that_request_first(rq, -EOPNOTSUPP,
490 rq->hard_nr_sectors);
491 end_that_request_last(rq, -EOPNOTSUPP);
492 *rqp = NULL;
493 return 0;
494 }
495 }
1da177e4 496
9a7a67af
JA
497 /*
498 * Ordered sequence in progress
499 */
500
501 /* Special requests are not subject to ordering rules. */
502 if (!blk_fs_request(rq) &&
503 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
504 return 1;
505
797e7dbb 506 if (q->ordered & QUEUE_ORDERED_TAG) {
9a7a67af 507 /* Ordered by tag. Blocking the next barrier is enough. */
797e7dbb
TH
508 if (is_barrier && rq != &q->bar_rq)
509 *rqp = NULL;
9a7a67af
JA
510 } else {
511 /* Ordered by draining. Wait for turn. */
512 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
513 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
514 *rqp = NULL;
1da177e4
LT
515 }
516
517 return 1;
518}
519
5bb23a68
N
520static void req_bio_endio(struct request *rq, struct bio *bio,
521 unsigned int nbytes, int error)
1da177e4 522{
165125e1 523 struct request_queue *q = rq->q;
797e7dbb 524
5bb23a68
N
525 if (&q->bar_rq != rq) {
526 if (error)
527 clear_bit(BIO_UPTODATE, &bio->bi_flags);
528 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
529 error = -EIO;
797e7dbb 530
5bb23a68
N
531 if (unlikely(nbytes > bio->bi_size)) {
532 printk("%s: want %u bytes done, only %u left\n",
533 __FUNCTION__, nbytes, bio->bi_size);
534 nbytes = bio->bi_size;
535 }
797e7dbb 536
5bb23a68
N
537 bio->bi_size -= nbytes;
538 bio->bi_sector += (nbytes >> 9);
539 if (bio->bi_size == 0)
6712ecf8 540 bio_endio(bio, error);
5bb23a68
N
541 } else {
542
543 /*
544 * Okay, this is the barrier request in progress, just
545 * record the error;
546 */
547 if (error && !q->orderr)
548 q->orderr = error;
549 }
1da177e4 550}
1da177e4
LT
551
552/**
553 * blk_queue_bounce_limit - set bounce buffer limit for queue
554 * @q: the request queue for the device
555 * @dma_addr: bus address limit
556 *
557 * Description:
558 * Different hardware can have different requirements as to what pages
559 * it can do I/O directly to. A low level driver can call
560 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
5ee1af9f 561 * buffers for doing I/O to pages residing above @page.
1da177e4 562 **/
165125e1 563void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
1da177e4
LT
564{
565 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
5ee1af9f
AK
566 int dma = 0;
567
568 q->bounce_gfp = GFP_NOIO;
569#if BITS_PER_LONG == 64
570 /* Assume anything <= 4GB can be handled by IOMMU.
571 Actually some IOMMUs can handle everything, but I don't
572 know of a way to test this here. */
8269730b 573 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
5ee1af9f
AK
574 dma = 1;
575 q->bounce_pfn = max_low_pfn;
576#else
577 if (bounce_pfn < blk_max_low_pfn)
578 dma = 1;
579 q->bounce_pfn = bounce_pfn;
580#endif
581 if (dma) {
1da177e4
LT
582 init_emergency_isa_pool();
583 q->bounce_gfp = GFP_NOIO | GFP_DMA;
5ee1af9f
AK
584 q->bounce_pfn = bounce_pfn;
585 }
1da177e4
LT
586}
587
588EXPORT_SYMBOL(blk_queue_bounce_limit);
589
590/**
591 * blk_queue_max_sectors - set max sectors for a request for this queue
592 * @q: the request queue for the device
593 * @max_sectors: max sectors in the usual 512b unit
594 *
595 * Description:
596 * Enables a low level driver to set an upper limit on the size of
597 * received requests.
598 **/
165125e1 599void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
1da177e4
LT
600{
601 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
602 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
603 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
604 }
605
defd94b7
MC
606 if (BLK_DEF_MAX_SECTORS > max_sectors)
607 q->max_hw_sectors = q->max_sectors = max_sectors;
608 else {
609 q->max_sectors = BLK_DEF_MAX_SECTORS;
610 q->max_hw_sectors = max_sectors;
611 }
1da177e4
LT
612}
613
614EXPORT_SYMBOL(blk_queue_max_sectors);
615
616/**
617 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
618 * @q: the request queue for the device
619 * @max_segments: max number of segments
620 *
621 * Description:
622 * Enables a low level driver to set an upper limit on the number of
623 * physical data segments in a request. This would be the largest sized
624 * scatter list the driver could handle.
625 **/
165125e1
JA
626void blk_queue_max_phys_segments(struct request_queue *q,
627 unsigned short max_segments)
1da177e4
LT
628{
629 if (!max_segments) {
630 max_segments = 1;
631 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
632 }
633
634 q->max_phys_segments = max_segments;
635}
636
637EXPORT_SYMBOL(blk_queue_max_phys_segments);
638
639/**
640 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
641 * @q: the request queue for the device
642 * @max_segments: max number of segments
643 *
644 * Description:
645 * Enables a low level driver to set an upper limit on the number of
646 * hw data segments in a request. This would be the largest number of
647 * address/length pairs the host adapter can actually give as once
648 * to the device.
649 **/
165125e1
JA
650void blk_queue_max_hw_segments(struct request_queue *q,
651 unsigned short max_segments)
1da177e4
LT
652{
653 if (!max_segments) {
654 max_segments = 1;
655 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
656 }
657
658 q->max_hw_segments = max_segments;
659}
660
661EXPORT_SYMBOL(blk_queue_max_hw_segments);
662
663/**
664 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
665 * @q: the request queue for the device
666 * @max_size: max size of segment in bytes
667 *
668 * Description:
669 * Enables a low level driver to set an upper limit on the size of a
670 * coalesced segment
671 **/
165125e1 672void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
1da177e4
LT
673{
674 if (max_size < PAGE_CACHE_SIZE) {
675 max_size = PAGE_CACHE_SIZE;
676 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
677 }
678
679 q->max_segment_size = max_size;
680}
681
682EXPORT_SYMBOL(blk_queue_max_segment_size);
683
684/**
685 * blk_queue_hardsect_size - set hardware sector size for the queue
686 * @q: the request queue for the device
687 * @size: the hardware sector size, in bytes
688 *
689 * Description:
690 * This should typically be set to the lowest possible sector size
691 * that the hardware can operate on (possible without reverting to
692 * even internal read-modify-write operations). Usually the default
693 * of 512 covers most hardware.
694 **/
165125e1 695void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
1da177e4
LT
696{
697 q->hardsect_size = size;
698}
699
700EXPORT_SYMBOL(blk_queue_hardsect_size);
701
702/*
703 * Returns the minimum that is _not_ zero, unless both are zero.
704 */
705#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
706
707/**
708 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
709 * @t: the stacking driver (top)
710 * @b: the underlying device (bottom)
711 **/
165125e1 712void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
1da177e4
LT
713{
714 /* zero is "infinity" */
defd94b7
MC
715 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
716 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
1da177e4
LT
717
718 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
719 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
720 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
721 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
89e5c8b5
N
722 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
723 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
1da177e4
LT
724}
725
726EXPORT_SYMBOL(blk_queue_stack_limits);
727
728/**
729 * blk_queue_segment_boundary - set boundary rules for segment merging
730 * @q: the request queue for the device
731 * @mask: the memory boundary mask
732 **/
165125e1 733void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
1da177e4
LT
734{
735 if (mask < PAGE_CACHE_SIZE - 1) {
736 mask = PAGE_CACHE_SIZE - 1;
737 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
738 }
739
740 q->seg_boundary_mask = mask;
741}
742
743EXPORT_SYMBOL(blk_queue_segment_boundary);
744
745/**
746 * blk_queue_dma_alignment - set dma length and memory alignment
747 * @q: the request queue for the device
748 * @mask: alignment mask
749 *
750 * description:
751 * set required memory and length aligment for direct dma transactions.
752 * this is used when buiding direct io requests for the queue.
753 *
754 **/
165125e1 755void blk_queue_dma_alignment(struct request_queue *q, int mask)
1da177e4
LT
756{
757 q->dma_alignment = mask;
758}
759
760EXPORT_SYMBOL(blk_queue_dma_alignment);
761
11c3e689
JB
762/**
763 * blk_queue_update_dma_alignment - update dma length and memory alignment
764 * @q: the request queue for the device
765 * @mask: alignment mask
766 *
767 * description:
768 * update required memory and length aligment for direct dma transactions.
769 * If the requested alignment is larger than the current alignment, then
770 * the current queue alignment is updated to the new value, otherwise it
771 * is left alone. The design of this is to allow multiple objects
772 * (driver, device, transport etc) to set their respective
773 * alignments without having them interfere.
774 *
775 **/
776void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
777{
778 BUG_ON(mask > PAGE_SIZE);
779
780 if (mask > q->dma_alignment)
781 q->dma_alignment = mask;
782}
783
784EXPORT_SYMBOL(blk_queue_update_dma_alignment);
785
1da177e4
LT
786/**
787 * blk_queue_find_tag - find a request by its tag and queue
1da177e4
LT
788 * @q: The request queue for the device
789 * @tag: The tag of the request
790 *
791 * Notes:
792 * Should be used when a device returns a tag and you want to match
793 * it with a request.
794 *
795 * no locks need be held.
796 **/
165125e1 797struct request *blk_queue_find_tag(struct request_queue *q, int tag)
1da177e4 798{
f583f492 799 return blk_map_queue_find_tag(q->queue_tags, tag);
1da177e4
LT
800}
801
802EXPORT_SYMBOL(blk_queue_find_tag);
803
804/**
492dfb48
JB
805 * __blk_free_tags - release a given set of tag maintenance info
806 * @bqt: the tag map to free
1da177e4 807 *
492dfb48
JB
808 * Tries to free the specified @bqt@. Returns true if it was
809 * actually freed and false if there are still references using it
810 */
811static int __blk_free_tags(struct blk_queue_tag *bqt)
1da177e4 812{
492dfb48 813 int retval;
1da177e4 814
492dfb48
JB
815 retval = atomic_dec_and_test(&bqt->refcnt);
816 if (retval) {
1da177e4 817 BUG_ON(bqt->busy);
1da177e4
LT
818
819 kfree(bqt->tag_index);
820 bqt->tag_index = NULL;
821
822 kfree(bqt->tag_map);
823 bqt->tag_map = NULL;
824
825 kfree(bqt);
492dfb48 826
1da177e4
LT
827 }
828
492dfb48
JB
829 return retval;
830}
831
832/**
833 * __blk_queue_free_tags - release tag maintenance info
834 * @q: the request queue for the device
835 *
836 * Notes:
837 * blk_cleanup_queue() will take care of calling this function, if tagging
838 * has been used. So there's no need to call this directly.
839 **/
165125e1 840static void __blk_queue_free_tags(struct request_queue *q)
492dfb48
JB
841{
842 struct blk_queue_tag *bqt = q->queue_tags;
843
844 if (!bqt)
845 return;
846
847 __blk_free_tags(bqt);
848
1da177e4
LT
849 q->queue_tags = NULL;
850 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
851}
852
492dfb48
JB
853
854/**
855 * blk_free_tags - release a given set of tag maintenance info
856 * @bqt: the tag map to free
857 *
858 * For externally managed @bqt@ frees the map. Callers of this
859 * function must guarantee to have released all the queues that
860 * might have been using this tag map.
861 */
862void blk_free_tags(struct blk_queue_tag *bqt)
863{
864 if (unlikely(!__blk_free_tags(bqt)))
865 BUG();
866}
867EXPORT_SYMBOL(blk_free_tags);
868
1da177e4
LT
869/**
870 * blk_queue_free_tags - release tag maintenance info
871 * @q: the request queue for the device
872 *
873 * Notes:
874 * This is used to disabled tagged queuing to a device, yet leave
875 * queue in function.
876 **/
165125e1 877void blk_queue_free_tags(struct request_queue *q)
1da177e4
LT
878{
879 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
880}
881
882EXPORT_SYMBOL(blk_queue_free_tags);
883
884static int
165125e1 885init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
1da177e4 886{
1da177e4
LT
887 struct request **tag_index;
888 unsigned long *tag_map;
fa72b903 889 int nr_ulongs;
1da177e4 890
492dfb48 891 if (q && depth > q->nr_requests * 2) {
1da177e4
LT
892 depth = q->nr_requests * 2;
893 printk(KERN_ERR "%s: adjusted depth to %d\n",
894 __FUNCTION__, depth);
895 }
896
f68110fc 897 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
1da177e4
LT
898 if (!tag_index)
899 goto fail;
900
f7d37d02 901 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
f68110fc 902 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
1da177e4
LT
903 if (!tag_map)
904 goto fail;
905
ba025082 906 tags->real_max_depth = depth;
1da177e4 907 tags->max_depth = depth;
1da177e4
LT
908 tags->tag_index = tag_index;
909 tags->tag_map = tag_map;
910
1da177e4
LT
911 return 0;
912fail:
913 kfree(tag_index);
914 return -ENOMEM;
915}
916
492dfb48
JB
917static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
918 int depth)
919{
920 struct blk_queue_tag *tags;
921
922 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
923 if (!tags)
924 goto fail;
925
926 if (init_tag_map(q, tags, depth))
927 goto fail;
928
492dfb48
JB
929 tags->busy = 0;
930 atomic_set(&tags->refcnt, 1);
931 return tags;
932fail:
933 kfree(tags);
934 return NULL;
935}
936
937/**
938 * blk_init_tags - initialize the tag info for an external tag map
939 * @depth: the maximum queue depth supported
940 * @tags: the tag to use
941 **/
942struct blk_queue_tag *blk_init_tags(int depth)
943{
944 return __blk_queue_init_tags(NULL, depth);
945}
946EXPORT_SYMBOL(blk_init_tags);
947
1da177e4
LT
948/**
949 * blk_queue_init_tags - initialize the queue tag info
950 * @q: the request queue for the device
951 * @depth: the maximum queue depth supported
952 * @tags: the tag to use
953 **/
165125e1 954int blk_queue_init_tags(struct request_queue *q, int depth,
1da177e4
LT
955 struct blk_queue_tag *tags)
956{
957 int rc;
958
959 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
960
961 if (!tags && !q->queue_tags) {
492dfb48 962 tags = __blk_queue_init_tags(q, depth);
1da177e4 963
492dfb48 964 if (!tags)
1da177e4 965 goto fail;
1da177e4
LT
966 } else if (q->queue_tags) {
967 if ((rc = blk_queue_resize_tags(q, depth)))
968 return rc;
969 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
970 return 0;
971 } else
972 atomic_inc(&tags->refcnt);
973
974 /*
975 * assign it, all done
976 */
977 q->queue_tags = tags;
978 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
6eca9004 979 INIT_LIST_HEAD(&q->tag_busy_list);
1da177e4
LT
980 return 0;
981fail:
982 kfree(tags);
983 return -ENOMEM;
984}
985
986EXPORT_SYMBOL(blk_queue_init_tags);
987
988/**
989 * blk_queue_resize_tags - change the queueing depth
990 * @q: the request queue for the device
991 * @new_depth: the new max command queueing depth
992 *
993 * Notes:
994 * Must be called with the queue lock held.
995 **/
165125e1 996int blk_queue_resize_tags(struct request_queue *q, int new_depth)
1da177e4
LT
997{
998 struct blk_queue_tag *bqt = q->queue_tags;
999 struct request **tag_index;
1000 unsigned long *tag_map;
fa72b903 1001 int max_depth, nr_ulongs;
1da177e4
LT
1002
1003 if (!bqt)
1004 return -ENXIO;
1005
ba025082
TH
1006 /*
1007 * if we already have large enough real_max_depth. just
1008 * adjust max_depth. *NOTE* as requests with tag value
1009 * between new_depth and real_max_depth can be in-flight, tag
1010 * map can not be shrunk blindly here.
1011 */
1012 if (new_depth <= bqt->real_max_depth) {
1013 bqt->max_depth = new_depth;
1014 return 0;
1015 }
1016
492dfb48
JB
1017 /*
1018 * Currently cannot replace a shared tag map with a new
1019 * one, so error out if this is the case
1020 */
1021 if (atomic_read(&bqt->refcnt) != 1)
1022 return -EBUSY;
1023
1da177e4
LT
1024 /*
1025 * save the old state info, so we can copy it back
1026 */
1027 tag_index = bqt->tag_index;
1028 tag_map = bqt->tag_map;
ba025082 1029 max_depth = bqt->real_max_depth;
1da177e4
LT
1030
1031 if (init_tag_map(q, bqt, new_depth))
1032 return -ENOMEM;
1033
1034 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
f7d37d02 1035 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
fa72b903 1036 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1da177e4
LT
1037
1038 kfree(tag_index);
1039 kfree(tag_map);
1040 return 0;
1041}
1042
1043EXPORT_SYMBOL(blk_queue_resize_tags);
1044
1045/**
1046 * blk_queue_end_tag - end tag operations for a request
1047 * @q: the request queue for the device
1048 * @rq: the request that has completed
1049 *
1050 * Description:
1051 * Typically called when end_that_request_first() returns 0, meaning
1052 * all transfers have been done for a request. It's important to call
1053 * this function before end_that_request_last(), as that will put the
1054 * request back on the free list thus corrupting the internal tag list.
1055 *
1056 * Notes:
1057 * queue lock must be held.
1058 **/
165125e1 1059void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1060{
1061 struct blk_queue_tag *bqt = q->queue_tags;
1062 int tag = rq->tag;
1063
1064 BUG_ON(tag == -1);
1065
ba025082 1066 if (unlikely(tag >= bqt->real_max_depth))
040c928c
TH
1067 /*
1068 * This can happen after tag depth has been reduced.
1069 * FIXME: how about a warning or info message here?
1070 */
1da177e4
LT
1071 return;
1072
1da177e4 1073 list_del_init(&rq->queuelist);
4aff5e23 1074 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1075 rq->tag = -1;
1076
1077 if (unlikely(bqt->tag_index[tag] == NULL))
040c928c
TH
1078 printk(KERN_ERR "%s: tag %d is missing\n",
1079 __FUNCTION__, tag);
1da177e4
LT
1080
1081 bqt->tag_index[tag] = NULL;
f3da54ba 1082
adb4ddbb 1083 if (unlikely(!test_bit(tag, bqt->tag_map))) {
f3da54ba
JA
1084 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1085 __FUNCTION__, tag);
1086 return;
1087 }
adb4ddbb
NP
1088 /*
1089 * The tag_map bit acts as a lock for tag_index[bit], so we need
1090 * unlock memory barrier semantics.
1091 */
1092 clear_bit_unlock(tag, bqt->tag_map);
1da177e4
LT
1093 bqt->busy--;
1094}
1095
1096EXPORT_SYMBOL(blk_queue_end_tag);
1097
1098/**
1099 * blk_queue_start_tag - find a free tag and assign it
1100 * @q: the request queue for the device
1101 * @rq: the block request that needs tagging
1102 *
1103 * Description:
1104 * This can either be used as a stand-alone helper, or possibly be
1105 * assigned as the queue &prep_rq_fn (in which case &struct request
1106 * automagically gets a tag assigned). Note that this function
1107 * assumes that any type of request can be queued! if this is not
1108 * true for your device, you must check the request type before
1109 * calling this function. The request will also be removed from
1110 * the request queue, so it's the drivers responsibility to readd
1111 * it if it should need to be restarted for some reason.
1112 *
1113 * Notes:
1114 * queue lock must be held.
1115 **/
165125e1 1116int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1117{
1118 struct blk_queue_tag *bqt = q->queue_tags;
2bf0fdad 1119 int tag;
1da177e4 1120
4aff5e23 1121 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1da177e4 1122 printk(KERN_ERR
040c928c
TH
1123 "%s: request %p for device [%s] already tagged %d",
1124 __FUNCTION__, rq,
1125 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1da177e4
LT
1126 BUG();
1127 }
1128
059af497
JA
1129 /*
1130 * Protect against shared tag maps, as we may not have exclusive
1131 * access to the tag map.
1132 */
1133 do {
1134 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1135 if (tag >= bqt->max_depth)
1136 return 1;
1da177e4 1137
adb4ddbb 1138 } while (test_and_set_bit_lock(tag, bqt->tag_map));
dd941252 1139 /*
adb4ddbb
NP
1140 * We need lock ordering semantics given by test_and_set_bit_lock.
1141 * See blk_queue_end_tag for details.
dd941252 1142 */
1da177e4 1143
4aff5e23 1144 rq->cmd_flags |= REQ_QUEUED;
1da177e4
LT
1145 rq->tag = tag;
1146 bqt->tag_index[tag] = rq;
1147 blkdev_dequeue_request(rq);
6eca9004 1148 list_add(&rq->queuelist, &q->tag_busy_list);
1da177e4
LT
1149 bqt->busy++;
1150 return 0;
1151}
1152
1153EXPORT_SYMBOL(blk_queue_start_tag);
1154
1155/**
1156 * blk_queue_invalidate_tags - invalidate all pending tags
1157 * @q: the request queue for the device
1158 *
1159 * Description:
1160 * Hardware conditions may dictate a need to stop all pending requests.
1161 * In this case, we will safely clear the block side of the tag queue and
1162 * readd all requests to the request queue in the right order.
1163 *
1164 * Notes:
1165 * queue lock must be held.
1166 **/
165125e1 1167void blk_queue_invalidate_tags(struct request_queue *q)
1da177e4 1168{
1da177e4 1169 struct list_head *tmp, *n;
1da177e4 1170
d85532ed
JA
1171 list_for_each_safe(tmp, n, &q->tag_busy_list)
1172 blk_requeue_request(q, list_entry_rq(tmp));
1da177e4
LT
1173}
1174
1175EXPORT_SYMBOL(blk_queue_invalidate_tags);
1176
1da177e4
LT
1177void blk_dump_rq_flags(struct request *rq, char *msg)
1178{
1179 int bit;
1180
4aff5e23
JA
1181 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1182 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1183 rq->cmd_flags);
1da177e4
LT
1184
1185 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1186 rq->nr_sectors,
1187 rq->current_nr_sectors);
1188 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1189
4aff5e23 1190 if (blk_pc_request(rq)) {
1da177e4
LT
1191 printk("cdb: ");
1192 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1193 printk("%02x ", rq->cmd[bit]);
1194 printk("\n");
1195 }
1196}
1197
1198EXPORT_SYMBOL(blk_dump_rq_flags);
1199
165125e1 1200void blk_recount_segments(struct request_queue *q, struct bio *bio)
1da177e4 1201{
9dfa5283
N
1202 struct request rq;
1203 struct bio *nxt = bio->bi_next;
1204 rq.q = q;
1205 rq.bio = rq.biotail = bio;
1206 bio->bi_next = NULL;
1207 blk_recalc_rq_segments(&rq);
1208 bio->bi_next = nxt;
1209 bio->bi_phys_segments = rq.nr_phys_segments;
1210 bio->bi_hw_segments = rq.nr_hw_segments;
1211 bio->bi_flags |= (1 << BIO_SEG_VALID);
1212}
1213EXPORT_SYMBOL(blk_recount_segments);
1214
1215static void blk_recalc_rq_segments(struct request *rq)
1216{
1217 int nr_phys_segs;
1218 int nr_hw_segs;
1219 unsigned int phys_size;
1220 unsigned int hw_size;
1da177e4 1221 struct bio_vec *bv, *bvprv = NULL;
9dfa5283
N
1222 int seg_size;
1223 int hw_seg_size;
1224 int cluster;
5705f702 1225 struct req_iterator iter;
1da177e4 1226 int high, highprv = 1;
9dfa5283 1227 struct request_queue *q = rq->q;
1da177e4 1228
9dfa5283 1229 if (!rq->bio)
1da177e4
LT
1230 return;
1231
1232 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
9dfa5283
N
1233 hw_seg_size = seg_size = 0;
1234 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
5705f702 1235 rq_for_each_segment(bv, rq, iter) {
1da177e4
LT
1236 /*
1237 * the trick here is making sure that a high page is never
1238 * considered part of another segment, since that might
1239 * change with the bounce page.
1240 */
f772b3d9 1241 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1da177e4
LT
1242 if (high || highprv)
1243 goto new_hw_segment;
1244 if (cluster) {
1245 if (seg_size + bv->bv_len > q->max_segment_size)
1246 goto new_segment;
1247 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1248 goto new_segment;
1249 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1250 goto new_segment;
1251 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1252 goto new_hw_segment;
1253
1254 seg_size += bv->bv_len;
1255 hw_seg_size += bv->bv_len;
1256 bvprv = bv;
1257 continue;
1258 }
1259new_segment:
1260 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
9dfa5283 1261 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1da177e4 1262 hw_seg_size += bv->bv_len;
9dfa5283 1263 else {
1da177e4 1264new_hw_segment:
9dfa5283
N
1265 if (nr_hw_segs == 1 &&
1266 hw_seg_size > rq->bio->bi_hw_front_size)
1267 rq->bio->bi_hw_front_size = hw_seg_size;
1da177e4
LT
1268 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1269 nr_hw_segs++;
1270 }
1271
1272 nr_phys_segs++;
1273 bvprv = bv;
1274 seg_size = bv->bv_len;
1275 highprv = high;
1276 }
9dfa5283
N
1277
1278 if (nr_hw_segs == 1 &&
1279 hw_seg_size > rq->bio->bi_hw_front_size)
1280 rq->bio->bi_hw_front_size = hw_seg_size;
1281 if (hw_seg_size > rq->biotail->bi_hw_back_size)
1282 rq->biotail->bi_hw_back_size = hw_seg_size;
1283 rq->nr_phys_segments = nr_phys_segs;
1284 rq->nr_hw_segments = nr_hw_segs;
1da177e4 1285}
1da177e4 1286
165125e1 1287static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1288 struct bio *nxt)
1289{
1290 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1291 return 0;
1292
1293 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1294 return 0;
1295 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1296 return 0;
1297
1298 /*
1299 * bio and nxt are contigous in memory, check if the queue allows
1300 * these two to be merged into one
1301 */
1302 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1303 return 1;
1304
1305 return 0;
1306}
1307
165125e1 1308static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1309 struct bio *nxt)
1310{
1311 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1312 blk_recount_segments(q, bio);
1313 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1314 blk_recount_segments(q, nxt);
1315 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
32eef964 1316 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1da177e4 1317 return 0;
32eef964 1318 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1da177e4
LT
1319 return 0;
1320
1321 return 1;
1322}
1323
1da177e4
LT
1324/*
1325 * map a request to scatterlist, return number of sg entries setup. Caller
1326 * must make sure sg can hold rq->nr_phys_segments entries
1327 */
165125e1 1328int blk_rq_map_sg(struct request_queue *q, struct request *rq,
f565913e 1329 struct scatterlist *sglist)
1da177e4
LT
1330{
1331 struct bio_vec *bvec, *bvprv;
5705f702 1332 struct req_iterator iter;
ba951841 1333 struct scatterlist *sg;
5705f702 1334 int nsegs, cluster;
1da177e4
LT
1335
1336 nsegs = 0;
1337 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1338
1339 /*
1340 * for each bio in rq
1341 */
1342 bvprv = NULL;
ba951841 1343 sg = NULL;
5705f702 1344 rq_for_each_segment(bvec, rq, iter) {
6c92e699 1345 int nbytes = bvec->bv_len;
1da177e4 1346
6c92e699 1347 if (bvprv && cluster) {
f565913e 1348 if (sg->length + nbytes > q->max_segment_size)
6c92e699 1349 goto new_segment;
1da177e4 1350
6c92e699
JA
1351 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1352 goto new_segment;
1353 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1354 goto new_segment;
1da177e4 1355
f565913e 1356 sg->length += nbytes;
6c92e699 1357 } else {
1da177e4 1358new_segment:
ba951841
JA
1359 if (!sg)
1360 sg = sglist;
7aeacf98
JA
1361 else {
1362 /*
1363 * If the driver previously mapped a shorter
1364 * list, we could see a termination bit
1365 * prematurely unless it fully inits the sg
1366 * table on each mapping. We KNOW that there
1367 * must be more entries here or the driver
1368 * would be buggy, so force clear the
1369 * termination bit to avoid doing a full
1370 * sg_init_table() in drivers for each command.
1371 */
1372 sg->page_link &= ~0x02;
ba951841 1373 sg = sg_next(sg);
7aeacf98 1374 }
6c92e699 1375
642f1490 1376 sg_set_page(sg, bvec->bv_page, nbytes, bvec->bv_offset);
6c92e699
JA
1377 nsegs++;
1378 }
1379 bvprv = bvec;
5705f702 1380 } /* segments in rq */
1da177e4 1381
9b61764b 1382 if (sg)
c46f2334 1383 sg_mark_end(sg);
9b61764b 1384
1da177e4
LT
1385 return nsegs;
1386}
1387
1388EXPORT_SYMBOL(blk_rq_map_sg);
1389
1390/*
1391 * the standard queue merge functions, can be overridden with device
1392 * specific ones if so desired
1393 */
1394
165125e1 1395static inline int ll_new_mergeable(struct request_queue *q,
1da177e4
LT
1396 struct request *req,
1397 struct bio *bio)
1398{
1399 int nr_phys_segs = bio_phys_segments(q, bio);
1400
1401 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1402 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1403 if (req == q->last_merge)
1404 q->last_merge = NULL;
1405 return 0;
1406 }
1407
1408 /*
1409 * A hw segment is just getting larger, bump just the phys
1410 * counter.
1411 */
1412 req->nr_phys_segments += nr_phys_segs;
1413 return 1;
1414}
1415
165125e1 1416static inline int ll_new_hw_segment(struct request_queue *q,
1da177e4
LT
1417 struct request *req,
1418 struct bio *bio)
1419{
1420 int nr_hw_segs = bio_hw_segments(q, bio);
1421 int nr_phys_segs = bio_phys_segments(q, bio);
1422
1423 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1424 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1425 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1426 if (req == q->last_merge)
1427 q->last_merge = NULL;
1428 return 0;
1429 }
1430
1431 /*
1432 * This will form the start of a new hw segment. Bump both
1433 * counters.
1434 */
1435 req->nr_hw_segments += nr_hw_segs;
1436 req->nr_phys_segments += nr_phys_segs;
1437 return 1;
1438}
1439
3001ca77
N
1440static int ll_back_merge_fn(struct request_queue *q, struct request *req,
1441 struct bio *bio)
1da177e4 1442{
defd94b7 1443 unsigned short max_sectors;
1da177e4
LT
1444 int len;
1445
defd94b7
MC
1446 if (unlikely(blk_pc_request(req)))
1447 max_sectors = q->max_hw_sectors;
1448 else
1449 max_sectors = q->max_sectors;
1450
1451 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1452 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1453 if (req == q->last_merge)
1454 q->last_merge = NULL;
1455 return 0;
1456 }
1457 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1458 blk_recount_segments(q, req->biotail);
1459 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1460 blk_recount_segments(q, bio);
1461 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1462 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1463 !BIOVEC_VIRT_OVERSIZE(len)) {
1464 int mergeable = ll_new_mergeable(q, req, bio);
1465
1466 if (mergeable) {
1467 if (req->nr_hw_segments == 1)
1468 req->bio->bi_hw_front_size = len;
1469 if (bio->bi_hw_segments == 1)
1470 bio->bi_hw_back_size = len;
1471 }
1472 return mergeable;
1473 }
1474
1475 return ll_new_hw_segment(q, req, bio);
1476}
1477
165125e1 1478static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1479 struct bio *bio)
1480{
defd94b7 1481 unsigned short max_sectors;
1da177e4
LT
1482 int len;
1483
defd94b7
MC
1484 if (unlikely(blk_pc_request(req)))
1485 max_sectors = q->max_hw_sectors;
1486 else
1487 max_sectors = q->max_sectors;
1488
1489
1490 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1491 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1492 if (req == q->last_merge)
1493 q->last_merge = NULL;
1494 return 0;
1495 }
1496 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1497 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1498 blk_recount_segments(q, bio);
1499 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1500 blk_recount_segments(q, req->bio);
1501 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1502 !BIOVEC_VIRT_OVERSIZE(len)) {
1503 int mergeable = ll_new_mergeable(q, req, bio);
1504
1505 if (mergeable) {
1506 if (bio->bi_hw_segments == 1)
1507 bio->bi_hw_front_size = len;
1508 if (req->nr_hw_segments == 1)
1509 req->biotail->bi_hw_back_size = len;
1510 }
1511 return mergeable;
1512 }
1513
1514 return ll_new_hw_segment(q, req, bio);
1515}
1516
165125e1 1517static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1518 struct request *next)
1519{
dfa1a553
ND
1520 int total_phys_segments;
1521 int total_hw_segments;
1da177e4
LT
1522
1523 /*
1524 * First check if the either of the requests are re-queued
1525 * requests. Can't merge them if they are.
1526 */
1527 if (req->special || next->special)
1528 return 0;
1529
1530 /*
dfa1a553 1531 * Will it become too large?
1da177e4
LT
1532 */
1533 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1534 return 0;
1535
1536 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1537 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1538 total_phys_segments--;
1539
1540 if (total_phys_segments > q->max_phys_segments)
1541 return 0;
1542
1543 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1544 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1545 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1546 /*
1547 * propagate the combined length to the end of the requests
1548 */
1549 if (req->nr_hw_segments == 1)
1550 req->bio->bi_hw_front_size = len;
1551 if (next->nr_hw_segments == 1)
1552 next->biotail->bi_hw_back_size = len;
1553 total_hw_segments--;
1554 }
1555
1556 if (total_hw_segments > q->max_hw_segments)
1557 return 0;
1558
1559 /* Merge is OK... */
1560 req->nr_phys_segments = total_phys_segments;
1561 req->nr_hw_segments = total_hw_segments;
1562 return 1;
1563}
1564
1565/*
1566 * "plug" the device if there are no outstanding requests: this will
1567 * force the transfer to start only after we have put all the requests
1568 * on the list.
1569 *
1570 * This is called with interrupts off and no requests on the queue and
1571 * with the queue lock held.
1572 */
165125e1 1573void blk_plug_device(struct request_queue *q)
1da177e4
LT
1574{
1575 WARN_ON(!irqs_disabled());
1576
1577 /*
1578 * don't plug a stopped queue, it must be paired with blk_start_queue()
1579 * which will restart the queueing
1580 */
7daac490 1581 if (blk_queue_stopped(q))
1da177e4
LT
1582 return;
1583
2056a782 1584 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1da177e4 1585 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
1586 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1587 }
1da177e4
LT
1588}
1589
1590EXPORT_SYMBOL(blk_plug_device);
1591
1592/*
1593 * remove the queue from the plugged list, if present. called with
1594 * queue lock held and interrupts disabled.
1595 */
165125e1 1596int blk_remove_plug(struct request_queue *q)
1da177e4
LT
1597{
1598 WARN_ON(!irqs_disabled());
1599
1600 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1601 return 0;
1602
1603 del_timer(&q->unplug_timer);
1604 return 1;
1605}
1606
1607EXPORT_SYMBOL(blk_remove_plug);
1608
1609/*
1610 * remove the plug and let it rip..
1611 */
165125e1 1612void __generic_unplug_device(struct request_queue *q)
1da177e4 1613{
7daac490 1614 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
1615 return;
1616
1617 if (!blk_remove_plug(q))
1618 return;
1619
22e2c507 1620 q->request_fn(q);
1da177e4
LT
1621}
1622EXPORT_SYMBOL(__generic_unplug_device);
1623
1624/**
1625 * generic_unplug_device - fire a request queue
165125e1 1626 * @q: The &struct request_queue in question
1da177e4
LT
1627 *
1628 * Description:
1629 * Linux uses plugging to build bigger requests queues before letting
1630 * the device have at them. If a queue is plugged, the I/O scheduler
1631 * is still adding and merging requests on the queue. Once the queue
1632 * gets unplugged, the request_fn defined for the queue is invoked and
1633 * transfers started.
1634 **/
165125e1 1635void generic_unplug_device(struct request_queue *q)
1da177e4
LT
1636{
1637 spin_lock_irq(q->queue_lock);
1638 __generic_unplug_device(q);
1639 spin_unlock_irq(q->queue_lock);
1640}
1641EXPORT_SYMBOL(generic_unplug_device);
1642
1643static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1644 struct page *page)
1645{
165125e1 1646 struct request_queue *q = bdi->unplug_io_data;
1da177e4 1647
2ad8b1ef 1648 blk_unplug(q);
1da177e4
LT
1649}
1650
65f27f38 1651static void blk_unplug_work(struct work_struct *work)
1da177e4 1652{
165125e1
JA
1653 struct request_queue *q =
1654 container_of(work, struct request_queue, unplug_work);
1da177e4 1655
2056a782
JA
1656 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1657 q->rq.count[READ] + q->rq.count[WRITE]);
1658
1da177e4
LT
1659 q->unplug_fn(q);
1660}
1661
1662static void blk_unplug_timeout(unsigned long data)
1663{
165125e1 1664 struct request_queue *q = (struct request_queue *)data;
1da177e4 1665
2056a782
JA
1666 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1667 q->rq.count[READ] + q->rq.count[WRITE]);
1668
1da177e4
LT
1669 kblockd_schedule_work(&q->unplug_work);
1670}
1671
2ad8b1ef
AB
1672void blk_unplug(struct request_queue *q)
1673{
1674 /*
1675 * devices don't necessarily have an ->unplug_fn defined
1676 */
1677 if (q->unplug_fn) {
1678 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1679 q->rq.count[READ] + q->rq.count[WRITE]);
1680
1681 q->unplug_fn(q);
1682 }
1683}
1684EXPORT_SYMBOL(blk_unplug);
1685
1da177e4
LT
1686/**
1687 * blk_start_queue - restart a previously stopped queue
165125e1 1688 * @q: The &struct request_queue in question
1da177e4
LT
1689 *
1690 * Description:
1691 * blk_start_queue() will clear the stop flag on the queue, and call
1692 * the request_fn for the queue if it was in a stopped state when
1693 * entered. Also see blk_stop_queue(). Queue lock must be held.
1694 **/
165125e1 1695void blk_start_queue(struct request_queue *q)
1da177e4 1696{
a038e253
PBG
1697 WARN_ON(!irqs_disabled());
1698
1da177e4
LT
1699 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1700
1701 /*
1702 * one level of recursion is ok and is much faster than kicking
1703 * the unplug handling
1704 */
1705 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1706 q->request_fn(q);
1707 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1708 } else {
1709 blk_plug_device(q);
1710 kblockd_schedule_work(&q->unplug_work);
1711 }
1712}
1713
1714EXPORT_SYMBOL(blk_start_queue);
1715
1716/**
1717 * blk_stop_queue - stop a queue
165125e1 1718 * @q: The &struct request_queue in question
1da177e4
LT
1719 *
1720 * Description:
1721 * The Linux block layer assumes that a block driver will consume all
1722 * entries on the request queue when the request_fn strategy is called.
1723 * Often this will not happen, because of hardware limitations (queue
1724 * depth settings). If a device driver gets a 'queue full' response,
1725 * or if it simply chooses not to queue more I/O at one point, it can
1726 * call this function to prevent the request_fn from being called until
1727 * the driver has signalled it's ready to go again. This happens by calling
1728 * blk_start_queue() to restart queue operations. Queue lock must be held.
1729 **/
165125e1 1730void blk_stop_queue(struct request_queue *q)
1da177e4
LT
1731{
1732 blk_remove_plug(q);
1733 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1734}
1735EXPORT_SYMBOL(blk_stop_queue);
1736
1737/**
1738 * blk_sync_queue - cancel any pending callbacks on a queue
1739 * @q: the queue
1740 *
1741 * Description:
1742 * The block layer may perform asynchronous callback activity
1743 * on a queue, such as calling the unplug function after a timeout.
1744 * A block device may call blk_sync_queue to ensure that any
1745 * such activity is cancelled, thus allowing it to release resources
59c51591 1746 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
1747 * that its ->make_request_fn will not re-add plugging prior to calling
1748 * this function.
1749 *
1750 */
1751void blk_sync_queue(struct request_queue *q)
1752{
1753 del_timer_sync(&q->unplug_timer);
abbeb88d 1754 kblockd_flush_work(&q->unplug_work);
1da177e4
LT
1755}
1756EXPORT_SYMBOL(blk_sync_queue);
1757
1758/**
1759 * blk_run_queue - run a single device queue
1760 * @q: The queue to run
1761 */
1762void blk_run_queue(struct request_queue *q)
1763{
1764 unsigned long flags;
1765
1766 spin_lock_irqsave(q->queue_lock, flags);
1767 blk_remove_plug(q);
dac07ec1
JA
1768
1769 /*
1770 * Only recurse once to avoid overrunning the stack, let the unplug
1771 * handling reinvoke the handler shortly if we already got there.
1772 */
1773 if (!elv_queue_empty(q)) {
1774 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1775 q->request_fn(q);
1776 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1777 } else {
1778 blk_plug_device(q);
1779 kblockd_schedule_work(&q->unplug_work);
1780 }
1781 }
1782
1da177e4
LT
1783 spin_unlock_irqrestore(q->queue_lock, flags);
1784}
1785EXPORT_SYMBOL(blk_run_queue);
1786
1787/**
165125e1 1788 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
a580290c 1789 * @kobj: the kobj belonging of the request queue to be released
1da177e4
LT
1790 *
1791 * Description:
1792 * blk_cleanup_queue is the pair to blk_init_queue() or
1793 * blk_queue_make_request(). It should be called when a request queue is
1794 * being released; typically when a block device is being de-registered.
1795 * Currently, its primary task it to free all the &struct request
1796 * structures that were allocated to the queue and the queue itself.
1797 *
1798 * Caveat:
1799 * Hopefully the low level driver will have finished any
1800 * outstanding requests first...
1801 **/
483f4afc 1802static void blk_release_queue(struct kobject *kobj)
1da177e4 1803{
165125e1
JA
1804 struct request_queue *q =
1805 container_of(kobj, struct request_queue, kobj);
1da177e4
LT
1806 struct request_list *rl = &q->rq;
1807
1da177e4
LT
1808 blk_sync_queue(q);
1809
1810 if (rl->rq_pool)
1811 mempool_destroy(rl->rq_pool);
1812
1813 if (q->queue_tags)
1814 __blk_queue_free_tags(q);
1815
6c5c9341 1816 blk_trace_shutdown(q);
2056a782 1817
e0bf68dd 1818 bdi_destroy(&q->backing_dev_info);
1da177e4
LT
1819 kmem_cache_free(requestq_cachep, q);
1820}
1821
165125e1 1822void blk_put_queue(struct request_queue *q)
483f4afc
AV
1823{
1824 kobject_put(&q->kobj);
1825}
1826EXPORT_SYMBOL(blk_put_queue);
1827
165125e1 1828void blk_cleanup_queue(struct request_queue * q)
483f4afc
AV
1829{
1830 mutex_lock(&q->sysfs_lock);
1831 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1832 mutex_unlock(&q->sysfs_lock);
1833
1834 if (q->elevator)
1835 elevator_exit(q->elevator);
1836
1837 blk_put_queue(q);
1838}
1839
1da177e4
LT
1840EXPORT_SYMBOL(blk_cleanup_queue);
1841
165125e1 1842static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
1843{
1844 struct request_list *rl = &q->rq;
1845
1846 rl->count[READ] = rl->count[WRITE] = 0;
1847 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 1848 rl->elvpriv = 0;
1da177e4
LT
1849 init_waitqueue_head(&rl->wait[READ]);
1850 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 1851
1946089a
CL
1852 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1853 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
1854
1855 if (!rl->rq_pool)
1856 return -ENOMEM;
1857
1858 return 0;
1859}
1860
165125e1 1861struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 1862{
1946089a
CL
1863 return blk_alloc_queue_node(gfp_mask, -1);
1864}
1865EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 1866
483f4afc
AV
1867static struct kobj_type queue_ktype;
1868
165125e1 1869struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 1870{
165125e1 1871 struct request_queue *q;
e0bf68dd 1872 int err;
1946089a 1873
94f6030c
CL
1874 q = kmem_cache_alloc_node(requestq_cachep,
1875 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
1876 if (!q)
1877 return NULL;
1878
e0bf68dd
PZ
1879 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1880 q->backing_dev_info.unplug_io_data = q;
1881 err = bdi_init(&q->backing_dev_info);
1882 if (err) {
1883 kmem_cache_free(requestq_cachep, q);
1884 return NULL;
1885 }
1886
1da177e4 1887 init_timer(&q->unplug_timer);
483f4afc 1888
19c38de8 1889 kobject_set_name(&q->kobj, "%s", "queue");
483f4afc
AV
1890 q->kobj.ktype = &queue_ktype;
1891 kobject_init(&q->kobj);
1da177e4 1892
483f4afc
AV
1893 mutex_init(&q->sysfs_lock);
1894
1da177e4
LT
1895 return q;
1896}
1946089a 1897EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1898
1899/**
1900 * blk_init_queue - prepare a request queue for use with a block device
1901 * @rfn: The function to be called to process requests that have been
1902 * placed on the queue.
1903 * @lock: Request queue spin lock
1904 *
1905 * Description:
1906 * If a block device wishes to use the standard request handling procedures,
1907 * which sorts requests and coalesces adjacent requests, then it must
1908 * call blk_init_queue(). The function @rfn will be called when there
1909 * are requests on the queue that need to be processed. If the device
1910 * supports plugging, then @rfn may not be called immediately when requests
1911 * are available on the queue, but may be called at some time later instead.
1912 * Plugged queues are generally unplugged when a buffer belonging to one
1913 * of the requests on the queue is needed, or due to memory pressure.
1914 *
1915 * @rfn is not required, or even expected, to remove all requests off the
1916 * queue, but only as many as it can handle at a time. If it does leave
1917 * requests on the queue, it is responsible for arranging that the requests
1918 * get dealt with eventually.
1919 *
1920 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1921 * request queue; this lock will be taken also from interrupt context, so irq
1922 * disabling is needed for it.
1da177e4
LT
1923 *
1924 * Function returns a pointer to the initialized request queue, or NULL if
1925 * it didn't succeed.
1926 *
1927 * Note:
1928 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1929 * when the block device is deactivated (such as at module unload).
1930 **/
1946089a 1931
165125e1 1932struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1933{
1946089a
CL
1934 return blk_init_queue_node(rfn, lock, -1);
1935}
1936EXPORT_SYMBOL(blk_init_queue);
1937
165125e1 1938struct request_queue *
1946089a
CL
1939blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1940{
165125e1 1941 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
1942
1943 if (!q)
1944 return NULL;
1945
1946089a 1946 q->node = node_id;
8669aafd
AV
1947 if (blk_init_free_list(q)) {
1948 kmem_cache_free(requestq_cachep, q);
1949 return NULL;
1950 }
1da177e4 1951
152587de
JA
1952 /*
1953 * if caller didn't supply a lock, they get per-queue locking with
1954 * our embedded lock
1955 */
1956 if (!lock) {
1957 spin_lock_init(&q->__queue_lock);
1958 lock = &q->__queue_lock;
1959 }
1960
1da177e4 1961 q->request_fn = rfn;
1da177e4
LT
1962 q->prep_rq_fn = NULL;
1963 q->unplug_fn = generic_unplug_device;
1964 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1965 q->queue_lock = lock;
1966
1967 blk_queue_segment_boundary(q, 0xffffffff);
1968
1969 blk_queue_make_request(q, __make_request);
1970 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1971
1972 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1973 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1974
44ec9542
AS
1975 q->sg_reserved_size = INT_MAX;
1976
1da177e4
LT
1977 /*
1978 * all done
1979 */
1980 if (!elevator_init(q, NULL)) {
1981 blk_queue_congestion_threshold(q);
1982 return q;
1983 }
1984
8669aafd 1985 blk_put_queue(q);
1da177e4
LT
1986 return NULL;
1987}
1946089a 1988EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 1989
165125e1 1990int blk_get_queue(struct request_queue *q)
1da177e4 1991{
fde6ad22 1992 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 1993 kobject_get(&q->kobj);
1da177e4
LT
1994 return 0;
1995 }
1996
1997 return 1;
1998}
1999
2000EXPORT_SYMBOL(blk_get_queue);
2001
165125e1 2002static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 2003{
4aff5e23 2004 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 2005 elv_put_request(q, rq);
1da177e4
LT
2006 mempool_free(rq, q->rq.rq_pool);
2007}
2008
1ea25ecb 2009static struct request *
165125e1 2010blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
2011{
2012 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
2013
2014 if (!rq)
2015 return NULL;
2016
2017 /*
4aff5e23 2018 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1da177e4
LT
2019 * see bio.h and blkdev.h
2020 */
49171e5c 2021 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 2022
cb98fc8b 2023 if (priv) {
cb78b285 2024 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
2025 mempool_free(rq, q->rq.rq_pool);
2026 return NULL;
2027 }
4aff5e23 2028 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 2029 }
1da177e4 2030
cb98fc8b 2031 return rq;
1da177e4
LT
2032}
2033
2034/*
2035 * ioc_batching returns true if the ioc is a valid batching request and
2036 * should be given priority access to a request.
2037 */
165125e1 2038static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2039{
2040 if (!ioc)
2041 return 0;
2042
2043 /*
2044 * Make sure the process is able to allocate at least 1 request
2045 * even if the batch times out, otherwise we could theoretically
2046 * lose wakeups.
2047 */
2048 return ioc->nr_batch_requests == q->nr_batching ||
2049 (ioc->nr_batch_requests > 0
2050 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2051}
2052
2053/*
2054 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2055 * will cause the process to be a "batcher" on all queues in the system. This
2056 * is the behaviour we want though - once it gets a wakeup it should be given
2057 * a nice run.
2058 */
165125e1 2059static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2060{
2061 if (!ioc || ioc_batching(q, ioc))
2062 return;
2063
2064 ioc->nr_batch_requests = q->nr_batching;
2065 ioc->last_waited = jiffies;
2066}
2067
165125e1 2068static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
2069{
2070 struct request_list *rl = &q->rq;
2071
2072 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 2073 blk_clear_queue_congested(q, rw);
1da177e4
LT
2074
2075 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
2076 if (waitqueue_active(&rl->wait[rw]))
2077 wake_up(&rl->wait[rw]);
2078
2079 blk_clear_queue_full(q, rw);
2080 }
2081}
2082
2083/*
2084 * A request has just been released. Account for it, update the full and
2085 * congestion status, wake up any waiters. Called under q->queue_lock.
2086 */
165125e1 2087static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
2088{
2089 struct request_list *rl = &q->rq;
2090
2091 rl->count[rw]--;
cb98fc8b
TH
2092 if (priv)
2093 rl->elvpriv--;
1da177e4
LT
2094
2095 __freed_request(q, rw);
2096
2097 if (unlikely(rl->starved[rw ^ 1]))
2098 __freed_request(q, rw ^ 1);
1da177e4
LT
2099}
2100
2101#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2102/*
d6344532
NP
2103 * Get a free request, queue_lock must be held.
2104 * Returns NULL on failure, with queue_lock held.
2105 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 2106 */
165125e1 2107static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 2108 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
2109{
2110 struct request *rq = NULL;
2111 struct request_list *rl = &q->rq;
88ee5ef1 2112 struct io_context *ioc = NULL;
7749a8d4 2113 const int rw = rw_flags & 0x01;
88ee5ef1
JA
2114 int may_queue, priv;
2115
7749a8d4 2116 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
2117 if (may_queue == ELV_MQUEUE_NO)
2118 goto rq_starved;
2119
2120 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2121 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 2122 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
2123 /*
2124 * The queue will fill after this allocation, so set
2125 * it as full, and mark this process as "batching".
2126 * This process will be allowed to complete a batch of
2127 * requests, others will be blocked.
2128 */
2129 if (!blk_queue_full(q, rw)) {
2130 ioc_set_batching(q, ioc);
2131 blk_set_queue_full(q, rw);
2132 } else {
2133 if (may_queue != ELV_MQUEUE_MUST
2134 && !ioc_batching(q, ioc)) {
2135 /*
2136 * The queue is full and the allocating
2137 * process is not a "batcher", and not
2138 * exempted by the IO scheduler
2139 */
2140 goto out;
2141 }
2142 }
1da177e4 2143 }
79e2de4b 2144 blk_set_queue_congested(q, rw);
1da177e4
LT
2145 }
2146
082cf69e
JA
2147 /*
2148 * Only allow batching queuers to allocate up to 50% over the defined
2149 * limit of requests, otherwise we could have thousands of requests
2150 * allocated with any setting of ->nr_requests
2151 */
fd782a4a 2152 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 2153 goto out;
fd782a4a 2154
1da177e4
LT
2155 rl->count[rw]++;
2156 rl->starved[rw] = 0;
cb98fc8b 2157
64521d1a 2158 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
2159 if (priv)
2160 rl->elvpriv++;
2161
1da177e4
LT
2162 spin_unlock_irq(q->queue_lock);
2163
7749a8d4 2164 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 2165 if (unlikely(!rq)) {
1da177e4
LT
2166 /*
2167 * Allocation failed presumably due to memory. Undo anything
2168 * we might have messed up.
2169 *
2170 * Allocating task should really be put onto the front of the
2171 * wait queue, but this is pretty rare.
2172 */
2173 spin_lock_irq(q->queue_lock);
cb98fc8b 2174 freed_request(q, rw, priv);
1da177e4
LT
2175
2176 /*
2177 * in the very unlikely event that allocation failed and no
2178 * requests for this direction was pending, mark us starved
2179 * so that freeing of a request in the other direction will
2180 * notice us. another possible fix would be to split the
2181 * rq mempool into READ and WRITE
2182 */
2183rq_starved:
2184 if (unlikely(rl->count[rw] == 0))
2185 rl->starved[rw] = 1;
2186
1da177e4
LT
2187 goto out;
2188 }
2189
88ee5ef1
JA
2190 /*
2191 * ioc may be NULL here, and ioc_batching will be false. That's
2192 * OK, if the queue is under the request limit then requests need
2193 * not count toward the nr_batch_requests limit. There will always
2194 * be some limit enforced by BLK_BATCH_TIME.
2195 */
1da177e4
LT
2196 if (ioc_batching(q, ioc))
2197 ioc->nr_batch_requests--;
2198
2199 rq_init(q, rq);
2056a782
JA
2200
2201 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 2202out:
1da177e4
LT
2203 return rq;
2204}
2205
2206/*
2207 * No available requests for this queue, unplug the device and wait for some
2208 * requests to become available.
d6344532
NP
2209 *
2210 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 2211 */
165125e1 2212static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 2213 struct bio *bio)
1da177e4 2214{
7749a8d4 2215 const int rw = rw_flags & 0x01;
1da177e4
LT
2216 struct request *rq;
2217
7749a8d4 2218 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
2219 while (!rq) {
2220 DEFINE_WAIT(wait);
1da177e4
LT
2221 struct request_list *rl = &q->rq;
2222
2223 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2224 TASK_UNINTERRUPTIBLE);
2225
7749a8d4 2226 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1da177e4
LT
2227
2228 if (!rq) {
2229 struct io_context *ioc;
2230
2056a782
JA
2231 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2232
d6344532
NP
2233 __generic_unplug_device(q);
2234 spin_unlock_irq(q->queue_lock);
1da177e4
LT
2235 io_schedule();
2236
2237 /*
2238 * After sleeping, we become a "batching" process and
2239 * will be able to allocate at least one request, and
2240 * up to a big batch of them for a small period time.
2241 * See ioc_batching, ioc_set_batching
2242 */
b5deef90 2243 ioc = current_io_context(GFP_NOIO, q->node);
1da177e4 2244 ioc_set_batching(q, ioc);
d6344532
NP
2245
2246 spin_lock_irq(q->queue_lock);
1da177e4
LT
2247 }
2248 finish_wait(&rl->wait[rw], &wait);
450991bc 2249 }
1da177e4
LT
2250
2251 return rq;
2252}
2253
165125e1 2254struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
2255{
2256 struct request *rq;
2257
2258 BUG_ON(rw != READ && rw != WRITE);
2259
d6344532
NP
2260 spin_lock_irq(q->queue_lock);
2261 if (gfp_mask & __GFP_WAIT) {
22e2c507 2262 rq = get_request_wait(q, rw, NULL);
d6344532 2263 } else {
22e2c507 2264 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
2265 if (!rq)
2266 spin_unlock_irq(q->queue_lock);
2267 }
2268 /* q->queue_lock is unlocked at this point */
1da177e4
LT
2269
2270 return rq;
2271}
1da177e4
LT
2272EXPORT_SYMBOL(blk_get_request);
2273
dc72ef4a
JA
2274/**
2275 * blk_start_queueing - initiate dispatch of requests to device
2276 * @q: request queue to kick into gear
2277 *
2278 * This is basically a helper to remove the need to know whether a queue
2279 * is plugged or not if someone just wants to initiate dispatch of requests
2280 * for this queue.
2281 *
2282 * The queue lock must be held with interrupts disabled.
2283 */
165125e1 2284void blk_start_queueing(struct request_queue *q)
dc72ef4a
JA
2285{
2286 if (!blk_queue_plugged(q))
2287 q->request_fn(q);
2288 else
2289 __generic_unplug_device(q);
2290}
2291EXPORT_SYMBOL(blk_start_queueing);
2292
1da177e4
LT
2293/**
2294 * blk_requeue_request - put a request back on queue
2295 * @q: request queue where request should be inserted
2296 * @rq: request to be inserted
2297 *
2298 * Description:
2299 * Drivers often keep queueing requests until the hardware cannot accept
2300 * more, when that condition happens we need to put the request back
2301 * on the queue. Must be called with queue lock held.
2302 */
165125e1 2303void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 2304{
2056a782
JA
2305 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2306
1da177e4
LT
2307 if (blk_rq_tagged(rq))
2308 blk_queue_end_tag(q, rq);
2309
2310 elv_requeue_request(q, rq);
2311}
2312
2313EXPORT_SYMBOL(blk_requeue_request);
2314
2315/**
2316 * blk_insert_request - insert a special request in to a request queue
2317 * @q: request queue where request should be inserted
2318 * @rq: request to be inserted
2319 * @at_head: insert request at head or tail of queue
2320 * @data: private data
1da177e4
LT
2321 *
2322 * Description:
2323 * Many block devices need to execute commands asynchronously, so they don't
2324 * block the whole kernel from preemption during request execution. This is
2325 * accomplished normally by inserting aritficial requests tagged as
2326 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2327 * scheduled for actual execution by the request queue.
2328 *
2329 * We have the option of inserting the head or the tail of the queue.
2330 * Typically we use the tail for new ioctls and so forth. We use the head
2331 * of the queue for things like a QUEUE_FULL message from a device, or a
2332 * host that is unable to accept a particular command.
2333 */
165125e1 2334void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 2335 int at_head, void *data)
1da177e4 2336{
867d1191 2337 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
2338 unsigned long flags;
2339
2340 /*
2341 * tell I/O scheduler that this isn't a regular read/write (ie it
2342 * must not attempt merges on this) and that it acts as a soft
2343 * barrier
2344 */
4aff5e23
JA
2345 rq->cmd_type = REQ_TYPE_SPECIAL;
2346 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
2347
2348 rq->special = data;
2349
2350 spin_lock_irqsave(q->queue_lock, flags);
2351
2352 /*
2353 * If command is tagged, release the tag
2354 */
867d1191
TH
2355 if (blk_rq_tagged(rq))
2356 blk_queue_end_tag(q, rq);
1da177e4 2357
b238b3d4 2358 drive_stat_acct(rq, 1);
867d1191 2359 __elv_add_request(q, rq, where, 0);
dc72ef4a 2360 blk_start_queueing(q);
1da177e4
LT
2361 spin_unlock_irqrestore(q->queue_lock, flags);
2362}
2363
2364EXPORT_SYMBOL(blk_insert_request);
2365
0e75f906
MC
2366static int __blk_rq_unmap_user(struct bio *bio)
2367{
2368 int ret = 0;
2369
2370 if (bio) {
2371 if (bio_flagged(bio, BIO_USER_MAPPED))
2372 bio_unmap_user(bio);
2373 else
2374 ret = bio_uncopy_user(bio);
2375 }
2376
2377 return ret;
2378}
2379
3001ca77
N
2380int blk_rq_append_bio(struct request_queue *q, struct request *rq,
2381 struct bio *bio)
2382{
2383 if (!rq->bio)
2384 blk_rq_bio_prep(q, rq, bio);
2385 else if (!ll_back_merge_fn(q, rq, bio))
2386 return -EINVAL;
2387 else {
2388 rq->biotail->bi_next = bio;
2389 rq->biotail = bio;
2390
2391 rq->data_len += bio->bi_size;
2392 }
2393 return 0;
2394}
2395EXPORT_SYMBOL(blk_rq_append_bio);
2396
165125e1 2397static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
0e75f906
MC
2398 void __user *ubuf, unsigned int len)
2399{
2400 unsigned long uaddr;
2401 struct bio *bio, *orig_bio;
2402 int reading, ret;
2403
2404 reading = rq_data_dir(rq) == READ;
2405
2406 /*
2407 * if alignment requirement is satisfied, map in user pages for
2408 * direct dma. else, set up kernel bounce buffers
2409 */
2410 uaddr = (unsigned long) ubuf;
2411 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2412 bio = bio_map_user(q, NULL, uaddr, len, reading);
2413 else
2414 bio = bio_copy_user(q, uaddr, len, reading);
2415
2985259b 2416 if (IS_ERR(bio))
0e75f906 2417 return PTR_ERR(bio);
0e75f906
MC
2418
2419 orig_bio = bio;
2420 blk_queue_bounce(q, &bio);
2985259b 2421
0e75f906
MC
2422 /*
2423 * We link the bounce buffer in and could have to traverse it
2424 * later so we have to get a ref to prevent it from being freed
2425 */
2426 bio_get(bio);
2427
3001ca77
N
2428 ret = blk_rq_append_bio(q, rq, bio);
2429 if (!ret)
2430 return bio->bi_size;
0e75f906 2431
0e75f906 2432 /* if it was boucned we must call the end io function */
6712ecf8 2433 bio_endio(bio, 0);
0e75f906
MC
2434 __blk_rq_unmap_user(orig_bio);
2435 bio_put(bio);
2436 return ret;
2437}
2438
1da177e4
LT
2439/**
2440 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2441 * @q: request queue where request should be inserted
73747aed 2442 * @rq: request structure to fill
1da177e4
LT
2443 * @ubuf: the user buffer
2444 * @len: length of user data
2445 *
2446 * Description:
2447 * Data will be mapped directly for zero copy io, if possible. Otherwise
2448 * a kernel bounce buffer is used.
2449 *
2450 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2451 * still in process context.
2452 *
2453 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2454 * before being submitted to the device, as pages mapped may be out of
2455 * reach. It's the callers responsibility to make sure this happens. The
2456 * original bio must be passed back in to blk_rq_unmap_user() for proper
2457 * unmapping.
2458 */
165125e1
JA
2459int blk_rq_map_user(struct request_queue *q, struct request *rq,
2460 void __user *ubuf, unsigned long len)
1da177e4 2461{
0e75f906 2462 unsigned long bytes_read = 0;
8e5cfc45 2463 struct bio *bio = NULL;
0e75f906 2464 int ret;
1da177e4 2465
defd94b7 2466 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2467 return -EINVAL;
2468 if (!len || !ubuf)
2469 return -EINVAL;
1da177e4 2470
0e75f906
MC
2471 while (bytes_read != len) {
2472 unsigned long map_len, end, start;
1da177e4 2473
0e75f906
MC
2474 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2475 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2476 >> PAGE_SHIFT;
2477 start = (unsigned long)ubuf >> PAGE_SHIFT;
1da177e4 2478
0e75f906
MC
2479 /*
2480 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2481 * pages. If this happens we just lower the requested
2482 * mapping len by a page so that we can fit
2483 */
2484 if (end - start > BIO_MAX_PAGES)
2485 map_len -= PAGE_SIZE;
1da177e4 2486
0e75f906
MC
2487 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2488 if (ret < 0)
2489 goto unmap_rq;
8e5cfc45
JA
2490 if (!bio)
2491 bio = rq->bio;
0e75f906
MC
2492 bytes_read += ret;
2493 ubuf += ret;
1da177e4
LT
2494 }
2495
0e75f906
MC
2496 rq->buffer = rq->data = NULL;
2497 return 0;
2498unmap_rq:
8e5cfc45 2499 blk_rq_unmap_user(bio);
0e75f906 2500 return ret;
1da177e4
LT
2501}
2502
2503EXPORT_SYMBOL(blk_rq_map_user);
2504
f1970baf
JB
2505/**
2506 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2507 * @q: request queue where request should be inserted
2508 * @rq: request to map data to
2509 * @iov: pointer to the iovec
2510 * @iov_count: number of elements in the iovec
af9997e4 2511 * @len: I/O byte count
f1970baf
JB
2512 *
2513 * Description:
2514 * Data will be mapped directly for zero copy io, if possible. Otherwise
2515 * a kernel bounce buffer is used.
2516 *
2517 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2518 * still in process context.
2519 *
2520 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2521 * before being submitted to the device, as pages mapped may be out of
2522 * reach. It's the callers responsibility to make sure this happens. The
2523 * original bio must be passed back in to blk_rq_unmap_user() for proper
2524 * unmapping.
2525 */
165125e1 2526int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
0e75f906 2527 struct sg_iovec *iov, int iov_count, unsigned int len)
f1970baf
JB
2528{
2529 struct bio *bio;
2530
2531 if (!iov || iov_count <= 0)
2532 return -EINVAL;
2533
2534 /* we don't allow misaligned data like bio_map_user() does. If the
2535 * user is using sg, they're expected to know the alignment constraints
2536 * and respect them accordingly */
2537 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2538 if (IS_ERR(bio))
2539 return PTR_ERR(bio);
2540
0e75f906 2541 if (bio->bi_size != len) {
6712ecf8 2542 bio_endio(bio, 0);
0e75f906
MC
2543 bio_unmap_user(bio);
2544 return -EINVAL;
2545 }
2546
2547 bio_get(bio);
f1970baf
JB
2548 blk_rq_bio_prep(q, rq, bio);
2549 rq->buffer = rq->data = NULL;
f1970baf
JB
2550 return 0;
2551}
2552
2553EXPORT_SYMBOL(blk_rq_map_user_iov);
2554
1da177e4
LT
2555/**
2556 * blk_rq_unmap_user - unmap a request with user data
8e5cfc45 2557 * @bio: start of bio list
1da177e4
LT
2558 *
2559 * Description:
8e5cfc45
JA
2560 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2561 * supply the original rq->bio from the blk_rq_map_user() return, since
2562 * the io completion may have changed rq->bio.
1da177e4 2563 */
8e5cfc45 2564int blk_rq_unmap_user(struct bio *bio)
1da177e4 2565{
8e5cfc45 2566 struct bio *mapped_bio;
48785bb9 2567 int ret = 0, ret2;
1da177e4 2568
8e5cfc45
JA
2569 while (bio) {
2570 mapped_bio = bio;
2571 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
0e75f906 2572 mapped_bio = bio->bi_private;
1da177e4 2573
48785bb9
JA
2574 ret2 = __blk_rq_unmap_user(mapped_bio);
2575 if (ret2 && !ret)
2576 ret = ret2;
2577
8e5cfc45
JA
2578 mapped_bio = bio;
2579 bio = bio->bi_next;
2580 bio_put(mapped_bio);
0e75f906 2581 }
48785bb9
JA
2582
2583 return ret;
1da177e4
LT
2584}
2585
2586EXPORT_SYMBOL(blk_rq_unmap_user);
2587
df46b9a4
MC
2588/**
2589 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2590 * @q: request queue where request should be inserted
73747aed 2591 * @rq: request to fill
df46b9a4
MC
2592 * @kbuf: the kernel buffer
2593 * @len: length of user data
73747aed 2594 * @gfp_mask: memory allocation flags
df46b9a4 2595 */
165125e1 2596int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
8267e268 2597 unsigned int len, gfp_t gfp_mask)
df46b9a4 2598{
df46b9a4
MC
2599 struct bio *bio;
2600
defd94b7 2601 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2602 return -EINVAL;
2603 if (!len || !kbuf)
2604 return -EINVAL;
df46b9a4
MC
2605
2606 bio = bio_map_kern(q, kbuf, len, gfp_mask);
dd1cab95
JA
2607 if (IS_ERR(bio))
2608 return PTR_ERR(bio);
df46b9a4 2609
dd1cab95
JA
2610 if (rq_data_dir(rq) == WRITE)
2611 bio->bi_rw |= (1 << BIO_RW);
df46b9a4 2612
dd1cab95 2613 blk_rq_bio_prep(q, rq, bio);
821de3a2 2614 blk_queue_bounce(q, &rq->bio);
dd1cab95 2615 rq->buffer = rq->data = NULL;
dd1cab95 2616 return 0;
df46b9a4
MC
2617}
2618
2619EXPORT_SYMBOL(blk_rq_map_kern);
2620
73747aed
CH
2621/**
2622 * blk_execute_rq_nowait - insert a request into queue for execution
2623 * @q: queue to insert the request in
2624 * @bd_disk: matching gendisk
2625 * @rq: request to insert
2626 * @at_head: insert request at head or tail of queue
2627 * @done: I/O completion handler
2628 *
2629 * Description:
2630 * Insert a fully prepared request at the back of the io scheduler queue
2631 * for execution. Don't wait for completion.
2632 */
165125e1 2633void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
f1970baf 2634 struct request *rq, int at_head,
8ffdc655 2635 rq_end_io_fn *done)
f1970baf
JB
2636{
2637 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2638
2639 rq->rq_disk = bd_disk;
4aff5e23 2640 rq->cmd_flags |= REQ_NOMERGE;
f1970baf 2641 rq->end_io = done;
4c5d0bbd
AM
2642 WARN_ON(irqs_disabled());
2643 spin_lock_irq(q->queue_lock);
2644 __elv_add_request(q, rq, where, 1);
2645 __generic_unplug_device(q);
2646 spin_unlock_irq(q->queue_lock);
f1970baf 2647}
6e39b69e
MC
2648EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2649
1da177e4
LT
2650/**
2651 * blk_execute_rq - insert a request into queue for execution
2652 * @q: queue to insert the request in
2653 * @bd_disk: matching gendisk
2654 * @rq: request to insert
994ca9a1 2655 * @at_head: insert request at head or tail of queue
1da177e4
LT
2656 *
2657 * Description:
2658 * Insert a fully prepared request at the back of the io scheduler queue
73747aed 2659 * for execution and wait for completion.
1da177e4 2660 */
165125e1 2661int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
994ca9a1 2662 struct request *rq, int at_head)
1da177e4 2663{
60be6b9a 2664 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
2665 char sense[SCSI_SENSE_BUFFERSIZE];
2666 int err = 0;
2667
1da177e4
LT
2668 /*
2669 * we need an extra reference to the request, so we can look at
2670 * it after io completion
2671 */
2672 rq->ref_count++;
2673
2674 if (!rq->sense) {
2675 memset(sense, 0, sizeof(sense));
2676 rq->sense = sense;
2677 rq->sense_len = 0;
2678 }
2679
c00895ab 2680 rq->end_io_data = &wait;
994ca9a1 2681 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
1da177e4 2682 wait_for_completion(&wait);
1da177e4
LT
2683
2684 if (rq->errors)
2685 err = -EIO;
2686
2687 return err;
2688}
2689
2690EXPORT_SYMBOL(blk_execute_rq);
2691
fd5d8062
JA
2692static void bio_end_empty_barrier(struct bio *bio, int err)
2693{
2694 if (err)
2695 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2696
2697 complete(bio->bi_private);
2698}
2699
1da177e4
LT
2700/**
2701 * blkdev_issue_flush - queue a flush
2702 * @bdev: blockdev to issue flush for
2703 * @error_sector: error sector
2704 *
2705 * Description:
2706 * Issue a flush for the block device in question. Caller can supply
2707 * room for storing the error offset in case of a flush error, if they
2708 * wish to. Caller must run wait_for_completion() on its own.
2709 */
2710int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2711{
fd5d8062 2712 DECLARE_COMPLETION_ONSTACK(wait);
165125e1 2713 struct request_queue *q;
fd5d8062
JA
2714 struct bio *bio;
2715 int ret;
1da177e4
LT
2716
2717 if (bdev->bd_disk == NULL)
2718 return -ENXIO;
2719
2720 q = bdev_get_queue(bdev);
2721 if (!q)
2722 return -ENXIO;
1da177e4 2723
fd5d8062
JA
2724 bio = bio_alloc(GFP_KERNEL, 0);
2725 if (!bio)
2726 return -ENOMEM;
2727
2728 bio->bi_end_io = bio_end_empty_barrier;
2729 bio->bi_private = &wait;
2730 bio->bi_bdev = bdev;
2731 submit_bio(1 << BIO_RW_BARRIER, bio);
2732
2733 wait_for_completion(&wait);
2734
2735 /*
2736 * The driver must store the error location in ->bi_sector, if
2737 * it supports it. For non-stacked drivers, this should be copied
2738 * from rq->sector.
2739 */
2740 if (error_sector)
2741 *error_sector = bio->bi_sector;
2742
2743 ret = 0;
2744 if (!bio_flagged(bio, BIO_UPTODATE))
2745 ret = -EIO;
2746
2747 bio_put(bio);
2748 return ret;
1da177e4
LT
2749}
2750
2751EXPORT_SYMBOL(blkdev_issue_flush);
2752
b238b3d4 2753static void drive_stat_acct(struct request *rq, int new_io)
1da177e4
LT
2754{
2755 int rw = rq_data_dir(rq);
2756
2757 if (!blk_fs_request(rq) || !rq->rq_disk)
2758 return;
2759
d72d904a 2760 if (!new_io) {
a362357b 2761 __disk_stat_inc(rq->rq_disk, merges[rw]);
d72d904a 2762 } else {
1da177e4
LT
2763 disk_round_stats(rq->rq_disk);
2764 rq->rq_disk->in_flight++;
2765 }
2766}
2767
2768/*
2769 * add-request adds a request to the linked list.
2770 * queue lock is held and interrupts disabled, as we muck with the
2771 * request queue list.
2772 */
165125e1 2773static inline void add_request(struct request_queue * q, struct request * req)
1da177e4 2774{
b238b3d4 2775 drive_stat_acct(req, 1);
1da177e4 2776
1da177e4
LT
2777 /*
2778 * elevator indicated where it wants this request to be
2779 * inserted at elevator_merge time
2780 */
2781 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2782}
2783
2784/*
2785 * disk_round_stats() - Round off the performance stats on a struct
2786 * disk_stats.
2787 *
2788 * The average IO queue length and utilisation statistics are maintained
2789 * by observing the current state of the queue length and the amount of
2790 * time it has been in this state for.
2791 *
2792 * Normally, that accounting is done on IO completion, but that can result
2793 * in more than a second's worth of IO being accounted for within any one
2794 * second, leading to >100% utilisation. To deal with that, we call this
2795 * function to do a round-off before returning the results when reading
2796 * /proc/diskstats. This accounts immediately for all queue usage up to
2797 * the current jiffies and restarts the counters again.
2798 */
2799void disk_round_stats(struct gendisk *disk)
2800{
2801 unsigned long now = jiffies;
2802
b2982649
KC
2803 if (now == disk->stamp)
2804 return;
1da177e4 2805
20e5c81f
KC
2806 if (disk->in_flight) {
2807 __disk_stat_add(disk, time_in_queue,
2808 disk->in_flight * (now - disk->stamp));
2809 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2810 }
1da177e4 2811 disk->stamp = now;
1da177e4
LT
2812}
2813
3eaf840e
JNN
2814EXPORT_SYMBOL_GPL(disk_round_stats);
2815
1da177e4
LT
2816/*
2817 * queue lock must be held
2818 */
165125e1 2819void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 2820{
1da177e4
LT
2821 if (unlikely(!q))
2822 return;
2823 if (unlikely(--req->ref_count))
2824 return;
2825
8922e16c
TH
2826 elv_completed_request(q, req);
2827
1da177e4
LT
2828 /*
2829 * Request may not have originated from ll_rw_blk. if not,
2830 * it didn't come out of our reserved rq pools
2831 */
49171e5c 2832 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 2833 int rw = rq_data_dir(req);
4aff5e23 2834 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 2835
1da177e4 2836 BUG_ON(!list_empty(&req->queuelist));
9817064b 2837 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
2838
2839 blk_free_request(q, req);
cb98fc8b 2840 freed_request(q, rw, priv);
1da177e4
LT
2841 }
2842}
2843
6e39b69e
MC
2844EXPORT_SYMBOL_GPL(__blk_put_request);
2845
1da177e4
LT
2846void blk_put_request(struct request *req)
2847{
8922e16c 2848 unsigned long flags;
165125e1 2849 struct request_queue *q = req->q;
8922e16c 2850
1da177e4 2851 /*
8922e16c
TH
2852 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2853 * following if (q) test.
1da177e4 2854 */
8922e16c 2855 if (q) {
1da177e4
LT
2856 spin_lock_irqsave(q->queue_lock, flags);
2857 __blk_put_request(q, req);
2858 spin_unlock_irqrestore(q->queue_lock, flags);
2859 }
2860}
2861
2862EXPORT_SYMBOL(blk_put_request);
2863
2864/**
2865 * blk_end_sync_rq - executes a completion event on a request
2866 * @rq: request to complete
fddfdeaf 2867 * @error: end io status of the request
1da177e4 2868 */
8ffdc655 2869void blk_end_sync_rq(struct request *rq, int error)
1da177e4 2870{
c00895ab 2871 struct completion *waiting = rq->end_io_data;
1da177e4 2872
c00895ab 2873 rq->end_io_data = NULL;
1da177e4
LT
2874 __blk_put_request(rq->q, rq);
2875
2876 /*
2877 * complete last, if this is a stack request the process (and thus
2878 * the rq pointer) could be invalid right after this complete()
2879 */
2880 complete(waiting);
2881}
2882EXPORT_SYMBOL(blk_end_sync_rq);
2883
1da177e4
LT
2884/*
2885 * Has to be called with the request spinlock acquired
2886 */
165125e1 2887static int attempt_merge(struct request_queue *q, struct request *req,
1da177e4
LT
2888 struct request *next)
2889{
2890 if (!rq_mergeable(req) || !rq_mergeable(next))
2891 return 0;
2892
2893 /*
d6e05edc 2894 * not contiguous
1da177e4
LT
2895 */
2896 if (req->sector + req->nr_sectors != next->sector)
2897 return 0;
2898
2899 if (rq_data_dir(req) != rq_data_dir(next)
2900 || req->rq_disk != next->rq_disk
c00895ab 2901 || next->special)
1da177e4
LT
2902 return 0;
2903
2904 /*
2905 * If we are allowed to merge, then append bio list
2906 * from next to rq and release next. merge_requests_fn
2907 * will have updated segment counts, update sector
2908 * counts here.
2909 */
1aa4f24f 2910 if (!ll_merge_requests_fn(q, req, next))
1da177e4
LT
2911 return 0;
2912
2913 /*
2914 * At this point we have either done a back merge
2915 * or front merge. We need the smaller start_time of
2916 * the merged requests to be the current request
2917 * for accounting purposes.
2918 */
2919 if (time_after(req->start_time, next->start_time))
2920 req->start_time = next->start_time;
2921
2922 req->biotail->bi_next = next->bio;
2923 req->biotail = next->biotail;
2924
2925 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2926
2927 elv_merge_requests(q, req, next);
2928
2929 if (req->rq_disk) {
2930 disk_round_stats(req->rq_disk);
2931 req->rq_disk->in_flight--;
2932 }
2933
22e2c507
JA
2934 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2935
1da177e4
LT
2936 __blk_put_request(q, next);
2937 return 1;
2938}
2939
165125e1
JA
2940static inline int attempt_back_merge(struct request_queue *q,
2941 struct request *rq)
1da177e4
LT
2942{
2943 struct request *next = elv_latter_request(q, rq);
2944
2945 if (next)
2946 return attempt_merge(q, rq, next);
2947
2948 return 0;
2949}
2950
165125e1
JA
2951static inline int attempt_front_merge(struct request_queue *q,
2952 struct request *rq)
1da177e4
LT
2953{
2954 struct request *prev = elv_former_request(q, rq);
2955
2956 if (prev)
2957 return attempt_merge(q, prev, rq);
2958
2959 return 0;
2960}
2961
52d9e675
TH
2962static void init_request_from_bio(struct request *req, struct bio *bio)
2963{
4aff5e23 2964 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
2965
2966 /*
2967 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2968 */
2969 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 2970 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
2971
2972 /*
2973 * REQ_BARRIER implies no merging, but lets make it explicit
2974 */
2975 if (unlikely(bio_barrier(bio)))
4aff5e23 2976 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 2977
b31dc66a 2978 if (bio_sync(bio))
4aff5e23 2979 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
2980 if (bio_rw_meta(bio))
2981 req->cmd_flags |= REQ_RW_META;
b31dc66a 2982
52d9e675
TH
2983 req->errors = 0;
2984 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 2985 req->ioprio = bio_prio(bio);
52d9e675 2986 req->start_time = jiffies;
bc1c56fd 2987 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
2988}
2989
165125e1 2990static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 2991{
450991bc 2992 struct request *req;
51da90fc
JA
2993 int el_ret, nr_sectors, barrier, err;
2994 const unsigned short prio = bio_prio(bio);
2995 const int sync = bio_sync(bio);
7749a8d4 2996 int rw_flags;
1da177e4 2997
1da177e4 2998 nr_sectors = bio_sectors(bio);
1da177e4
LT
2999
3000 /*
3001 * low level driver can indicate that it wants pages above a
3002 * certain limit bounced to low memory (ie for highmem, or even
3003 * ISA dma in theory)
3004 */
3005 blk_queue_bounce(q, &bio);
3006
1da177e4 3007 barrier = bio_barrier(bio);
797e7dbb 3008 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
3009 err = -EOPNOTSUPP;
3010 goto end_io;
3011 }
3012
1da177e4
LT
3013 spin_lock_irq(q->queue_lock);
3014
450991bc 3015 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
3016 goto get_rq;
3017
3018 el_ret = elv_merge(q, &req, bio);
3019 switch (el_ret) {
3020 case ELEVATOR_BACK_MERGE:
3021 BUG_ON(!rq_mergeable(req));
3022
1aa4f24f 3023 if (!ll_back_merge_fn(q, req, bio))
1da177e4
LT
3024 break;
3025
2056a782
JA
3026 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
3027
1da177e4
LT
3028 req->biotail->bi_next = bio;
3029 req->biotail = bio;
3030 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 3031 req->ioprio = ioprio_best(req->ioprio, prio);
b238b3d4 3032 drive_stat_acct(req, 0);
1da177e4 3033 if (!attempt_back_merge(q, req))
2e662b65 3034 elv_merged_request(q, req, el_ret);
1da177e4
LT
3035 goto out;
3036
3037 case ELEVATOR_FRONT_MERGE:
3038 BUG_ON(!rq_mergeable(req));
3039
1aa4f24f 3040 if (!ll_front_merge_fn(q, req, bio))
1da177e4
LT
3041 break;
3042
2056a782
JA
3043 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
3044
1da177e4
LT
3045 bio->bi_next = req->bio;
3046 req->bio = bio;
3047
3048 /*
3049 * may not be valid. if the low level driver said
3050 * it didn't need a bounce buffer then it better
3051 * not touch req->buffer either...
3052 */
3053 req->buffer = bio_data(bio);
51da90fc
JA
3054 req->current_nr_sectors = bio_cur_sectors(bio);
3055 req->hard_cur_sectors = req->current_nr_sectors;
3056 req->sector = req->hard_sector = bio->bi_sector;
1da177e4 3057 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 3058 req->ioprio = ioprio_best(req->ioprio, prio);
b238b3d4 3059 drive_stat_acct(req, 0);
1da177e4 3060 if (!attempt_front_merge(q, req))
2e662b65 3061 elv_merged_request(q, req, el_ret);
1da177e4
LT
3062 goto out;
3063
450991bc 3064 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1da177e4 3065 default:
450991bc 3066 ;
1da177e4
LT
3067 }
3068
450991bc 3069get_rq:
7749a8d4
JA
3070 /*
3071 * This sync check and mask will be re-done in init_request_from_bio(),
3072 * but we need to set it earlier to expose the sync flag to the
3073 * rq allocator and io schedulers.
3074 */
3075 rw_flags = bio_data_dir(bio);
3076 if (sync)
3077 rw_flags |= REQ_RW_SYNC;
3078
1da177e4 3079 /*
450991bc 3080 * Grab a free request. This is might sleep but can not fail.
d6344532 3081 * Returns with the queue unlocked.
450991bc 3082 */
7749a8d4 3083 req = get_request_wait(q, rw_flags, bio);
d6344532 3084
450991bc
NP
3085 /*
3086 * After dropping the lock and possibly sleeping here, our request
3087 * may now be mergeable after it had proven unmergeable (above).
3088 * We don't worry about that case for efficiency. It won't happen
3089 * often, and the elevators are able to handle it.
1da177e4 3090 */
52d9e675 3091 init_request_from_bio(req, bio);
1da177e4 3092
450991bc
NP
3093 spin_lock_irq(q->queue_lock);
3094 if (elv_queue_empty(q))
3095 blk_plug_device(q);
1da177e4
LT
3096 add_request(q, req);
3097out:
4a534f93 3098 if (sync)
1da177e4
LT
3099 __generic_unplug_device(q);
3100
3101 spin_unlock_irq(q->queue_lock);
3102 return 0;
3103
3104end_io:
6712ecf8 3105 bio_endio(bio, err);
1da177e4
LT
3106 return 0;
3107}
3108
3109/*
3110 * If bio->bi_dev is a partition, remap the location
3111 */
3112static inline void blk_partition_remap(struct bio *bio)
3113{
3114 struct block_device *bdev = bio->bi_bdev;
3115
bf2de6f5 3116 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4 3117 struct hd_struct *p = bdev->bd_part;
a362357b
JA
3118 const int rw = bio_data_dir(bio);
3119
3120 p->sectors[rw] += bio_sectors(bio);
3121 p->ios[rw]++;
1da177e4 3122
1da177e4
LT
3123 bio->bi_sector += p->start_sect;
3124 bio->bi_bdev = bdev->bd_contains;
c7149d6b
AB
3125
3126 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3127 bdev->bd_dev, bio->bi_sector,
3128 bio->bi_sector - p->start_sect);
1da177e4
LT
3129 }
3130}
3131
1da177e4
LT
3132static void handle_bad_sector(struct bio *bio)
3133{
3134 char b[BDEVNAME_SIZE];
3135
3136 printk(KERN_INFO "attempt to access beyond end of device\n");
3137 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3138 bdevname(bio->bi_bdev, b),
3139 bio->bi_rw,
3140 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3141 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3142
3143 set_bit(BIO_EOF, &bio->bi_flags);
3144}
3145
c17bb495
AM
3146#ifdef CONFIG_FAIL_MAKE_REQUEST
3147
3148static DECLARE_FAULT_ATTR(fail_make_request);
3149
3150static int __init setup_fail_make_request(char *str)
3151{
3152 return setup_fault_attr(&fail_make_request, str);
3153}
3154__setup("fail_make_request=", setup_fail_make_request);
3155
3156static int should_fail_request(struct bio *bio)
3157{
3158 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3159 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3160 return should_fail(&fail_make_request, bio->bi_size);
3161
3162 return 0;
3163}
3164
3165static int __init fail_make_request_debugfs(void)
3166{
3167 return init_fault_attr_dentries(&fail_make_request,
3168 "fail_make_request");
3169}
3170
3171late_initcall(fail_make_request_debugfs);
3172
3173#else /* CONFIG_FAIL_MAKE_REQUEST */
3174
3175static inline int should_fail_request(struct bio *bio)
3176{
3177 return 0;
3178}
3179
3180#endif /* CONFIG_FAIL_MAKE_REQUEST */
3181
c07e2b41
JA
3182/*
3183 * Check whether this bio extends beyond the end of the device.
3184 */
3185static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
3186{
3187 sector_t maxsector;
3188
3189 if (!nr_sectors)
3190 return 0;
3191
3192 /* Test device or partition size, when known. */
3193 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3194 if (maxsector) {
3195 sector_t sector = bio->bi_sector;
3196
3197 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3198 /*
3199 * This may well happen - the kernel calls bread()
3200 * without checking the size of the device, e.g., when
3201 * mounting a device.
3202 */
3203 handle_bad_sector(bio);
3204 return 1;
3205 }
3206 }
3207
3208 return 0;
3209}
3210
1da177e4
LT
3211/**
3212 * generic_make_request: hand a buffer to its device driver for I/O
3213 * @bio: The bio describing the location in memory and on the device.
3214 *
3215 * generic_make_request() is used to make I/O requests of block
3216 * devices. It is passed a &struct bio, which describes the I/O that needs
3217 * to be done.
3218 *
3219 * generic_make_request() does not return any status. The
3220 * success/failure status of the request, along with notification of
3221 * completion, is delivered asynchronously through the bio->bi_end_io
3222 * function described (one day) else where.
3223 *
3224 * The caller of generic_make_request must make sure that bi_io_vec
3225 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3226 * set to describe the device address, and the
3227 * bi_end_io and optionally bi_private are set to describe how
3228 * completion notification should be signaled.
3229 *
3230 * generic_make_request and the drivers it calls may use bi_next if this
3231 * bio happens to be merged with someone else, and may change bi_dev and
3232 * bi_sector for remaps as it sees fit. So the values of these fields
3233 * should NOT be depended on after the call to generic_make_request.
3234 */
d89d8796 3235static inline void __generic_make_request(struct bio *bio)
1da177e4 3236{
165125e1 3237 struct request_queue *q;
5ddfe969 3238 sector_t old_sector;
1da177e4 3239 int ret, nr_sectors = bio_sectors(bio);
2056a782 3240 dev_t old_dev;
51fd77bd 3241 int err = -EIO;
1da177e4
LT
3242
3243 might_sleep();
1da177e4 3244
c07e2b41
JA
3245 if (bio_check_eod(bio, nr_sectors))
3246 goto end_io;
1da177e4
LT
3247
3248 /*
3249 * Resolve the mapping until finished. (drivers are
3250 * still free to implement/resolve their own stacking
3251 * by explicitly returning 0)
3252 *
3253 * NOTE: we don't repeat the blk_size check for each new device.
3254 * Stacking drivers are expected to know what they are doing.
3255 */
5ddfe969 3256 old_sector = -1;
2056a782 3257 old_dev = 0;
1da177e4
LT
3258 do {
3259 char b[BDEVNAME_SIZE];
3260
3261 q = bdev_get_queue(bio->bi_bdev);
3262 if (!q) {
3263 printk(KERN_ERR
3264 "generic_make_request: Trying to access "
3265 "nonexistent block-device %s (%Lu)\n",
3266 bdevname(bio->bi_bdev, b),
3267 (long long) bio->bi_sector);
3268end_io:
51fd77bd 3269 bio_endio(bio, err);
1da177e4
LT
3270 break;
3271 }
3272
4fa253f3 3273 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1da177e4
LT
3274 printk("bio too big device %s (%u > %u)\n",
3275 bdevname(bio->bi_bdev, b),
3276 bio_sectors(bio),
3277 q->max_hw_sectors);
3278 goto end_io;
3279 }
3280
fde6ad22 3281 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
3282 goto end_io;
3283
c17bb495
AM
3284 if (should_fail_request(bio))
3285 goto end_io;
3286
1da177e4
LT
3287 /*
3288 * If this device has partitions, remap block n
3289 * of partition p to block n+start(p) of the disk.
3290 */
3291 blk_partition_remap(bio);
3292
5ddfe969 3293 if (old_sector != -1)
4fa253f3 3294 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 3295 old_sector);
2056a782
JA
3296
3297 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3298
5ddfe969 3299 old_sector = bio->bi_sector;
2056a782
JA
3300 old_dev = bio->bi_bdev->bd_dev;
3301
c07e2b41
JA
3302 if (bio_check_eod(bio, nr_sectors))
3303 goto end_io;
51fd77bd
JA
3304 if (bio_empty_barrier(bio) && !q->prepare_flush_fn) {
3305 err = -EOPNOTSUPP;
3306 goto end_io;
3307 }
5ddfe969 3308
1da177e4
LT
3309 ret = q->make_request_fn(q, bio);
3310 } while (ret);
3311}
3312
d89d8796
NB
3313/*
3314 * We only want one ->make_request_fn to be active at a time,
3315 * else stack usage with stacked devices could be a problem.
3316 * So use current->bio_{list,tail} to keep a list of requests
3317 * submited by a make_request_fn function.
3318 * current->bio_tail is also used as a flag to say if
3319 * generic_make_request is currently active in this task or not.
3320 * If it is NULL, then no make_request is active. If it is non-NULL,
3321 * then a make_request is active, and new requests should be added
3322 * at the tail
3323 */
3324void generic_make_request(struct bio *bio)
3325{
3326 if (current->bio_tail) {
3327 /* make_request is active */
3328 *(current->bio_tail) = bio;
3329 bio->bi_next = NULL;
3330 current->bio_tail = &bio->bi_next;
3331 return;
3332 }
3333 /* following loop may be a bit non-obvious, and so deserves some
3334 * explanation.
3335 * Before entering the loop, bio->bi_next is NULL (as all callers
3336 * ensure that) so we have a list with a single bio.
3337 * We pretend that we have just taken it off a longer list, so
3338 * we assign bio_list to the next (which is NULL) and bio_tail
3339 * to &bio_list, thus initialising the bio_list of new bios to be
3340 * added. __generic_make_request may indeed add some more bios
3341 * through a recursive call to generic_make_request. If it
3342 * did, we find a non-NULL value in bio_list and re-enter the loop
3343 * from the top. In this case we really did just take the bio
3344 * of the top of the list (no pretending) and so fixup bio_list and
3345 * bio_tail or bi_next, and call into __generic_make_request again.
3346 *
3347 * The loop was structured like this to make only one call to
3348 * __generic_make_request (which is important as it is large and
3349 * inlined) and to keep the structure simple.
3350 */
3351 BUG_ON(bio->bi_next);
3352 do {
3353 current->bio_list = bio->bi_next;
3354 if (bio->bi_next == NULL)
3355 current->bio_tail = &current->bio_list;
3356 else
3357 bio->bi_next = NULL;
3358 __generic_make_request(bio);
3359 bio = current->bio_list;
3360 } while (bio);
3361 current->bio_tail = NULL; /* deactivate */
3362}
3363
1da177e4
LT
3364EXPORT_SYMBOL(generic_make_request);
3365
3366/**
3367 * submit_bio: submit a bio to the block device layer for I/O
3368 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3369 * @bio: The &struct bio which describes the I/O
3370 *
3371 * submit_bio() is very similar in purpose to generic_make_request(), and
3372 * uses that function to do most of the work. Both are fairly rough
3373 * interfaces, @bio must be presetup and ready for I/O.
3374 *
3375 */
3376void submit_bio(int rw, struct bio *bio)
3377{
3378 int count = bio_sectors(bio);
3379
22e2c507 3380 bio->bi_rw |= rw;
1da177e4 3381
bf2de6f5
JA
3382 /*
3383 * If it's a regular read/write or a barrier with data attached,
3384 * go through the normal accounting stuff before submission.
3385 */
3386 if (!bio_empty_barrier(bio)) {
3387
3388 BIO_BUG_ON(!bio->bi_size);
3389 BIO_BUG_ON(!bio->bi_io_vec);
3390
3391 if (rw & WRITE) {
3392 count_vm_events(PGPGOUT, count);
3393 } else {
3394 task_io_account_read(bio->bi_size);
3395 count_vm_events(PGPGIN, count);
3396 }
3397
3398 if (unlikely(block_dump)) {
3399 char b[BDEVNAME_SIZE];
3400 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 3401 current->comm, task_pid_nr(current),
bf2de6f5
JA
3402 (rw & WRITE) ? "WRITE" : "READ",
3403 (unsigned long long)bio->bi_sector,
3404 bdevname(bio->bi_bdev,b));
3405 }
1da177e4
LT
3406 }
3407
3408 generic_make_request(bio);
3409}
3410
3411EXPORT_SYMBOL(submit_bio);
3412
93d17d3d 3413static void blk_recalc_rq_sectors(struct request *rq, int nsect)
1da177e4
LT
3414{
3415 if (blk_fs_request(rq)) {
3416 rq->hard_sector += nsect;
3417 rq->hard_nr_sectors -= nsect;
3418
3419 /*
3420 * Move the I/O submission pointers ahead if required.
3421 */
3422 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3423 (rq->sector <= rq->hard_sector)) {
3424 rq->sector = rq->hard_sector;
3425 rq->nr_sectors = rq->hard_nr_sectors;
3426 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3427 rq->current_nr_sectors = rq->hard_cur_sectors;
3428 rq->buffer = bio_data(rq->bio);
3429 }
3430
3431 /*
3432 * if total number of sectors is less than the first segment
3433 * size, something has gone terribly wrong
3434 */
3435 if (rq->nr_sectors < rq->current_nr_sectors) {
3436 printk("blk: request botched\n");
3437 rq->nr_sectors = rq->current_nr_sectors;
3438 }
3439 }
3440}
3441
3442static int __end_that_request_first(struct request *req, int uptodate,
3443 int nr_bytes)
3444{
3445 int total_bytes, bio_nbytes, error, next_idx = 0;
3446 struct bio *bio;
3447
2056a782
JA
3448 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3449
1da177e4
LT
3450 /*
3451 * extend uptodate bool to allow < 0 value to be direct io error
3452 */
3453 error = 0;
3454 if (end_io_error(uptodate))
3455 error = !uptodate ? -EIO : uptodate;
3456
3457 /*
3458 * for a REQ_BLOCK_PC request, we want to carry any eventual
3459 * sense key with us all the way through
3460 */
3461 if (!blk_pc_request(req))
3462 req->errors = 0;
3463
3464 if (!uptodate) {
4aff5e23 3465 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
1da177e4
LT
3466 printk("end_request: I/O error, dev %s, sector %llu\n",
3467 req->rq_disk ? req->rq_disk->disk_name : "?",
3468 (unsigned long long)req->sector);
3469 }
3470
d72d904a 3471 if (blk_fs_request(req) && req->rq_disk) {
a362357b
JA
3472 const int rw = rq_data_dir(req);
3473
53e86061 3474 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
d72d904a
JA
3475 }
3476
1da177e4
LT
3477 total_bytes = bio_nbytes = 0;
3478 while ((bio = req->bio) != NULL) {
3479 int nbytes;
3480
bf2de6f5
JA
3481 /*
3482 * For an empty barrier request, the low level driver must
3483 * store a potential error location in ->sector. We pass
3484 * that back up in ->bi_sector.
3485 */
3486 if (blk_empty_barrier(req))
3487 bio->bi_sector = req->sector;
3488
1da177e4
LT
3489 if (nr_bytes >= bio->bi_size) {
3490 req->bio = bio->bi_next;
3491 nbytes = bio->bi_size;
5bb23a68 3492 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
3493 next_idx = 0;
3494 bio_nbytes = 0;
3495 } else {
3496 int idx = bio->bi_idx + next_idx;
3497
3498 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3499 blk_dump_rq_flags(req, "__end_that");
3500 printk("%s: bio idx %d >= vcnt %d\n",
3501 __FUNCTION__,
3502 bio->bi_idx, bio->bi_vcnt);
3503 break;
3504 }
3505
3506 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3507 BIO_BUG_ON(nbytes > bio->bi_size);
3508
3509 /*
3510 * not a complete bvec done
3511 */
3512 if (unlikely(nbytes > nr_bytes)) {
3513 bio_nbytes += nr_bytes;
3514 total_bytes += nr_bytes;
3515 break;
3516 }
3517
3518 /*
3519 * advance to the next vector
3520 */
3521 next_idx++;
3522 bio_nbytes += nbytes;
3523 }
3524
3525 total_bytes += nbytes;
3526 nr_bytes -= nbytes;
3527
3528 if ((bio = req->bio)) {
3529 /*
3530 * end more in this run, or just return 'not-done'
3531 */
3532 if (unlikely(nr_bytes <= 0))
3533 break;
3534 }
3535 }
3536
3537 /*
3538 * completely done
3539 */
3540 if (!req->bio)
3541 return 0;
3542
3543 /*
3544 * if the request wasn't completed, update state
3545 */
3546 if (bio_nbytes) {
5bb23a68 3547 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
3548 bio->bi_idx += next_idx;
3549 bio_iovec(bio)->bv_offset += nr_bytes;
3550 bio_iovec(bio)->bv_len -= nr_bytes;
3551 }
3552
3553 blk_recalc_rq_sectors(req, total_bytes >> 9);
3554 blk_recalc_rq_segments(req);
3555 return 1;
3556}
3557
3558/**
3559 * end_that_request_first - end I/O on a request
3560 * @req: the request being processed
3561 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3562 * @nr_sectors: number of sectors to end I/O on
3563 *
3564 * Description:
3565 * Ends I/O on a number of sectors attached to @req, and sets it up
3566 * for the next range of segments (if any) in the cluster.
3567 *
3568 * Return:
3569 * 0 - we are done with this request, call end_that_request_last()
3570 * 1 - still buffers pending for this request
3571 **/
3572int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3573{
3574 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3575}
3576
3577EXPORT_SYMBOL(end_that_request_first);
3578
3579/**
3580 * end_that_request_chunk - end I/O on a request
3581 * @req: the request being processed
3582 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3583 * @nr_bytes: number of bytes to complete
3584 *
3585 * Description:
3586 * Ends I/O on a number of bytes attached to @req, and sets it up
3587 * for the next range of segments (if any). Like end_that_request_first(),
3588 * but deals with bytes instead of sectors.
3589 *
3590 * Return:
3591 * 0 - we are done with this request, call end_that_request_last()
3592 * 1 - still buffers pending for this request
3593 **/
3594int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3595{
3596 return __end_that_request_first(req, uptodate, nr_bytes);
3597}
3598
3599EXPORT_SYMBOL(end_that_request_chunk);
3600
ff856bad
JA
3601/*
3602 * splice the completion data to a local structure and hand off to
3603 * process_completion_queue() to complete the requests
3604 */
3605static void blk_done_softirq(struct softirq_action *h)
3606{
626ab0e6 3607 struct list_head *cpu_list, local_list;
ff856bad
JA
3608
3609 local_irq_disable();
3610 cpu_list = &__get_cpu_var(blk_cpu_done);
626ab0e6 3611 list_replace_init(cpu_list, &local_list);
ff856bad
JA
3612 local_irq_enable();
3613
3614 while (!list_empty(&local_list)) {
3615 struct request *rq = list_entry(local_list.next, struct request, donelist);
3616
3617 list_del_init(&rq->donelist);
3618 rq->q->softirq_done_fn(rq);
3619 }
3620}
3621
db47d475 3622static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
ff856bad
JA
3623 void *hcpu)
3624{
3625 /*
3626 * If a CPU goes away, splice its entries to the current CPU
3627 * and trigger a run of the softirq
3628 */
8bb78442 3629 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
ff856bad
JA
3630 int cpu = (unsigned long) hcpu;
3631
3632 local_irq_disable();
3633 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3634 &__get_cpu_var(blk_cpu_done));
3635 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3636 local_irq_enable();
3637 }
3638
3639 return NOTIFY_OK;
3640}
3641
3642
db47d475 3643static struct notifier_block blk_cpu_notifier __cpuinitdata = {
ff856bad
JA
3644 .notifier_call = blk_cpu_notify,
3645};
3646
ff856bad
JA
3647/**
3648 * blk_complete_request - end I/O on a request
3649 * @req: the request being processed
3650 *
3651 * Description:
3652 * Ends all I/O on a request. It does not handle partial completions,
d6e05edc 3653 * unless the driver actually implements this in its completion callback
4fa253f3 3654 * through requeueing. The actual completion happens out-of-order,
ff856bad
JA
3655 * through a softirq handler. The user must have registered a completion
3656 * callback through blk_queue_softirq_done().
3657 **/
3658
3659void blk_complete_request(struct request *req)
3660{
3661 struct list_head *cpu_list;
3662 unsigned long flags;
3663
3664 BUG_ON(!req->q->softirq_done_fn);
3665
3666 local_irq_save(flags);
3667
3668 cpu_list = &__get_cpu_var(blk_cpu_done);
3669 list_add_tail(&req->donelist, cpu_list);
3670 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3671
3672 local_irq_restore(flags);
3673}
3674
3675EXPORT_SYMBOL(blk_complete_request);
3676
1da177e4
LT
3677/*
3678 * queue lock must be held
3679 */
8ffdc655 3680void end_that_request_last(struct request *req, int uptodate)
1da177e4
LT
3681{
3682 struct gendisk *disk = req->rq_disk;
8ffdc655
TH
3683 int error;
3684
3685 /*
3686 * extend uptodate bool to allow < 0 value to be direct io error
3687 */
3688 error = 0;
3689 if (end_io_error(uptodate))
3690 error = !uptodate ? -EIO : uptodate;
1da177e4
LT
3691
3692 if (unlikely(laptop_mode) && blk_fs_request(req))
3693 laptop_io_completion();
3694
fd0ff8aa
JA
3695 /*
3696 * Account IO completion. bar_rq isn't accounted as a normal
3697 * IO on queueing nor completion. Accounting the containing
3698 * request is enough.
3699 */
3700 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 3701 unsigned long duration = jiffies - req->start_time;
a362357b
JA
3702 const int rw = rq_data_dir(req);
3703
3704 __disk_stat_inc(disk, ios[rw]);
3705 __disk_stat_add(disk, ticks[rw], duration);
1da177e4
LT
3706 disk_round_stats(disk);
3707 disk->in_flight--;
3708 }
3709 if (req->end_io)
8ffdc655 3710 req->end_io(req, error);
1da177e4
LT
3711 else
3712 __blk_put_request(req->q, req);
3713}
3714
3715EXPORT_SYMBOL(end_that_request_last);
3716
a0cd1285
JA
3717static inline void __end_request(struct request *rq, int uptodate,
3718 unsigned int nr_bytes, int dequeue)
1da177e4 3719{
a0cd1285
JA
3720 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
3721 if (dequeue)
3722 blkdev_dequeue_request(rq);
3723 add_disk_randomness(rq->rq_disk);
3724 end_that_request_last(rq, uptodate);
1da177e4
LT
3725 }
3726}
3727
a0cd1285
JA
3728static unsigned int rq_byte_size(struct request *rq)
3729{
3730 if (blk_fs_request(rq))
3731 return rq->hard_nr_sectors << 9;
3732
3733 return rq->data_len;
3734}
3735
3736/**
3737 * end_queued_request - end all I/O on a queued request
3738 * @rq: the request being processed
3739 * @uptodate: error value or 0/1 uptodate flag
3740 *
3741 * Description:
3742 * Ends all I/O on a request, and removes it from the block layer queues.
3743 * Not suitable for normal IO completion, unless the driver still has
3744 * the request attached to the block layer.
3745 *
3746 **/
3747void end_queued_request(struct request *rq, int uptodate)
3748{
3749 __end_request(rq, uptodate, rq_byte_size(rq), 1);
3750}
3751EXPORT_SYMBOL(end_queued_request);
3752
3753/**
3754 * end_dequeued_request - end all I/O on a dequeued request
3755 * @rq: the request being processed
3756 * @uptodate: error value or 0/1 uptodate flag
3757 *
3758 * Description:
3759 * Ends all I/O on a request. The request must already have been
3760 * dequeued using blkdev_dequeue_request(), as is normally the case
3761 * for most drivers.
3762 *
3763 **/
3764void end_dequeued_request(struct request *rq, int uptodate)
3765{
3766 __end_request(rq, uptodate, rq_byte_size(rq), 0);
3767}
3768EXPORT_SYMBOL(end_dequeued_request);
3769
3770
3771/**
3772 * end_request - end I/O on the current segment of the request
8f731f7d 3773 * @req: the request being processed
a0cd1285
JA
3774 * @uptodate: error value or 0/1 uptodate flag
3775 *
3776 * Description:
3777 * Ends I/O on the current segment of a request. If that is the only
3778 * remaining segment, the request is also completed and freed.
3779 *
3780 * This is a remnant of how older block drivers handled IO completions.
3781 * Modern drivers typically end IO on the full request in one go, unless
3782 * they have a residual value to account for. For that case this function
3783 * isn't really useful, unless the residual just happens to be the
3784 * full current segment. In other words, don't use this function in new
3785 * code. Either use end_request_completely(), or the
3786 * end_that_request_chunk() (along with end_that_request_last()) for
3787 * partial completions.
3788 *
3789 **/
3790void end_request(struct request *req, int uptodate)
3791{
3792 __end_request(req, uptodate, req->hard_cur_sectors << 9, 1);
3793}
1da177e4
LT
3794EXPORT_SYMBOL(end_request);
3795
66846572
N
3796static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3797 struct bio *bio)
1da177e4 3798{
4aff5e23
JA
3799 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3800 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4
LT
3801
3802 rq->nr_phys_segments = bio_phys_segments(q, bio);
3803 rq->nr_hw_segments = bio_hw_segments(q, bio);
3804 rq->current_nr_sectors = bio_cur_sectors(bio);
3805 rq->hard_cur_sectors = rq->current_nr_sectors;
3806 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3807 rq->buffer = bio_data(bio);
0e75f906 3808 rq->data_len = bio->bi_size;
1da177e4
LT
3809
3810 rq->bio = rq->biotail = bio;
1da177e4 3811
66846572
N
3812 if (bio->bi_bdev)
3813 rq->rq_disk = bio->bi_bdev->bd_disk;
3814}
1da177e4
LT
3815
3816int kblockd_schedule_work(struct work_struct *work)
3817{
3818 return queue_work(kblockd_workqueue, work);
3819}
3820
3821EXPORT_SYMBOL(kblockd_schedule_work);
3822
19a75d83 3823void kblockd_flush_work(struct work_struct *work)
1da177e4 3824{
28e53bdd 3825 cancel_work_sync(work);
1da177e4 3826}
19a75d83 3827EXPORT_SYMBOL(kblockd_flush_work);
1da177e4
LT
3828
3829int __init blk_dev_init(void)
3830{
ff856bad
JA
3831 int i;
3832
1da177e4
LT
3833 kblockd_workqueue = create_workqueue("kblockd");
3834 if (!kblockd_workqueue)
3835 panic("Failed to create kblockd\n");
3836
3837 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3838 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4
LT
3839
3840 requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3841 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4
LT
3842
3843 iocontext_cachep = kmem_cache_create("blkdev_ioc",
20c2df83 3844 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
1da177e4 3845
0a945022 3846 for_each_possible_cpu(i)
ff856bad
JA
3847 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3848
3849 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
5a67e4c5 3850 register_hotcpu_notifier(&blk_cpu_notifier);
ff856bad 3851
f772b3d9
VT
3852 blk_max_low_pfn = max_low_pfn - 1;
3853 blk_max_pfn = max_pfn - 1;
1da177e4
LT
3854
3855 return 0;
3856}
3857
3858/*
3859 * IO Context helper functions
3860 */
3861void put_io_context(struct io_context *ioc)
3862{
3863 if (ioc == NULL)
3864 return;
3865
3866 BUG_ON(atomic_read(&ioc->refcount) == 0);
3867
3868 if (atomic_dec_and_test(&ioc->refcount)) {
e2d74ac0
JA
3869 struct cfq_io_context *cic;
3870
334e94de 3871 rcu_read_lock();
1da177e4
LT
3872 if (ioc->aic && ioc->aic->dtor)
3873 ioc->aic->dtor(ioc->aic);
e2d74ac0 3874 if (ioc->cic_root.rb_node != NULL) {
7143dd4b
JA
3875 struct rb_node *n = rb_first(&ioc->cic_root);
3876
3877 cic = rb_entry(n, struct cfq_io_context, rb_node);
e2d74ac0
JA
3878 cic->dtor(ioc);
3879 }
334e94de 3880 rcu_read_unlock();
1da177e4
LT
3881
3882 kmem_cache_free(iocontext_cachep, ioc);
3883 }
3884}
3885EXPORT_SYMBOL(put_io_context);
3886
3887/* Called by the exitting task */
3888void exit_io_context(void)
3889{
1da177e4 3890 struct io_context *ioc;
e2d74ac0 3891 struct cfq_io_context *cic;
1da177e4 3892
22e2c507 3893 task_lock(current);
1da177e4
LT
3894 ioc = current->io_context;
3895 current->io_context = NULL;
22e2c507 3896 task_unlock(current);
1da177e4 3897
25034d7a 3898 ioc->task = NULL;
1da177e4
LT
3899 if (ioc->aic && ioc->aic->exit)
3900 ioc->aic->exit(ioc->aic);
e2d74ac0
JA
3901 if (ioc->cic_root.rb_node != NULL) {
3902 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3903 cic->exit(ioc);
3904 }
25034d7a 3905
1da177e4
LT
3906 put_io_context(ioc);
3907}
3908
3909/*
3910 * If the current task has no IO context then create one and initialise it.
fb3cc432 3911 * Otherwise, return its existing IO context.
1da177e4 3912 *
fb3cc432
NP
3913 * This returned IO context doesn't have a specifically elevated refcount,
3914 * but since the current task itself holds a reference, the context can be
3915 * used in general code, so long as it stays within `current` context.
1da177e4 3916 */
b5deef90 3917static struct io_context *current_io_context(gfp_t gfp_flags, int node)
1da177e4
LT
3918{
3919 struct task_struct *tsk = current;
1da177e4
LT
3920 struct io_context *ret;
3921
1da177e4 3922 ret = tsk->io_context;
fb3cc432
NP
3923 if (likely(ret))
3924 return ret;
1da177e4 3925
b5deef90 3926 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
1da177e4
LT
3927 if (ret) {
3928 atomic_set(&ret->refcount, 1);
22e2c507 3929 ret->task = current;
fc46379d 3930 ret->ioprio_changed = 0;
1da177e4
LT
3931 ret->last_waited = jiffies; /* doesn't matter... */
3932 ret->nr_batch_requests = 0; /* because this is 0 */
3933 ret->aic = NULL;
e2d74ac0 3934 ret->cic_root.rb_node = NULL;
4e521c27 3935 ret->ioc_data = NULL;
9f83e45e
ON
3936 /* make sure set_task_ioprio() sees the settings above */
3937 smp_wmb();
fb3cc432
NP
3938 tsk->io_context = ret;
3939 }
1da177e4 3940
fb3cc432
NP
3941 return ret;
3942}
1da177e4 3943
fb3cc432
NP
3944/*
3945 * If the current task has no IO context then create one and initialise it.
3946 * If it does have a context, take a ref on it.
3947 *
3948 * This is always called in the context of the task which submitted the I/O.
3949 */
b5deef90 3950struct io_context *get_io_context(gfp_t gfp_flags, int node)
fb3cc432
NP
3951{
3952 struct io_context *ret;
b5deef90 3953 ret = current_io_context(gfp_flags, node);
fb3cc432 3954 if (likely(ret))
1da177e4 3955 atomic_inc(&ret->refcount);
1da177e4
LT
3956 return ret;
3957}
3958EXPORT_SYMBOL(get_io_context);
3959
3960void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3961{
3962 struct io_context *src = *psrc;
3963 struct io_context *dst = *pdst;
3964
3965 if (src) {
3966 BUG_ON(atomic_read(&src->refcount) == 0);
3967 atomic_inc(&src->refcount);
3968 put_io_context(dst);
3969 *pdst = src;
3970 }
3971}
3972EXPORT_SYMBOL(copy_io_context);
3973
3974void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3975{
3976 struct io_context *temp;
3977 temp = *ioc1;
3978 *ioc1 = *ioc2;
3979 *ioc2 = temp;
3980}
3981EXPORT_SYMBOL(swap_io_context);
3982
3983/*
3984 * sysfs parts below
3985 */
3986struct queue_sysfs_entry {
3987 struct attribute attr;
3988 ssize_t (*show)(struct request_queue *, char *);
3989 ssize_t (*store)(struct request_queue *, const char *, size_t);
3990};
3991
3992static ssize_t
3993queue_var_show(unsigned int var, char *page)
3994{
3995 return sprintf(page, "%d\n", var);
3996}
3997
3998static ssize_t
3999queue_var_store(unsigned long *var, const char *page, size_t count)
4000{
4001 char *p = (char *) page;
4002
4003 *var = simple_strtoul(p, &p, 10);
4004 return count;
4005}
4006
4007static ssize_t queue_requests_show(struct request_queue *q, char *page)
4008{
4009 return queue_var_show(q->nr_requests, (page));
4010}
4011
4012static ssize_t
4013queue_requests_store(struct request_queue *q, const char *page, size_t count)
4014{
4015 struct request_list *rl = &q->rq;
c981ff9f
AV
4016 unsigned long nr;
4017 int ret = queue_var_store(&nr, page, count);
4018 if (nr < BLKDEV_MIN_RQ)
4019 nr = BLKDEV_MIN_RQ;
1da177e4 4020
c981ff9f
AV
4021 spin_lock_irq(q->queue_lock);
4022 q->nr_requests = nr;
1da177e4
LT
4023 blk_queue_congestion_threshold(q);
4024
4025 if (rl->count[READ] >= queue_congestion_on_threshold(q))
79e2de4b 4026 blk_set_queue_congested(q, READ);
1da177e4 4027 else if (rl->count[READ] < queue_congestion_off_threshold(q))
79e2de4b 4028 blk_clear_queue_congested(q, READ);
1da177e4
LT
4029
4030 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
79e2de4b 4031 blk_set_queue_congested(q, WRITE);
1da177e4 4032 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
79e2de4b 4033 blk_clear_queue_congested(q, WRITE);
1da177e4
LT
4034
4035 if (rl->count[READ] >= q->nr_requests) {
4036 blk_set_queue_full(q, READ);
4037 } else if (rl->count[READ]+1 <= q->nr_requests) {
4038 blk_clear_queue_full(q, READ);
4039 wake_up(&rl->wait[READ]);
4040 }
4041
4042 if (rl->count[WRITE] >= q->nr_requests) {
4043 blk_set_queue_full(q, WRITE);
4044 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
4045 blk_clear_queue_full(q, WRITE);
4046 wake_up(&rl->wait[WRITE]);
4047 }
c981ff9f 4048 spin_unlock_irq(q->queue_lock);
1da177e4
LT
4049 return ret;
4050}
4051
4052static ssize_t queue_ra_show(struct request_queue *q, char *page)
4053{
4054 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
4055
4056 return queue_var_show(ra_kb, (page));
4057}
4058
4059static ssize_t
4060queue_ra_store(struct request_queue *q, const char *page, size_t count)
4061{
4062 unsigned long ra_kb;
4063 ssize_t ret = queue_var_store(&ra_kb, page, count);
4064
4065 spin_lock_irq(q->queue_lock);
1da177e4
LT
4066 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
4067 spin_unlock_irq(q->queue_lock);
4068
4069 return ret;
4070}
4071
4072static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
4073{
4074 int max_sectors_kb = q->max_sectors >> 1;
4075
4076 return queue_var_show(max_sectors_kb, (page));
4077}
4078
4079static ssize_t
4080queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
4081{
4082 unsigned long max_sectors_kb,
4083 max_hw_sectors_kb = q->max_hw_sectors >> 1,
4084 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
4085 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
1da177e4
LT
4086
4087 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
4088 return -EINVAL;
4089 /*
4090 * Take the queue lock to update the readahead and max_sectors
4091 * values synchronously:
4092 */
4093 spin_lock_irq(q->queue_lock);
1da177e4
LT
4094 q->max_sectors = max_sectors_kb << 1;
4095 spin_unlock_irq(q->queue_lock);
4096
4097 return ret;
4098}
4099
4100static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
4101{
4102 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
4103
4104 return queue_var_show(max_hw_sectors_kb, (page));
4105}
4106
4107
4108static struct queue_sysfs_entry queue_requests_entry = {
4109 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
4110 .show = queue_requests_show,
4111 .store = queue_requests_store,
4112};
4113
4114static struct queue_sysfs_entry queue_ra_entry = {
4115 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
4116 .show = queue_ra_show,
4117 .store = queue_ra_store,
4118};
4119
4120static struct queue_sysfs_entry queue_max_sectors_entry = {
4121 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4122 .show = queue_max_sectors_show,
4123 .store = queue_max_sectors_store,
4124};
4125
4126static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4127 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4128 .show = queue_max_hw_sectors_show,
4129};
4130
4131static struct queue_sysfs_entry queue_iosched_entry = {
4132 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4133 .show = elv_iosched_show,
4134 .store = elv_iosched_store,
4135};
4136
4137static struct attribute *default_attrs[] = {
4138 &queue_requests_entry.attr,
4139 &queue_ra_entry.attr,
4140 &queue_max_hw_sectors_entry.attr,
4141 &queue_max_sectors_entry.attr,
4142 &queue_iosched_entry.attr,
4143 NULL,
4144};
4145
4146#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4147
4148static ssize_t
4149queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4150{
4151 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1
JA
4152 struct request_queue *q =
4153 container_of(kobj, struct request_queue, kobj);
483f4afc 4154 ssize_t res;
1da177e4 4155
1da177e4 4156 if (!entry->show)
6c1852a0 4157 return -EIO;
483f4afc
AV
4158 mutex_lock(&q->sysfs_lock);
4159 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4160 mutex_unlock(&q->sysfs_lock);
4161 return -ENOENT;
4162 }
4163 res = entry->show(q, page);
4164 mutex_unlock(&q->sysfs_lock);
4165 return res;
1da177e4
LT
4166}
4167
4168static ssize_t
4169queue_attr_store(struct kobject *kobj, struct attribute *attr,
4170 const char *page, size_t length)
4171{
4172 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1 4173 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
483f4afc
AV
4174
4175 ssize_t res;
1da177e4 4176
1da177e4 4177 if (!entry->store)
6c1852a0 4178 return -EIO;
483f4afc
AV
4179 mutex_lock(&q->sysfs_lock);
4180 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4181 mutex_unlock(&q->sysfs_lock);
4182 return -ENOENT;
4183 }
4184 res = entry->store(q, page, length);
4185 mutex_unlock(&q->sysfs_lock);
4186 return res;
1da177e4
LT
4187}
4188
4189static struct sysfs_ops queue_sysfs_ops = {
4190 .show = queue_attr_show,
4191 .store = queue_attr_store,
4192};
4193
93d17d3d 4194static struct kobj_type queue_ktype = {
1da177e4
LT
4195 .sysfs_ops = &queue_sysfs_ops,
4196 .default_attrs = default_attrs,
483f4afc 4197 .release = blk_release_queue,
1da177e4
LT
4198};
4199
4200int blk_register_queue(struct gendisk *disk)
4201{
4202 int ret;
4203
165125e1 4204 struct request_queue *q = disk->queue;
1da177e4
LT
4205
4206 if (!q || !q->request_fn)
4207 return -ENXIO;
4208
4209 q->kobj.parent = kobject_get(&disk->kobj);
1da177e4 4210
483f4afc 4211 ret = kobject_add(&q->kobj);
1da177e4
LT
4212 if (ret < 0)
4213 return ret;
4214
483f4afc
AV
4215 kobject_uevent(&q->kobj, KOBJ_ADD);
4216
1da177e4
LT
4217 ret = elv_register_queue(q);
4218 if (ret) {
483f4afc
AV
4219 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4220 kobject_del(&q->kobj);
1da177e4
LT
4221 return ret;
4222 }
4223
4224 return 0;
4225}
4226
4227void blk_unregister_queue(struct gendisk *disk)
4228{
165125e1 4229 struct request_queue *q = disk->queue;
1da177e4
LT
4230
4231 if (q && q->request_fn) {
4232 elv_unregister_queue(q);
4233
483f4afc
AV
4234 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4235 kobject_del(&q->kobj);
1da177e4
LT
4236 kobject_put(&disk->kobj);
4237 }
4238}