block,scsi: fixup blk_get_request dead queue scenarios
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/mm.h>
13#include <linux/init.h>
14#include <linux/slab.h>
15#include <linux/workqueue.h>
16#include <linux/smp.h>
17#include <linux/llist.h>
18#include <linux/list_sort.h>
19#include <linux/cpu.h>
20#include <linux/cache.h>
21#include <linux/sched/sysctl.h>
22#include <linux/delay.h>
23
24#include <trace/events/block.h>
25
26#include <linux/blk-mq.h>
27#include "blk.h"
28#include "blk-mq.h"
29#include "blk-mq-tag.h"
30
31static DEFINE_MUTEX(all_q_mutex);
32static LIST_HEAD(all_q_list);
33
34static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
35
320ae51f
JA
36/*
37 * Check if any of the ctx's have pending work in this hardware queue
38 */
39static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
40{
41 unsigned int i;
42
1429d7c9
JA
43 for (i = 0; i < hctx->ctx_map.map_size; i++)
44 if (hctx->ctx_map.map[i].word)
320ae51f
JA
45 return true;
46
47 return false;
48}
49
1429d7c9
JA
50static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52{
53 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
54}
55
56#define CTX_TO_BIT(hctx, ctx) \
57 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
58
320ae51f
JA
59/*
60 * Mark this ctx as having pending work in this hardware queue
61 */
62static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
64{
1429d7c9
JA
65 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
66
67 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
68 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
69}
70
71static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
72 struct blk_mq_ctx *ctx)
73{
74 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
75
76 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
320ae51f
JA
77}
78
320ae51f
JA
79static int blk_mq_queue_enter(struct request_queue *q)
80{
add703fd
TH
81 while (true) {
82 int ret;
320ae51f 83
add703fd
TH
84 if (percpu_ref_tryget_live(&q->mq_usage_counter))
85 return 0;
320ae51f 86
add703fd
TH
87 ret = wait_event_interruptible(q->mq_freeze_wq,
88 !q->mq_freeze_depth || blk_queue_dying(q));
89 if (blk_queue_dying(q))
90 return -ENODEV;
91 if (ret)
92 return ret;
93 }
320ae51f
JA
94}
95
96static void blk_mq_queue_exit(struct request_queue *q)
97{
add703fd
TH
98 percpu_ref_put(&q->mq_usage_counter);
99}
100
101static void blk_mq_usage_counter_release(struct percpu_ref *ref)
102{
103 struct request_queue *q =
104 container_of(ref, struct request_queue, mq_usage_counter);
105
106 wake_up_all(&q->mq_freeze_wq);
320ae51f
JA
107}
108
72d6f02a
TH
109/*
110 * Guarantee no request is in use, so we can change any data structure of
111 * the queue afterward.
112 */
113void blk_mq_freeze_queue(struct request_queue *q)
43a5e4e2 114{
72d6f02a
TH
115 spin_lock_irq(q->queue_lock);
116 q->mq_freeze_depth++;
117 spin_unlock_irq(q->queue_lock);
118
add703fd
TH
119 percpu_ref_kill(&q->mq_usage_counter);
120 blk_mq_run_queues(q, false);
121 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
43a5e4e2
ML
122}
123
320ae51f
JA
124static void blk_mq_unfreeze_queue(struct request_queue *q)
125{
126 bool wake = false;
127
128 spin_lock_irq(q->queue_lock);
780db207
TH
129 wake = !--q->mq_freeze_depth;
130 WARN_ON_ONCE(q->mq_freeze_depth < 0);
320ae51f 131 spin_unlock_irq(q->queue_lock);
add703fd
TH
132 if (wake) {
133 percpu_ref_reinit(&q->mq_usage_counter);
320ae51f 134 wake_up_all(&q->mq_freeze_wq);
add703fd 135 }
320ae51f
JA
136}
137
138bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
139{
140 return blk_mq_has_free_tags(hctx->tags);
141}
142EXPORT_SYMBOL(blk_mq_can_queue);
143
94eddfbe
JA
144static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
145 struct request *rq, unsigned int rw_flags)
320ae51f 146{
94eddfbe
JA
147 if (blk_queue_io_stat(q))
148 rw_flags |= REQ_IO_STAT;
149
af76e555
CH
150 INIT_LIST_HEAD(&rq->queuelist);
151 /* csd/requeue_work/fifo_time is initialized before use */
152 rq->q = q;
320ae51f 153 rq->mq_ctx = ctx;
0d2602ca 154 rq->cmd_flags |= rw_flags;
af76e555
CH
155 /* do not touch atomic flags, it needs atomic ops against the timer */
156 rq->cpu = -1;
af76e555
CH
157 INIT_HLIST_NODE(&rq->hash);
158 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
159 rq->rq_disk = NULL;
160 rq->part = NULL;
3ee32372 161 rq->start_time = jiffies;
af76e555
CH
162#ifdef CONFIG_BLK_CGROUP
163 rq->rl = NULL;
0fec08b4 164 set_start_time_ns(rq);
af76e555
CH
165 rq->io_start_time_ns = 0;
166#endif
167 rq->nr_phys_segments = 0;
168#if defined(CONFIG_BLK_DEV_INTEGRITY)
169 rq->nr_integrity_segments = 0;
170#endif
af76e555
CH
171 rq->special = NULL;
172 /* tag was already set */
173 rq->errors = 0;
af76e555
CH
174
175 rq->extra_len = 0;
176 rq->sense_len = 0;
177 rq->resid_len = 0;
178 rq->sense = NULL;
179
af76e555 180 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
181 rq->timeout = 0;
182
af76e555
CH
183 rq->end_io = NULL;
184 rq->end_io_data = NULL;
185 rq->next_rq = NULL;
186
320ae51f
JA
187 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
188}
189
5dee8577 190static struct request *
cb96a42c 191__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
5dee8577
CH
192{
193 struct request *rq;
194 unsigned int tag;
195
cb96a42c 196 tag = blk_mq_get_tag(data);
5dee8577 197 if (tag != BLK_MQ_TAG_FAIL) {
cb96a42c 198 rq = data->hctx->tags->rqs[tag];
5dee8577
CH
199
200 rq->cmd_flags = 0;
cb96a42c 201 if (blk_mq_tag_busy(data->hctx)) {
5dee8577 202 rq->cmd_flags = REQ_MQ_INFLIGHT;
cb96a42c 203 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
204 }
205
206 rq->tag = tag;
cb96a42c 207 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
5dee8577
CH
208 return rq;
209 }
210
211 return NULL;
212}
213
4ce01dd1
CH
214struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
215 bool reserved)
320ae51f 216{
d852564f
CH
217 struct blk_mq_ctx *ctx;
218 struct blk_mq_hw_ctx *hctx;
320ae51f 219 struct request *rq;
cb96a42c 220 struct blk_mq_alloc_data alloc_data;
a492f075 221 int ret;
320ae51f 222
a492f075
JL
223 ret = blk_mq_queue_enter(q);
224 if (ret)
225 return ERR_PTR(ret);
320ae51f 226
d852564f
CH
227 ctx = blk_mq_get_ctx(q);
228 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
229 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
230 reserved, ctx, hctx);
d852564f 231
cb96a42c 232 rq = __blk_mq_alloc_request(&alloc_data, rw);
d852564f
CH
233 if (!rq && (gfp & __GFP_WAIT)) {
234 __blk_mq_run_hw_queue(hctx);
235 blk_mq_put_ctx(ctx);
236
237 ctx = blk_mq_get_ctx(q);
238 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
239 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
240 hctx);
241 rq = __blk_mq_alloc_request(&alloc_data, rw);
242 ctx = alloc_data.ctx;
d852564f
CH
243 }
244 blk_mq_put_ctx(ctx);
a492f075
JL
245 if (!rq)
246 return ERR_PTR(-EWOULDBLOCK);
320ae51f
JA
247 return rq;
248}
4bb659b1 249EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 250
320ae51f
JA
251static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
252 struct blk_mq_ctx *ctx, struct request *rq)
253{
254 const int tag = rq->tag;
255 struct request_queue *q = rq->q;
256
0d2602ca
JA
257 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
258 atomic_dec(&hctx->nr_active);
259
af76e555 260 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
0d2602ca 261 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
320ae51f
JA
262 blk_mq_queue_exit(q);
263}
264
265void blk_mq_free_request(struct request *rq)
266{
267 struct blk_mq_ctx *ctx = rq->mq_ctx;
268 struct blk_mq_hw_ctx *hctx;
269 struct request_queue *q = rq->q;
270
271 ctx->rq_completed[rq_is_sync(rq)]++;
272
273 hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 __blk_mq_free_request(hctx, ctx, rq);
275}
276
8727af4b
CH
277/*
278 * Clone all relevant state from a request that has been put on hold in
279 * the flush state machine into the preallocated flush request that hangs
280 * off the request queue.
281 *
282 * For a driver the flush request should be invisible, that's why we are
283 * impersonating the original request here.
284 */
285void blk_mq_clone_flush_request(struct request *flush_rq,
286 struct request *orig_rq)
287{
288 struct blk_mq_hw_ctx *hctx =
289 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
290
291 flush_rq->mq_ctx = orig_rq->mq_ctx;
292 flush_rq->tag = orig_rq->tag;
293 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
294 hctx->cmd_size);
295}
296
63151a44 297inline void __blk_mq_end_io(struct request *rq, int error)
320ae51f 298{
0d11e6ac
ML
299 blk_account_io_done(rq);
300
91b63639 301 if (rq->end_io) {
320ae51f 302 rq->end_io(rq, error);
91b63639
CH
303 } else {
304 if (unlikely(blk_bidi_rq(rq)))
305 blk_mq_free_request(rq->next_rq);
320ae51f 306 blk_mq_free_request(rq);
91b63639 307 }
320ae51f 308}
63151a44
CH
309EXPORT_SYMBOL(__blk_mq_end_io);
310
311void blk_mq_end_io(struct request *rq, int error)
312{
313 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
314 BUG();
315 __blk_mq_end_io(rq, error);
316}
317EXPORT_SYMBOL(blk_mq_end_io);
320ae51f 318
30a91cb4 319static void __blk_mq_complete_request_remote(void *data)
320ae51f 320{
3d6efbf6 321 struct request *rq = data;
320ae51f 322
30a91cb4 323 rq->q->softirq_done_fn(rq);
320ae51f 324}
320ae51f 325
ed851860 326static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
327{
328 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 329 bool shared = false;
320ae51f
JA
330 int cpu;
331
38535201 332 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
333 rq->q->softirq_done_fn(rq);
334 return;
335 }
320ae51f
JA
336
337 cpu = get_cpu();
38535201
CH
338 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
339 shared = cpus_share_cache(cpu, ctx->cpu);
340
341 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 342 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
343 rq->csd.info = rq;
344 rq->csd.flags = 0;
c46fff2a 345 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 346 } else {
30a91cb4 347 rq->q->softirq_done_fn(rq);
3d6efbf6 348 }
320ae51f
JA
349 put_cpu();
350}
30a91cb4 351
ed851860
JA
352void __blk_mq_complete_request(struct request *rq)
353{
354 struct request_queue *q = rq->q;
355
356 if (!q->softirq_done_fn)
357 blk_mq_end_io(rq, rq->errors);
358 else
359 blk_mq_ipi_complete_request(rq);
360}
361
30a91cb4
CH
362/**
363 * blk_mq_complete_request - end I/O on a request
364 * @rq: the request being processed
365 *
366 * Description:
367 * Ends all I/O on a request. It does not handle partial completions.
368 * The actual completion happens out-of-order, through a IPI handler.
369 **/
370void blk_mq_complete_request(struct request *rq)
371{
95f09684
JA
372 struct request_queue *q = rq->q;
373
374 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 375 return;
ed851860
JA
376 if (!blk_mark_rq_complete(rq))
377 __blk_mq_complete_request(rq);
30a91cb4
CH
378}
379EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 380
49f5baa5 381static void blk_mq_start_request(struct request *rq, bool last)
320ae51f
JA
382{
383 struct request_queue *q = rq->q;
384
385 trace_block_rq_issue(q, rq);
386
742ee69b 387 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
388 if (unlikely(blk_bidi_rq(rq)))
389 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 390
2b8393b4 391 blk_add_timer(rq);
87ee7b11
JA
392
393 /*
394 * Mark us as started and clear complete. Complete might have been
395 * set if requeue raced with timeout, which then marked it as
396 * complete. So be sure to clear complete again when we start
397 * the request, otherwise we'll ignore the completion event.
398 */
4b570521
JA
399 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
400 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
401 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
402 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
403
404 if (q->dma_drain_size && blk_rq_bytes(rq)) {
405 /*
406 * Make sure space for the drain appears. We know we can do
407 * this because max_hw_segments has been adjusted to be one
408 * fewer than the device can handle.
409 */
410 rq->nr_phys_segments++;
411 }
412
413 /*
414 * Flag the last request in the series so that drivers know when IO
415 * should be kicked off, if they don't do it on a per-request basis.
416 *
417 * Note: the flag isn't the only condition drivers should do kick off.
418 * If drive is busy, the last request might not have the bit set.
419 */
420 if (last)
421 rq->cmd_flags |= REQ_END;
320ae51f
JA
422}
423
ed0791b2 424static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
425{
426 struct request_queue *q = rq->q;
427
428 trace_block_rq_requeue(q, rq);
429 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
49f5baa5
CH
430
431 rq->cmd_flags &= ~REQ_END;
432
433 if (q->dma_drain_size && blk_rq_bytes(rq))
434 rq->nr_phys_segments--;
320ae51f
JA
435}
436
ed0791b2
CH
437void blk_mq_requeue_request(struct request *rq)
438{
ed0791b2
CH
439 __blk_mq_requeue_request(rq);
440 blk_clear_rq_complete(rq);
441
ed0791b2 442 BUG_ON(blk_queued_rq(rq));
6fca6a61 443 blk_mq_add_to_requeue_list(rq, true);
ed0791b2
CH
444}
445EXPORT_SYMBOL(blk_mq_requeue_request);
446
6fca6a61
CH
447static void blk_mq_requeue_work(struct work_struct *work)
448{
449 struct request_queue *q =
450 container_of(work, struct request_queue, requeue_work);
451 LIST_HEAD(rq_list);
452 struct request *rq, *next;
453 unsigned long flags;
454
455 spin_lock_irqsave(&q->requeue_lock, flags);
456 list_splice_init(&q->requeue_list, &rq_list);
457 spin_unlock_irqrestore(&q->requeue_lock, flags);
458
459 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
460 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
461 continue;
462
463 rq->cmd_flags &= ~REQ_SOFTBARRIER;
464 list_del_init(&rq->queuelist);
465 blk_mq_insert_request(rq, true, false, false);
466 }
467
468 while (!list_empty(&rq_list)) {
469 rq = list_entry(rq_list.next, struct request, queuelist);
470 list_del_init(&rq->queuelist);
471 blk_mq_insert_request(rq, false, false, false);
472 }
473
474 blk_mq_run_queues(q, false);
475}
476
477void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
478{
479 struct request_queue *q = rq->q;
480 unsigned long flags;
481
482 /*
483 * We abuse this flag that is otherwise used by the I/O scheduler to
484 * request head insertation from the workqueue.
485 */
486 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
487
488 spin_lock_irqsave(&q->requeue_lock, flags);
489 if (at_head) {
490 rq->cmd_flags |= REQ_SOFTBARRIER;
491 list_add(&rq->queuelist, &q->requeue_list);
492 } else {
493 list_add_tail(&rq->queuelist, &q->requeue_list);
494 }
495 spin_unlock_irqrestore(&q->requeue_lock, flags);
496}
497EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
498
499void blk_mq_kick_requeue_list(struct request_queue *q)
500{
501 kblockd_schedule_work(&q->requeue_work);
502}
503EXPORT_SYMBOL(blk_mq_kick_requeue_list);
504
0e62f51f 505static inline bool is_flush_request(struct request *rq, unsigned int tag)
24d2f903 506{
0e62f51f
JA
507 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
508 rq->q->flush_rq->tag == tag);
509}
510
511struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
512{
513 struct request *rq = tags->rqs[tag];
22302375 514
0e62f51f
JA
515 if (!is_flush_request(rq, tag))
516 return rq;
22302375 517
0e62f51f 518 return rq->q->flush_rq;
24d2f903
CH
519}
520EXPORT_SYMBOL(blk_mq_tag_to_rq);
521
320ae51f
JA
522struct blk_mq_timeout_data {
523 struct blk_mq_hw_ctx *hctx;
524 unsigned long *next;
525 unsigned int *next_set;
526};
527
528static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
529{
530 struct blk_mq_timeout_data *data = __data;
531 struct blk_mq_hw_ctx *hctx = data->hctx;
532 unsigned int tag;
533
534 /* It may not be in flight yet (this is where
535 * the REQ_ATOMIC_STARTED flag comes in). The requests are
536 * statically allocated, so we know it's always safe to access the
537 * memory associated with a bit offset into ->rqs[].
538 */
539 tag = 0;
540 do {
541 struct request *rq;
542
24d2f903
CH
543 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
544 if (tag >= hctx->tags->nr_tags)
320ae51f
JA
545 break;
546
0e62f51f 547 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
24d2f903
CH
548 if (rq->q != hctx->queue)
549 continue;
320ae51f
JA
550 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
551 continue;
552
553 blk_rq_check_expired(rq, data->next, data->next_set);
554 } while (1);
555}
556
557static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
558 unsigned long *next,
559 unsigned int *next_set)
560{
561 struct blk_mq_timeout_data data = {
562 .hctx = hctx,
563 .next = next,
564 .next_set = next_set,
565 };
566
567 /*
568 * Ask the tagging code to iterate busy requests, so we can
569 * check them for timeout.
570 */
571 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
572}
573
87ee7b11
JA
574static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
575{
576 struct request_queue *q = rq->q;
577
578 /*
579 * We know that complete is set at this point. If STARTED isn't set
580 * anymore, then the request isn't active and the "timeout" should
581 * just be ignored. This can happen due to the bitflag ordering.
582 * Timeout first checks if STARTED is set, and if it is, assumes
583 * the request is active. But if we race with completion, then
584 * we both flags will get cleared. So check here again, and ignore
585 * a timeout event with a request that isn't active.
586 */
587 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
588 return BLK_EH_NOT_HANDLED;
589
590 if (!q->mq_ops->timeout)
591 return BLK_EH_RESET_TIMER;
592
593 return q->mq_ops->timeout(rq);
594}
595
320ae51f
JA
596static void blk_mq_rq_timer(unsigned long data)
597{
598 struct request_queue *q = (struct request_queue *) data;
599 struct blk_mq_hw_ctx *hctx;
600 unsigned long next = 0;
601 int i, next_set = 0;
602
484b4061
JA
603 queue_for_each_hw_ctx(q, hctx, i) {
604 /*
605 * If not software queues are currently mapped to this
606 * hardware queue, there's nothing to check
607 */
608 if (!hctx->nr_ctx || !hctx->tags)
609 continue;
610
320ae51f 611 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
484b4061 612 }
320ae51f 613
0d2602ca
JA
614 if (next_set) {
615 next = blk_rq_timeout(round_jiffies_up(next));
616 mod_timer(&q->timeout, next);
617 } else {
618 queue_for_each_hw_ctx(q, hctx, i)
619 blk_mq_tag_idle(hctx);
620 }
320ae51f
JA
621}
622
623/*
624 * Reverse check our software queue for entries that we could potentially
625 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
626 * too much time checking for merges.
627 */
628static bool blk_mq_attempt_merge(struct request_queue *q,
629 struct blk_mq_ctx *ctx, struct bio *bio)
630{
631 struct request *rq;
632 int checked = 8;
633
634 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
635 int el_ret;
636
637 if (!checked--)
638 break;
639
640 if (!blk_rq_merge_ok(rq, bio))
641 continue;
642
643 el_ret = blk_try_merge(rq, bio);
644 if (el_ret == ELEVATOR_BACK_MERGE) {
645 if (bio_attempt_back_merge(q, rq, bio)) {
646 ctx->rq_merged++;
647 return true;
648 }
649 break;
650 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
651 if (bio_attempt_front_merge(q, rq, bio)) {
652 ctx->rq_merged++;
653 return true;
654 }
655 break;
656 }
657 }
658
659 return false;
660}
661
1429d7c9
JA
662/*
663 * Process software queues that have been marked busy, splicing them
664 * to the for-dispatch
665 */
666static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
667{
668 struct blk_mq_ctx *ctx;
669 int i;
670
671 for (i = 0; i < hctx->ctx_map.map_size; i++) {
672 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
673 unsigned int off, bit;
674
675 if (!bm->word)
676 continue;
677
678 bit = 0;
679 off = i * hctx->ctx_map.bits_per_word;
680 do {
681 bit = find_next_bit(&bm->word, bm->depth, bit);
682 if (bit >= bm->depth)
683 break;
684
685 ctx = hctx->ctxs[bit + off];
686 clear_bit(bit, &bm->word);
687 spin_lock(&ctx->lock);
688 list_splice_tail_init(&ctx->rq_list, list);
689 spin_unlock(&ctx->lock);
690
691 bit++;
692 } while (1);
693 }
694}
695
320ae51f
JA
696/*
697 * Run this hardware queue, pulling any software queues mapped to it in.
698 * Note that this function currently has various problems around ordering
699 * of IO. In particular, we'd like FIFO behaviour on handling existing
700 * items on the hctx->dispatch list. Ignore that for now.
701 */
702static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
703{
704 struct request_queue *q = hctx->queue;
320ae51f
JA
705 struct request *rq;
706 LIST_HEAD(rq_list);
1429d7c9 707 int queued;
320ae51f 708
fd1270d5 709 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 710
5d12f905 711 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
712 return;
713
714 hctx->run++;
715
716 /*
717 * Touch any software queue that has pending entries.
718 */
1429d7c9 719 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
720
721 /*
722 * If we have previous entries on our dispatch list, grab them
723 * and stuff them at the front for more fair dispatch.
724 */
725 if (!list_empty_careful(&hctx->dispatch)) {
726 spin_lock(&hctx->lock);
727 if (!list_empty(&hctx->dispatch))
728 list_splice_init(&hctx->dispatch, &rq_list);
729 spin_unlock(&hctx->lock);
730 }
731
320ae51f
JA
732 /*
733 * Now process all the entries, sending them to the driver.
734 */
1429d7c9 735 queued = 0;
320ae51f
JA
736 while (!list_empty(&rq_list)) {
737 int ret;
738
739 rq = list_first_entry(&rq_list, struct request, queuelist);
740 list_del_init(&rq->queuelist);
320ae51f 741
49f5baa5 742 blk_mq_start_request(rq, list_empty(&rq_list));
320ae51f
JA
743
744 ret = q->mq_ops->queue_rq(hctx, rq);
745 switch (ret) {
746 case BLK_MQ_RQ_QUEUE_OK:
747 queued++;
748 continue;
749 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 750 list_add(&rq->queuelist, &rq_list);
ed0791b2 751 __blk_mq_requeue_request(rq);
320ae51f
JA
752 break;
753 default:
754 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 755 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 756 rq->errors = -EIO;
320ae51f
JA
757 blk_mq_end_io(rq, rq->errors);
758 break;
759 }
760
761 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
762 break;
763 }
764
765 if (!queued)
766 hctx->dispatched[0]++;
767 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
768 hctx->dispatched[ilog2(queued) + 1]++;
769
770 /*
771 * Any items that need requeuing? Stuff them into hctx->dispatch,
772 * that is where we will continue on next queue run.
773 */
774 if (!list_empty(&rq_list)) {
775 spin_lock(&hctx->lock);
776 list_splice(&rq_list, &hctx->dispatch);
777 spin_unlock(&hctx->lock);
778 }
779}
780
506e931f
JA
781/*
782 * It'd be great if the workqueue API had a way to pass
783 * in a mask and had some smarts for more clever placement.
784 * For now we just round-robin here, switching for every
785 * BLK_MQ_CPU_WORK_BATCH queued items.
786 */
787static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
788{
789 int cpu = hctx->next_cpu;
790
791 if (--hctx->next_cpu_batch <= 0) {
792 int next_cpu;
793
794 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
795 if (next_cpu >= nr_cpu_ids)
796 next_cpu = cpumask_first(hctx->cpumask);
797
798 hctx->next_cpu = next_cpu;
799 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
800 }
801
802 return cpu;
803}
804
320ae51f
JA
805void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
806{
5d12f905 807 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
808 return;
809
e4043dcf 810 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
320ae51f 811 __blk_mq_run_hw_queue(hctx);
e4043dcf 812 else if (hctx->queue->nr_hw_queues == 1)
70f4db63 813 kblockd_schedule_delayed_work(&hctx->run_work, 0);
e4043dcf
JA
814 else {
815 unsigned int cpu;
816
506e931f 817 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63 818 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
e4043dcf 819 }
320ae51f
JA
820}
821
822void blk_mq_run_queues(struct request_queue *q, bool async)
823{
824 struct blk_mq_hw_ctx *hctx;
825 int i;
826
827 queue_for_each_hw_ctx(q, hctx, i) {
828 if ((!blk_mq_hctx_has_pending(hctx) &&
829 list_empty_careful(&hctx->dispatch)) ||
5d12f905 830 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
831 continue;
832
e4043dcf 833 preempt_disable();
320ae51f 834 blk_mq_run_hw_queue(hctx, async);
e4043dcf 835 preempt_enable();
320ae51f
JA
836 }
837}
838EXPORT_SYMBOL(blk_mq_run_queues);
839
840void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
841{
70f4db63
CH
842 cancel_delayed_work(&hctx->run_work);
843 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
844 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
845}
846EXPORT_SYMBOL(blk_mq_stop_hw_queue);
847
280d45f6
CH
848void blk_mq_stop_hw_queues(struct request_queue *q)
849{
850 struct blk_mq_hw_ctx *hctx;
851 int i;
852
853 queue_for_each_hw_ctx(q, hctx, i)
854 blk_mq_stop_hw_queue(hctx);
855}
856EXPORT_SYMBOL(blk_mq_stop_hw_queues);
857
320ae51f
JA
858void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
859{
860 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf
JA
861
862 preempt_disable();
0ffbce80 863 blk_mq_run_hw_queue(hctx, false);
e4043dcf 864 preempt_enable();
320ae51f
JA
865}
866EXPORT_SYMBOL(blk_mq_start_hw_queue);
867
2f268556
CH
868void blk_mq_start_hw_queues(struct request_queue *q)
869{
870 struct blk_mq_hw_ctx *hctx;
871 int i;
872
873 queue_for_each_hw_ctx(q, hctx, i)
874 blk_mq_start_hw_queue(hctx);
875}
876EXPORT_SYMBOL(blk_mq_start_hw_queues);
877
878
1b4a3258 879void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
880{
881 struct blk_mq_hw_ctx *hctx;
882 int i;
883
884 queue_for_each_hw_ctx(q, hctx, i) {
885 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
886 continue;
887
888 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 889 preempt_disable();
1b4a3258 890 blk_mq_run_hw_queue(hctx, async);
e4043dcf 891 preempt_enable();
320ae51f
JA
892 }
893}
894EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
895
70f4db63 896static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
897{
898 struct blk_mq_hw_ctx *hctx;
899
70f4db63 900 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 901
320ae51f
JA
902 __blk_mq_run_hw_queue(hctx);
903}
904
70f4db63
CH
905static void blk_mq_delay_work_fn(struct work_struct *work)
906{
907 struct blk_mq_hw_ctx *hctx;
908
909 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
910
911 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
912 __blk_mq_run_hw_queue(hctx);
913}
914
915void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
916{
917 unsigned long tmo = msecs_to_jiffies(msecs);
918
919 if (hctx->queue->nr_hw_queues == 1)
920 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
921 else {
922 unsigned int cpu;
923
506e931f 924 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63
CH
925 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
926 }
927}
928EXPORT_SYMBOL(blk_mq_delay_queue);
929
320ae51f 930static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 931 struct request *rq, bool at_head)
320ae51f
JA
932{
933 struct blk_mq_ctx *ctx = rq->mq_ctx;
934
01b983c9
JA
935 trace_block_rq_insert(hctx->queue, rq);
936
72a0a36e
CH
937 if (at_head)
938 list_add(&rq->queuelist, &ctx->rq_list);
939 else
940 list_add_tail(&rq->queuelist, &ctx->rq_list);
4bb659b1 941
320ae51f 942 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
943}
944
eeabc850
CH
945void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
946 bool async)
320ae51f 947{
eeabc850 948 struct request_queue *q = rq->q;
320ae51f 949 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
950 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
951
952 current_ctx = blk_mq_get_ctx(q);
953 if (!cpu_online(ctx->cpu))
954 rq->mq_ctx = ctx = current_ctx;
320ae51f 955
320ae51f
JA
956 hctx = q->mq_ops->map_queue(q, ctx->cpu);
957
eeabc850
CH
958 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
959 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
320ae51f
JA
960 blk_insert_flush(rq);
961 } else {
320ae51f 962 spin_lock(&ctx->lock);
72a0a36e 963 __blk_mq_insert_request(hctx, rq, at_head);
320ae51f 964 spin_unlock(&ctx->lock);
320ae51f
JA
965 }
966
320ae51f
JA
967 if (run_queue)
968 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
969
970 blk_mq_put_ctx(current_ctx);
320ae51f
JA
971}
972
973static void blk_mq_insert_requests(struct request_queue *q,
974 struct blk_mq_ctx *ctx,
975 struct list_head *list,
976 int depth,
977 bool from_schedule)
978
979{
980 struct blk_mq_hw_ctx *hctx;
981 struct blk_mq_ctx *current_ctx;
982
983 trace_block_unplug(q, depth, !from_schedule);
984
985 current_ctx = blk_mq_get_ctx(q);
986
987 if (!cpu_online(ctx->cpu))
988 ctx = current_ctx;
989 hctx = q->mq_ops->map_queue(q, ctx->cpu);
990
991 /*
992 * preemption doesn't flush plug list, so it's possible ctx->cpu is
993 * offline now
994 */
995 spin_lock(&ctx->lock);
996 while (!list_empty(list)) {
997 struct request *rq;
998
999 rq = list_first_entry(list, struct request, queuelist);
1000 list_del_init(&rq->queuelist);
1001 rq->mq_ctx = ctx;
72a0a36e 1002 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
1003 }
1004 spin_unlock(&ctx->lock);
1005
320ae51f 1006 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 1007 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1008}
1009
1010static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1011{
1012 struct request *rqa = container_of(a, struct request, queuelist);
1013 struct request *rqb = container_of(b, struct request, queuelist);
1014
1015 return !(rqa->mq_ctx < rqb->mq_ctx ||
1016 (rqa->mq_ctx == rqb->mq_ctx &&
1017 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1018}
1019
1020void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1021{
1022 struct blk_mq_ctx *this_ctx;
1023 struct request_queue *this_q;
1024 struct request *rq;
1025 LIST_HEAD(list);
1026 LIST_HEAD(ctx_list);
1027 unsigned int depth;
1028
1029 list_splice_init(&plug->mq_list, &list);
1030
1031 list_sort(NULL, &list, plug_ctx_cmp);
1032
1033 this_q = NULL;
1034 this_ctx = NULL;
1035 depth = 0;
1036
1037 while (!list_empty(&list)) {
1038 rq = list_entry_rq(list.next);
1039 list_del_init(&rq->queuelist);
1040 BUG_ON(!rq->q);
1041 if (rq->mq_ctx != this_ctx) {
1042 if (this_ctx) {
1043 blk_mq_insert_requests(this_q, this_ctx,
1044 &ctx_list, depth,
1045 from_schedule);
1046 }
1047
1048 this_ctx = rq->mq_ctx;
1049 this_q = rq->q;
1050 depth = 0;
1051 }
1052
1053 depth++;
1054 list_add_tail(&rq->queuelist, &ctx_list);
1055 }
1056
1057 /*
1058 * If 'this_ctx' is set, we know we have entries to complete
1059 * on 'ctx_list'. Do those.
1060 */
1061 if (this_ctx) {
1062 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1063 from_schedule);
1064 }
1065}
1066
1067static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1068{
1069 init_request_from_bio(rq, bio);
4b570521 1070
3ee32372 1071 if (blk_do_io_stat(rq))
4b570521 1072 blk_account_io_start(rq, 1);
320ae51f
JA
1073}
1074
07068d5b
JA
1075static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1076 struct blk_mq_ctx *ctx,
1077 struct request *rq, struct bio *bio)
320ae51f 1078{
07068d5b 1079 struct request_queue *q = hctx->queue;
320ae51f 1080
07068d5b
JA
1081 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
1082 blk_mq_bio_to_request(rq, bio);
1083 spin_lock(&ctx->lock);
1084insert_rq:
1085 __blk_mq_insert_request(hctx, rq, false);
1086 spin_unlock(&ctx->lock);
1087 return false;
1088 } else {
1089 spin_lock(&ctx->lock);
1090 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1091 blk_mq_bio_to_request(rq, bio);
1092 goto insert_rq;
1093 }
320ae51f 1094
07068d5b
JA
1095 spin_unlock(&ctx->lock);
1096 __blk_mq_free_request(hctx, ctx, rq);
1097 return true;
14ec77f3 1098 }
07068d5b 1099}
14ec77f3 1100
07068d5b
JA
1101struct blk_map_ctx {
1102 struct blk_mq_hw_ctx *hctx;
1103 struct blk_mq_ctx *ctx;
1104};
1105
1106static struct request *blk_mq_map_request(struct request_queue *q,
1107 struct bio *bio,
1108 struct blk_map_ctx *data)
1109{
1110 struct blk_mq_hw_ctx *hctx;
1111 struct blk_mq_ctx *ctx;
1112 struct request *rq;
1113 int rw = bio_data_dir(bio);
cb96a42c 1114 struct blk_mq_alloc_data alloc_data;
320ae51f 1115
07068d5b 1116 if (unlikely(blk_mq_queue_enter(q))) {
320ae51f 1117 bio_endio(bio, -EIO);
07068d5b 1118 return NULL;
320ae51f
JA
1119 }
1120
1121 ctx = blk_mq_get_ctx(q);
1122 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1123
07068d5b 1124 if (rw_is_sync(bio->bi_rw))
27fbf4e8 1125 rw |= REQ_SYNC;
07068d5b 1126
320ae51f 1127 trace_block_getrq(q, bio, rw);
cb96a42c
ML
1128 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1129 hctx);
1130 rq = __blk_mq_alloc_request(&alloc_data, rw);
5dee8577 1131 if (unlikely(!rq)) {
793597a6 1132 __blk_mq_run_hw_queue(hctx);
320ae51f
JA
1133 blk_mq_put_ctx(ctx);
1134 trace_block_sleeprq(q, bio, rw);
793597a6
CH
1135
1136 ctx = blk_mq_get_ctx(q);
320ae51f 1137 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
1138 blk_mq_set_alloc_data(&alloc_data, q,
1139 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1140 rq = __blk_mq_alloc_request(&alloc_data, rw);
1141 ctx = alloc_data.ctx;
1142 hctx = alloc_data.hctx;
320ae51f
JA
1143 }
1144
1145 hctx->queued++;
07068d5b
JA
1146 data->hctx = hctx;
1147 data->ctx = ctx;
1148 return rq;
1149}
1150
1151/*
1152 * Multiple hardware queue variant. This will not use per-process plugs,
1153 * but will attempt to bypass the hctx queueing if we can go straight to
1154 * hardware for SYNC IO.
1155 */
1156static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1157{
1158 const int is_sync = rw_is_sync(bio->bi_rw);
1159 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1160 struct blk_map_ctx data;
1161 struct request *rq;
1162
1163 blk_queue_bounce(q, &bio);
1164
1165 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1166 bio_endio(bio, -EIO);
1167 return;
1168 }
1169
1170 rq = blk_mq_map_request(q, bio, &data);
1171 if (unlikely(!rq))
1172 return;
1173
1174 if (unlikely(is_flush_fua)) {
1175 blk_mq_bio_to_request(rq, bio);
1176 blk_insert_flush(rq);
1177 goto run_queue;
1178 }
1179
1180 if (is_sync) {
1181 int ret;
1182
1183 blk_mq_bio_to_request(rq, bio);
1184 blk_mq_start_request(rq, true);
1185
1186 /*
1187 * For OK queue, we are done. For error, kill it. Any other
1188 * error (busy), just add it to our list as we previously
1189 * would have done
1190 */
1191 ret = q->mq_ops->queue_rq(data.hctx, rq);
1192 if (ret == BLK_MQ_RQ_QUEUE_OK)
1193 goto done;
1194 else {
1195 __blk_mq_requeue_request(rq);
1196
1197 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1198 rq->errors = -EIO;
1199 blk_mq_end_io(rq, rq->errors);
1200 goto done;
1201 }
1202 }
1203 }
1204
1205 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1206 /*
1207 * For a SYNC request, send it to the hardware immediately. For
1208 * an ASYNC request, just ensure that we run it later on. The
1209 * latter allows for merging opportunities and more efficient
1210 * dispatching.
1211 */
1212run_queue:
1213 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1214 }
1215done:
1216 blk_mq_put_ctx(data.ctx);
1217}
1218
1219/*
1220 * Single hardware queue variant. This will attempt to use any per-process
1221 * plug for merging and IO deferral.
1222 */
1223static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1224{
1225 const int is_sync = rw_is_sync(bio->bi_rw);
1226 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1227 unsigned int use_plug, request_count = 0;
1228 struct blk_map_ctx data;
1229 struct request *rq;
1230
1231 /*
1232 * If we have multiple hardware queues, just go directly to
1233 * one of those for sync IO.
1234 */
1235 use_plug = !is_flush_fua && !is_sync;
1236
1237 blk_queue_bounce(q, &bio);
1238
1239 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1240 bio_endio(bio, -EIO);
1241 return;
1242 }
1243
1244 if (use_plug && !blk_queue_nomerges(q) &&
1245 blk_attempt_plug_merge(q, bio, &request_count))
1246 return;
1247
1248 rq = blk_mq_map_request(q, bio, &data);
ff87bcec
JA
1249 if (unlikely(!rq))
1250 return;
320ae51f
JA
1251
1252 if (unlikely(is_flush_fua)) {
1253 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1254 blk_insert_flush(rq);
1255 goto run_queue;
1256 }
1257
1258 /*
1259 * A task plug currently exists. Since this is completely lockless,
1260 * utilize that to temporarily store requests until the task is
1261 * either done or scheduled away.
1262 */
1263 if (use_plug) {
1264 struct blk_plug *plug = current->plug;
1265
1266 if (plug) {
1267 blk_mq_bio_to_request(rq, bio);
92f399c7 1268 if (list_empty(&plug->mq_list))
320ae51f
JA
1269 trace_block_plug(q);
1270 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1271 blk_flush_plug_list(plug, false);
1272 trace_block_plug(q);
1273 }
1274 list_add_tail(&rq->queuelist, &plug->mq_list);
07068d5b 1275 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1276 return;
1277 }
1278 }
1279
07068d5b
JA
1280 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1281 /*
1282 * For a SYNC request, send it to the hardware immediately. For
1283 * an ASYNC request, just ensure that we run it later on. The
1284 * latter allows for merging opportunities and more efficient
1285 * dispatching.
1286 */
1287run_queue:
1288 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1289 }
1290
07068d5b 1291 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1292}
1293
1294/*
1295 * Default mapping to a software queue, since we use one per CPU.
1296 */
1297struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1298{
1299 return q->queue_hw_ctx[q->mq_map[cpu]];
1300}
1301EXPORT_SYMBOL(blk_mq_map_queue);
1302
24d2f903
CH
1303static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1304 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1305{
e9b267d9 1306 struct page *page;
320ae51f 1307
24d2f903 1308 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1309 int i;
320ae51f 1310
24d2f903
CH
1311 for (i = 0; i < tags->nr_tags; i++) {
1312 if (!tags->rqs[i])
e9b267d9 1313 continue;
24d2f903
CH
1314 set->ops->exit_request(set->driver_data, tags->rqs[i],
1315 hctx_idx, i);
e9b267d9 1316 }
320ae51f 1317 }
320ae51f 1318
24d2f903
CH
1319 while (!list_empty(&tags->page_list)) {
1320 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1321 list_del_init(&page->lru);
320ae51f
JA
1322 __free_pages(page, page->private);
1323 }
1324
24d2f903 1325 kfree(tags->rqs);
320ae51f 1326
24d2f903 1327 blk_mq_free_tags(tags);
320ae51f
JA
1328}
1329
1330static size_t order_to_size(unsigned int order)
1331{
4ca08500 1332 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1333}
1334
24d2f903
CH
1335static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1336 unsigned int hctx_idx)
320ae51f 1337{
24d2f903 1338 struct blk_mq_tags *tags;
320ae51f
JA
1339 unsigned int i, j, entries_per_page, max_order = 4;
1340 size_t rq_size, left;
1341
24d2f903
CH
1342 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1343 set->numa_node);
1344 if (!tags)
1345 return NULL;
320ae51f 1346
24d2f903
CH
1347 INIT_LIST_HEAD(&tags->page_list);
1348
1349 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1350 GFP_KERNEL, set->numa_node);
1351 if (!tags->rqs) {
1352 blk_mq_free_tags(tags);
1353 return NULL;
1354 }
320ae51f
JA
1355
1356 /*
1357 * rq_size is the size of the request plus driver payload, rounded
1358 * to the cacheline size
1359 */
24d2f903 1360 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1361 cache_line_size());
24d2f903 1362 left = rq_size * set->queue_depth;
320ae51f 1363
24d2f903 1364 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1365 int this_order = max_order;
1366 struct page *page;
1367 int to_do;
1368 void *p;
1369
1370 while (left < order_to_size(this_order - 1) && this_order)
1371 this_order--;
1372
1373 do {
24d2f903
CH
1374 page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1375 this_order);
320ae51f
JA
1376 if (page)
1377 break;
1378 if (!this_order--)
1379 break;
1380 if (order_to_size(this_order) < rq_size)
1381 break;
1382 } while (1);
1383
1384 if (!page)
24d2f903 1385 goto fail;
320ae51f
JA
1386
1387 page->private = this_order;
24d2f903 1388 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1389
1390 p = page_address(page);
1391 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1392 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1393 left -= to_do * rq_size;
1394 for (j = 0; j < to_do; j++) {
24d2f903
CH
1395 tags->rqs[i] = p;
1396 if (set->ops->init_request) {
1397 if (set->ops->init_request(set->driver_data,
1398 tags->rqs[i], hctx_idx, i,
1399 set->numa_node))
1400 goto fail;
e9b267d9
CH
1401 }
1402
320ae51f
JA
1403 p += rq_size;
1404 i++;
1405 }
1406 }
1407
24d2f903 1408 return tags;
320ae51f 1409
24d2f903
CH
1410fail:
1411 pr_warn("%s: failed to allocate requests\n", __func__);
1412 blk_mq_free_rq_map(set, tags, hctx_idx);
1413 return NULL;
320ae51f
JA
1414}
1415
1429d7c9
JA
1416static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1417{
1418 kfree(bitmap->map);
1419}
1420
1421static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1422{
1423 unsigned int bpw = 8, total, num_maps, i;
1424
1425 bitmap->bits_per_word = bpw;
1426
1427 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1428 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1429 GFP_KERNEL, node);
1430 if (!bitmap->map)
1431 return -ENOMEM;
1432
1433 bitmap->map_size = num_maps;
1434
1435 total = nr_cpu_ids;
1436 for (i = 0; i < num_maps; i++) {
1437 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1438 total -= bitmap->map[i].depth;
1439 }
1440
1441 return 0;
1442}
1443
484b4061
JA
1444static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1445{
1446 struct request_queue *q = hctx->queue;
1447 struct blk_mq_ctx *ctx;
1448 LIST_HEAD(tmp);
1449
1450 /*
1451 * Move ctx entries to new CPU, if this one is going away.
1452 */
1453 ctx = __blk_mq_get_ctx(q, cpu);
1454
1455 spin_lock(&ctx->lock);
1456 if (!list_empty(&ctx->rq_list)) {
1457 list_splice_init(&ctx->rq_list, &tmp);
1458 blk_mq_hctx_clear_pending(hctx, ctx);
1459 }
1460 spin_unlock(&ctx->lock);
1461
1462 if (list_empty(&tmp))
1463 return NOTIFY_OK;
1464
1465 ctx = blk_mq_get_ctx(q);
1466 spin_lock(&ctx->lock);
1467
1468 while (!list_empty(&tmp)) {
1469 struct request *rq;
1470
1471 rq = list_first_entry(&tmp, struct request, queuelist);
1472 rq->mq_ctx = ctx;
1473 list_move_tail(&rq->queuelist, &ctx->rq_list);
1474 }
1475
1476 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1477 blk_mq_hctx_mark_pending(hctx, ctx);
1478
1479 spin_unlock(&ctx->lock);
1480
1481 blk_mq_run_hw_queue(hctx, true);
1482 blk_mq_put_ctx(ctx);
1483 return NOTIFY_OK;
1484}
1485
1486static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1487{
1488 struct request_queue *q = hctx->queue;
1489 struct blk_mq_tag_set *set = q->tag_set;
1490
1491 if (set->tags[hctx->queue_num])
1492 return NOTIFY_OK;
1493
1494 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1495 if (!set->tags[hctx->queue_num])
1496 return NOTIFY_STOP;
1497
1498 hctx->tags = set->tags[hctx->queue_num];
1499 return NOTIFY_OK;
1500}
1501
1502static int blk_mq_hctx_notify(void *data, unsigned long action,
1503 unsigned int cpu)
1504{
1505 struct blk_mq_hw_ctx *hctx = data;
1506
1507 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1508 return blk_mq_hctx_cpu_offline(hctx, cpu);
1509 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1510 return blk_mq_hctx_cpu_online(hctx, cpu);
1511
1512 return NOTIFY_OK;
1513}
1514
624dbe47
ML
1515static void blk_mq_exit_hw_queues(struct request_queue *q,
1516 struct blk_mq_tag_set *set, int nr_queue)
1517{
1518 struct blk_mq_hw_ctx *hctx;
1519 unsigned int i;
1520
1521 queue_for_each_hw_ctx(q, hctx, i) {
1522 if (i == nr_queue)
1523 break;
1524
f899fed4
JA
1525 blk_mq_tag_idle(hctx);
1526
624dbe47
ML
1527 if (set->ops->exit_hctx)
1528 set->ops->exit_hctx(hctx, i);
1529
1530 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1531 kfree(hctx->ctxs);
1532 blk_mq_free_bitmap(&hctx->ctx_map);
1533 }
1534
1535}
1536
1537static void blk_mq_free_hw_queues(struct request_queue *q,
1538 struct blk_mq_tag_set *set)
1539{
1540 struct blk_mq_hw_ctx *hctx;
1541 unsigned int i;
1542
1543 queue_for_each_hw_ctx(q, hctx, i) {
1544 free_cpumask_var(hctx->cpumask);
cdef54dd 1545 kfree(hctx);
624dbe47
ML
1546 }
1547}
1548
320ae51f 1549static int blk_mq_init_hw_queues(struct request_queue *q,
24d2f903 1550 struct blk_mq_tag_set *set)
320ae51f
JA
1551{
1552 struct blk_mq_hw_ctx *hctx;
624dbe47 1553 unsigned int i;
320ae51f
JA
1554
1555 /*
1556 * Initialize hardware queues
1557 */
1558 queue_for_each_hw_ctx(q, hctx, i) {
320ae51f
JA
1559 int node;
1560
1561 node = hctx->numa_node;
1562 if (node == NUMA_NO_NODE)
24d2f903 1563 node = hctx->numa_node = set->numa_node;
320ae51f 1564
70f4db63
CH
1565 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1566 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
320ae51f
JA
1567 spin_lock_init(&hctx->lock);
1568 INIT_LIST_HEAD(&hctx->dispatch);
1569 hctx->queue = q;
1570 hctx->queue_num = i;
24d2f903
CH
1571 hctx->flags = set->flags;
1572 hctx->cmd_size = set->cmd_size;
320ae51f
JA
1573
1574 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1575 blk_mq_hctx_notify, hctx);
1576 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1577
24d2f903 1578 hctx->tags = set->tags[i];
320ae51f
JA
1579
1580 /*
1581 * Allocate space for all possible cpus to avoid allocation in
1582 * runtime
1583 */
1584 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1585 GFP_KERNEL, node);
1586 if (!hctx->ctxs)
1587 break;
1588
1429d7c9 1589 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
320ae51f
JA
1590 break;
1591
320ae51f
JA
1592 hctx->nr_ctx = 0;
1593
24d2f903
CH
1594 if (set->ops->init_hctx &&
1595 set->ops->init_hctx(hctx, set->driver_data, i))
320ae51f
JA
1596 break;
1597 }
1598
1599 if (i == q->nr_hw_queues)
1600 return 0;
1601
1602 /*
1603 * Init failed
1604 */
624dbe47 1605 blk_mq_exit_hw_queues(q, set, i);
320ae51f
JA
1606
1607 return 1;
1608}
1609
1610static void blk_mq_init_cpu_queues(struct request_queue *q,
1611 unsigned int nr_hw_queues)
1612{
1613 unsigned int i;
1614
1615 for_each_possible_cpu(i) {
1616 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1617 struct blk_mq_hw_ctx *hctx;
1618
1619 memset(__ctx, 0, sizeof(*__ctx));
1620 __ctx->cpu = i;
1621 spin_lock_init(&__ctx->lock);
1622 INIT_LIST_HEAD(&__ctx->rq_list);
1623 __ctx->queue = q;
1624
1625 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1626 if (!cpu_online(i))
1627 continue;
1628
e4043dcf
JA
1629 hctx = q->mq_ops->map_queue(q, i);
1630 cpumask_set_cpu(i, hctx->cpumask);
1631 hctx->nr_ctx++;
1632
320ae51f
JA
1633 /*
1634 * Set local node, IFF we have more than one hw queue. If
1635 * not, we remain on the home node of the device
1636 */
1637 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1638 hctx->numa_node = cpu_to_node(i);
1639 }
1640}
1641
1642static void blk_mq_map_swqueue(struct request_queue *q)
1643{
1644 unsigned int i;
1645 struct blk_mq_hw_ctx *hctx;
1646 struct blk_mq_ctx *ctx;
1647
1648 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1649 cpumask_clear(hctx->cpumask);
320ae51f
JA
1650 hctx->nr_ctx = 0;
1651 }
1652
1653 /*
1654 * Map software to hardware queues
1655 */
1656 queue_for_each_ctx(q, ctx, i) {
1657 /* If the cpu isn't online, the cpu is mapped to first hctx */
e4043dcf
JA
1658 if (!cpu_online(i))
1659 continue;
1660
320ae51f 1661 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1662 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1663 ctx->index_hw = hctx->nr_ctx;
1664 hctx->ctxs[hctx->nr_ctx++] = ctx;
1665 }
506e931f
JA
1666
1667 queue_for_each_hw_ctx(q, hctx, i) {
484b4061
JA
1668 /*
1669 * If not software queues are mapped to this hardware queue,
1670 * disable it and free the request entries
1671 */
1672 if (!hctx->nr_ctx) {
1673 struct blk_mq_tag_set *set = q->tag_set;
1674
1675 if (set->tags[i]) {
1676 blk_mq_free_rq_map(set, set->tags[i], i);
1677 set->tags[i] = NULL;
1678 hctx->tags = NULL;
1679 }
1680 continue;
1681 }
1682
1683 /*
1684 * Initialize batch roundrobin counts
1685 */
506e931f
JA
1686 hctx->next_cpu = cpumask_first(hctx->cpumask);
1687 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1688 }
320ae51f
JA
1689}
1690
0d2602ca
JA
1691static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1692{
1693 struct blk_mq_hw_ctx *hctx;
1694 struct request_queue *q;
1695 bool shared;
1696 int i;
1697
1698 if (set->tag_list.next == set->tag_list.prev)
1699 shared = false;
1700 else
1701 shared = true;
1702
1703 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1704 blk_mq_freeze_queue(q);
1705
1706 queue_for_each_hw_ctx(q, hctx, i) {
1707 if (shared)
1708 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1709 else
1710 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1711 }
1712 blk_mq_unfreeze_queue(q);
1713 }
1714}
1715
1716static void blk_mq_del_queue_tag_set(struct request_queue *q)
1717{
1718 struct blk_mq_tag_set *set = q->tag_set;
1719
1720 blk_mq_freeze_queue(q);
1721
1722 mutex_lock(&set->tag_list_lock);
1723 list_del_init(&q->tag_set_list);
1724 blk_mq_update_tag_set_depth(set);
1725 mutex_unlock(&set->tag_list_lock);
1726
1727 blk_mq_unfreeze_queue(q);
1728}
1729
1730static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1731 struct request_queue *q)
1732{
1733 q->tag_set = set;
1734
1735 mutex_lock(&set->tag_list_lock);
1736 list_add_tail(&q->tag_set_list, &set->tag_list);
1737 blk_mq_update_tag_set_depth(set);
1738 mutex_unlock(&set->tag_list_lock);
1739}
1740
24d2f903 1741struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
320ae51f
JA
1742{
1743 struct blk_mq_hw_ctx **hctxs;
e6cdb092 1744 struct blk_mq_ctx __percpu *ctx;
320ae51f 1745 struct request_queue *q;
f14bbe77 1746 unsigned int *map;
320ae51f
JA
1747 int i;
1748
320ae51f
JA
1749 ctx = alloc_percpu(struct blk_mq_ctx);
1750 if (!ctx)
1751 return ERR_PTR(-ENOMEM);
1752
24d2f903
CH
1753 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1754 set->numa_node);
320ae51f
JA
1755
1756 if (!hctxs)
1757 goto err_percpu;
1758
f14bbe77
JA
1759 map = blk_mq_make_queue_map(set);
1760 if (!map)
1761 goto err_map;
1762
24d2f903 1763 for (i = 0; i < set->nr_hw_queues; i++) {
f14bbe77
JA
1764 int node = blk_mq_hw_queue_to_node(map, i);
1765
cdef54dd
CH
1766 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1767 GFP_KERNEL, node);
320ae51f
JA
1768 if (!hctxs[i])
1769 goto err_hctxs;
1770
e4043dcf
JA
1771 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1772 goto err_hctxs;
1773
0d2602ca 1774 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 1775 hctxs[i]->numa_node = node;
320ae51f
JA
1776 hctxs[i]->queue_num = i;
1777 }
1778
24d2f903 1779 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
320ae51f
JA
1780 if (!q)
1781 goto err_hctxs;
1782
add703fd 1783 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release))
3d2936f4
ML
1784 goto err_map;
1785
320ae51f
JA
1786 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1787 blk_queue_rq_timeout(q, 30000);
1788
1789 q->nr_queues = nr_cpu_ids;
24d2f903 1790 q->nr_hw_queues = set->nr_hw_queues;
f14bbe77 1791 q->mq_map = map;
320ae51f
JA
1792
1793 q->queue_ctx = ctx;
1794 q->queue_hw_ctx = hctxs;
1795
24d2f903 1796 q->mq_ops = set->ops;
94eddfbe 1797 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1798
05f1dd53
JA
1799 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1800 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1801
1be036e9
CH
1802 q->sg_reserved_size = INT_MAX;
1803
6fca6a61
CH
1804 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1805 INIT_LIST_HEAD(&q->requeue_list);
1806 spin_lock_init(&q->requeue_lock);
1807
07068d5b
JA
1808 if (q->nr_hw_queues > 1)
1809 blk_queue_make_request(q, blk_mq_make_request);
1810 else
1811 blk_queue_make_request(q, blk_sq_make_request);
1812
87ee7b11 1813 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
24d2f903
CH
1814 if (set->timeout)
1815 blk_queue_rq_timeout(q, set->timeout);
320ae51f 1816
eba71768
JA
1817 /*
1818 * Do this after blk_queue_make_request() overrides it...
1819 */
1820 q->nr_requests = set->queue_depth;
1821
24d2f903
CH
1822 if (set->ops->complete)
1823 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 1824
320ae51f 1825 blk_mq_init_flush(q);
24d2f903 1826 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 1827
24d2f903
CH
1828 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1829 set->cmd_size, cache_line_size()),
1830 GFP_KERNEL);
18741986 1831 if (!q->flush_rq)
320ae51f
JA
1832 goto err_hw;
1833
24d2f903 1834 if (blk_mq_init_hw_queues(q, set))
18741986
CH
1835 goto err_flush_rq;
1836
320ae51f
JA
1837 mutex_lock(&all_q_mutex);
1838 list_add_tail(&q->all_q_node, &all_q_list);
1839 mutex_unlock(&all_q_mutex);
1840
0d2602ca
JA
1841 blk_mq_add_queue_tag_set(set, q);
1842
484b4061
JA
1843 blk_mq_map_swqueue(q);
1844
320ae51f 1845 return q;
18741986
CH
1846
1847err_flush_rq:
1848 kfree(q->flush_rq);
320ae51f 1849err_hw:
320ae51f
JA
1850 blk_cleanup_queue(q);
1851err_hctxs:
f14bbe77 1852 kfree(map);
24d2f903 1853 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
1854 if (!hctxs[i])
1855 break;
e4043dcf 1856 free_cpumask_var(hctxs[i]->cpumask);
cdef54dd 1857 kfree(hctxs[i]);
320ae51f 1858 }
f14bbe77 1859err_map:
320ae51f
JA
1860 kfree(hctxs);
1861err_percpu:
1862 free_percpu(ctx);
1863 return ERR_PTR(-ENOMEM);
1864}
1865EXPORT_SYMBOL(blk_mq_init_queue);
1866
1867void blk_mq_free_queue(struct request_queue *q)
1868{
624dbe47 1869 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1870
0d2602ca
JA
1871 blk_mq_del_queue_tag_set(q);
1872
624dbe47
ML
1873 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1874 blk_mq_free_hw_queues(q, set);
320ae51f 1875
add703fd 1876 percpu_ref_exit(&q->mq_usage_counter);
3d2936f4 1877
320ae51f
JA
1878 free_percpu(q->queue_ctx);
1879 kfree(q->queue_hw_ctx);
1880 kfree(q->mq_map);
1881
1882 q->queue_ctx = NULL;
1883 q->queue_hw_ctx = NULL;
1884 q->mq_map = NULL;
1885
1886 mutex_lock(&all_q_mutex);
1887 list_del_init(&q->all_q_node);
1888 mutex_unlock(&all_q_mutex);
1889}
320ae51f
JA
1890
1891/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1892static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1893{
1894 blk_mq_freeze_queue(q);
1895
67aec14c
JA
1896 blk_mq_sysfs_unregister(q);
1897
320ae51f
JA
1898 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1899
1900 /*
1901 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1902 * we should change hctx numa_node according to new topology (this
1903 * involves free and re-allocate memory, worthy doing?)
1904 */
1905
1906 blk_mq_map_swqueue(q);
1907
67aec14c
JA
1908 blk_mq_sysfs_register(q);
1909
320ae51f
JA
1910 blk_mq_unfreeze_queue(q);
1911}
1912
f618ef7c
PG
1913static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1914 unsigned long action, void *hcpu)
320ae51f
JA
1915{
1916 struct request_queue *q;
1917
1918 /*
9fccfed8
JA
1919 * Before new mappings are established, hotadded cpu might already
1920 * start handling requests. This doesn't break anything as we map
1921 * offline CPUs to first hardware queue. We will re-init the queue
1922 * below to get optimal settings.
320ae51f
JA
1923 */
1924 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1925 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1926 return NOTIFY_OK;
1927
1928 mutex_lock(&all_q_mutex);
1929 list_for_each_entry(q, &all_q_list, all_q_node)
1930 blk_mq_queue_reinit(q);
1931 mutex_unlock(&all_q_mutex);
1932 return NOTIFY_OK;
1933}
1934
a4391c64
JA
1935/*
1936 * Alloc a tag set to be associated with one or more request queues.
1937 * May fail with EINVAL for various error conditions. May adjust the
1938 * requested depth down, if if it too large. In that case, the set
1939 * value will be stored in set->queue_depth.
1940 */
24d2f903
CH
1941int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1942{
1943 int i;
1944
1945 if (!set->nr_hw_queues)
1946 return -EINVAL;
a4391c64 1947 if (!set->queue_depth)
24d2f903
CH
1948 return -EINVAL;
1949 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1950 return -EINVAL;
1951
cdef54dd 1952 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
24d2f903
CH
1953 return -EINVAL;
1954
a4391c64
JA
1955 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
1956 pr_info("blk-mq: reduced tag depth to %u\n",
1957 BLK_MQ_MAX_DEPTH);
1958 set->queue_depth = BLK_MQ_MAX_DEPTH;
1959 }
24d2f903 1960
48479005
ML
1961 set->tags = kmalloc_node(set->nr_hw_queues *
1962 sizeof(struct blk_mq_tags *),
24d2f903
CH
1963 GFP_KERNEL, set->numa_node);
1964 if (!set->tags)
1965 goto out;
1966
1967 for (i = 0; i < set->nr_hw_queues; i++) {
1968 set->tags[i] = blk_mq_init_rq_map(set, i);
1969 if (!set->tags[i])
1970 goto out_unwind;
1971 }
1972
0d2602ca
JA
1973 mutex_init(&set->tag_list_lock);
1974 INIT_LIST_HEAD(&set->tag_list);
1975
24d2f903
CH
1976 return 0;
1977
1978out_unwind:
1979 while (--i >= 0)
1980 blk_mq_free_rq_map(set, set->tags[i], i);
1981out:
1982 return -ENOMEM;
1983}
1984EXPORT_SYMBOL(blk_mq_alloc_tag_set);
1985
1986void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
1987{
1988 int i;
1989
484b4061
JA
1990 for (i = 0; i < set->nr_hw_queues; i++) {
1991 if (set->tags[i])
1992 blk_mq_free_rq_map(set, set->tags[i], i);
1993 }
1994
981bd189 1995 kfree(set->tags);
24d2f903
CH
1996}
1997EXPORT_SYMBOL(blk_mq_free_tag_set);
1998
e3a2b3f9
JA
1999int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2000{
2001 struct blk_mq_tag_set *set = q->tag_set;
2002 struct blk_mq_hw_ctx *hctx;
2003 int i, ret;
2004
2005 if (!set || nr > set->queue_depth)
2006 return -EINVAL;
2007
2008 ret = 0;
2009 queue_for_each_hw_ctx(q, hctx, i) {
2010 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2011 if (ret)
2012 break;
2013 }
2014
2015 if (!ret)
2016 q->nr_requests = nr;
2017
2018 return ret;
2019}
2020
676141e4
JA
2021void blk_mq_disable_hotplug(void)
2022{
2023 mutex_lock(&all_q_mutex);
2024}
2025
2026void blk_mq_enable_hotplug(void)
2027{
2028 mutex_unlock(&all_q_mutex);
2029}
2030
320ae51f
JA
2031static int __init blk_mq_init(void)
2032{
320ae51f
JA
2033 blk_mq_cpu_init();
2034
add703fd 2035 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
320ae51f
JA
2036
2037 return 0;
2038}
2039subsys_initcall(blk_mq_init);