splice: handle try_to_release_page() failure
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
ff856bad
JA
29#include <linux/interrupt.h>
30#include <linux/cpu.h>
2056a782 31#include <linux/blktrace_api.h>
c17bb495 32#include <linux/fault-inject.h>
1da177e4 33
8324aa91
JA
34#include "blk.h"
35
165125e1 36static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
37
38/*
39 * For the allocated request tables
40 */
5ece6c52 41static struct kmem_cache *request_cachep;
1da177e4
LT
42
43/*
44 * For queue allocation
45 */
6728cb0e 46struct kmem_cache *blk_requestq_cachep;
1da177e4 47
1da177e4
LT
48/*
49 * Controlling structure to kblockd
50 */
ff856bad 51static struct workqueue_struct *kblockd_workqueue;
1da177e4 52
ff856bad
JA
53static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
54
26b8256e
JA
55static void drive_stat_acct(struct request *rq, int new_io)
56{
28f13702 57 struct hd_struct *part;
26b8256e
JA
58 int rw = rq_data_dir(rq);
59
60 if (!blk_fs_request(rq) || !rq->rq_disk)
61 return;
62
28f13702
JA
63 part = get_part(rq->rq_disk, rq->sector);
64 if (!new_io)
65 __all_stat_inc(rq->rq_disk, part, merges[rw], rq->sector);
66 else {
26b8256e
JA
67 disk_round_stats(rq->rq_disk);
68 rq->rq_disk->in_flight++;
6f2576af
JM
69 if (part) {
70 part_round_stats(part);
71 part->in_flight++;
72 }
26b8256e
JA
73 }
74}
75
8324aa91 76void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
77{
78 int nr;
79
80 nr = q->nr_requests - (q->nr_requests / 8) + 1;
81 if (nr > q->nr_requests)
82 nr = q->nr_requests;
83 q->nr_congestion_on = nr;
84
85 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
86 if (nr < 1)
87 nr = 1;
88 q->nr_congestion_off = nr;
89}
90
1da177e4
LT
91/**
92 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
93 * @bdev: device
94 *
95 * Locates the passed device's request queue and returns the address of its
96 * backing_dev_info
97 *
98 * Will return NULL if the request queue cannot be located.
99 */
100struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
101{
102 struct backing_dev_info *ret = NULL;
165125e1 103 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
104
105 if (q)
106 ret = &q->backing_dev_info;
107 return ret;
108}
1da177e4
LT
109EXPORT_SYMBOL(blk_get_backing_dev_info);
110
2a4aa30c 111void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 112{
1afb20f3
FT
113 memset(rq, 0, sizeof(*rq));
114
1da177e4 115 INIT_LIST_HEAD(&rq->queuelist);
ff856bad 116 INIT_LIST_HEAD(&rq->donelist);
63a71386
JA
117 rq->q = q;
118 rq->sector = rq->hard_sector = (sector_t) -1;
2e662b65
JA
119 INIT_HLIST_NODE(&rq->hash);
120 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 121 rq->cmd = rq->__cmd;
63a71386 122 rq->tag = -1;
1da177e4 123 rq->ref_count = 1;
1da177e4 124}
2a4aa30c 125EXPORT_SYMBOL(blk_rq_init);
1da177e4 126
5bb23a68
N
127static void req_bio_endio(struct request *rq, struct bio *bio,
128 unsigned int nbytes, int error)
1da177e4 129{
165125e1 130 struct request_queue *q = rq->q;
797e7dbb 131
5bb23a68
N
132 if (&q->bar_rq != rq) {
133 if (error)
134 clear_bit(BIO_UPTODATE, &bio->bi_flags);
135 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
136 error = -EIO;
797e7dbb 137
5bb23a68 138 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 139 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 140 __func__, nbytes, bio->bi_size);
5bb23a68
N
141 nbytes = bio->bi_size;
142 }
797e7dbb 143
5bb23a68
N
144 bio->bi_size -= nbytes;
145 bio->bi_sector += (nbytes >> 9);
146 if (bio->bi_size == 0)
6712ecf8 147 bio_endio(bio, error);
5bb23a68
N
148 } else {
149
150 /*
151 * Okay, this is the barrier request in progress, just
152 * record the error;
153 */
154 if (error && !q->orderr)
155 q->orderr = error;
156 }
1da177e4 157}
1da177e4 158
1da177e4
LT
159void blk_dump_rq_flags(struct request *rq, char *msg)
160{
161 int bit;
162
6728cb0e 163 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
164 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
165 rq->cmd_flags);
1da177e4 166
6728cb0e
JA
167 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
168 (unsigned long long)rq->sector,
169 rq->nr_sectors,
170 rq->current_nr_sectors);
171 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
172 rq->bio, rq->biotail,
173 rq->buffer, rq->data,
174 rq->data_len);
1da177e4 175
4aff5e23 176 if (blk_pc_request(rq)) {
6728cb0e 177 printk(KERN_INFO " cdb: ");
d34c87e4 178 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
179 printk("%02x ", rq->cmd[bit]);
180 printk("\n");
181 }
182}
1da177e4
LT
183EXPORT_SYMBOL(blk_dump_rq_flags);
184
1da177e4
LT
185/*
186 * "plug" the device if there are no outstanding requests: this will
187 * force the transfer to start only after we have put all the requests
188 * on the list.
189 *
190 * This is called with interrupts off and no requests on the queue and
191 * with the queue lock held.
192 */
165125e1 193void blk_plug_device(struct request_queue *q)
1da177e4
LT
194{
195 WARN_ON(!irqs_disabled());
196
197 /*
198 * don't plug a stopped queue, it must be paired with blk_start_queue()
199 * which will restart the queueing
200 */
7daac490 201 if (blk_queue_stopped(q))
1da177e4
LT
202 return;
203
75ad23bc
NP
204 if (!test_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
205 __set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
1da177e4 206 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
207 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
208 }
1da177e4 209}
1da177e4
LT
210EXPORT_SYMBOL(blk_plug_device);
211
212/*
213 * remove the queue from the plugged list, if present. called with
214 * queue lock held and interrupts disabled.
215 */
165125e1 216int blk_remove_plug(struct request_queue *q)
1da177e4
LT
217{
218 WARN_ON(!irqs_disabled());
219
75ad23bc 220 if (!test_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1da177e4
LT
221 return 0;
222
75ad23bc 223 queue_flag_clear(QUEUE_FLAG_PLUGGED, q);
1da177e4
LT
224 del_timer(&q->unplug_timer);
225 return 1;
226}
1da177e4
LT
227EXPORT_SYMBOL(blk_remove_plug);
228
229/*
230 * remove the plug and let it rip..
231 */
165125e1 232void __generic_unplug_device(struct request_queue *q)
1da177e4 233{
7daac490 234 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
235 return;
236
237 if (!blk_remove_plug(q))
238 return;
239
22e2c507 240 q->request_fn(q);
1da177e4
LT
241}
242EXPORT_SYMBOL(__generic_unplug_device);
243
244/**
245 * generic_unplug_device - fire a request queue
165125e1 246 * @q: The &struct request_queue in question
1da177e4
LT
247 *
248 * Description:
249 * Linux uses plugging to build bigger requests queues before letting
250 * the device have at them. If a queue is plugged, the I/O scheduler
251 * is still adding and merging requests on the queue. Once the queue
252 * gets unplugged, the request_fn defined for the queue is invoked and
253 * transfers started.
254 **/
165125e1 255void generic_unplug_device(struct request_queue *q)
1da177e4 256{
dbaf2c00
JA
257 if (blk_queue_plugged(q)) {
258 spin_lock_irq(q->queue_lock);
259 __generic_unplug_device(q);
260 spin_unlock_irq(q->queue_lock);
261 }
1da177e4
LT
262}
263EXPORT_SYMBOL(generic_unplug_device);
264
265static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
266 struct page *page)
267{
165125e1 268 struct request_queue *q = bdi->unplug_io_data;
1da177e4 269
2ad8b1ef 270 blk_unplug(q);
1da177e4
LT
271}
272
86db1e29 273void blk_unplug_work(struct work_struct *work)
1da177e4 274{
165125e1
JA
275 struct request_queue *q =
276 container_of(work, struct request_queue, unplug_work);
1da177e4 277
2056a782
JA
278 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
279 q->rq.count[READ] + q->rq.count[WRITE]);
280
1da177e4
LT
281 q->unplug_fn(q);
282}
283
86db1e29 284void blk_unplug_timeout(unsigned long data)
1da177e4 285{
165125e1 286 struct request_queue *q = (struct request_queue *)data;
1da177e4 287
2056a782
JA
288 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
289 q->rq.count[READ] + q->rq.count[WRITE]);
290
1da177e4
LT
291 kblockd_schedule_work(&q->unplug_work);
292}
293
2ad8b1ef
AB
294void blk_unplug(struct request_queue *q)
295{
296 /*
297 * devices don't necessarily have an ->unplug_fn defined
298 */
299 if (q->unplug_fn) {
300 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
301 q->rq.count[READ] + q->rq.count[WRITE]);
302
303 q->unplug_fn(q);
304 }
305}
306EXPORT_SYMBOL(blk_unplug);
307
1da177e4
LT
308/**
309 * blk_start_queue - restart a previously stopped queue
165125e1 310 * @q: The &struct request_queue in question
1da177e4
LT
311 *
312 * Description:
313 * blk_start_queue() will clear the stop flag on the queue, and call
314 * the request_fn for the queue if it was in a stopped state when
315 * entered. Also see blk_stop_queue(). Queue lock must be held.
316 **/
165125e1 317void blk_start_queue(struct request_queue *q)
1da177e4 318{
a038e253
PBG
319 WARN_ON(!irqs_disabled());
320
75ad23bc 321 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
322
323 /*
324 * one level of recursion is ok and is much faster than kicking
325 * the unplug handling
326 */
75ad23bc
NP
327 if (!test_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
328 queue_flag_set(QUEUE_FLAG_REENTER, q);
1da177e4 329 q->request_fn(q);
75ad23bc 330 queue_flag_clear(QUEUE_FLAG_REENTER, q);
1da177e4
LT
331 } else {
332 blk_plug_device(q);
333 kblockd_schedule_work(&q->unplug_work);
334 }
335}
1da177e4
LT
336EXPORT_SYMBOL(blk_start_queue);
337
338/**
339 * blk_stop_queue - stop a queue
165125e1 340 * @q: The &struct request_queue in question
1da177e4
LT
341 *
342 * Description:
343 * The Linux block layer assumes that a block driver will consume all
344 * entries on the request queue when the request_fn strategy is called.
345 * Often this will not happen, because of hardware limitations (queue
346 * depth settings). If a device driver gets a 'queue full' response,
347 * or if it simply chooses not to queue more I/O at one point, it can
348 * call this function to prevent the request_fn from being called until
349 * the driver has signalled it's ready to go again. This happens by calling
350 * blk_start_queue() to restart queue operations. Queue lock must be held.
351 **/
165125e1 352void blk_stop_queue(struct request_queue *q)
1da177e4
LT
353{
354 blk_remove_plug(q);
75ad23bc 355 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
356}
357EXPORT_SYMBOL(blk_stop_queue);
358
359/**
360 * blk_sync_queue - cancel any pending callbacks on a queue
361 * @q: the queue
362 *
363 * Description:
364 * The block layer may perform asynchronous callback activity
365 * on a queue, such as calling the unplug function after a timeout.
366 * A block device may call blk_sync_queue to ensure that any
367 * such activity is cancelled, thus allowing it to release resources
59c51591 368 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
369 * that its ->make_request_fn will not re-add plugging prior to calling
370 * this function.
371 *
372 */
373void blk_sync_queue(struct request_queue *q)
374{
375 del_timer_sync(&q->unplug_timer);
abbeb88d 376 kblockd_flush_work(&q->unplug_work);
1da177e4
LT
377}
378EXPORT_SYMBOL(blk_sync_queue);
379
380/**
381 * blk_run_queue - run a single device queue
382 * @q: The queue to run
383 */
75ad23bc 384void __blk_run_queue(struct request_queue *q)
1da177e4 385{
1da177e4 386 blk_remove_plug(q);
dac07ec1
JA
387
388 /*
389 * Only recurse once to avoid overrunning the stack, let the unplug
390 * handling reinvoke the handler shortly if we already got there.
391 */
392 if (!elv_queue_empty(q)) {
75ad23bc
NP
393 if (!test_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
394 queue_flag_set(QUEUE_FLAG_REENTER, q);
dac07ec1 395 q->request_fn(q);
75ad23bc 396 queue_flag_clear(QUEUE_FLAG_REENTER, q);
dac07ec1
JA
397 } else {
398 blk_plug_device(q);
399 kblockd_schedule_work(&q->unplug_work);
400 }
401 }
75ad23bc
NP
402}
403EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 404
75ad23bc
NP
405/**
406 * blk_run_queue - run a single device queue
407 * @q: The queue to run
408 */
409void blk_run_queue(struct request_queue *q)
410{
411 unsigned long flags;
412
413 spin_lock_irqsave(q->queue_lock, flags);
414 __blk_run_queue(q);
1da177e4
LT
415 spin_unlock_irqrestore(q->queue_lock, flags);
416}
417EXPORT_SYMBOL(blk_run_queue);
418
165125e1 419void blk_put_queue(struct request_queue *q)
483f4afc
AV
420{
421 kobject_put(&q->kobj);
422}
483f4afc 423
6728cb0e 424void blk_cleanup_queue(struct request_queue *q)
483f4afc
AV
425{
426 mutex_lock(&q->sysfs_lock);
75ad23bc 427 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
428 mutex_unlock(&q->sysfs_lock);
429
430 if (q->elevator)
431 elevator_exit(q->elevator);
432
433 blk_put_queue(q);
434}
1da177e4
LT
435EXPORT_SYMBOL(blk_cleanup_queue);
436
165125e1 437static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
438{
439 struct request_list *rl = &q->rq;
440
441 rl->count[READ] = rl->count[WRITE] = 0;
442 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 443 rl->elvpriv = 0;
1da177e4
LT
444 init_waitqueue_head(&rl->wait[READ]);
445 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 446
1946089a
CL
447 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
448 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
449
450 if (!rl->rq_pool)
451 return -ENOMEM;
452
453 return 0;
454}
455
165125e1 456struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 457{
1946089a
CL
458 return blk_alloc_queue_node(gfp_mask, -1);
459}
460EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 461
165125e1 462struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 463{
165125e1 464 struct request_queue *q;
e0bf68dd 465 int err;
1946089a 466
8324aa91 467 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 468 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
469 if (!q)
470 return NULL;
471
e0bf68dd
PZ
472 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
473 q->backing_dev_info.unplug_io_data = q;
474 err = bdi_init(&q->backing_dev_info);
475 if (err) {
8324aa91 476 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
477 return NULL;
478 }
479
1da177e4 480 init_timer(&q->unplug_timer);
483f4afc 481
8324aa91 482 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 483
483f4afc 484 mutex_init(&q->sysfs_lock);
e7e72bf6 485 spin_lock_init(&q->__queue_lock);
483f4afc 486
1da177e4
LT
487 return q;
488}
1946089a 489EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
490
491/**
492 * blk_init_queue - prepare a request queue for use with a block device
493 * @rfn: The function to be called to process requests that have been
494 * placed on the queue.
495 * @lock: Request queue spin lock
496 *
497 * Description:
498 * If a block device wishes to use the standard request handling procedures,
499 * which sorts requests and coalesces adjacent requests, then it must
500 * call blk_init_queue(). The function @rfn will be called when there
501 * are requests on the queue that need to be processed. If the device
502 * supports plugging, then @rfn may not be called immediately when requests
503 * are available on the queue, but may be called at some time later instead.
504 * Plugged queues are generally unplugged when a buffer belonging to one
505 * of the requests on the queue is needed, or due to memory pressure.
506 *
507 * @rfn is not required, or even expected, to remove all requests off the
508 * queue, but only as many as it can handle at a time. If it does leave
509 * requests on the queue, it is responsible for arranging that the requests
510 * get dealt with eventually.
511 *
512 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
513 * request queue; this lock will be taken also from interrupt context, so irq
514 * disabling is needed for it.
1da177e4
LT
515 *
516 * Function returns a pointer to the initialized request queue, or NULL if
517 * it didn't succeed.
518 *
519 * Note:
520 * blk_init_queue() must be paired with a blk_cleanup_queue() call
521 * when the block device is deactivated (such as at module unload).
522 **/
1946089a 523
165125e1 524struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 525{
1946089a
CL
526 return blk_init_queue_node(rfn, lock, -1);
527}
528EXPORT_SYMBOL(blk_init_queue);
529
165125e1 530struct request_queue *
1946089a
CL
531blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
532{
165125e1 533 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
534
535 if (!q)
536 return NULL;
537
1946089a 538 q->node = node_id;
8669aafd 539 if (blk_init_free_list(q)) {
8324aa91 540 kmem_cache_free(blk_requestq_cachep, q);
8669aafd
AV
541 return NULL;
542 }
1da177e4 543
152587de
JA
544 /*
545 * if caller didn't supply a lock, they get per-queue locking with
546 * our embedded lock
547 */
e7e72bf6 548 if (!lock)
152587de 549 lock = &q->__queue_lock;
152587de 550
1da177e4 551 q->request_fn = rfn;
1da177e4
LT
552 q->prep_rq_fn = NULL;
553 q->unplug_fn = generic_unplug_device;
554 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
555 q->queue_lock = lock;
556
557 blk_queue_segment_boundary(q, 0xffffffff);
558
559 blk_queue_make_request(q, __make_request);
560 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
561
562 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
563 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
564
44ec9542
AS
565 q->sg_reserved_size = INT_MAX;
566
1da177e4
LT
567 /*
568 * all done
569 */
570 if (!elevator_init(q, NULL)) {
571 blk_queue_congestion_threshold(q);
572 return q;
573 }
574
8669aafd 575 blk_put_queue(q);
1da177e4
LT
576 return NULL;
577}
1946089a 578EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 579
165125e1 580int blk_get_queue(struct request_queue *q)
1da177e4 581{
fde6ad22 582 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 583 kobject_get(&q->kobj);
1da177e4
LT
584 return 0;
585 }
586
587 return 1;
588}
1da177e4 589
165125e1 590static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 591{
4aff5e23 592 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 593 elv_put_request(q, rq);
1da177e4
LT
594 mempool_free(rq, q->rq.rq_pool);
595}
596
1ea25ecb 597static struct request *
165125e1 598blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
599{
600 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
601
602 if (!rq)
603 return NULL;
604
2a4aa30c 605 blk_rq_init(q, rq);
1afb20f3 606
1da177e4 607 /*
4aff5e23 608 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1da177e4
LT
609 * see bio.h and blkdev.h
610 */
49171e5c 611 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 612
cb98fc8b 613 if (priv) {
cb78b285 614 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
615 mempool_free(rq, q->rq.rq_pool);
616 return NULL;
617 }
4aff5e23 618 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 619 }
1da177e4 620
cb98fc8b 621 return rq;
1da177e4
LT
622}
623
624/*
625 * ioc_batching returns true if the ioc is a valid batching request and
626 * should be given priority access to a request.
627 */
165125e1 628static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
629{
630 if (!ioc)
631 return 0;
632
633 /*
634 * Make sure the process is able to allocate at least 1 request
635 * even if the batch times out, otherwise we could theoretically
636 * lose wakeups.
637 */
638 return ioc->nr_batch_requests == q->nr_batching ||
639 (ioc->nr_batch_requests > 0
640 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
641}
642
643/*
644 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
645 * will cause the process to be a "batcher" on all queues in the system. This
646 * is the behaviour we want though - once it gets a wakeup it should be given
647 * a nice run.
648 */
165125e1 649static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
650{
651 if (!ioc || ioc_batching(q, ioc))
652 return;
653
654 ioc->nr_batch_requests = q->nr_batching;
655 ioc->last_waited = jiffies;
656}
657
165125e1 658static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
659{
660 struct request_list *rl = &q->rq;
661
662 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 663 blk_clear_queue_congested(q, rw);
1da177e4
LT
664
665 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
666 if (waitqueue_active(&rl->wait[rw]))
667 wake_up(&rl->wait[rw]);
668
669 blk_clear_queue_full(q, rw);
670 }
671}
672
673/*
674 * A request has just been released. Account for it, update the full and
675 * congestion status, wake up any waiters. Called under q->queue_lock.
676 */
165125e1 677static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
678{
679 struct request_list *rl = &q->rq;
680
681 rl->count[rw]--;
cb98fc8b
TH
682 if (priv)
683 rl->elvpriv--;
1da177e4
LT
684
685 __freed_request(q, rw);
686
687 if (unlikely(rl->starved[rw ^ 1]))
688 __freed_request(q, rw ^ 1);
1da177e4
LT
689}
690
691#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
692/*
d6344532
NP
693 * Get a free request, queue_lock must be held.
694 * Returns NULL on failure, with queue_lock held.
695 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 696 */
165125e1 697static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 698 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
699{
700 struct request *rq = NULL;
701 struct request_list *rl = &q->rq;
88ee5ef1 702 struct io_context *ioc = NULL;
7749a8d4 703 const int rw = rw_flags & 0x01;
88ee5ef1
JA
704 int may_queue, priv;
705
7749a8d4 706 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
707 if (may_queue == ELV_MQUEUE_NO)
708 goto rq_starved;
709
710 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
711 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 712 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
713 /*
714 * The queue will fill after this allocation, so set
715 * it as full, and mark this process as "batching".
716 * This process will be allowed to complete a batch of
717 * requests, others will be blocked.
718 */
719 if (!blk_queue_full(q, rw)) {
720 ioc_set_batching(q, ioc);
721 blk_set_queue_full(q, rw);
722 } else {
723 if (may_queue != ELV_MQUEUE_MUST
724 && !ioc_batching(q, ioc)) {
725 /*
726 * The queue is full and the allocating
727 * process is not a "batcher", and not
728 * exempted by the IO scheduler
729 */
730 goto out;
731 }
732 }
1da177e4 733 }
79e2de4b 734 blk_set_queue_congested(q, rw);
1da177e4
LT
735 }
736
082cf69e
JA
737 /*
738 * Only allow batching queuers to allocate up to 50% over the defined
739 * limit of requests, otherwise we could have thousands of requests
740 * allocated with any setting of ->nr_requests
741 */
fd782a4a 742 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 743 goto out;
fd782a4a 744
1da177e4
LT
745 rl->count[rw]++;
746 rl->starved[rw] = 0;
cb98fc8b 747
64521d1a 748 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
749 if (priv)
750 rl->elvpriv++;
751
1da177e4
LT
752 spin_unlock_irq(q->queue_lock);
753
7749a8d4 754 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 755 if (unlikely(!rq)) {
1da177e4
LT
756 /*
757 * Allocation failed presumably due to memory. Undo anything
758 * we might have messed up.
759 *
760 * Allocating task should really be put onto the front of the
761 * wait queue, but this is pretty rare.
762 */
763 spin_lock_irq(q->queue_lock);
cb98fc8b 764 freed_request(q, rw, priv);
1da177e4
LT
765
766 /*
767 * in the very unlikely event that allocation failed and no
768 * requests for this direction was pending, mark us starved
769 * so that freeing of a request in the other direction will
770 * notice us. another possible fix would be to split the
771 * rq mempool into READ and WRITE
772 */
773rq_starved:
774 if (unlikely(rl->count[rw] == 0))
775 rl->starved[rw] = 1;
776
1da177e4
LT
777 goto out;
778 }
779
88ee5ef1
JA
780 /*
781 * ioc may be NULL here, and ioc_batching will be false. That's
782 * OK, if the queue is under the request limit then requests need
783 * not count toward the nr_batch_requests limit. There will always
784 * be some limit enforced by BLK_BATCH_TIME.
785 */
1da177e4
LT
786 if (ioc_batching(q, ioc))
787 ioc->nr_batch_requests--;
6728cb0e 788
2056a782 789 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 790out:
1da177e4
LT
791 return rq;
792}
793
794/*
795 * No available requests for this queue, unplug the device and wait for some
796 * requests to become available.
d6344532
NP
797 *
798 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 799 */
165125e1 800static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 801 struct bio *bio)
1da177e4 802{
7749a8d4 803 const int rw = rw_flags & 0x01;
1da177e4
LT
804 struct request *rq;
805
7749a8d4 806 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
807 while (!rq) {
808 DEFINE_WAIT(wait);
1da177e4
LT
809 struct request_list *rl = &q->rq;
810
811 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
812 TASK_UNINTERRUPTIBLE);
813
7749a8d4 814 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1da177e4
LT
815
816 if (!rq) {
817 struct io_context *ioc;
818
2056a782
JA
819 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
820
d6344532
NP
821 __generic_unplug_device(q);
822 spin_unlock_irq(q->queue_lock);
1da177e4
LT
823 io_schedule();
824
825 /*
826 * After sleeping, we become a "batching" process and
827 * will be able to allocate at least one request, and
828 * up to a big batch of them for a small period time.
829 * See ioc_batching, ioc_set_batching
830 */
b5deef90 831 ioc = current_io_context(GFP_NOIO, q->node);
1da177e4 832 ioc_set_batching(q, ioc);
d6344532
NP
833
834 spin_lock_irq(q->queue_lock);
1da177e4
LT
835 }
836 finish_wait(&rl->wait[rw], &wait);
450991bc 837 }
1da177e4
LT
838
839 return rq;
840}
841
165125e1 842struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
843{
844 struct request *rq;
845
846 BUG_ON(rw != READ && rw != WRITE);
847
d6344532
NP
848 spin_lock_irq(q->queue_lock);
849 if (gfp_mask & __GFP_WAIT) {
22e2c507 850 rq = get_request_wait(q, rw, NULL);
d6344532 851 } else {
22e2c507 852 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
853 if (!rq)
854 spin_unlock_irq(q->queue_lock);
855 }
856 /* q->queue_lock is unlocked at this point */
1da177e4
LT
857
858 return rq;
859}
1da177e4
LT
860EXPORT_SYMBOL(blk_get_request);
861
dc72ef4a
JA
862/**
863 * blk_start_queueing - initiate dispatch of requests to device
864 * @q: request queue to kick into gear
865 *
866 * This is basically a helper to remove the need to know whether a queue
867 * is plugged or not if someone just wants to initiate dispatch of requests
868 * for this queue.
869 *
870 * The queue lock must be held with interrupts disabled.
871 */
165125e1 872void blk_start_queueing(struct request_queue *q)
dc72ef4a
JA
873{
874 if (!blk_queue_plugged(q))
875 q->request_fn(q);
876 else
877 __generic_unplug_device(q);
878}
879EXPORT_SYMBOL(blk_start_queueing);
880
1da177e4
LT
881/**
882 * blk_requeue_request - put a request back on queue
883 * @q: request queue where request should be inserted
884 * @rq: request to be inserted
885 *
886 * Description:
887 * Drivers often keep queueing requests until the hardware cannot accept
888 * more, when that condition happens we need to put the request back
889 * on the queue. Must be called with queue lock held.
890 */
165125e1 891void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 892{
2056a782
JA
893 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
894
1da177e4
LT
895 if (blk_rq_tagged(rq))
896 blk_queue_end_tag(q, rq);
897
898 elv_requeue_request(q, rq);
899}
1da177e4
LT
900EXPORT_SYMBOL(blk_requeue_request);
901
902/**
903 * blk_insert_request - insert a special request in to a request queue
904 * @q: request queue where request should be inserted
905 * @rq: request to be inserted
906 * @at_head: insert request at head or tail of queue
907 * @data: private data
1da177e4
LT
908 *
909 * Description:
910 * Many block devices need to execute commands asynchronously, so they don't
911 * block the whole kernel from preemption during request execution. This is
912 * accomplished normally by inserting aritficial requests tagged as
913 * REQ_SPECIAL in to the corresponding request queue, and letting them be
914 * scheduled for actual execution by the request queue.
915 *
916 * We have the option of inserting the head or the tail of the queue.
917 * Typically we use the tail for new ioctls and so forth. We use the head
918 * of the queue for things like a QUEUE_FULL message from a device, or a
919 * host that is unable to accept a particular command.
920 */
165125e1 921void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 922 int at_head, void *data)
1da177e4 923{
867d1191 924 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
925 unsigned long flags;
926
927 /*
928 * tell I/O scheduler that this isn't a regular read/write (ie it
929 * must not attempt merges on this) and that it acts as a soft
930 * barrier
931 */
4aff5e23
JA
932 rq->cmd_type = REQ_TYPE_SPECIAL;
933 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
934
935 rq->special = data;
936
937 spin_lock_irqsave(q->queue_lock, flags);
938
939 /*
940 * If command is tagged, release the tag
941 */
867d1191
TH
942 if (blk_rq_tagged(rq))
943 blk_queue_end_tag(q, rq);
1da177e4 944
b238b3d4 945 drive_stat_acct(rq, 1);
867d1191 946 __elv_add_request(q, rq, where, 0);
dc72ef4a 947 blk_start_queueing(q);
1da177e4
LT
948 spin_unlock_irqrestore(q->queue_lock, flags);
949}
1da177e4
LT
950EXPORT_SYMBOL(blk_insert_request);
951
1da177e4
LT
952/*
953 * add-request adds a request to the linked list.
954 * queue lock is held and interrupts disabled, as we muck with the
955 * request queue list.
956 */
6728cb0e 957static inline void add_request(struct request_queue *q, struct request *req)
1da177e4 958{
b238b3d4 959 drive_stat_acct(req, 1);
1da177e4 960
1da177e4
LT
961 /*
962 * elevator indicated where it wants this request to be
963 * inserted at elevator_merge time
964 */
965 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
966}
6728cb0e 967
1da177e4
LT
968/*
969 * disk_round_stats() - Round off the performance stats on a struct
970 * disk_stats.
971 *
972 * The average IO queue length and utilisation statistics are maintained
973 * by observing the current state of the queue length and the amount of
974 * time it has been in this state for.
975 *
976 * Normally, that accounting is done on IO completion, but that can result
977 * in more than a second's worth of IO being accounted for within any one
978 * second, leading to >100% utilisation. To deal with that, we call this
979 * function to do a round-off before returning the results when reading
980 * /proc/diskstats. This accounts immediately for all queue usage up to
981 * the current jiffies and restarts the counters again.
982 */
983void disk_round_stats(struct gendisk *disk)
984{
985 unsigned long now = jiffies;
986
b2982649
KC
987 if (now == disk->stamp)
988 return;
1da177e4 989
20e5c81f
KC
990 if (disk->in_flight) {
991 __disk_stat_add(disk, time_in_queue,
992 disk->in_flight * (now - disk->stamp));
993 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
994 }
1da177e4 995 disk->stamp = now;
1da177e4 996}
3eaf840e
JNN
997EXPORT_SYMBOL_GPL(disk_round_stats);
998
6f2576af
JM
999void part_round_stats(struct hd_struct *part)
1000{
1001 unsigned long now = jiffies;
1002
1003 if (now == part->stamp)
1004 return;
1005
1006 if (part->in_flight) {
1007 __part_stat_add(part, time_in_queue,
1008 part->in_flight * (now - part->stamp));
1009 __part_stat_add(part, io_ticks, (now - part->stamp));
1010 }
1011 part->stamp = now;
1012}
1013
1da177e4
LT
1014/*
1015 * queue lock must be held
1016 */
165125e1 1017void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1018{
1da177e4
LT
1019 if (unlikely(!q))
1020 return;
1021 if (unlikely(--req->ref_count))
1022 return;
1023
8922e16c
TH
1024 elv_completed_request(q, req);
1025
1da177e4
LT
1026 /*
1027 * Request may not have originated from ll_rw_blk. if not,
1028 * it didn't come out of our reserved rq pools
1029 */
49171e5c 1030 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 1031 int rw = rq_data_dir(req);
4aff5e23 1032 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1033
1da177e4 1034 BUG_ON(!list_empty(&req->queuelist));
9817064b 1035 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1036
1037 blk_free_request(q, req);
cb98fc8b 1038 freed_request(q, rw, priv);
1da177e4
LT
1039 }
1040}
6e39b69e
MC
1041EXPORT_SYMBOL_GPL(__blk_put_request);
1042
1da177e4
LT
1043void blk_put_request(struct request *req)
1044{
8922e16c 1045 unsigned long flags;
165125e1 1046 struct request_queue *q = req->q;
8922e16c 1047
1da177e4 1048 /*
8922e16c
TH
1049 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
1050 * following if (q) test.
1da177e4 1051 */
8922e16c 1052 if (q) {
1da177e4
LT
1053 spin_lock_irqsave(q->queue_lock, flags);
1054 __blk_put_request(q, req);
1055 spin_unlock_irqrestore(q->queue_lock, flags);
1056 }
1057}
1da177e4
LT
1058EXPORT_SYMBOL(blk_put_request);
1059
86db1e29 1060void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1061{
4aff5e23 1062 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
1063
1064 /*
1065 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1066 */
1067 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 1068 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
1069
1070 /*
1071 * REQ_BARRIER implies no merging, but lets make it explicit
1072 */
1073 if (unlikely(bio_barrier(bio)))
4aff5e23 1074 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 1075
b31dc66a 1076 if (bio_sync(bio))
4aff5e23 1077 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
1078 if (bio_rw_meta(bio))
1079 req->cmd_flags |= REQ_RW_META;
b31dc66a 1080
52d9e675
TH
1081 req->errors = 0;
1082 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 1083 req->ioprio = bio_prio(bio);
52d9e675 1084 req->start_time = jiffies;
bc1c56fd 1085 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1086}
1087
165125e1 1088static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1089{
450991bc 1090 struct request *req;
51da90fc
JA
1091 int el_ret, nr_sectors, barrier, err;
1092 const unsigned short prio = bio_prio(bio);
1093 const int sync = bio_sync(bio);
7749a8d4 1094 int rw_flags;
1da177e4 1095
1da177e4 1096 nr_sectors = bio_sectors(bio);
1da177e4
LT
1097
1098 /*
1099 * low level driver can indicate that it wants pages above a
1100 * certain limit bounced to low memory (ie for highmem, or even
1101 * ISA dma in theory)
1102 */
1103 blk_queue_bounce(q, &bio);
1104
1da177e4 1105 barrier = bio_barrier(bio);
797e7dbb 1106 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
1107 err = -EOPNOTSUPP;
1108 goto end_io;
1109 }
1110
1da177e4
LT
1111 spin_lock_irq(q->queue_lock);
1112
450991bc 1113 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
1114 goto get_rq;
1115
1116 el_ret = elv_merge(q, &req, bio);
1117 switch (el_ret) {
6728cb0e
JA
1118 case ELEVATOR_BACK_MERGE:
1119 BUG_ON(!rq_mergeable(req));
1da177e4 1120
6728cb0e
JA
1121 if (!ll_back_merge_fn(q, req, bio))
1122 break;
1da177e4 1123
6728cb0e 1124 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2056a782 1125
6728cb0e
JA
1126 req->biotail->bi_next = bio;
1127 req->biotail = bio;
1128 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1129 req->ioprio = ioprio_best(req->ioprio, prio);
1130 drive_stat_acct(req, 0);
1131 if (!attempt_back_merge(q, req))
1132 elv_merged_request(q, req, el_ret);
1133 goto out;
1da177e4 1134
6728cb0e
JA
1135 case ELEVATOR_FRONT_MERGE:
1136 BUG_ON(!rq_mergeable(req));
1da177e4 1137
6728cb0e
JA
1138 if (!ll_front_merge_fn(q, req, bio))
1139 break;
1da177e4 1140
6728cb0e 1141 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2056a782 1142
6728cb0e
JA
1143 bio->bi_next = req->bio;
1144 req->bio = bio;
1da177e4 1145
6728cb0e
JA
1146 /*
1147 * may not be valid. if the low level driver said
1148 * it didn't need a bounce buffer then it better
1149 * not touch req->buffer either...
1150 */
1151 req->buffer = bio_data(bio);
1152 req->current_nr_sectors = bio_cur_sectors(bio);
1153 req->hard_cur_sectors = req->current_nr_sectors;
1154 req->sector = req->hard_sector = bio->bi_sector;
1155 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1156 req->ioprio = ioprio_best(req->ioprio, prio);
1157 drive_stat_acct(req, 0);
1158 if (!attempt_front_merge(q, req))
1159 elv_merged_request(q, req, el_ret);
1160 goto out;
1161
1162 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1163 default:
1164 ;
1da177e4
LT
1165 }
1166
450991bc 1167get_rq:
7749a8d4
JA
1168 /*
1169 * This sync check and mask will be re-done in init_request_from_bio(),
1170 * but we need to set it earlier to expose the sync flag to the
1171 * rq allocator and io schedulers.
1172 */
1173 rw_flags = bio_data_dir(bio);
1174 if (sync)
1175 rw_flags |= REQ_RW_SYNC;
1176
1da177e4 1177 /*
450991bc 1178 * Grab a free request. This is might sleep but can not fail.
d6344532 1179 * Returns with the queue unlocked.
450991bc 1180 */
7749a8d4 1181 req = get_request_wait(q, rw_flags, bio);
d6344532 1182
450991bc
NP
1183 /*
1184 * After dropping the lock and possibly sleeping here, our request
1185 * may now be mergeable after it had proven unmergeable (above).
1186 * We don't worry about that case for efficiency. It won't happen
1187 * often, and the elevators are able to handle it.
1da177e4 1188 */
52d9e675 1189 init_request_from_bio(req, bio);
1da177e4 1190
450991bc
NP
1191 spin_lock_irq(q->queue_lock);
1192 if (elv_queue_empty(q))
1193 blk_plug_device(q);
1da177e4
LT
1194 add_request(q, req);
1195out:
4a534f93 1196 if (sync)
1da177e4
LT
1197 __generic_unplug_device(q);
1198
1199 spin_unlock_irq(q->queue_lock);
1200 return 0;
1201
1202end_io:
6712ecf8 1203 bio_endio(bio, err);
1da177e4
LT
1204 return 0;
1205}
1206
1207/*
1208 * If bio->bi_dev is a partition, remap the location
1209 */
1210static inline void blk_partition_remap(struct bio *bio)
1211{
1212 struct block_device *bdev = bio->bi_bdev;
1213
bf2de6f5 1214 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1215 struct hd_struct *p = bdev->bd_part;
1216
1da177e4
LT
1217 bio->bi_sector += p->start_sect;
1218 bio->bi_bdev = bdev->bd_contains;
c7149d6b
AB
1219
1220 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1221 bdev->bd_dev, bio->bi_sector,
1222 bio->bi_sector - p->start_sect);
1da177e4
LT
1223 }
1224}
1225
1da177e4
LT
1226static void handle_bad_sector(struct bio *bio)
1227{
1228 char b[BDEVNAME_SIZE];
1229
1230 printk(KERN_INFO "attempt to access beyond end of device\n");
1231 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1232 bdevname(bio->bi_bdev, b),
1233 bio->bi_rw,
1234 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1235 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1236
1237 set_bit(BIO_EOF, &bio->bi_flags);
1238}
1239
c17bb495
AM
1240#ifdef CONFIG_FAIL_MAKE_REQUEST
1241
1242static DECLARE_FAULT_ATTR(fail_make_request);
1243
1244static int __init setup_fail_make_request(char *str)
1245{
1246 return setup_fault_attr(&fail_make_request, str);
1247}
1248__setup("fail_make_request=", setup_fail_make_request);
1249
1250static int should_fail_request(struct bio *bio)
1251{
1252 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
1253 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
1254 return should_fail(&fail_make_request, bio->bi_size);
1255
1256 return 0;
1257}
1258
1259static int __init fail_make_request_debugfs(void)
1260{
1261 return init_fault_attr_dentries(&fail_make_request,
1262 "fail_make_request");
1263}
1264
1265late_initcall(fail_make_request_debugfs);
1266
1267#else /* CONFIG_FAIL_MAKE_REQUEST */
1268
1269static inline int should_fail_request(struct bio *bio)
1270{
1271 return 0;
1272}
1273
1274#endif /* CONFIG_FAIL_MAKE_REQUEST */
1275
c07e2b41
JA
1276/*
1277 * Check whether this bio extends beyond the end of the device.
1278 */
1279static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1280{
1281 sector_t maxsector;
1282
1283 if (!nr_sectors)
1284 return 0;
1285
1286 /* Test device or partition size, when known. */
1287 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1288 if (maxsector) {
1289 sector_t sector = bio->bi_sector;
1290
1291 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1292 /*
1293 * This may well happen - the kernel calls bread()
1294 * without checking the size of the device, e.g., when
1295 * mounting a device.
1296 */
1297 handle_bad_sector(bio);
1298 return 1;
1299 }
1300 }
1301
1302 return 0;
1303}
1304
1da177e4
LT
1305/**
1306 * generic_make_request: hand a buffer to its device driver for I/O
1307 * @bio: The bio describing the location in memory and on the device.
1308 *
1309 * generic_make_request() is used to make I/O requests of block
1310 * devices. It is passed a &struct bio, which describes the I/O that needs
1311 * to be done.
1312 *
1313 * generic_make_request() does not return any status. The
1314 * success/failure status of the request, along with notification of
1315 * completion, is delivered asynchronously through the bio->bi_end_io
1316 * function described (one day) else where.
1317 *
1318 * The caller of generic_make_request must make sure that bi_io_vec
1319 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1320 * set to describe the device address, and the
1321 * bi_end_io and optionally bi_private are set to describe how
1322 * completion notification should be signaled.
1323 *
1324 * generic_make_request and the drivers it calls may use bi_next if this
1325 * bio happens to be merged with someone else, and may change bi_dev and
1326 * bi_sector for remaps as it sees fit. So the values of these fields
1327 * should NOT be depended on after the call to generic_make_request.
1328 */
d89d8796 1329static inline void __generic_make_request(struct bio *bio)
1da177e4 1330{
165125e1 1331 struct request_queue *q;
5ddfe969 1332 sector_t old_sector;
1da177e4 1333 int ret, nr_sectors = bio_sectors(bio);
2056a782 1334 dev_t old_dev;
51fd77bd 1335 int err = -EIO;
1da177e4
LT
1336
1337 might_sleep();
1da177e4 1338
c07e2b41
JA
1339 if (bio_check_eod(bio, nr_sectors))
1340 goto end_io;
1da177e4
LT
1341
1342 /*
1343 * Resolve the mapping until finished. (drivers are
1344 * still free to implement/resolve their own stacking
1345 * by explicitly returning 0)
1346 *
1347 * NOTE: we don't repeat the blk_size check for each new device.
1348 * Stacking drivers are expected to know what they are doing.
1349 */
5ddfe969 1350 old_sector = -1;
2056a782 1351 old_dev = 0;
1da177e4
LT
1352 do {
1353 char b[BDEVNAME_SIZE];
1354
1355 q = bdev_get_queue(bio->bi_bdev);
1356 if (!q) {
1357 printk(KERN_ERR
1358 "generic_make_request: Trying to access "
1359 "nonexistent block-device %s (%Lu)\n",
1360 bdevname(bio->bi_bdev, b),
1361 (long long) bio->bi_sector);
1362end_io:
51fd77bd 1363 bio_endio(bio, err);
1da177e4
LT
1364 break;
1365 }
1366
4fa253f3 1367 if (unlikely(nr_sectors > q->max_hw_sectors)) {
6728cb0e 1368 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1da177e4
LT
1369 bdevname(bio->bi_bdev, b),
1370 bio_sectors(bio),
1371 q->max_hw_sectors);
1372 goto end_io;
1373 }
1374
fde6ad22 1375 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1376 goto end_io;
1377
c17bb495
AM
1378 if (should_fail_request(bio))
1379 goto end_io;
1380
1da177e4
LT
1381 /*
1382 * If this device has partitions, remap block n
1383 * of partition p to block n+start(p) of the disk.
1384 */
1385 blk_partition_remap(bio);
1386
5ddfe969 1387 if (old_sector != -1)
4fa253f3 1388 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 1389 old_sector);
2056a782
JA
1390
1391 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1392
5ddfe969 1393 old_sector = bio->bi_sector;
2056a782
JA
1394 old_dev = bio->bi_bdev->bd_dev;
1395
c07e2b41
JA
1396 if (bio_check_eod(bio, nr_sectors))
1397 goto end_io;
51fd77bd
JA
1398 if (bio_empty_barrier(bio) && !q->prepare_flush_fn) {
1399 err = -EOPNOTSUPP;
1400 goto end_io;
1401 }
5ddfe969 1402
1da177e4
LT
1403 ret = q->make_request_fn(q, bio);
1404 } while (ret);
1405}
1406
d89d8796
NB
1407/*
1408 * We only want one ->make_request_fn to be active at a time,
1409 * else stack usage with stacked devices could be a problem.
1410 * So use current->bio_{list,tail} to keep a list of requests
1411 * submited by a make_request_fn function.
1412 * current->bio_tail is also used as a flag to say if
1413 * generic_make_request is currently active in this task or not.
1414 * If it is NULL, then no make_request is active. If it is non-NULL,
1415 * then a make_request is active, and new requests should be added
1416 * at the tail
1417 */
1418void generic_make_request(struct bio *bio)
1419{
1420 if (current->bio_tail) {
1421 /* make_request is active */
1422 *(current->bio_tail) = bio;
1423 bio->bi_next = NULL;
1424 current->bio_tail = &bio->bi_next;
1425 return;
1426 }
1427 /* following loop may be a bit non-obvious, and so deserves some
1428 * explanation.
1429 * Before entering the loop, bio->bi_next is NULL (as all callers
1430 * ensure that) so we have a list with a single bio.
1431 * We pretend that we have just taken it off a longer list, so
1432 * we assign bio_list to the next (which is NULL) and bio_tail
1433 * to &bio_list, thus initialising the bio_list of new bios to be
1434 * added. __generic_make_request may indeed add some more bios
1435 * through a recursive call to generic_make_request. If it
1436 * did, we find a non-NULL value in bio_list and re-enter the loop
1437 * from the top. In this case we really did just take the bio
1438 * of the top of the list (no pretending) and so fixup bio_list and
1439 * bio_tail or bi_next, and call into __generic_make_request again.
1440 *
1441 * The loop was structured like this to make only one call to
1442 * __generic_make_request (which is important as it is large and
1443 * inlined) and to keep the structure simple.
1444 */
1445 BUG_ON(bio->bi_next);
1446 do {
1447 current->bio_list = bio->bi_next;
1448 if (bio->bi_next == NULL)
1449 current->bio_tail = &current->bio_list;
1450 else
1451 bio->bi_next = NULL;
1452 __generic_make_request(bio);
1453 bio = current->bio_list;
1454 } while (bio);
1455 current->bio_tail = NULL; /* deactivate */
1456}
1da177e4
LT
1457EXPORT_SYMBOL(generic_make_request);
1458
1459/**
1460 * submit_bio: submit a bio to the block device layer for I/O
1461 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1462 * @bio: The &struct bio which describes the I/O
1463 *
1464 * submit_bio() is very similar in purpose to generic_make_request(), and
1465 * uses that function to do most of the work. Both are fairly rough
1466 * interfaces, @bio must be presetup and ready for I/O.
1467 *
1468 */
1469void submit_bio(int rw, struct bio *bio)
1470{
1471 int count = bio_sectors(bio);
1472
22e2c507 1473 bio->bi_rw |= rw;
1da177e4 1474
bf2de6f5
JA
1475 /*
1476 * If it's a regular read/write or a barrier with data attached,
1477 * go through the normal accounting stuff before submission.
1478 */
1479 if (!bio_empty_barrier(bio)) {
1480
1481 BIO_BUG_ON(!bio->bi_size);
1482 BIO_BUG_ON(!bio->bi_io_vec);
1483
1484 if (rw & WRITE) {
1485 count_vm_events(PGPGOUT, count);
1486 } else {
1487 task_io_account_read(bio->bi_size);
1488 count_vm_events(PGPGIN, count);
1489 }
1490
1491 if (unlikely(block_dump)) {
1492 char b[BDEVNAME_SIZE];
1493 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 1494 current->comm, task_pid_nr(current),
bf2de6f5
JA
1495 (rw & WRITE) ? "WRITE" : "READ",
1496 (unsigned long long)bio->bi_sector,
6728cb0e 1497 bdevname(bio->bi_bdev, b));
bf2de6f5 1498 }
1da177e4
LT
1499 }
1500
1501 generic_make_request(bio);
1502}
1da177e4
LT
1503EXPORT_SYMBOL(submit_bio);
1504
3bcddeac
KU
1505/**
1506 * __end_that_request_first - end I/O on a request
1507 * @req: the request being processed
5450d3e1 1508 * @error: 0 for success, < 0 for error
3bcddeac
KU
1509 * @nr_bytes: number of bytes to complete
1510 *
1511 * Description:
1512 * Ends I/O on a number of bytes attached to @req, and sets it up
1513 * for the next range of segments (if any) in the cluster.
1514 *
1515 * Return:
1516 * 0 - we are done with this request, call end_that_request_last()
1517 * 1 - still buffers pending for this request
1518 **/
5450d3e1 1519static int __end_that_request_first(struct request *req, int error,
1da177e4
LT
1520 int nr_bytes)
1521{
5450d3e1 1522 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1523 struct bio *bio;
1524
2056a782
JA
1525 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1526
1da177e4
LT
1527 /*
1528 * for a REQ_BLOCK_PC request, we want to carry any eventual
1529 * sense key with us all the way through
1530 */
1531 if (!blk_pc_request(req))
1532 req->errors = 0;
1533
6728cb0e
JA
1534 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1535 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4
LT
1536 req->rq_disk ? req->rq_disk->disk_name : "?",
1537 (unsigned long long)req->sector);
1538 }
1539
d72d904a 1540 if (blk_fs_request(req) && req->rq_disk) {
28f13702 1541 struct hd_struct *part = get_part(req->rq_disk, req->sector);
a362357b
JA
1542 const int rw = rq_data_dir(req);
1543
28f13702
JA
1544 all_stat_add(req->rq_disk, part, sectors[rw],
1545 nr_bytes >> 9, req->sector);
d72d904a
JA
1546 }
1547
1da177e4
LT
1548 total_bytes = bio_nbytes = 0;
1549 while ((bio = req->bio) != NULL) {
1550 int nbytes;
1551
bf2de6f5
JA
1552 /*
1553 * For an empty barrier request, the low level driver must
1554 * store a potential error location in ->sector. We pass
1555 * that back up in ->bi_sector.
1556 */
1557 if (blk_empty_barrier(req))
1558 bio->bi_sector = req->sector;
1559
1da177e4
LT
1560 if (nr_bytes >= bio->bi_size) {
1561 req->bio = bio->bi_next;
1562 nbytes = bio->bi_size;
5bb23a68 1563 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
1564 next_idx = 0;
1565 bio_nbytes = 0;
1566 } else {
1567 int idx = bio->bi_idx + next_idx;
1568
1569 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1570 blk_dump_rq_flags(req, "__end_that");
6728cb0e 1571 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
24c03d47 1572 __func__, bio->bi_idx, bio->bi_vcnt);
1da177e4
LT
1573 break;
1574 }
1575
1576 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1577 BIO_BUG_ON(nbytes > bio->bi_size);
1578
1579 /*
1580 * not a complete bvec done
1581 */
1582 if (unlikely(nbytes > nr_bytes)) {
1583 bio_nbytes += nr_bytes;
1584 total_bytes += nr_bytes;
1585 break;
1586 }
1587
1588 /*
1589 * advance to the next vector
1590 */
1591 next_idx++;
1592 bio_nbytes += nbytes;
1593 }
1594
1595 total_bytes += nbytes;
1596 nr_bytes -= nbytes;
1597
6728cb0e
JA
1598 bio = req->bio;
1599 if (bio) {
1da177e4
LT
1600 /*
1601 * end more in this run, or just return 'not-done'
1602 */
1603 if (unlikely(nr_bytes <= 0))
1604 break;
1605 }
1606 }
1607
1608 /*
1609 * completely done
1610 */
1611 if (!req->bio)
1612 return 0;
1613
1614 /*
1615 * if the request wasn't completed, update state
1616 */
1617 if (bio_nbytes) {
5bb23a68 1618 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
1619 bio->bi_idx += next_idx;
1620 bio_iovec(bio)->bv_offset += nr_bytes;
1621 bio_iovec(bio)->bv_len -= nr_bytes;
1622 }
1623
1624 blk_recalc_rq_sectors(req, total_bytes >> 9);
1625 blk_recalc_rq_segments(req);
1626 return 1;
1627}
1628
ff856bad
JA
1629/*
1630 * splice the completion data to a local structure and hand off to
1631 * process_completion_queue() to complete the requests
1632 */
1633static void blk_done_softirq(struct softirq_action *h)
1634{
626ab0e6 1635 struct list_head *cpu_list, local_list;
ff856bad
JA
1636
1637 local_irq_disable();
1638 cpu_list = &__get_cpu_var(blk_cpu_done);
626ab0e6 1639 list_replace_init(cpu_list, &local_list);
ff856bad
JA
1640 local_irq_enable();
1641
1642 while (!list_empty(&local_list)) {
6728cb0e 1643 struct request *rq;
ff856bad 1644
6728cb0e 1645 rq = list_entry(local_list.next, struct request, donelist);
ff856bad
JA
1646 list_del_init(&rq->donelist);
1647 rq->q->softirq_done_fn(rq);
1648 }
1649}
1650
6728cb0e
JA
1651static int __cpuinit blk_cpu_notify(struct notifier_block *self,
1652 unsigned long action, void *hcpu)
ff856bad
JA
1653{
1654 /*
1655 * If a CPU goes away, splice its entries to the current CPU
1656 * and trigger a run of the softirq
1657 */
8bb78442 1658 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
ff856bad
JA
1659 int cpu = (unsigned long) hcpu;
1660
1661 local_irq_disable();
1662 list_splice_init(&per_cpu(blk_cpu_done, cpu),
1663 &__get_cpu_var(blk_cpu_done));
1664 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1665 local_irq_enable();
1666 }
1667
1668 return NOTIFY_OK;
1669}
1670
1671
db47d475 1672static struct notifier_block blk_cpu_notifier __cpuinitdata = {
ff856bad
JA
1673 .notifier_call = blk_cpu_notify,
1674};
1675
ff856bad
JA
1676/**
1677 * blk_complete_request - end I/O on a request
1678 * @req: the request being processed
1679 *
1680 * Description:
1681 * Ends all I/O on a request. It does not handle partial completions,
d6e05edc 1682 * unless the driver actually implements this in its completion callback
4fa253f3 1683 * through requeueing. The actual completion happens out-of-order,
ff856bad
JA
1684 * through a softirq handler. The user must have registered a completion
1685 * callback through blk_queue_softirq_done().
1686 **/
1687
1688void blk_complete_request(struct request *req)
1689{
1690 struct list_head *cpu_list;
1691 unsigned long flags;
1692
1693 BUG_ON(!req->q->softirq_done_fn);
6728cb0e 1694
ff856bad
JA
1695 local_irq_save(flags);
1696
1697 cpu_list = &__get_cpu_var(blk_cpu_done);
1698 list_add_tail(&req->donelist, cpu_list);
1699 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1700
1701 local_irq_restore(flags);
1702}
ff856bad 1703EXPORT_SYMBOL(blk_complete_request);
6728cb0e 1704
1da177e4
LT
1705/*
1706 * queue lock must be held
1707 */
5450d3e1 1708static void end_that_request_last(struct request *req, int error)
1da177e4
LT
1709{
1710 struct gendisk *disk = req->rq_disk;
8ffdc655 1711
b8286239
KU
1712 if (blk_rq_tagged(req))
1713 blk_queue_end_tag(req->q, req);
1714
1715 if (blk_queued_rq(req))
1716 blkdev_dequeue_request(req);
1da177e4
LT
1717
1718 if (unlikely(laptop_mode) && blk_fs_request(req))
1719 laptop_io_completion();
1720
fd0ff8aa
JA
1721 /*
1722 * Account IO completion. bar_rq isn't accounted as a normal
1723 * IO on queueing nor completion. Accounting the containing
1724 * request is enough.
1725 */
1726 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 1727 unsigned long duration = jiffies - req->start_time;
a362357b 1728 const int rw = rq_data_dir(req);
6f2576af 1729 struct hd_struct *part = get_part(disk, req->sector);
a362357b 1730
28f13702
JA
1731 __all_stat_inc(disk, part, ios[rw], req->sector);
1732 __all_stat_add(disk, part, ticks[rw], duration, req->sector);
1da177e4
LT
1733 disk_round_stats(disk);
1734 disk->in_flight--;
6f2576af
JM
1735 if (part) {
1736 part_round_stats(part);
1737 part->in_flight--;
1738 }
1da177e4 1739 }
b8286239 1740
1da177e4 1741 if (req->end_io)
8ffdc655 1742 req->end_io(req, error);
b8286239
KU
1743 else {
1744 if (blk_bidi_rq(req))
1745 __blk_put_request(req->next_rq->q, req->next_rq);
1746
1da177e4 1747 __blk_put_request(req->q, req);
b8286239 1748 }
1da177e4
LT
1749}
1750
a0cd1285 1751static inline void __end_request(struct request *rq, int uptodate,
9e6e39f2 1752 unsigned int nr_bytes)
1da177e4 1753{
9e6e39f2
KU
1754 int error = 0;
1755
1756 if (uptodate <= 0)
1757 error = uptodate ? uptodate : -EIO;
1758
1759 __blk_end_request(rq, error, nr_bytes);
1da177e4
LT
1760}
1761
3b11313a
KU
1762/**
1763 * blk_rq_bytes - Returns bytes left to complete in the entire request
5d87a052 1764 * @rq: the request being processed
3b11313a
KU
1765 **/
1766unsigned int blk_rq_bytes(struct request *rq)
a0cd1285
JA
1767{
1768 if (blk_fs_request(rq))
1769 return rq->hard_nr_sectors << 9;
1770
1771 return rq->data_len;
1772}
3b11313a
KU
1773EXPORT_SYMBOL_GPL(blk_rq_bytes);
1774
1775/**
1776 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
5d87a052 1777 * @rq: the request being processed
3b11313a
KU
1778 **/
1779unsigned int blk_rq_cur_bytes(struct request *rq)
1780{
1781 if (blk_fs_request(rq))
1782 return rq->current_nr_sectors << 9;
1783
1784 if (rq->bio)
1785 return rq->bio->bi_size;
1786
1787 return rq->data_len;
1788}
1789EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
a0cd1285
JA
1790
1791/**
1792 * end_queued_request - end all I/O on a queued request
1793 * @rq: the request being processed
1794 * @uptodate: error value or 0/1 uptodate flag
1795 *
1796 * Description:
1797 * Ends all I/O on a request, and removes it from the block layer queues.
1798 * Not suitable for normal IO completion, unless the driver still has
1799 * the request attached to the block layer.
1800 *
1801 **/
1802void end_queued_request(struct request *rq, int uptodate)
1803{
9e6e39f2 1804 __end_request(rq, uptodate, blk_rq_bytes(rq));
a0cd1285
JA
1805}
1806EXPORT_SYMBOL(end_queued_request);
1807
1808/**
1809 * end_dequeued_request - end all I/O on a dequeued request
1810 * @rq: the request being processed
1811 * @uptodate: error value or 0/1 uptodate flag
1812 *
1813 * Description:
1814 * Ends all I/O on a request. The request must already have been
1815 * dequeued using blkdev_dequeue_request(), as is normally the case
1816 * for most drivers.
1817 *
1818 **/
1819void end_dequeued_request(struct request *rq, int uptodate)
1820{
9e6e39f2 1821 __end_request(rq, uptodate, blk_rq_bytes(rq));
a0cd1285
JA
1822}
1823EXPORT_SYMBOL(end_dequeued_request);
1824
1825
1826/**
1827 * end_request - end I/O on the current segment of the request
8f731f7d 1828 * @req: the request being processed
a0cd1285
JA
1829 * @uptodate: error value or 0/1 uptodate flag
1830 *
1831 * Description:
1832 * Ends I/O on the current segment of a request. If that is the only
1833 * remaining segment, the request is also completed and freed.
1834 *
1835 * This is a remnant of how older block drivers handled IO completions.
1836 * Modern drivers typically end IO on the full request in one go, unless
1837 * they have a residual value to account for. For that case this function
1838 * isn't really useful, unless the residual just happens to be the
1839 * full current segment. In other words, don't use this function in new
1840 * code. Either use end_request_completely(), or the
1841 * end_that_request_chunk() (along with end_that_request_last()) for
1842 * partial completions.
1843 *
1844 **/
1845void end_request(struct request *req, int uptodate)
1846{
9e6e39f2 1847 __end_request(req, uptodate, req->hard_cur_sectors << 9);
a0cd1285 1848}
1da177e4
LT
1849EXPORT_SYMBOL(end_request);
1850
336cdb40 1851/**
e19a3ab0
KU
1852 * blk_end_io - Generic end_io function to complete a request.
1853 * @rq: the request being processed
1854 * @error: 0 for success, < 0 for error
e3a04fe3
KU
1855 * @nr_bytes: number of bytes to complete @rq
1856 * @bidi_bytes: number of bytes to complete @rq->next_rq
e19a3ab0
KU
1857 * @drv_callback: function called between completion of bios in the request
1858 * and completion of the request.
1859 * If the callback returns non 0, this helper returns without
1860 * completion of the request.
336cdb40
KU
1861 *
1862 * Description:
e3a04fe3 1863 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
336cdb40
KU
1864 * If @rq has leftover, sets it up for the next range of segments.
1865 *
1866 * Return:
1867 * 0 - we are done with this request
e19a3ab0 1868 * 1 - this request is not freed yet, it still has pending buffers.
336cdb40 1869 **/
22b13210
JA
1870static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1871 unsigned int bidi_bytes,
1872 int (drv_callback)(struct request *))
336cdb40
KU
1873{
1874 struct request_queue *q = rq->q;
1875 unsigned long flags = 0UL;
336cdb40
KU
1876
1877 if (blk_fs_request(rq) || blk_pc_request(rq)) {
5450d3e1 1878 if (__end_that_request_first(rq, error, nr_bytes))
336cdb40 1879 return 1;
e3a04fe3
KU
1880
1881 /* Bidi request must be completed as a whole */
1882 if (blk_bidi_rq(rq) &&
5450d3e1 1883 __end_that_request_first(rq->next_rq, error, bidi_bytes))
e3a04fe3 1884 return 1;
336cdb40
KU
1885 }
1886
e19a3ab0
KU
1887 /* Special feature for tricky drivers */
1888 if (drv_callback && drv_callback(rq))
1889 return 1;
1890
336cdb40
KU
1891 add_disk_randomness(rq->rq_disk);
1892
1893 spin_lock_irqsave(q->queue_lock, flags);
b8286239 1894 end_that_request_last(rq, error);
336cdb40
KU
1895 spin_unlock_irqrestore(q->queue_lock, flags);
1896
1897 return 0;
1898}
e19a3ab0
KU
1899
1900/**
1901 * blk_end_request - Helper function for drivers to complete the request.
1902 * @rq: the request being processed
1903 * @error: 0 for success, < 0 for error
1904 * @nr_bytes: number of bytes to complete
1905 *
1906 * Description:
1907 * Ends I/O on a number of bytes attached to @rq.
1908 * If @rq has leftover, sets it up for the next range of segments.
1909 *
1910 * Return:
1911 * 0 - we are done with this request
1912 * 1 - still buffers pending for this request
1913 **/
22b13210 1914int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 1915{
e3a04fe3 1916 return blk_end_io(rq, error, nr_bytes, 0, NULL);
e19a3ab0 1917}
336cdb40
KU
1918EXPORT_SYMBOL_GPL(blk_end_request);
1919
1920/**
1921 * __blk_end_request - Helper function for drivers to complete the request.
1922 * @rq: the request being processed
1923 * @error: 0 for success, < 0 for error
1924 * @nr_bytes: number of bytes to complete
1925 *
1926 * Description:
1927 * Must be called with queue lock held unlike blk_end_request().
1928 *
1929 * Return:
1930 * 0 - we are done with this request
1931 * 1 - still buffers pending for this request
1932 **/
22b13210 1933int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
336cdb40 1934{
336cdb40 1935 if (blk_fs_request(rq) || blk_pc_request(rq)) {
5450d3e1 1936 if (__end_that_request_first(rq, error, nr_bytes))
336cdb40
KU
1937 return 1;
1938 }
1939
1940 add_disk_randomness(rq->rq_disk);
1941
b8286239 1942 end_that_request_last(rq, error);
336cdb40
KU
1943
1944 return 0;
1945}
1946EXPORT_SYMBOL_GPL(__blk_end_request);
1947
e3a04fe3
KU
1948/**
1949 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1950 * @rq: the bidi request being processed
1951 * @error: 0 for success, < 0 for error
1952 * @nr_bytes: number of bytes to complete @rq
1953 * @bidi_bytes: number of bytes to complete @rq->next_rq
1954 *
1955 * Description:
1956 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1957 *
1958 * Return:
1959 * 0 - we are done with this request
1960 * 1 - still buffers pending for this request
1961 **/
22b13210
JA
1962int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1963 unsigned int bidi_bytes)
e3a04fe3
KU
1964{
1965 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1966}
1967EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1968
e19a3ab0
KU
1969/**
1970 * blk_end_request_callback - Special helper function for tricky drivers
1971 * @rq: the request being processed
1972 * @error: 0 for success, < 0 for error
1973 * @nr_bytes: number of bytes to complete
1974 * @drv_callback: function called between completion of bios in the request
1975 * and completion of the request.
1976 * If the callback returns non 0, this helper returns without
1977 * completion of the request.
1978 *
1979 * Description:
1980 * Ends I/O on a number of bytes attached to @rq.
1981 * If @rq has leftover, sets it up for the next range of segments.
1982 *
1983 * This special helper function is used only for existing tricky drivers.
1984 * (e.g. cdrom_newpc_intr() of ide-cd)
1985 * This interface will be removed when such drivers are rewritten.
1986 * Don't use this interface in other places anymore.
1987 *
1988 * Return:
1989 * 0 - we are done with this request
1990 * 1 - this request is not freed yet.
1991 * this request still has pending buffers or
1992 * the driver doesn't want to finish this request yet.
1993 **/
22b13210
JA
1994int blk_end_request_callback(struct request *rq, int error,
1995 unsigned int nr_bytes,
e19a3ab0
KU
1996 int (drv_callback)(struct request *))
1997{
e3a04fe3 1998 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
e19a3ab0
KU
1999}
2000EXPORT_SYMBOL_GPL(blk_end_request_callback);
2001
86db1e29
JA
2002void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2003 struct bio *bio)
1da177e4 2004{
4aff5e23
JA
2005 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
2006 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4
LT
2007
2008 rq->nr_phys_segments = bio_phys_segments(q, bio);
2009 rq->nr_hw_segments = bio_hw_segments(q, bio);
2010 rq->current_nr_sectors = bio_cur_sectors(bio);
2011 rq->hard_cur_sectors = rq->current_nr_sectors;
2012 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2013 rq->buffer = bio_data(bio);
0e75f906 2014 rq->data_len = bio->bi_size;
1da177e4
LT
2015
2016 rq->bio = rq->biotail = bio;
1da177e4 2017
66846572
N
2018 if (bio->bi_bdev)
2019 rq->rq_disk = bio->bi_bdev->bd_disk;
2020}
1da177e4
LT
2021
2022int kblockd_schedule_work(struct work_struct *work)
2023{
2024 return queue_work(kblockd_workqueue, work);
2025}
1da177e4
LT
2026EXPORT_SYMBOL(kblockd_schedule_work);
2027
19a75d83 2028void kblockd_flush_work(struct work_struct *work)
1da177e4 2029{
28e53bdd 2030 cancel_work_sync(work);
1da177e4 2031}
19a75d83 2032EXPORT_SYMBOL(kblockd_flush_work);
1da177e4
LT
2033
2034int __init blk_dev_init(void)
2035{
ff856bad
JA
2036 int i;
2037
1da177e4
LT
2038 kblockd_workqueue = create_workqueue("kblockd");
2039 if (!kblockd_workqueue)
2040 panic("Failed to create kblockd\n");
2041
2042 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2043 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2044
8324aa91 2045 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2046 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2047
0a945022 2048 for_each_possible_cpu(i)
ff856bad
JA
2049 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
2050
2051 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
5a67e4c5 2052 register_hotcpu_notifier(&blk_cpu_notifier);
ff856bad 2053
d38ecf93 2054 return 0;
1da177e4 2055}
1da177e4 2056