[COMMON] drivers: modem_if: Apply LCD notification
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
1da177e4 31
55782138 32#include <trace/events/block.h>
9e234eea 33#include "blk.h"
0bfc2455 34
392ddc32
JA
35/*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39#define BIO_INLINE_VECS 4
40
1da177e4
LT
41/*
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
45 */
92e3d3f6 46#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 47static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
92e3d3f6 48 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
49};
50#undef BV
51
1da177e4
LT
52/*
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
55 */
51d654e1 56struct bio_set *fs_bio_set;
3f86a82a 57EXPORT_SYMBOL(fs_bio_set);
1da177e4 58
bb799ca0
JA
59/*
60 * Our slab pool management
61 */
62struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67};
68static DEFINE_MUTEX(bio_slab_lock);
69static struct bio_slab *bio_slabs;
70static unsigned int bio_slab_nr, bio_slab_max;
71
72static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73{
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
389d7b26 76 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 77 unsigned int new_bio_slab_max;
bb799ca0
JA
78 unsigned int i, entry = -1;
79
80 mutex_lock(&bio_slab_lock);
81
82 i = 0;
83 while (i < bio_slab_nr) {
f06f135d 84 bslab = &bio_slabs[i];
bb799ca0
JA
85
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
92 }
93 i++;
94 }
95
96 if (slab)
97 goto out_unlock;
98
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 100 new_bio_slab_max = bio_slab_max << 1;
389d7b26 101 new_bio_slabs = krealloc(bio_slabs,
386bc35a 102 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
103 GFP_KERNEL);
104 if (!new_bio_slabs)
bb799ca0 105 goto out_unlock;
386bc35a 106 bio_slab_max = new_bio_slab_max;
389d7b26 107 bio_slabs = new_bio_slabs;
bb799ca0
JA
108 }
109 if (entry == -1)
110 entry = bio_slab_nr++;
111
112 bslab = &bio_slabs[entry];
113
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
117 if (!slab)
118 goto out_unlock;
119
bb799ca0
JA
120 bslab->slab = slab;
121 bslab->slab_ref = 1;
122 bslab->slab_size = sz;
123out_unlock:
124 mutex_unlock(&bio_slab_lock);
125 return slab;
126}
127
128static void bio_put_slab(struct bio_set *bs)
129{
130 struct bio_slab *bslab = NULL;
131 unsigned int i;
132
133 mutex_lock(&bio_slab_lock);
134
135 for (i = 0; i < bio_slab_nr; i++) {
136 if (bs->bio_slab == bio_slabs[i].slab) {
137 bslab = &bio_slabs[i];
138 break;
139 }
140 }
141
142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 goto out;
144
145 WARN_ON(!bslab->slab_ref);
146
147 if (--bslab->slab_ref)
148 goto out;
149
150 kmem_cache_destroy(bslab->slab);
151 bslab->slab = NULL;
152
153out:
154 mutex_unlock(&bio_slab_lock);
155}
156
7ba1ba12
MP
157unsigned int bvec_nr_vecs(unsigned short idx)
158{
159 return bvec_slabs[idx].nr_vecs;
160}
161
9f060e22 162void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 163{
ed996a52
CH
164 if (!idx)
165 return;
166 idx--;
167
168 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 169
ed996a52 170 if (idx == BVEC_POOL_MAX) {
9f060e22 171 mempool_free(bv, pool);
ed996a52 172 } else {
bb799ca0
JA
173 struct biovec_slab *bvs = bvec_slabs + idx;
174
175 kmem_cache_free(bvs->slab, bv);
176 }
177}
178
9f060e22
KO
179struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 mempool_t *pool)
1da177e4
LT
181{
182 struct bio_vec *bvl;
1da177e4 183
7ff9345f
JA
184 /*
185 * see comment near bvec_array define!
186 */
187 switch (nr) {
188 case 1:
189 *idx = 0;
190 break;
191 case 2 ... 4:
192 *idx = 1;
193 break;
194 case 5 ... 16:
195 *idx = 2;
196 break;
197 case 17 ... 64:
198 *idx = 3;
199 break;
200 case 65 ... 128:
201 *idx = 4;
202 break;
203 case 129 ... BIO_MAX_PAGES:
204 *idx = 5;
205 break;
206 default:
207 return NULL;
208 }
209
210 /*
211 * idx now points to the pool we want to allocate from. only the
212 * 1-vec entry pool is mempool backed.
213 */
ed996a52 214 if (*idx == BVEC_POOL_MAX) {
7ff9345f 215fallback:
9f060e22 216 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
217 } else {
218 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 220
0a0d96b0 221 /*
7ff9345f
JA
222 * Make this allocation restricted and don't dump info on
223 * allocation failures, since we'll fallback to the mempool
224 * in case of failure.
0a0d96b0 225 */
7ff9345f 226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 227
0a0d96b0 228 /*
d0164adc 229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 230 * is set, retry with the 1-entry mempool
0a0d96b0 231 */
7ff9345f 232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 234 *idx = BVEC_POOL_MAX;
7ff9345f
JA
235 goto fallback;
236 }
237 }
238
ed996a52 239 (*idx)++;
1da177e4
LT
240 return bvl;
241}
242
9ae3b3f5 243void bio_uninit(struct bio *bio)
1da177e4 244{
4254bba1 245 bio_disassociate_task(bio);
4254bba1 246}
9ae3b3f5 247EXPORT_SYMBOL(bio_uninit);
7ba1ba12 248
4254bba1
KO
249static void bio_free(struct bio *bio)
250{
251 struct bio_set *bs = bio->bi_pool;
252 void *p;
253
9ae3b3f5 254 bio_uninit(bio);
4254bba1
KO
255
256 if (bs) {
ed996a52 257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
258
259 /*
260 * If we have front padding, adjust the bio pointer before freeing
261 */
262 p = bio;
bb799ca0
JA
263 p -= bs->front_pad;
264
4254bba1
KO
265 mempool_free(p, bs->bio_pool);
266 } else {
267 /* Bio was allocated by bio_kmalloc() */
268 kfree(bio);
269 }
3676347a
PO
270}
271
9ae3b3f5
JA
272/*
273 * Users of this function have their own bio allocation. Subsequently,
274 * they must remember to pair any call to bio_init() with bio_uninit()
275 * when IO has completed, or when the bio is released.
276 */
3a83f467
ML
277void bio_init(struct bio *bio, struct bio_vec *table,
278 unsigned short max_vecs)
1da177e4 279{
2b94de55 280 memset(bio, 0, sizeof(*bio));
c4cf5261 281 atomic_set(&bio->__bi_remaining, 1);
dac56212 282 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
283
284 bio->bi_io_vec = table;
285 bio->bi_max_vecs = max_vecs;
1da177e4 286}
a112a71d 287EXPORT_SYMBOL(bio_init);
1da177e4 288
f44b48c7
KO
289/**
290 * bio_reset - reinitialize a bio
291 * @bio: bio to reset
292 *
293 * Description:
294 * After calling bio_reset(), @bio will be in the same state as a freshly
295 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
296 * preserved are the ones that are initialized by bio_alloc_bioset(). See
297 * comment in struct bio.
298 */
299void bio_reset(struct bio *bio)
300{
301 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
302
9ae3b3f5 303 bio_uninit(bio);
f44b48c7
KO
304
305 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 306 bio->bi_flags = flags;
c4cf5261 307 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
308}
309EXPORT_SYMBOL(bio_reset);
310
38f8baae 311static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 312{
4246a0b6
CH
313 struct bio *parent = bio->bi_private;
314
4e4cbee9
CH
315 if (!parent->bi_status)
316 parent->bi_status = bio->bi_status;
196d38bc 317 bio_put(bio);
38f8baae
CH
318 return parent;
319}
320
321static void bio_chain_endio(struct bio *bio)
322{
323 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
324}
325
326/**
327 * bio_chain - chain bio completions
1051a902
RD
328 * @bio: the target bio
329 * @parent: the @bio's parent bio
196d38bc
KO
330 *
331 * The caller won't have a bi_end_io called when @bio completes - instead,
332 * @parent's bi_end_io won't be called until both @parent and @bio have
333 * completed; the chained bio will also be freed when it completes.
334 *
335 * The caller must not set bi_private or bi_end_io in @bio.
336 */
337void bio_chain(struct bio *bio, struct bio *parent)
338{
339 BUG_ON(bio->bi_private || bio->bi_end_io);
340
341 bio->bi_private = parent;
342 bio->bi_end_io = bio_chain_endio;
c4cf5261 343 bio_inc_remaining(parent);
196d38bc
KO
344}
345EXPORT_SYMBOL(bio_chain);
346
df2cb6da
KO
347static void bio_alloc_rescue(struct work_struct *work)
348{
349 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 struct bio *bio;
351
352 while (1) {
353 spin_lock(&bs->rescue_lock);
354 bio = bio_list_pop(&bs->rescue_list);
355 spin_unlock(&bs->rescue_lock);
356
357 if (!bio)
358 break;
359
360 generic_make_request(bio);
361 }
362}
363
364static void punt_bios_to_rescuer(struct bio_set *bs)
365{
366 struct bio_list punt, nopunt;
367 struct bio *bio;
368
47e0fb46
N
369 if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 return;
df2cb6da
KO
371 /*
372 * In order to guarantee forward progress we must punt only bios that
373 * were allocated from this bio_set; otherwise, if there was a bio on
374 * there for a stacking driver higher up in the stack, processing it
375 * could require allocating bios from this bio_set, and doing that from
376 * our own rescuer would be bad.
377 *
378 * Since bio lists are singly linked, pop them all instead of trying to
379 * remove from the middle of the list:
380 */
381
382 bio_list_init(&punt);
383 bio_list_init(&nopunt);
384
f5fe1b51 385 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 387 current->bio_list[0] = nopunt;
df2cb6da 388
f5fe1b51
N
389 bio_list_init(&nopunt);
390 while ((bio = bio_list_pop(&current->bio_list[1])))
391 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 current->bio_list[1] = nopunt;
df2cb6da
KO
393
394 spin_lock(&bs->rescue_lock);
395 bio_list_merge(&bs->rescue_list, &punt);
396 spin_unlock(&bs->rescue_lock);
397
398 queue_work(bs->rescue_workqueue, &bs->rescue_work);
399}
400
1da177e4
LT
401/**
402 * bio_alloc_bioset - allocate a bio for I/O
403 * @gfp_mask: the GFP_ mask given to the slab allocator
404 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 405 * @bs: the bio_set to allocate from.
1da177e4
LT
406 *
407 * Description:
3f86a82a
KO
408 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
409 * backed by the @bs's mempool.
410 *
d0164adc
MG
411 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
412 * always be able to allocate a bio. This is due to the mempool guarantees.
413 * To make this work, callers must never allocate more than 1 bio at a time
414 * from this pool. Callers that need to allocate more than 1 bio must always
415 * submit the previously allocated bio for IO before attempting to allocate
416 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 417 *
df2cb6da
KO
418 * Note that when running under generic_make_request() (i.e. any block
419 * driver), bios are not submitted until after you return - see the code in
420 * generic_make_request() that converts recursion into iteration, to prevent
421 * stack overflows.
422 *
423 * This would normally mean allocating multiple bios under
424 * generic_make_request() would be susceptible to deadlocks, but we have
425 * deadlock avoidance code that resubmits any blocked bios from a rescuer
426 * thread.
427 *
428 * However, we do not guarantee forward progress for allocations from other
429 * mempools. Doing multiple allocations from the same mempool under
430 * generic_make_request() should be avoided - instead, use bio_set's front_pad
431 * for per bio allocations.
432 *
3f86a82a
KO
433 * RETURNS:
434 * Pointer to new bio on success, NULL on failure.
435 */
7a88fa19
DC
436struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
437 struct bio_set *bs)
1da177e4 438{
df2cb6da 439 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
440 unsigned front_pad;
441 unsigned inline_vecs;
34053979 442 struct bio_vec *bvl = NULL;
451a9ebf
TH
443 struct bio *bio;
444 void *p;
445
3f86a82a
KO
446 if (!bs) {
447 if (nr_iovecs > UIO_MAXIOV)
448 return NULL;
449
450 p = kmalloc(sizeof(struct bio) +
451 nr_iovecs * sizeof(struct bio_vec),
452 gfp_mask);
453 front_pad = 0;
454 inline_vecs = nr_iovecs;
455 } else {
d8f429e1
JN
456 /* should not use nobvec bioset for nr_iovecs > 0 */
457 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
458 return NULL;
df2cb6da
KO
459 /*
460 * generic_make_request() converts recursion to iteration; this
461 * means if we're running beneath it, any bios we allocate and
462 * submit will not be submitted (and thus freed) until after we
463 * return.
464 *
465 * This exposes us to a potential deadlock if we allocate
466 * multiple bios from the same bio_set() while running
467 * underneath generic_make_request(). If we were to allocate
468 * multiple bios (say a stacking block driver that was splitting
469 * bios), we would deadlock if we exhausted the mempool's
470 * reserve.
471 *
472 * We solve this, and guarantee forward progress, with a rescuer
473 * workqueue per bio_set. If we go to allocate and there are
474 * bios on current->bio_list, we first try the allocation
d0164adc
MG
475 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 * bios we would be blocking to the rescuer workqueue before
477 * we retry with the original gfp_flags.
df2cb6da
KO
478 */
479
f5fe1b51
N
480 if (current->bio_list &&
481 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
482 !bio_list_empty(&current->bio_list[1])) &&
483 bs->rescue_workqueue)
d0164adc 484 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 485
3f86a82a 486 p = mempool_alloc(bs->bio_pool, gfp_mask);
df2cb6da
KO
487 if (!p && gfp_mask != saved_gfp) {
488 punt_bios_to_rescuer(bs);
489 gfp_mask = saved_gfp;
490 p = mempool_alloc(bs->bio_pool, gfp_mask);
491 }
492
3f86a82a
KO
493 front_pad = bs->front_pad;
494 inline_vecs = BIO_INLINE_VECS;
495 }
496
451a9ebf
TH
497 if (unlikely(!p))
498 return NULL;
1da177e4 499
3f86a82a 500 bio = p + front_pad;
3a83f467 501 bio_init(bio, NULL, 0);
34053979 502
3f86a82a 503 if (nr_iovecs > inline_vecs) {
ed996a52
CH
504 unsigned long idx = 0;
505
9f060e22 506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
507 if (!bvl && gfp_mask != saved_gfp) {
508 punt_bios_to_rescuer(bs);
509 gfp_mask = saved_gfp;
9f060e22 510 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
511 }
512
34053979
IM
513 if (unlikely(!bvl))
514 goto err_free;
a38352e0 515
ed996a52 516 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
517 } else if (nr_iovecs) {
518 bvl = bio->bi_inline_vecs;
1da177e4 519 }
3f86a82a
KO
520
521 bio->bi_pool = bs;
34053979 522 bio->bi_max_vecs = nr_iovecs;
34053979 523 bio->bi_io_vec = bvl;
1da177e4 524 return bio;
34053979
IM
525
526err_free:
451a9ebf 527 mempool_free(p, bs->bio_pool);
34053979 528 return NULL;
1da177e4 529}
a112a71d 530EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 531
1da177e4
LT
532void zero_fill_bio(struct bio *bio)
533{
534 unsigned long flags;
7988613b
KO
535 struct bio_vec bv;
536 struct bvec_iter iter;
1da177e4 537
7988613b
KO
538 bio_for_each_segment(bv, bio, iter) {
539 char *data = bvec_kmap_irq(&bv, &flags);
540 memset(data, 0, bv.bv_len);
541 flush_dcache_page(bv.bv_page);
1da177e4
LT
542 bvec_kunmap_irq(data, &flags);
543 }
544}
545EXPORT_SYMBOL(zero_fill_bio);
546
547/**
548 * bio_put - release a reference to a bio
549 * @bio: bio to release reference to
550 *
551 * Description:
552 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 553 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
554 **/
555void bio_put(struct bio *bio)
556{
dac56212 557 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 558 bio_free(bio);
dac56212
JA
559 else {
560 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
561
562 /*
563 * last put frees it
564 */
565 if (atomic_dec_and_test(&bio->__bi_cnt))
566 bio_free(bio);
567 }
1da177e4 568}
a112a71d 569EXPORT_SYMBOL(bio_put);
1da177e4 570
165125e1 571inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
572{
573 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
574 blk_recount_segments(q, bio);
575
576 return bio->bi_phys_segments;
577}
a112a71d 578EXPORT_SYMBOL(bio_phys_segments);
1da177e4 579
59d276fe
KO
580/**
581 * __bio_clone_fast - clone a bio that shares the original bio's biovec
582 * @bio: destination bio
583 * @bio_src: bio to clone
584 *
585 * Clone a &bio. Caller will own the returned bio, but not
586 * the actual data it points to. Reference count of returned
587 * bio will be one.
588 *
589 * Caller must ensure that @bio_src is not freed before @bio.
590 */
591void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
592{
ed996a52 593 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
594
595 /*
74d46992 596 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
597 * so we don't set nor calculate new physical/hw segment counts here
598 */
74d46992 599 bio->bi_disk = bio_src->bi_disk;
5d62da3a 600 bio->bi_partno = bio_src->bi_partno;
b7c44ed9 601 bio_set_flag(bio, BIO_CLONED);
3ef1c33f
SL
602 if (bio_flagged(bio_src, BIO_THROTTLED))
603 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 604 bio->bi_opf = bio_src->bi_opf;
49e3bbe3
BK
605#ifdef CONFIG_CRYPTO_DISKCIPHER_DUN
606 bio->bi_iter.bi_dun = bio_src->bi_iter.bi_dun;
607#endif
cb6934f8 608 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
609 bio->bi_iter = bio_src->bi_iter;
610 bio->bi_io_vec = bio_src->bi_io_vec;
03c98711 611 bio->bi_aux_private = bio_src->bi_aux_private;
20bd723e
PV
612
613 bio_clone_blkcg_association(bio, bio_src);
59d276fe
KO
614}
615EXPORT_SYMBOL(__bio_clone_fast);
616
617/**
618 * bio_clone_fast - clone a bio that shares the original bio's biovec
619 * @bio: bio to clone
620 * @gfp_mask: allocation priority
621 * @bs: bio_set to allocate from
622 *
623 * Like __bio_clone_fast, only also allocates the returned bio
624 */
625struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
626{
627 struct bio *b;
628
629 b = bio_alloc_bioset(gfp_mask, 0, bs);
630 if (!b)
631 return NULL;
632
633 __bio_clone_fast(b, bio);
634
635 if (bio_integrity(bio)) {
636 int ret;
637
638 ret = bio_integrity_clone(b, bio, gfp_mask);
639
640 if (ret < 0) {
641 bio_put(b);
642 return NULL;
643 }
644 }
645
646 return b;
647}
648EXPORT_SYMBOL(bio_clone_fast);
649
f4595875
SL
650/**
651 * bio_clone_bioset - clone a bio
652 * @bio_src: bio to clone
653 * @gfp_mask: allocation priority
654 * @bs: bio_set to allocate from
655 *
656 * Clone bio. Caller will own the returned bio, but not the actual data it
657 * points to. Reference count of returned bio will be one.
658 */
659struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
660 struct bio_set *bs)
1da177e4 661{
bdb53207
KO
662 struct bvec_iter iter;
663 struct bio_vec bv;
664 struct bio *bio;
1da177e4 665
bdb53207
KO
666 /*
667 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
668 * bio_src->bi_io_vec to bio->bi_io_vec.
669 *
670 * We can't do that anymore, because:
671 *
672 * - The point of cloning the biovec is to produce a bio with a biovec
673 * the caller can modify: bi_idx and bi_bvec_done should be 0.
674 *
675 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
676 * we tried to clone the whole thing bio_alloc_bioset() would fail.
677 * But the clone should succeed as long as the number of biovecs we
678 * actually need to allocate is fewer than BIO_MAX_PAGES.
679 *
680 * - Lastly, bi_vcnt should not be looked at or relied upon by code
681 * that does not own the bio - reason being drivers don't use it for
682 * iterating over the biovec anymore, so expecting it to be kept up
683 * to date (i.e. for clones that share the parent biovec) is just
684 * asking for trouble and would force extra work on
685 * __bio_clone_fast() anyways.
686 */
687
f4595875 688 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
bdb53207 689 if (!bio)
7ba1ba12 690 return NULL;
74d46992 691 bio->bi_disk = bio_src->bi_disk;
1eff9d32 692 bio->bi_opf = bio_src->bi_opf;
cb6934f8 693 bio->bi_write_hint = bio_src->bi_write_hint;
bdb53207
KO
694 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
695 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
03c98711 696 bio->bi_aux_private = bio_src->bi_aux_private;
7ba1ba12 697
7afafc8a
AH
698 switch (bio_op(bio)) {
699 case REQ_OP_DISCARD:
700 case REQ_OP_SECURE_ERASE:
a6f0788e 701 case REQ_OP_WRITE_ZEROES:
7afafc8a
AH
702 break;
703 case REQ_OP_WRITE_SAME:
8423ae3d 704 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
7afafc8a
AH
705 break;
706 default:
f4595875 707 bio_for_each_segment(bv, bio_src, iter)
7afafc8a
AH
708 bio->bi_io_vec[bio->bi_vcnt++] = bv;
709 break;
8423ae3d
KO
710 }
711
bdb53207
KO
712 if (bio_integrity(bio_src)) {
713 int ret;
7ba1ba12 714
bdb53207 715 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
059ea331 716 if (ret < 0) {
bdb53207 717 bio_put(bio);
7ba1ba12 718 return NULL;
059ea331 719 }
3676347a 720 }
1da177e4 721
49e3bbe3
BK
722#ifdef CONFIG_CRYPTO_DISKCIPHER_DUN
723 bio->bi_iter.bi_dun = bio_src->bi_iter.bi_dun;
724#endif
20bd723e
PV
725 bio_clone_blkcg_association(bio, bio_src);
726
bdb53207 727 return bio;
1da177e4 728}
bf800ef1 729EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
730
731/**
c66a14d0
KO
732 * bio_add_pc_page - attempt to add page to bio
733 * @q: the target queue
734 * @bio: destination bio
735 * @page: page to add
736 * @len: vec entry length
737 * @offset: vec entry offset
1da177e4 738 *
c66a14d0
KO
739 * Attempt to add a page to the bio_vec maplist. This can fail for a
740 * number of reasons, such as the bio being full or target block device
741 * limitations. The target block device must allow bio's up to PAGE_SIZE,
742 * so it is always possible to add a single page to an empty bio.
743 *
744 * This should only be used by REQ_PC bios.
1da177e4 745 */
c66a14d0
KO
746int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
747 *page, unsigned int len, unsigned int offset)
1da177e4
LT
748{
749 int retried_segments = 0;
750 struct bio_vec *bvec;
751
752 /*
753 * cloned bio must not modify vec list
754 */
755 if (unlikely(bio_flagged(bio, BIO_CLONED)))
756 return 0;
757
c66a14d0 758 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
759 return 0;
760
80cfd548
JA
761 /*
762 * For filesystems with a blocksize smaller than the pagesize
763 * we will often be called with the same page as last time and
764 * a consecutive offset. Optimize this special case.
765 */
766 if (bio->bi_vcnt > 0) {
767 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
768
769 if (page == prev->bv_page &&
770 offset == prev->bv_offset + prev->bv_len) {
771 prev->bv_len += len;
fcbf6a08 772 bio->bi_iter.bi_size += len;
80cfd548
JA
773 goto done;
774 }
66cb45aa
JA
775
776 /*
777 * If the queue doesn't support SG gaps and adding this
778 * offset would create a gap, disallow it.
779 */
03100aad 780 if (bvec_gap_to_prev(q, prev, offset))
66cb45aa 781 return 0;
80cfd548
JA
782 }
783
784 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
785 return 0;
786
787 /*
fcbf6a08
ML
788 * setup the new entry, we might clear it again later if we
789 * cannot add the page
790 */
791 bvec = &bio->bi_io_vec[bio->bi_vcnt];
792 bvec->bv_page = page;
793 bvec->bv_len = len;
794 bvec->bv_offset = offset;
795 bio->bi_vcnt++;
796 bio->bi_phys_segments++;
797 bio->bi_iter.bi_size += len;
798
799 /*
800 * Perform a recount if the number of segments is greater
801 * than queue_max_segments(q).
1da177e4
LT
802 */
803
fcbf6a08 804 while (bio->bi_phys_segments > queue_max_segments(q)) {
1da177e4
LT
805
806 if (retried_segments)
fcbf6a08 807 goto failed;
1da177e4
LT
808
809 retried_segments = 1;
810 blk_recount_segments(q, bio);
811 }
812
1da177e4 813 /* If we may be able to merge these biovecs, force a recount */
fcbf6a08 814 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
b7c44ed9 815 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4 816
80cfd548 817 done:
1da177e4 818 return len;
fcbf6a08
ML
819
820 failed:
821 bvec->bv_page = NULL;
822 bvec->bv_len = 0;
823 bvec->bv_offset = 0;
824 bio->bi_vcnt--;
825 bio->bi_iter.bi_size -= len;
826 blk_recount_segments(q, bio);
827 return 0;
1da177e4 828}
a112a71d 829EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 830
1da177e4
LT
831/**
832 * bio_add_page - attempt to add page to bio
833 * @bio: destination bio
834 * @page: page to add
835 * @len: vec entry length
836 * @offset: vec entry offset
837 *
c66a14d0
KO
838 * Attempt to add a page to the bio_vec maplist. This will only fail
839 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1da177e4 840 */
c66a14d0
KO
841int bio_add_page(struct bio *bio, struct page *page,
842 unsigned int len, unsigned int offset)
1da177e4 843{
c66a14d0
KO
844 struct bio_vec *bv;
845
846 /*
847 * cloned bio must not modify vec list
848 */
849 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
850 return 0;
762380ad 851
c66a14d0
KO
852 /*
853 * For filesystems with a blocksize smaller than the pagesize
854 * we will often be called with the same page as last time and
855 * a consecutive offset. Optimize this special case.
856 */
857 if (bio->bi_vcnt > 0) {
858 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
58a4915a 859
c66a14d0
KO
860 if (page == bv->bv_page &&
861 offset == bv->bv_offset + bv->bv_len) {
862 bv->bv_len += len;
863 goto done;
864 }
865 }
866
867 if (bio->bi_vcnt >= bio->bi_max_vecs)
868 return 0;
869
870 bv = &bio->bi_io_vec[bio->bi_vcnt];
871 bv->bv_page = page;
872 bv->bv_len = len;
873 bv->bv_offset = offset;
874
875 bio->bi_vcnt++;
876done:
877 bio->bi_iter.bi_size += len;
878 return len;
1da177e4 879}
a112a71d 880EXPORT_SYMBOL(bio_add_page);
1da177e4 881
2cefe4db
KO
882/**
883 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
884 * @bio: bio to add pages to
885 * @iter: iov iterator describing the region to be mapped
886 *
887 * Pins as many pages from *iter and appends them to @bio's bvec array. The
888 * pages will have to be released using put_page() when done.
889 */
890int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
891{
892 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
893 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
894 struct page **pages = (struct page **)bv;
895 size_t offset, diff;
896 ssize_t size;
897
898 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
899 if (unlikely(size <= 0))
900 return size ? size : -EFAULT;
901 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
902
903 /*
904 * Deep magic below: We need to walk the pinned pages backwards
905 * because we are abusing the space allocated for the bio_vecs
906 * for the page array. Because the bio_vecs are larger than the
907 * page pointers by definition this will always work. But it also
908 * means we can't use bio_add_page, so any changes to it's semantics
909 * need to be reflected here as well.
910 */
911 bio->bi_iter.bi_size += size;
912 bio->bi_vcnt += nr_pages;
913
914 diff = (nr_pages * PAGE_SIZE - offset) - size;
915 while (nr_pages--) {
916 bv[nr_pages].bv_page = pages[nr_pages];
917 bv[nr_pages].bv_len = PAGE_SIZE;
918 bv[nr_pages].bv_offset = 0;
919 }
920
921 bv[0].bv_offset += offset;
922 bv[0].bv_len -= offset;
923 if (diff)
924 bv[bio->bi_vcnt - 1].bv_len -= diff;
925
926 iov_iter_advance(iter, size);
927 return 0;
928}
929EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
930
9e882242
KO
931struct submit_bio_ret {
932 struct completion event;
933 int error;
934};
935
4246a0b6 936static void submit_bio_wait_endio(struct bio *bio)
9e882242
KO
937{
938 struct submit_bio_ret *ret = bio->bi_private;
939
4e4cbee9 940 ret->error = blk_status_to_errno(bio->bi_status);
9e882242
KO
941 complete(&ret->event);
942}
943
944/**
945 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
946 * @bio: The &struct bio which describes the I/O
947 *
948 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
949 * bio_endio() on failure.
3d289d68
JK
950 *
951 * WARNING: Unlike to how submit_bio() is usually used, this function does not
952 * result in bio reference to be consumed. The caller must drop the reference
953 * on his own.
9e882242 954 */
4e49ea4a 955int submit_bio_wait(struct bio *bio)
9e882242
KO
956{
957 struct submit_bio_ret ret;
958
9e882242
KO
959 init_completion(&ret.event);
960 bio->bi_private = &ret;
961 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 962 bio->bi_opf |= REQ_SYNC;
4e49ea4a 963 submit_bio(bio);
d57d6115 964 wait_for_completion_io(&ret.event);
9e882242
KO
965
966 return ret.error;
967}
968EXPORT_SYMBOL(submit_bio_wait);
969
054bdf64
KO
970/**
971 * bio_advance - increment/complete a bio by some number of bytes
972 * @bio: bio to advance
973 * @bytes: number of bytes to complete
974 *
975 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
976 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
977 * be updated on the last bvec as well.
978 *
979 * @bio will then represent the remaining, uncompleted portion of the io.
980 */
981void bio_advance(struct bio *bio, unsigned bytes)
982{
983 if (bio_integrity(bio))
984 bio_integrity_advance(bio, bytes);
985
4550dd6c 986 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
987}
988EXPORT_SYMBOL(bio_advance);
989
a0787606
KO
990/**
991 * bio_alloc_pages - allocates a single page for each bvec in a bio
992 * @bio: bio to allocate pages for
993 * @gfp_mask: flags for allocation
994 *
995 * Allocates pages up to @bio->bi_vcnt.
996 *
997 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
998 * freed.
999 */
1000int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
1001{
1002 int i;
1003 struct bio_vec *bv;
1004
1005 bio_for_each_segment_all(bv, bio, i) {
1006 bv->bv_page = alloc_page(gfp_mask);
1007 if (!bv->bv_page) {
1008 while (--bv >= bio->bi_io_vec)
1009 __free_page(bv->bv_page);
1010 return -ENOMEM;
1011 }
1012 }
1013
1014 return 0;
1015}
1016EXPORT_SYMBOL(bio_alloc_pages);
1017
16ac3d63
KO
1018/**
1019 * bio_copy_data - copy contents of data buffers from one chain of bios to
1020 * another
1021 * @src: source bio list
1022 * @dst: destination bio list
1023 *
1024 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1025 * @src and @dst as linked lists of bios.
1026 *
1027 * Stops when it reaches the end of either @src or @dst - that is, copies
1028 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1029 */
1030void bio_copy_data(struct bio *dst, struct bio *src)
1031{
1cb9dda4
KO
1032 struct bvec_iter src_iter, dst_iter;
1033 struct bio_vec src_bv, dst_bv;
16ac3d63 1034 void *src_p, *dst_p;
1cb9dda4 1035 unsigned bytes;
16ac3d63 1036
1cb9dda4
KO
1037 src_iter = src->bi_iter;
1038 dst_iter = dst->bi_iter;
16ac3d63
KO
1039
1040 while (1) {
1cb9dda4
KO
1041 if (!src_iter.bi_size) {
1042 src = src->bi_next;
1043 if (!src)
1044 break;
16ac3d63 1045
1cb9dda4 1046 src_iter = src->bi_iter;
16ac3d63
KO
1047 }
1048
1cb9dda4
KO
1049 if (!dst_iter.bi_size) {
1050 dst = dst->bi_next;
1051 if (!dst)
1052 break;
16ac3d63 1053
1cb9dda4 1054 dst_iter = dst->bi_iter;
16ac3d63
KO
1055 }
1056
1cb9dda4
KO
1057 src_bv = bio_iter_iovec(src, src_iter);
1058 dst_bv = bio_iter_iovec(dst, dst_iter);
1059
1060 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1061
1cb9dda4
KO
1062 src_p = kmap_atomic(src_bv.bv_page);
1063 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1064
1cb9dda4
KO
1065 memcpy(dst_p + dst_bv.bv_offset,
1066 src_p + src_bv.bv_offset,
16ac3d63
KO
1067 bytes);
1068
1069 kunmap_atomic(dst_p);
1070 kunmap_atomic(src_p);
1071
1cb9dda4
KO
1072 bio_advance_iter(src, &src_iter, bytes);
1073 bio_advance_iter(dst, &dst_iter, bytes);
16ac3d63
KO
1074 }
1075}
1076EXPORT_SYMBOL(bio_copy_data);
1077
1da177e4 1078struct bio_map_data {
152e283f 1079 int is_our_pages;
26e49cfc
KO
1080 struct iov_iter iter;
1081 struct iovec iov[];
1da177e4
LT
1082};
1083
7410b3c6 1084static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
76029ff3 1085 gfp_t gfp_mask)
1da177e4 1086{
f3f63c1c
JA
1087 if (iov_count > UIO_MAXIOV)
1088 return NULL;
1da177e4 1089
c8db4448 1090 return kmalloc(sizeof(struct bio_map_data) +
26e49cfc 1091 sizeof(struct iovec) * iov_count, gfp_mask);
1da177e4
LT
1092}
1093
9124d3fe
DP
1094/**
1095 * bio_copy_from_iter - copy all pages from iov_iter to bio
1096 * @bio: The &struct bio which describes the I/O as destination
1097 * @iter: iov_iter as source
1098 *
1099 * Copy all pages from iov_iter to bio.
1100 * Returns 0 on success, or error on failure.
1101 */
1102static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
c5dec1c3 1103{
9124d3fe 1104 int i;
c5dec1c3 1105 struct bio_vec *bvec;
c5dec1c3 1106
d74c6d51 1107 bio_for_each_segment_all(bvec, bio, i) {
9124d3fe 1108 ssize_t ret;
c5dec1c3 1109
9124d3fe
DP
1110 ret = copy_page_from_iter(bvec->bv_page,
1111 bvec->bv_offset,
1112 bvec->bv_len,
1113 &iter);
1114
1115 if (!iov_iter_count(&iter))
1116 break;
1117
1118 if (ret < bvec->bv_len)
1119 return -EFAULT;
c5dec1c3
FT
1120 }
1121
9124d3fe
DP
1122 return 0;
1123}
1124
1125/**
1126 * bio_copy_to_iter - copy all pages from bio to iov_iter
1127 * @bio: The &struct bio which describes the I/O as source
1128 * @iter: iov_iter as destination
1129 *
1130 * Copy all pages from bio to iov_iter.
1131 * Returns 0 on success, or error on failure.
1132 */
1133static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1134{
1135 int i;
1136 struct bio_vec *bvec;
1137
1138 bio_for_each_segment_all(bvec, bio, i) {
1139 ssize_t ret;
1140
1141 ret = copy_page_to_iter(bvec->bv_page,
1142 bvec->bv_offset,
1143 bvec->bv_len,
1144 &iter);
1145
1146 if (!iov_iter_count(&iter))
1147 break;
1148
1149 if (ret < bvec->bv_len)
1150 return -EFAULT;
1151 }
1152
1153 return 0;
c5dec1c3
FT
1154}
1155
491221f8 1156void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1157{
1158 struct bio_vec *bvec;
1159 int i;
1160
1161 bio_for_each_segment_all(bvec, bio, i)
1162 __free_page(bvec->bv_page);
1163}
491221f8 1164EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1165
1da177e4
LT
1166/**
1167 * bio_uncopy_user - finish previously mapped bio
1168 * @bio: bio being terminated
1169 *
ddad8dd0 1170 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1171 * to user space in case of a read.
1172 */
1173int bio_uncopy_user(struct bio *bio)
1174{
1175 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1176 int ret = 0;
1da177e4 1177
35dc2483
RD
1178 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1179 /*
1180 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1181 * don't copy into a random user address space, just free
1182 * and return -EINTR so user space doesn't expect any data.
35dc2483 1183 */
2d99b55d
HR
1184 if (!current->mm)
1185 ret = -EINTR;
1186 else if (bio_data_dir(bio) == READ)
9124d3fe 1187 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1188 if (bmd->is_our_pages)
1189 bio_free_pages(bio);
35dc2483 1190 }
c8db4448 1191 kfree(bmd);
1da177e4
LT
1192 bio_put(bio);
1193 return ret;
1194}
1195
1196/**
c5dec1c3 1197 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1198 * @q: destination block queue
1199 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1200 * @iter: iovec iterator
1201 * @gfp_mask: memory allocation flags
1da177e4
LT
1202 *
1203 * Prepares and returns a bio for indirect user io, bouncing data
1204 * to/from kernel pages as necessary. Must be paired with
1205 * call bio_uncopy_user() on io completion.
1206 */
152e283f
FT
1207struct bio *bio_copy_user_iov(struct request_queue *q,
1208 struct rq_map_data *map_data,
26e49cfc
KO
1209 const struct iov_iter *iter,
1210 gfp_t gfp_mask)
1da177e4 1211{
1da177e4 1212 struct bio_map_data *bmd;
1da177e4
LT
1213 struct page *page;
1214 struct bio *bio;
1215 int i, ret;
c5dec1c3 1216 int nr_pages = 0;
26e49cfc 1217 unsigned int len = iter->count;
bd5cecea 1218 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1219
26e49cfc 1220 for (i = 0; i < iter->nr_segs; i++) {
c5dec1c3
FT
1221 unsigned long uaddr;
1222 unsigned long end;
1223 unsigned long start;
1224
26e49cfc
KO
1225 uaddr = (unsigned long) iter->iov[i].iov_base;
1226 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1227 >> PAGE_SHIFT;
c5dec1c3
FT
1228 start = uaddr >> PAGE_SHIFT;
1229
cb4644ca
JA
1230 /*
1231 * Overflow, abort
1232 */
1233 if (end < start)
1234 return ERR_PTR(-EINVAL);
1235
c5dec1c3 1236 nr_pages += end - start;
c5dec1c3
FT
1237 }
1238
69838727
FT
1239 if (offset)
1240 nr_pages++;
1241
26e49cfc 1242 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1da177e4
LT
1243 if (!bmd)
1244 return ERR_PTR(-ENOMEM);
1245
26e49cfc
KO
1246 /*
1247 * We need to do a deep copy of the iov_iter including the iovecs.
1248 * The caller provided iov might point to an on-stack or otherwise
1249 * shortlived one.
1250 */
1251 bmd->is_our_pages = map_data ? 0 : 1;
1252 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1cfd0ddd
AV
1253 bmd->iter = *iter;
1254 bmd->iter.iov = bmd->iov;
26e49cfc 1255
1da177e4 1256 ret = -ENOMEM;
a9e9dc24 1257 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1258 if (!bio)
1259 goto out_bmd;
1260
1da177e4 1261 ret = 0;
56c451f4
FT
1262
1263 if (map_data) {
e623ddb4 1264 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1265 i = map_data->offset / PAGE_SIZE;
1266 }
1da177e4 1267 while (len) {
e623ddb4 1268 unsigned int bytes = PAGE_SIZE;
1da177e4 1269
56c451f4
FT
1270 bytes -= offset;
1271
1da177e4
LT
1272 if (bytes > len)
1273 bytes = len;
1274
152e283f 1275 if (map_data) {
e623ddb4 1276 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1277 ret = -ENOMEM;
1278 break;
1279 }
e623ddb4
FT
1280
1281 page = map_data->pages[i / nr_pages];
1282 page += (i % nr_pages);
1283
1284 i++;
1285 } else {
152e283f 1286 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1287 if (!page) {
1288 ret = -ENOMEM;
1289 break;
1290 }
1da177e4
LT
1291 }
1292
56c451f4 1293 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1294 break;
1da177e4
LT
1295
1296 len -= bytes;
56c451f4 1297 offset = 0;
1da177e4
LT
1298 }
1299
1300 if (ret)
1301 goto cleanup;
1302
1303 /*
1304 * success
1305 */
26e49cfc 1306 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1307 (map_data && map_data->from_user)) {
9124d3fe 1308 ret = bio_copy_from_iter(bio, *iter);
c5dec1c3
FT
1309 if (ret)
1310 goto cleanup;
1da177e4
LT
1311 }
1312
26e49cfc 1313 bio->bi_private = bmd;
1da177e4
LT
1314 return bio;
1315cleanup:
152e283f 1316 if (!map_data)
1dfa0f68 1317 bio_free_pages(bio);
1da177e4
LT
1318 bio_put(bio);
1319out_bmd:
c8db4448 1320 kfree(bmd);
1da177e4
LT
1321 return ERR_PTR(ret);
1322}
1323
37f19e57
CH
1324/**
1325 * bio_map_user_iov - map user iovec into bio
1326 * @q: the struct request_queue for the bio
1327 * @iter: iovec iterator
1328 * @gfp_mask: memory allocation flags
1329 *
1330 * Map the user space address into a bio suitable for io to a block
1331 * device. Returns an error pointer in case of error.
1332 */
1333struct bio *bio_map_user_iov(struct request_queue *q,
1334 const struct iov_iter *iter,
1335 gfp_t gfp_mask)
1da177e4 1336{
26e49cfc 1337 int j;
f1970baf 1338 int nr_pages = 0;
1da177e4
LT
1339 struct page **pages;
1340 struct bio *bio;
f1970baf
JB
1341 int cur_page = 0;
1342 int ret, offset;
26e49cfc
KO
1343 struct iov_iter i;
1344 struct iovec iov;
2b04e8f6 1345 struct bio_vec *bvec;
1da177e4 1346
26e49cfc
KO
1347 iov_for_each(iov, i, *iter) {
1348 unsigned long uaddr = (unsigned long) iov.iov_base;
1349 unsigned long len = iov.iov_len;
f1970baf
JB
1350 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1351 unsigned long start = uaddr >> PAGE_SHIFT;
1352
cb4644ca
JA
1353 /*
1354 * Overflow, abort
1355 */
1356 if (end < start)
1357 return ERR_PTR(-EINVAL);
1358
f1970baf
JB
1359 nr_pages += end - start;
1360 /*
a441b0d0 1361 * buffer must be aligned to at least logical block size for now
f1970baf 1362 */
ad2d7225 1363 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
1364 return ERR_PTR(-EINVAL);
1365 }
1366
1367 if (!nr_pages)
1da177e4
LT
1368 return ERR_PTR(-EINVAL);
1369
a9e9dc24 1370 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1371 if (!bio)
1372 return ERR_PTR(-ENOMEM);
1373
1374 ret = -ENOMEM;
a3bce90e 1375 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
1376 if (!pages)
1377 goto out;
1378
26e49cfc
KO
1379 iov_for_each(iov, i, *iter) {
1380 unsigned long uaddr = (unsigned long) iov.iov_base;
1381 unsigned long len = iov.iov_len;
f1970baf
JB
1382 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1383 unsigned long start = uaddr >> PAGE_SHIFT;
1384 const int local_nr_pages = end - start;
1385 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1386
f5dd33c4 1387 ret = get_user_pages_fast(uaddr, local_nr_pages,
26e49cfc
KO
1388 (iter->type & WRITE) != WRITE,
1389 &pages[cur_page]);
2b04e8f6
AV
1390 if (unlikely(ret < local_nr_pages)) {
1391 for (j = cur_page; j < page_limit; j++) {
1392 if (!pages[j])
1393 break;
1394 put_page(pages[j]);
1395 }
99172157 1396 ret = -EFAULT;
f1970baf 1397 goto out_unmap;
99172157 1398 }
f1970baf 1399
bd5cecea 1400 offset = offset_in_page(uaddr);
f1970baf
JB
1401 for (j = cur_page; j < page_limit; j++) {
1402 unsigned int bytes = PAGE_SIZE - offset;
95d78c28 1403 unsigned short prev_bi_vcnt = bio->bi_vcnt;
f1970baf
JB
1404
1405 if (len <= 0)
1406 break;
1407
1408 if (bytes > len)
1409 bytes = len;
1410
1411 /*
1412 * sorry...
1413 */
defd94b7
MC
1414 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1415 bytes)
f1970baf
JB
1416 break;
1417
95d78c28
VM
1418 /*
1419 * check if vector was merged with previous
1420 * drop page reference if needed
1421 */
1422 if (bio->bi_vcnt == prev_bi_vcnt)
1423 put_page(pages[j]);
1424
f1970baf
JB
1425 len -= bytes;
1426 offset = 0;
1427 }
1da177e4 1428
f1970baf 1429 cur_page = j;
1da177e4 1430 /*
f1970baf 1431 * release the pages we didn't map into the bio, if any
1da177e4 1432 */
f1970baf 1433 while (j < page_limit)
09cbfeaf 1434 put_page(pages[j++]);
1da177e4
LT
1435 }
1436
1da177e4
LT
1437 kfree(pages);
1438
b7c44ed9 1439 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1440
1441 /*
5fad1b64 1442 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1443 * it would normally disappear when its bi_end_io is run.
1444 * however, we need it for the unmap, so grab an extra
1445 * reference to it
1446 */
1447 bio_get(bio);
1da177e4 1448 return bio;
f1970baf
JB
1449
1450 out_unmap:
2b04e8f6
AV
1451 bio_for_each_segment_all(bvec, bio, j) {
1452 put_page(bvec->bv_page);
f1970baf
JB
1453 }
1454 out:
1da177e4
LT
1455 kfree(pages);
1456 bio_put(bio);
1457 return ERR_PTR(ret);
1458}
1459
1da177e4
LT
1460static void __bio_unmap_user(struct bio *bio)
1461{
1462 struct bio_vec *bvec;
1463 int i;
1464
1465 /*
1466 * make sure we dirty pages we wrote to
1467 */
d74c6d51 1468 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1469 if (bio_data_dir(bio) == READ)
1470 set_page_dirty_lock(bvec->bv_page);
1471
09cbfeaf 1472 put_page(bvec->bv_page);
1da177e4
LT
1473 }
1474
1475 bio_put(bio);
1476}
1477
1478/**
1479 * bio_unmap_user - unmap a bio
1480 * @bio: the bio being unmapped
1481 *
5fad1b64
BVA
1482 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1483 * process context.
1da177e4
LT
1484 *
1485 * bio_unmap_user() may sleep.
1486 */
1487void bio_unmap_user(struct bio *bio)
1488{
1489 __bio_unmap_user(bio);
1490 bio_put(bio);
1491}
1492
4246a0b6 1493static void bio_map_kern_endio(struct bio *bio)
b823825e 1494{
b823825e 1495 bio_put(bio);
b823825e
JA
1496}
1497
75c72b83
CH
1498/**
1499 * bio_map_kern - map kernel address into bio
1500 * @q: the struct request_queue for the bio
1501 * @data: pointer to buffer to map
1502 * @len: length in bytes
1503 * @gfp_mask: allocation flags for bio allocation
1504 *
1505 * Map the kernel address into a bio suitable for io to a block
1506 * device. Returns an error pointer in case of error.
1507 */
1508struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1509 gfp_t gfp_mask)
df46b9a4
MC
1510{
1511 unsigned long kaddr = (unsigned long)data;
1512 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1513 unsigned long start = kaddr >> PAGE_SHIFT;
1514 const int nr_pages = end - start;
1515 int offset, i;
1516 struct bio *bio;
1517
a9e9dc24 1518 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1519 if (!bio)
1520 return ERR_PTR(-ENOMEM);
1521
1522 offset = offset_in_page(kaddr);
1523 for (i = 0; i < nr_pages; i++) {
1524 unsigned int bytes = PAGE_SIZE - offset;
1525
1526 if (len <= 0)
1527 break;
1528
1529 if (bytes > len)
1530 bytes = len;
1531
defd94b7 1532 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1533 offset) < bytes) {
1534 /* we don't support partial mappings */
1535 bio_put(bio);
1536 return ERR_PTR(-EINVAL);
1537 }
df46b9a4
MC
1538
1539 data += bytes;
1540 len -= bytes;
1541 offset = 0;
1542 }
1543
b823825e 1544 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1545 return bio;
1546}
a112a71d 1547EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1548
4246a0b6 1549static void bio_copy_kern_endio(struct bio *bio)
68154e90 1550{
1dfa0f68
CH
1551 bio_free_pages(bio);
1552 bio_put(bio);
1553}
1554
4246a0b6 1555static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1556{
42d2683a 1557 char *p = bio->bi_private;
1dfa0f68 1558 struct bio_vec *bvec;
68154e90
FT
1559 int i;
1560
d74c6d51 1561 bio_for_each_segment_all(bvec, bio, i) {
1dfa0f68 1562 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1563 p += bvec->bv_len;
68154e90
FT
1564 }
1565
4246a0b6 1566 bio_copy_kern_endio(bio);
68154e90
FT
1567}
1568
1569/**
1570 * bio_copy_kern - copy kernel address into bio
1571 * @q: the struct request_queue for the bio
1572 * @data: pointer to buffer to copy
1573 * @len: length in bytes
1574 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1575 * @reading: data direction is READ
68154e90
FT
1576 *
1577 * copy the kernel address into a bio suitable for io to a block
1578 * device. Returns an error pointer in case of error.
1579 */
1580struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1581 gfp_t gfp_mask, int reading)
1582{
42d2683a
CH
1583 unsigned long kaddr = (unsigned long)data;
1584 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1585 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1586 struct bio *bio;
1587 void *p = data;
1dfa0f68 1588 int nr_pages = 0;
68154e90 1589
42d2683a
CH
1590 /*
1591 * Overflow, abort
1592 */
1593 if (end < start)
1594 return ERR_PTR(-EINVAL);
68154e90 1595
42d2683a
CH
1596 nr_pages = end - start;
1597 bio = bio_kmalloc(gfp_mask, nr_pages);
1598 if (!bio)
1599 return ERR_PTR(-ENOMEM);
68154e90 1600
42d2683a
CH
1601 while (len) {
1602 struct page *page;
1603 unsigned int bytes = PAGE_SIZE;
68154e90 1604
42d2683a
CH
1605 if (bytes > len)
1606 bytes = len;
1607
1608 page = alloc_page(q->bounce_gfp | gfp_mask);
1609 if (!page)
1610 goto cleanup;
1611
1612 if (!reading)
1613 memcpy(page_address(page), p, bytes);
1614
1615 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1616 break;
1617
1618 len -= bytes;
1619 p += bytes;
68154e90
FT
1620 }
1621
1dfa0f68
CH
1622 if (reading) {
1623 bio->bi_end_io = bio_copy_kern_endio_read;
1624 bio->bi_private = data;
1625 } else {
1626 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1627 }
76029ff3 1628
68154e90 1629 return bio;
42d2683a
CH
1630
1631cleanup:
1dfa0f68 1632 bio_free_pages(bio);
42d2683a
CH
1633 bio_put(bio);
1634 return ERR_PTR(-ENOMEM);
68154e90
FT
1635}
1636
1da177e4
LT
1637/*
1638 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1639 * for performing direct-IO in BIOs.
1640 *
1641 * The problem is that we cannot run set_page_dirty() from interrupt context
1642 * because the required locks are not interrupt-safe. So what we can do is to
1643 * mark the pages dirty _before_ performing IO. And in interrupt context,
1644 * check that the pages are still dirty. If so, fine. If not, redirty them
1645 * in process context.
1646 *
1647 * We special-case compound pages here: normally this means reads into hugetlb
1648 * pages. The logic in here doesn't really work right for compound pages
1649 * because the VM does not uniformly chase down the head page in all cases.
1650 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1651 * handle them at all. So we skip compound pages here at an early stage.
1652 *
1653 * Note that this code is very hard to test under normal circumstances because
1654 * direct-io pins the pages with get_user_pages(). This makes
1655 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1656 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1657 * pagecache.
1658 *
1659 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1660 * deferred bio dirtying paths.
1661 */
1662
1663/*
1664 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1665 */
1666void bio_set_pages_dirty(struct bio *bio)
1667{
cb34e057 1668 struct bio_vec *bvec;
1da177e4
LT
1669 int i;
1670
cb34e057
KO
1671 bio_for_each_segment_all(bvec, bio, i) {
1672 struct page *page = bvec->bv_page;
1da177e4
LT
1673
1674 if (page && !PageCompound(page))
1675 set_page_dirty_lock(page);
1676 }
1677}
1678
86b6c7a7 1679static void bio_release_pages(struct bio *bio)
1da177e4 1680{
cb34e057 1681 struct bio_vec *bvec;
1da177e4
LT
1682 int i;
1683
cb34e057
KO
1684 bio_for_each_segment_all(bvec, bio, i) {
1685 struct page *page = bvec->bv_page;
1da177e4
LT
1686
1687 if (page)
1688 put_page(page);
1689 }
1690}
1691
1692/*
1693 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1694 * If they are, then fine. If, however, some pages are clean then they must
1695 * have been written out during the direct-IO read. So we take another ref on
1696 * the BIO and the offending pages and re-dirty the pages in process context.
1697 *
1698 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1699 * here on. It will run one put_page() against each page and will run one
1700 * bio_put() against the BIO.
1da177e4
LT
1701 */
1702
65f27f38 1703static void bio_dirty_fn(struct work_struct *work);
1da177e4 1704
65f27f38 1705static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1706static DEFINE_SPINLOCK(bio_dirty_lock);
1707static struct bio *bio_dirty_list;
1708
1709/*
1710 * This runs in process context
1711 */
65f27f38 1712static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1713{
1714 unsigned long flags;
1715 struct bio *bio;
1716
1717 spin_lock_irqsave(&bio_dirty_lock, flags);
1718 bio = bio_dirty_list;
1719 bio_dirty_list = NULL;
1720 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1721
1722 while (bio) {
1723 struct bio *next = bio->bi_private;
1724
1725 bio_set_pages_dirty(bio);
1726 bio_release_pages(bio);
1727 bio_put(bio);
1728 bio = next;
1729 }
1730}
1731
1732void bio_check_pages_dirty(struct bio *bio)
1733{
cb34e057 1734 struct bio_vec *bvec;
1da177e4
LT
1735 int nr_clean_pages = 0;
1736 int i;
1737
cb34e057
KO
1738 bio_for_each_segment_all(bvec, bio, i) {
1739 struct page *page = bvec->bv_page;
1da177e4
LT
1740
1741 if (PageDirty(page) || PageCompound(page)) {
09cbfeaf 1742 put_page(page);
cb34e057 1743 bvec->bv_page = NULL;
1da177e4
LT
1744 } else {
1745 nr_clean_pages++;
1746 }
1747 }
1748
1749 if (nr_clean_pages) {
1750 unsigned long flags;
1751
1752 spin_lock_irqsave(&bio_dirty_lock, flags);
1753 bio->bi_private = bio_dirty_list;
1754 bio_dirty_list = bio;
1755 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1756 schedule_work(&bio_dirty_work);
1757 } else {
1758 bio_put(bio);
1759 }
1760}
1761
d62e26b3
JA
1762void generic_start_io_acct(struct request_queue *q, int rw,
1763 unsigned long sectors, struct hd_struct *part)
394ffa50
GZ
1764{
1765 int cpu = part_stat_lock();
1766
d62e26b3 1767 part_round_stats(q, cpu, part);
394ffa50
GZ
1768 part_stat_inc(cpu, part, ios[rw]);
1769 part_stat_add(cpu, part, sectors[rw], sectors);
d62e26b3 1770 part_inc_in_flight(q, part, rw);
394ffa50
GZ
1771
1772 part_stat_unlock();
1773}
1774EXPORT_SYMBOL(generic_start_io_acct);
1775
d62e26b3
JA
1776void generic_end_io_acct(struct request_queue *q, int rw,
1777 struct hd_struct *part, unsigned long start_time)
394ffa50
GZ
1778{
1779 unsigned long duration = jiffies - start_time;
1780 int cpu = part_stat_lock();
1781
1782 part_stat_add(cpu, part, ticks[rw], duration);
d62e26b3
JA
1783 part_round_stats(q, cpu, part);
1784 part_dec_in_flight(q, part, rw);
394ffa50
GZ
1785
1786 part_stat_unlock();
1787}
1788EXPORT_SYMBOL(generic_end_io_acct);
1789
2d4dc890
IL
1790#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1791void bio_flush_dcache_pages(struct bio *bi)
1792{
7988613b
KO
1793 struct bio_vec bvec;
1794 struct bvec_iter iter;
2d4dc890 1795
7988613b
KO
1796 bio_for_each_segment(bvec, bi, iter)
1797 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1798}
1799EXPORT_SYMBOL(bio_flush_dcache_pages);
1800#endif
1801
c4cf5261
JA
1802static inline bool bio_remaining_done(struct bio *bio)
1803{
1804 /*
1805 * If we're not chaining, then ->__bi_remaining is always 1 and
1806 * we always end io on the first invocation.
1807 */
1808 if (!bio_flagged(bio, BIO_CHAIN))
1809 return true;
1810
1811 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1812
326e1dbb 1813 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1814 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1815 return true;
326e1dbb 1816 }
c4cf5261
JA
1817
1818 return false;
1819}
1820
1da177e4
LT
1821/**
1822 * bio_endio - end I/O on a bio
1823 * @bio: bio
1da177e4
LT
1824 *
1825 * Description:
4246a0b6
CH
1826 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1827 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1828 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1829 *
1830 * bio_endio() can be called several times on a bio that has been chained
1831 * using bio_chain(). The ->bi_end_io() function will only be called the
1832 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1833 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1834 **/
4246a0b6 1835void bio_endio(struct bio *bio)
1da177e4 1836{
ba8c6967 1837again:
2b885517 1838 if (!bio_remaining_done(bio))
ba8c6967 1839 return;
7c20f116
CH
1840 if (!bio_integrity_endio(bio))
1841 return;
1da177e4 1842
ba8c6967
CH
1843 /*
1844 * Need to have a real endio function for chained bios, otherwise
1845 * various corner cases will break (like stacking block devices that
1846 * save/restore bi_end_io) - however, we want to avoid unbounded
1847 * recursion and blowing the stack. Tail call optimization would
1848 * handle this, but compiling with frame pointers also disables
1849 * gcc's sibling call optimization.
1850 */
1851 if (bio->bi_end_io == bio_chain_endio) {
1852 bio = __bio_chain_endio(bio);
1853 goto again;
196d38bc 1854 }
ba8c6967 1855
74d46992
CH
1856 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1857 trace_block_bio_complete(bio->bi_disk->queue, bio,
a462b950 1858 blk_status_to_errno(bio->bi_status));
fbbaf700
N
1859 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1860 }
1861
9e234eea 1862 blk_throtl_bio_endio(bio);
b222dd2f
SL
1863 /* release cgroup info */
1864 bio_uninit(bio);
ba8c6967
CH
1865 if (bio->bi_end_io)
1866 bio->bi_end_io(bio);
1da177e4 1867}
a112a71d 1868EXPORT_SYMBOL(bio_endio);
1da177e4 1869
20d0189b
KO
1870/**
1871 * bio_split - split a bio
1872 * @bio: bio to split
1873 * @sectors: number of sectors to split from the front of @bio
1874 * @gfp: gfp mask
1875 * @bs: bio set to allocate from
1876 *
1877 * Allocates and returns a new bio which represents @sectors from the start of
1878 * @bio, and updates @bio to represent the remaining sectors.
1879 *
f3f5da62
MP
1880 * Unless this is a discard request the newly allocated bio will point
1881 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1882 * @bio is not freed before the split.
20d0189b
KO
1883 */
1884struct bio *bio_split(struct bio *bio, int sectors,
1885 gfp_t gfp, struct bio_set *bs)
1886{
1887 struct bio *split = NULL;
1888
1889 BUG_ON(sectors <= 0);
1890 BUG_ON(sectors >= bio_sectors(bio));
1891
f9d03f96 1892 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1893 if (!split)
1894 return NULL;
1895
1896 split->bi_iter.bi_size = sectors << 9;
1897
1898 if (bio_integrity(split))
fbd08e76 1899 bio_integrity_trim(split);
20d0189b
KO
1900
1901 bio_advance(bio, split->bi_iter.bi_size);
1902
fbbaf700 1903 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
c6c6e38a 1904 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1905
20d0189b
KO
1906 return split;
1907}
1908EXPORT_SYMBOL(bio_split);
1909
6678d83f
KO
1910/**
1911 * bio_trim - trim a bio
1912 * @bio: bio to trim
1913 * @offset: number of sectors to trim from the front of @bio
1914 * @size: size we want to trim @bio to, in sectors
1915 */
1916void bio_trim(struct bio *bio, int offset, int size)
1917{
1918 /* 'bio' is a cloned bio which we need to trim to match
1919 * the given offset and size.
6678d83f 1920 */
6678d83f
KO
1921
1922 size <<= 9;
4f024f37 1923 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1924 return;
1925
b7c44ed9 1926 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1927
1928 bio_advance(bio, offset << 9);
1929
4f024f37 1930 bio->bi_iter.bi_size = size;
376a78ab
DM
1931
1932 if (bio_integrity(bio))
fbd08e76 1933 bio_integrity_trim(bio);
376a78ab 1934
6678d83f
KO
1935}
1936EXPORT_SYMBOL_GPL(bio_trim);
1937
1da177e4
LT
1938/*
1939 * create memory pools for biovec's in a bio_set.
1940 * use the global biovec slabs created for general use.
1941 */
a6c39cb4 1942mempool_t *biovec_create_pool(int pool_entries)
1da177e4 1943{
ed996a52 1944 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1945
9f060e22 1946 return mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1947}
1948
1949void bioset_free(struct bio_set *bs)
1950{
df2cb6da
KO
1951 if (bs->rescue_workqueue)
1952 destroy_workqueue(bs->rescue_workqueue);
1953
1da177e4
LT
1954 if (bs->bio_pool)
1955 mempool_destroy(bs->bio_pool);
1956
9f060e22
KO
1957 if (bs->bvec_pool)
1958 mempool_destroy(bs->bvec_pool);
1959
7878cba9 1960 bioset_integrity_free(bs);
bb799ca0 1961 bio_put_slab(bs);
1da177e4
LT
1962
1963 kfree(bs);
1964}
a112a71d 1965EXPORT_SYMBOL(bioset_free);
1da177e4 1966
011067b0
N
1967/**
1968 * bioset_create - Create a bio_set
1969 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1970 * @front_pad: Number of bytes to allocate in front of the returned bio
47e0fb46
N
1971 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1972 * and %BIOSET_NEED_RESCUER
011067b0
N
1973 *
1974 * Description:
1975 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1976 * to ask for a number of bytes to be allocated in front of the bio.
1977 * Front pad allocation is useful for embedding the bio inside
1978 * another structure, to avoid allocating extra data to go with the bio.
1979 * Note that the bio must be embedded at the END of that structure always,
1980 * or things will break badly.
1981 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1982 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
47e0fb46
N
1983 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1984 * dispatch queued requests when the mempool runs out of space.
011067b0
N
1985 *
1986 */
1987struct bio_set *bioset_create(unsigned int pool_size,
1988 unsigned int front_pad,
1989 int flags)
1da177e4 1990{
392ddc32 1991 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1992 struct bio_set *bs;
1da177e4 1993
1b434498 1994 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1995 if (!bs)
1996 return NULL;
1997
bb799ca0 1998 bs->front_pad = front_pad;
1b434498 1999
df2cb6da
KO
2000 spin_lock_init(&bs->rescue_lock);
2001 bio_list_init(&bs->rescue_list);
2002 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
2003
392ddc32 2004 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
2005 if (!bs->bio_slab) {
2006 kfree(bs);
2007 return NULL;
2008 }
2009
2010 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
2011 if (!bs->bio_pool)
2012 goto bad;
2013
011067b0 2014 if (flags & BIOSET_NEED_BVECS) {
d8f429e1
JN
2015 bs->bvec_pool = biovec_create_pool(pool_size);
2016 if (!bs->bvec_pool)
2017 goto bad;
2018 }
df2cb6da 2019
47e0fb46
N
2020 if (!(flags & BIOSET_NEED_RESCUER))
2021 return bs;
2022
df2cb6da
KO
2023 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2024 if (!bs->rescue_workqueue)
2025 goto bad;
1da177e4 2026
df2cb6da 2027 return bs;
1da177e4
LT
2028bad:
2029 bioset_free(bs);
2030 return NULL;
2031}
a112a71d 2032EXPORT_SYMBOL(bioset_create);
1da177e4 2033
852c788f 2034#ifdef CONFIG_BLK_CGROUP
1d933cf0
TH
2035
2036/**
2037 * bio_associate_blkcg - associate a bio with the specified blkcg
2038 * @bio: target bio
2039 * @blkcg_css: css of the blkcg to associate
2040 *
2041 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2042 * treat @bio as if it were issued by a task which belongs to the blkcg.
2043 *
2044 * This function takes an extra reference of @blkcg_css which will be put
2045 * when @bio is released. The caller must own @bio and is responsible for
2046 * synchronizing calls to this function.
2047 */
2048int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2049{
2050 if (unlikely(bio->bi_css))
2051 return -EBUSY;
2052 css_get(blkcg_css);
2053 bio->bi_css = blkcg_css;
2054 return 0;
2055}
5aa2a96b 2056EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1d933cf0 2057
852c788f
TH
2058/**
2059 * bio_associate_current - associate a bio with %current
2060 * @bio: target bio
2061 *
2062 * Associate @bio with %current if it hasn't been associated yet. Block
2063 * layer will treat @bio as if it were issued by %current no matter which
2064 * task actually issues it.
2065 *
2066 * This function takes an extra reference of @task's io_context and blkcg
2067 * which will be put when @bio is released. The caller must own @bio,
2068 * ensure %current->io_context exists, and is responsible for synchronizing
2069 * calls to this function.
2070 */
2071int bio_associate_current(struct bio *bio)
2072{
2073 struct io_context *ioc;
852c788f 2074
1d933cf0 2075 if (bio->bi_css)
852c788f
TH
2076 return -EBUSY;
2077
2078 ioc = current->io_context;
2079 if (!ioc)
2080 return -ENOENT;
2081
852c788f
TH
2082 get_io_context_active(ioc);
2083 bio->bi_ioc = ioc;
c165b3e3 2084 bio->bi_css = task_get_css(current, io_cgrp_id);
852c788f
TH
2085 return 0;
2086}
5aa2a96b 2087EXPORT_SYMBOL_GPL(bio_associate_current);
852c788f
TH
2088
2089/**
2090 * bio_disassociate_task - undo bio_associate_current()
2091 * @bio: target bio
2092 */
2093void bio_disassociate_task(struct bio *bio)
2094{
2095 if (bio->bi_ioc) {
2096 put_io_context(bio->bi_ioc);
2097 bio->bi_ioc = NULL;
2098 }
2099 if (bio->bi_css) {
2100 css_put(bio->bi_css);
2101 bio->bi_css = NULL;
2102 }
2103}
2104
20bd723e
PV
2105/**
2106 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2107 * @dst: destination bio
2108 * @src: source bio
2109 */
2110void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2111{
2112 if (src->bi_css)
2113 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2114}
8a8e6f84 2115EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
852c788f
TH
2116#endif /* CONFIG_BLK_CGROUP */
2117
1da177e4
LT
2118static void __init biovec_init_slabs(void)
2119{
2120 int i;
2121
ed996a52 2122 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2123 int size;
2124 struct biovec_slab *bvs = bvec_slabs + i;
2125
a7fcd37c
JA
2126 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2127 bvs->slab = NULL;
2128 continue;
2129 }
a7fcd37c 2130
1da177e4
LT
2131 size = bvs->nr_vecs * sizeof(struct bio_vec);
2132 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2133 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2134 }
2135}
2136
2137static int __init init_bio(void)
2138{
bb799ca0
JA
2139 bio_slab_max = 2;
2140 bio_slab_nr = 0;
2141 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2142 if (!bio_slabs)
2143 panic("bio: can't allocate bios\n");
1da177e4 2144
7878cba9 2145 bio_integrity_init();
1da177e4
LT
2146 biovec_init_slabs();
2147
011067b0 2148 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1da177e4
LT
2149 if (!fs_bio_set)
2150 panic("bio: can't allocate bios\n");
2151
a91a2785
MP
2152 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2153 panic("bio: can't create integrity pool\n");
2154
1da177e4
LT
2155 return 0;
2156}
1da177e4 2157subsys_initcall(init_bio);