[PATCH] splice: retrieve mapping after locking the page
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / as-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Anticipatory & deadline i/o scheduler.
3 *
4 * Copyright (C) 2002 Jens Axboe <axboe@suse.de>
f5b3db00 5 * Nick Piggin <nickpiggin@yahoo.com.au>
1da177e4
LT
6 *
7 */
8#include <linux/kernel.h>
9#include <linux/fs.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/bio.h>
13#include <linux/config.h>
14#include <linux/module.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/compiler.h>
18#include <linux/hash.h>
19#include <linux/rbtree.h>
20#include <linux/interrupt.h>
21
22#define REQ_SYNC 1
23#define REQ_ASYNC 0
24
25/*
26 * See Documentation/block/as-iosched.txt
27 */
28
29/*
30 * max time before a read is submitted.
31 */
32#define default_read_expire (HZ / 8)
33
34/*
35 * ditto for writes, these limits are not hard, even
36 * if the disk is capable of satisfying them.
37 */
38#define default_write_expire (HZ / 4)
39
40/*
41 * read_batch_expire describes how long we will allow a stream of reads to
42 * persist before looking to see whether it is time to switch over to writes.
43 */
44#define default_read_batch_expire (HZ / 2)
45
46/*
47 * write_batch_expire describes how long we want a stream of writes to run for.
48 * This is not a hard limit, but a target we set for the auto-tuning thingy.
49 * See, the problem is: we can send a lot of writes to disk cache / TCQ in
50 * a short amount of time...
51 */
52#define default_write_batch_expire (HZ / 8)
53
54/*
55 * max time we may wait to anticipate a read (default around 6ms)
56 */
57#define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
58
59/*
60 * Keep track of up to 20ms thinktimes. We can go as big as we like here,
61 * however huge values tend to interfere and not decay fast enough. A program
62 * might be in a non-io phase of operation. Waiting on user input for example,
63 * or doing a lengthy computation. A small penalty can be justified there, and
64 * will still catch out those processes that constantly have large thinktimes.
65 */
66#define MAX_THINKTIME (HZ/50UL)
67
68/* Bits in as_io_context.state */
69enum as_io_states {
f5b3db00 70 AS_TASK_RUNNING=0, /* Process has not exited */
1da177e4
LT
71 AS_TASK_IOSTARTED, /* Process has started some IO */
72 AS_TASK_IORUNNING, /* Process has completed some IO */
73};
74
75enum anticipation_status {
76 ANTIC_OFF=0, /* Not anticipating (normal operation) */
77 ANTIC_WAIT_REQ, /* The last read has not yet completed */
78 ANTIC_WAIT_NEXT, /* Currently anticipating a request vs
79 last read (which has completed) */
80 ANTIC_FINISHED, /* Anticipating but have found a candidate
81 * or timed out */
82};
83
84struct as_data {
85 /*
86 * run time data
87 */
88
89 struct request_queue *q; /* the "owner" queue */
90
91 /*
92 * requests (as_rq s) are present on both sort_list and fifo_list
93 */
94 struct rb_root sort_list[2];
95 struct list_head fifo_list[2];
96
97 struct as_rq *next_arq[2]; /* next in sort order */
98 sector_t last_sector[2]; /* last REQ_SYNC & REQ_ASYNC sectors */
bae386f7 99 struct hlist_head *hash; /* request hash */
1da177e4
LT
100
101 unsigned long exit_prob; /* probability a task will exit while
102 being waited on */
f5b3db00
NP
103 unsigned long exit_no_coop; /* probablility an exited task will
104 not be part of a later cooperating
105 request */
1da177e4
LT
106 unsigned long new_ttime_total; /* mean thinktime on new proc */
107 unsigned long new_ttime_mean;
108 u64 new_seek_total; /* mean seek on new proc */
109 sector_t new_seek_mean;
110
111 unsigned long current_batch_expires;
112 unsigned long last_check_fifo[2];
113 int changed_batch; /* 1: waiting for old batch to end */
114 int new_batch; /* 1: waiting on first read complete */
115 int batch_data_dir; /* current batch REQ_SYNC / REQ_ASYNC */
116 int write_batch_count; /* max # of reqs in a write batch */
117 int current_write_count; /* how many requests left this batch */
118 int write_batch_idled; /* has the write batch gone idle? */
119 mempool_t *arq_pool;
120
121 enum anticipation_status antic_status;
122 unsigned long antic_start; /* jiffies: when it started */
123 struct timer_list antic_timer; /* anticipatory scheduling timer */
124 struct work_struct antic_work; /* Deferred unplugging */
125 struct io_context *io_context; /* Identify the expected process */
126 int ioc_finished; /* IO associated with io_context is finished */
127 int nr_dispatched;
128
129 /*
130 * settings that change how the i/o scheduler behaves
131 */
132 unsigned long fifo_expire[2];
133 unsigned long batch_expire[2];
134 unsigned long antic_expire;
135};
136
137#define list_entry_fifo(ptr) list_entry((ptr), struct as_rq, fifo)
138
139/*
140 * per-request data.
141 */
142enum arq_state {
143 AS_RQ_NEW=0, /* New - not referenced and not on any lists */
144 AS_RQ_QUEUED, /* In the request queue. It belongs to the
145 scheduler */
146 AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the
147 driver now */
148 AS_RQ_PRESCHED, /* Debug poisoning for requests being used */
149 AS_RQ_REMOVED,
150 AS_RQ_MERGED,
151 AS_RQ_POSTSCHED, /* when they shouldn't be */
152};
153
154struct as_rq {
155 /*
156 * rbtree index, key is the starting offset
157 */
158 struct rb_node rb_node;
159 sector_t rb_key;
160
161 struct request *request;
162
163 struct io_context *io_context; /* The submitting task */
164
165 /*
166 * request hash, key is the ending offset (for back merge lookup)
167 */
bae386f7 168 struct hlist_node hash;
1da177e4
LT
169
170 /*
171 * expire fifo
172 */
173 struct list_head fifo;
174 unsigned long expires;
175
176 unsigned int is_sync;
177 enum arq_state state;
178};
179
180#define RQ_DATA(rq) ((struct as_rq *) (rq)->elevator_private)
181
182static kmem_cache_t *arq_pool;
183
334e94de
AV
184static atomic_t ioc_count = ATOMIC_INIT(0);
185static struct completion *ioc_gone;
186
ef9be1d3
TH
187static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq);
188static void as_antic_stop(struct as_data *ad);
189
1da177e4
LT
190/*
191 * IO Context helper functions
192 */
193
194/* Called to deallocate the as_io_context */
195static void free_as_io_context(struct as_io_context *aic)
196{
197 kfree(aic);
334e94de
AV
198 if (atomic_dec_and_test(&ioc_count) && ioc_gone)
199 complete(ioc_gone);
1da177e4
LT
200}
201
e17a9489
AV
202static void as_trim(struct io_context *ioc)
203{
334e94de
AV
204 if (ioc->aic)
205 free_as_io_context(ioc->aic);
e17a9489
AV
206 ioc->aic = NULL;
207}
208
1da177e4
LT
209/* Called when the task exits */
210static void exit_as_io_context(struct as_io_context *aic)
211{
212 WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state));
213 clear_bit(AS_TASK_RUNNING, &aic->state);
214}
215
216static struct as_io_context *alloc_as_io_context(void)
217{
218 struct as_io_context *ret;
219
220 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
221 if (ret) {
222 ret->dtor = free_as_io_context;
223 ret->exit = exit_as_io_context;
224 ret->state = 1 << AS_TASK_RUNNING;
225 atomic_set(&ret->nr_queued, 0);
226 atomic_set(&ret->nr_dispatched, 0);
227 spin_lock_init(&ret->lock);
228 ret->ttime_total = 0;
229 ret->ttime_samples = 0;
230 ret->ttime_mean = 0;
231 ret->seek_total = 0;
232 ret->seek_samples = 0;
233 ret->seek_mean = 0;
334e94de 234 atomic_inc(&ioc_count);
1da177e4
LT
235 }
236
237 return ret;
238}
239
240/*
241 * If the current task has no AS IO context then create one and initialise it.
242 * Then take a ref on the task's io context and return it.
243 */
244static struct io_context *as_get_io_context(void)
245{
246 struct io_context *ioc = get_io_context(GFP_ATOMIC);
247 if (ioc && !ioc->aic) {
248 ioc->aic = alloc_as_io_context();
249 if (!ioc->aic) {
250 put_io_context(ioc);
251 ioc = NULL;
252 }
253 }
254 return ioc;
255}
256
b4878f24
JA
257static void as_put_io_context(struct as_rq *arq)
258{
259 struct as_io_context *aic;
260
261 if (unlikely(!arq->io_context))
262 return;
263
264 aic = arq->io_context->aic;
265
266 if (arq->is_sync == REQ_SYNC && aic) {
267 spin_lock(&aic->lock);
268 set_bit(AS_TASK_IORUNNING, &aic->state);
269 aic->last_end_request = jiffies;
270 spin_unlock(&aic->lock);
271 }
272
273 put_io_context(arq->io_context);
274}
275
1da177e4
LT
276/*
277 * the back merge hash support functions
278 */
279static const int as_hash_shift = 6;
280#define AS_HASH_BLOCK(sec) ((sec) >> 3)
281#define AS_HASH_FN(sec) (hash_long(AS_HASH_BLOCK((sec)), as_hash_shift))
282#define AS_HASH_ENTRIES (1 << as_hash_shift)
283#define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
1da177e4
LT
284
285static inline void __as_del_arq_hash(struct as_rq *arq)
286{
bae386f7 287 hlist_del_init(&arq->hash);
1da177e4
LT
288}
289
290static inline void as_del_arq_hash(struct as_rq *arq)
291{
bae386f7 292 if (!hlist_unhashed(&arq->hash))
1da177e4
LT
293 __as_del_arq_hash(arq);
294}
295
1da177e4
LT
296static void as_add_arq_hash(struct as_data *ad, struct as_rq *arq)
297{
298 struct request *rq = arq->request;
299
bae386f7 300 BUG_ON(!hlist_unhashed(&arq->hash));
1da177e4 301
bae386f7 302 hlist_add_head(&arq->hash, &ad->hash[AS_HASH_FN(rq_hash_key(rq))]);
1da177e4
LT
303}
304
305/*
306 * move hot entry to front of chain
307 */
308static inline void as_hot_arq_hash(struct as_data *ad, struct as_rq *arq)
309{
310 struct request *rq = arq->request;
bae386f7 311 struct hlist_head *head = &ad->hash[AS_HASH_FN(rq_hash_key(rq))];
1da177e4 312
bae386f7 313 if (hlist_unhashed(&arq->hash)) {
1da177e4
LT
314 WARN_ON(1);
315 return;
316 }
317
bae386f7
AM
318 if (&arq->hash != head->first) {
319 hlist_del(&arq->hash);
320 hlist_add_head(&arq->hash, head);
1da177e4
LT
321 }
322}
323
324static struct request *as_find_arq_hash(struct as_data *ad, sector_t offset)
325{
bae386f7
AM
326 struct hlist_head *hash_list = &ad->hash[AS_HASH_FN(offset)];
327 struct hlist_node *entry, *next;
328 struct as_rq *arq;
1da177e4 329
bae386f7 330 hlist_for_each_entry_safe(arq, entry, next, hash_list, hash) {
1da177e4
LT
331 struct request *__rq = arq->request;
332
bae386f7 333 BUG_ON(hlist_unhashed(&arq->hash));
1da177e4
LT
334
335 if (!rq_mergeable(__rq)) {
98b11471 336 as_del_arq_hash(arq);
1da177e4
LT
337 continue;
338 }
339
340 if (rq_hash_key(__rq) == offset)
341 return __rq;
342 }
343
344 return NULL;
345}
346
347/*
348 * rb tree support functions
349 */
1da177e4 350#define RB_EMPTY(root) ((root)->rb_node == NULL)
3db3a445
DW
351#define ON_RB(node) (rb_parent(node) != node)
352#define RB_CLEAR(node) (rb_set_parent(node, node))
1da177e4
LT
353#define rb_entry_arq(node) rb_entry((node), struct as_rq, rb_node)
354#define ARQ_RB_ROOT(ad, arq) (&(ad)->sort_list[(arq)->is_sync])
355#define rq_rb_key(rq) (rq)->sector
356
357/*
358 * as_find_first_arq finds the first (lowest sector numbered) request
359 * for the specified data_dir. Used to sweep back to the start of the disk
360 * (1-way elevator) after we process the last (highest sector) request.
361 */
362static struct as_rq *as_find_first_arq(struct as_data *ad, int data_dir)
363{
364 struct rb_node *n = ad->sort_list[data_dir].rb_node;
365
366 if (n == NULL)
367 return NULL;
368
369 for (;;) {
370 if (n->rb_left == NULL)
371 return rb_entry_arq(n);
372
373 n = n->rb_left;
374 }
375}
376
377/*
378 * Add the request to the rb tree if it is unique. If there is an alias (an
379 * existing request against the same sector), which can happen when using
380 * direct IO, then return the alias.
381 */
ef9be1d3 382static struct as_rq *__as_add_arq_rb(struct as_data *ad, struct as_rq *arq)
1da177e4
LT
383{
384 struct rb_node **p = &ARQ_RB_ROOT(ad, arq)->rb_node;
385 struct rb_node *parent = NULL;
386 struct as_rq *__arq;
387 struct request *rq = arq->request;
388
389 arq->rb_key = rq_rb_key(rq);
390
391 while (*p) {
392 parent = *p;
393 __arq = rb_entry_arq(parent);
394
395 if (arq->rb_key < __arq->rb_key)
396 p = &(*p)->rb_left;
397 else if (arq->rb_key > __arq->rb_key)
398 p = &(*p)->rb_right;
399 else
400 return __arq;
401 }
402
403 rb_link_node(&arq->rb_node, parent, p);
404 rb_insert_color(&arq->rb_node, ARQ_RB_ROOT(ad, arq));
405
406 return NULL;
407}
408
ef9be1d3
TH
409static void as_add_arq_rb(struct as_data *ad, struct as_rq *arq)
410{
411 struct as_rq *alias;
412
413 while ((unlikely(alias = __as_add_arq_rb(ad, arq)))) {
414 as_move_to_dispatch(ad, alias);
415 as_antic_stop(ad);
416 }
417}
418
1da177e4
LT
419static inline void as_del_arq_rb(struct as_data *ad, struct as_rq *arq)
420{
421 if (!ON_RB(&arq->rb_node)) {
422 WARN_ON(1);
423 return;
424 }
425
426 rb_erase(&arq->rb_node, ARQ_RB_ROOT(ad, arq));
427 RB_CLEAR(&arq->rb_node);
428}
429
430static struct request *
431as_find_arq_rb(struct as_data *ad, sector_t sector, int data_dir)
432{
433 struct rb_node *n = ad->sort_list[data_dir].rb_node;
434 struct as_rq *arq;
435
436 while (n) {
437 arq = rb_entry_arq(n);
438
439 if (sector < arq->rb_key)
440 n = n->rb_left;
441 else if (sector > arq->rb_key)
442 n = n->rb_right;
443 else
444 return arq->request;
445 }
446
447 return NULL;
448}
449
450/*
451 * IO Scheduler proper
452 */
453
454#define MAXBACK (1024 * 1024) /*
455 * Maximum distance the disk will go backward
456 * for a request.
457 */
458
459#define BACK_PENALTY 2
460
461/*
462 * as_choose_req selects the preferred one of two requests of the same data_dir
463 * ignoring time - eg. timeouts, which is the job of as_dispatch_request
464 */
465static struct as_rq *
466as_choose_req(struct as_data *ad, struct as_rq *arq1, struct as_rq *arq2)
467{
468 int data_dir;
469 sector_t last, s1, s2, d1, d2;
470 int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */
471 const sector_t maxback = MAXBACK;
472
473 if (arq1 == NULL || arq1 == arq2)
474 return arq2;
475 if (arq2 == NULL)
476 return arq1;
477
478 data_dir = arq1->is_sync;
479
480 last = ad->last_sector[data_dir];
481 s1 = arq1->request->sector;
482 s2 = arq2->request->sector;
483
484 BUG_ON(data_dir != arq2->is_sync);
485
486 /*
487 * Strict one way elevator _except_ in the case where we allow
488 * short backward seeks which are biased as twice the cost of a
489 * similar forward seek.
490 */
491 if (s1 >= last)
492 d1 = s1 - last;
493 else if (s1+maxback >= last)
494 d1 = (last - s1)*BACK_PENALTY;
495 else {
496 r1_wrap = 1;
497 d1 = 0; /* shut up, gcc */
498 }
499
500 if (s2 >= last)
501 d2 = s2 - last;
502 else if (s2+maxback >= last)
503 d2 = (last - s2)*BACK_PENALTY;
504 else {
505 r2_wrap = 1;
506 d2 = 0;
507 }
508
509 /* Found required data */
510 if (!r1_wrap && r2_wrap)
511 return arq1;
512 else if (!r2_wrap && r1_wrap)
513 return arq2;
514 else if (r1_wrap && r2_wrap) {
515 /* both behind the head */
516 if (s1 <= s2)
517 return arq1;
518 else
519 return arq2;
520 }
521
522 /* Both requests in front of the head */
523 if (d1 < d2)
524 return arq1;
525 else if (d2 < d1)
526 return arq2;
527 else {
528 if (s1 >= s2)
529 return arq1;
530 else
531 return arq2;
532 }
533}
534
535/*
536 * as_find_next_arq finds the next request after @prev in elevator order.
537 * this with as_choose_req form the basis for how the scheduler chooses
538 * what request to process next. Anticipation works on top of this.
539 */
540static struct as_rq *as_find_next_arq(struct as_data *ad, struct as_rq *last)
541{
542 const int data_dir = last->is_sync;
543 struct as_rq *ret;
544 struct rb_node *rbnext = rb_next(&last->rb_node);
545 struct rb_node *rbprev = rb_prev(&last->rb_node);
546 struct as_rq *arq_next, *arq_prev;
547
548 BUG_ON(!ON_RB(&last->rb_node));
549
550 if (rbprev)
551 arq_prev = rb_entry_arq(rbprev);
552 else
553 arq_prev = NULL;
554
555 if (rbnext)
556 arq_next = rb_entry_arq(rbnext);
557 else {
558 arq_next = as_find_first_arq(ad, data_dir);
559 if (arq_next == last)
560 arq_next = NULL;
561 }
562
563 ret = as_choose_req(ad, arq_next, arq_prev);
564
565 return ret;
566}
567
568/*
569 * anticipatory scheduling functions follow
570 */
571
572/*
573 * as_antic_expired tells us when we have anticipated too long.
574 * The funny "absolute difference" math on the elapsed time is to handle
575 * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
576 */
577static int as_antic_expired(struct as_data *ad)
578{
579 long delta_jif;
580
581 delta_jif = jiffies - ad->antic_start;
582 if (unlikely(delta_jif < 0))
583 delta_jif = -delta_jif;
584 if (delta_jif < ad->antic_expire)
585 return 0;
586
587 return 1;
588}
589
590/*
591 * as_antic_waitnext starts anticipating that a nice request will soon be
592 * submitted. See also as_antic_waitreq
593 */
594static void as_antic_waitnext(struct as_data *ad)
595{
596 unsigned long timeout;
597
598 BUG_ON(ad->antic_status != ANTIC_OFF
599 && ad->antic_status != ANTIC_WAIT_REQ);
600
601 timeout = ad->antic_start + ad->antic_expire;
602
603 mod_timer(&ad->antic_timer, timeout);
604
605 ad->antic_status = ANTIC_WAIT_NEXT;
606}
607
608/*
609 * as_antic_waitreq starts anticipating. We don't start timing the anticipation
610 * until the request that we're anticipating on has finished. This means we
611 * are timing from when the candidate process wakes up hopefully.
612 */
613static void as_antic_waitreq(struct as_data *ad)
614{
615 BUG_ON(ad->antic_status == ANTIC_FINISHED);
616 if (ad->antic_status == ANTIC_OFF) {
617 if (!ad->io_context || ad->ioc_finished)
618 as_antic_waitnext(ad);
619 else
620 ad->antic_status = ANTIC_WAIT_REQ;
621 }
622}
623
624/*
625 * This is called directly by the functions in this file to stop anticipation.
626 * We kill the timer and schedule a call to the request_fn asap.
627 */
628static void as_antic_stop(struct as_data *ad)
629{
630 int status = ad->antic_status;
631
632 if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) {
633 if (status == ANTIC_WAIT_NEXT)
634 del_timer(&ad->antic_timer);
635 ad->antic_status = ANTIC_FINISHED;
636 /* see as_work_handler */
637 kblockd_schedule_work(&ad->antic_work);
638 }
639}
640
641/*
642 * as_antic_timeout is the timer function set by as_antic_waitnext.
643 */
644static void as_antic_timeout(unsigned long data)
645{
646 struct request_queue *q = (struct request_queue *)data;
647 struct as_data *ad = q->elevator->elevator_data;
648 unsigned long flags;
649
650 spin_lock_irqsave(q->queue_lock, flags);
651 if (ad->antic_status == ANTIC_WAIT_REQ
652 || ad->antic_status == ANTIC_WAIT_NEXT) {
653 struct as_io_context *aic = ad->io_context->aic;
654
655 ad->antic_status = ANTIC_FINISHED;
656 kblockd_schedule_work(&ad->antic_work);
657
658 if (aic->ttime_samples == 0) {
f5b3db00 659 /* process anticipated on has exited or timed out*/
1da177e4
LT
660 ad->exit_prob = (7*ad->exit_prob + 256)/8;
661 }
f5b3db00
NP
662 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
663 /* process not "saved" by a cooperating request */
664 ad->exit_no_coop = (7*ad->exit_no_coop + 256)/8;
665 }
1da177e4
LT
666 }
667 spin_unlock_irqrestore(q->queue_lock, flags);
668}
669
f5b3db00
NP
670static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic,
671 unsigned long ttime)
672{
673 /* fixed point: 1.0 == 1<<8 */
674 if (aic->ttime_samples == 0) {
675 ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8;
676 ad->new_ttime_mean = ad->new_ttime_total / 256;
677
678 ad->exit_prob = (7*ad->exit_prob)/8;
679 }
680 aic->ttime_samples = (7*aic->ttime_samples + 256) / 8;
681 aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8;
682 aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples;
683}
684
685static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic,
686 sector_t sdist)
687{
688 u64 total;
689
690 if (aic->seek_samples == 0) {
691 ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8;
692 ad->new_seek_mean = ad->new_seek_total / 256;
693 }
694
695 /*
696 * Don't allow the seek distance to get too large from the
697 * odd fragment, pagein, etc
698 */
699 if (aic->seek_samples <= 60) /* second&third seek */
700 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024);
701 else
702 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64);
703
704 aic->seek_samples = (7*aic->seek_samples + 256) / 8;
705 aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8;
706 total = aic->seek_total + (aic->seek_samples/2);
707 do_div(total, aic->seek_samples);
708 aic->seek_mean = (sector_t)total;
709}
710
711/*
712 * as_update_iohist keeps a decaying histogram of IO thinktimes, and
713 * updates @aic->ttime_mean based on that. It is called when a new
714 * request is queued.
715 */
716static void as_update_iohist(struct as_data *ad, struct as_io_context *aic,
717 struct request *rq)
718{
719 struct as_rq *arq = RQ_DATA(rq);
720 int data_dir = arq->is_sync;
721 unsigned long thinktime = 0;
722 sector_t seek_dist;
723
724 if (aic == NULL)
725 return;
726
727 if (data_dir == REQ_SYNC) {
728 unsigned long in_flight = atomic_read(&aic->nr_queued)
729 + atomic_read(&aic->nr_dispatched);
730 spin_lock(&aic->lock);
731 if (test_bit(AS_TASK_IORUNNING, &aic->state) ||
732 test_bit(AS_TASK_IOSTARTED, &aic->state)) {
733 /* Calculate read -> read thinktime */
734 if (test_bit(AS_TASK_IORUNNING, &aic->state)
735 && in_flight == 0) {
736 thinktime = jiffies - aic->last_end_request;
737 thinktime = min(thinktime, MAX_THINKTIME-1);
738 }
739 as_update_thinktime(ad, aic, thinktime);
740
741 /* Calculate read -> read seek distance */
742 if (aic->last_request_pos < rq->sector)
743 seek_dist = rq->sector - aic->last_request_pos;
744 else
745 seek_dist = aic->last_request_pos - rq->sector;
746 as_update_seekdist(ad, aic, seek_dist);
747 }
748 aic->last_request_pos = rq->sector + rq->nr_sectors;
749 set_bit(AS_TASK_IOSTARTED, &aic->state);
750 spin_unlock(&aic->lock);
751 }
752}
753
1da177e4
LT
754/*
755 * as_close_req decides if one request is considered "close" to the
756 * previous one issued.
757 */
f5b3db00
NP
758static int as_close_req(struct as_data *ad, struct as_io_context *aic,
759 struct as_rq *arq)
1da177e4
LT
760{
761 unsigned long delay; /* milliseconds */
762 sector_t last = ad->last_sector[ad->batch_data_dir];
763 sector_t next = arq->request->sector;
764 sector_t delta; /* acceptable close offset (in sectors) */
f5b3db00 765 sector_t s;
1da177e4
LT
766
767 if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished)
768 delay = 0;
769 else
770 delay = ((jiffies - ad->antic_start) * 1000) / HZ;
771
f5b3db00
NP
772 if (delay == 0)
773 delta = 8192;
1da177e4 774 else if (delay <= 20 && delay <= ad->antic_expire)
f5b3db00 775 delta = 8192 << delay;
1da177e4
LT
776 else
777 return 1;
778
f5b3db00
NP
779 if ((last <= next + (delta>>1)) && (next <= last + delta))
780 return 1;
781
782 if (last < next)
783 s = next - last;
784 else
785 s = last - next;
786
787 if (aic->seek_samples == 0) {
788 /*
789 * Process has just started IO. Use past statistics to
790 * gauge success possibility
791 */
792 if (ad->new_seek_mean > s) {
793 /* this request is better than what we're expecting */
794 return 1;
795 }
796
797 } else {
798 if (aic->seek_mean > s) {
799 /* this request is better than what we're expecting */
800 return 1;
801 }
802 }
803
804 return 0;
1da177e4
LT
805}
806
807/*
808 * as_can_break_anticipation returns true if we have been anticipating this
809 * request.
810 *
811 * It also returns true if the process against which we are anticipating
812 * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
813 * dispatch it ASAP, because we know that application will not be submitting
814 * any new reads.
815 *
f5b3db00 816 * If the task which has submitted the request has exited, break anticipation.
1da177e4
LT
817 *
818 * If this task has queued some other IO, do not enter enticipation.
819 */
820static int as_can_break_anticipation(struct as_data *ad, struct as_rq *arq)
821{
822 struct io_context *ioc;
823 struct as_io_context *aic;
1da177e4
LT
824
825 ioc = ad->io_context;
826 BUG_ON(!ioc);
827
828 if (arq && ioc == arq->io_context) {
829 /* request from same process */
830 return 1;
831 }
832
833 if (ad->ioc_finished && as_antic_expired(ad)) {
834 /*
835 * In this situation status should really be FINISHED,
836 * however the timer hasn't had the chance to run yet.
837 */
838 return 1;
839 }
840
841 aic = ioc->aic;
842 if (!aic)
843 return 0;
844
1da177e4
LT
845 if (atomic_read(&aic->nr_queued) > 0) {
846 /* process has more requests queued */
847 return 1;
848 }
849
850 if (atomic_read(&aic->nr_dispatched) > 0) {
851 /* process has more requests dispatched */
852 return 1;
853 }
854
f5b3db00 855 if (arq && arq->is_sync == REQ_SYNC && as_close_req(ad, aic, arq)) {
1da177e4
LT
856 /*
857 * Found a close request that is not one of ours.
858 *
f5b3db00
NP
859 * This makes close requests from another process update
860 * our IO history. Is generally useful when there are
1da177e4
LT
861 * two or more cooperating processes working in the same
862 * area.
863 */
f5b3db00
NP
864 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
865 if (aic->ttime_samples == 0)
866 ad->exit_prob = (7*ad->exit_prob + 256)/8;
867
868 ad->exit_no_coop = (7*ad->exit_no_coop)/8;
869 }
870
871 as_update_iohist(ad, aic, arq->request);
1da177e4
LT
872 return 1;
873 }
874
f5b3db00
NP
875 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
876 /* process anticipated on has exited */
877 if (aic->ttime_samples == 0)
878 ad->exit_prob = (7*ad->exit_prob + 256)/8;
879
880 if (ad->exit_no_coop > 128)
881 return 1;
882 }
1da177e4
LT
883
884 if (aic->ttime_samples == 0) {
885 if (ad->new_ttime_mean > ad->antic_expire)
886 return 1;
f5b3db00 887 if (ad->exit_prob * ad->exit_no_coop > 128*256)
1da177e4
LT
888 return 1;
889 } else if (aic->ttime_mean > ad->antic_expire) {
890 /* the process thinks too much between requests */
891 return 1;
892 }
893
1da177e4
LT
894 return 0;
895}
896
897/*
898 * as_can_anticipate indicates weather we should either run arq
899 * or keep anticipating a better request.
900 */
901static int as_can_anticipate(struct as_data *ad, struct as_rq *arq)
902{
903 if (!ad->io_context)
904 /*
905 * Last request submitted was a write
906 */
907 return 0;
908
909 if (ad->antic_status == ANTIC_FINISHED)
910 /*
911 * Don't restart if we have just finished. Run the next request
912 */
913 return 0;
914
915 if (as_can_break_anticipation(ad, arq))
916 /*
917 * This request is a good candidate. Don't keep anticipating,
918 * run it.
919 */
920 return 0;
921
922 /*
923 * OK from here, we haven't finished, and don't have a decent request!
924 * Status is either ANTIC_OFF so start waiting,
925 * ANTIC_WAIT_REQ so continue waiting for request to finish
926 * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
1da177e4
LT
927 */
928
929 return 1;
930}
931
1da177e4
LT
932/*
933 * as_update_arq must be called whenever a request (arq) is added to
934 * the sort_list. This function keeps caches up to date, and checks if the
935 * request might be one we are "anticipating"
936 */
937static void as_update_arq(struct as_data *ad, struct as_rq *arq)
938{
939 const int data_dir = arq->is_sync;
940
941 /* keep the next_arq cache up to date */
942 ad->next_arq[data_dir] = as_choose_req(ad, arq, ad->next_arq[data_dir]);
943
944 /*
945 * have we been anticipating this request?
946 * or does it come from the same process as the one we are anticipating
947 * for?
948 */
949 if (ad->antic_status == ANTIC_WAIT_REQ
950 || ad->antic_status == ANTIC_WAIT_NEXT) {
951 if (as_can_break_anticipation(ad, arq))
952 as_antic_stop(ad);
953 }
954}
955
956/*
957 * Gathers timings and resizes the write batch automatically
958 */
959static void update_write_batch(struct as_data *ad)
960{
961 unsigned long batch = ad->batch_expire[REQ_ASYNC];
962 long write_time;
963
964 write_time = (jiffies - ad->current_batch_expires) + batch;
965 if (write_time < 0)
966 write_time = 0;
967
968 if (write_time > batch && !ad->write_batch_idled) {
969 if (write_time > batch * 3)
970 ad->write_batch_count /= 2;
971 else
972 ad->write_batch_count--;
973 } else if (write_time < batch && ad->current_write_count == 0) {
974 if (batch > write_time * 3)
975 ad->write_batch_count *= 2;
976 else
977 ad->write_batch_count++;
978 }
979
980 if (ad->write_batch_count < 1)
981 ad->write_batch_count = 1;
982}
983
984/*
985 * as_completed_request is to be called when a request has completed and
986 * returned something to the requesting process, be it an error or data.
987 */
988static void as_completed_request(request_queue_t *q, struct request *rq)
989{
990 struct as_data *ad = q->elevator->elevator_data;
991 struct as_rq *arq = RQ_DATA(rq);
992
993 WARN_ON(!list_empty(&rq->queuelist));
994
1da177e4
LT
995 if (arq->state != AS_RQ_REMOVED) {
996 printk("arq->state %d\n", arq->state);
997 WARN_ON(1);
998 goto out;
999 }
1000
1da177e4
LT
1001 if (ad->changed_batch && ad->nr_dispatched == 1) {
1002 kblockd_schedule_work(&ad->antic_work);
1003 ad->changed_batch = 0;
1004
1005 if (ad->batch_data_dir == REQ_SYNC)
1006 ad->new_batch = 1;
1007 }
1008 WARN_ON(ad->nr_dispatched == 0);
1009 ad->nr_dispatched--;
1010
1011 /*
1012 * Start counting the batch from when a request of that direction is
1013 * actually serviced. This should help devices with big TCQ windows
1014 * and writeback caches
1015 */
1016 if (ad->new_batch && ad->batch_data_dir == arq->is_sync) {
1017 update_write_batch(ad);
1018 ad->current_batch_expires = jiffies +
1019 ad->batch_expire[REQ_SYNC];
1020 ad->new_batch = 0;
1021 }
1022
1023 if (ad->io_context == arq->io_context && ad->io_context) {
1024 ad->antic_start = jiffies;
1025 ad->ioc_finished = 1;
1026 if (ad->antic_status == ANTIC_WAIT_REQ) {
1027 /*
1028 * We were waiting on this request, now anticipate
1029 * the next one
1030 */
1031 as_antic_waitnext(ad);
1032 }
1033 }
1034
b4878f24 1035 as_put_io_context(arq);
1da177e4
LT
1036out:
1037 arq->state = AS_RQ_POSTSCHED;
1038}
1039
1040/*
1041 * as_remove_queued_request removes a request from the pre dispatch queue
1042 * without updating refcounts. It is expected the caller will drop the
1043 * reference unless it replaces the request at somepart of the elevator
1044 * (ie. the dispatch queue)
1045 */
1046static void as_remove_queued_request(request_queue_t *q, struct request *rq)
1047{
1048 struct as_rq *arq = RQ_DATA(rq);
1049 const int data_dir = arq->is_sync;
1050 struct as_data *ad = q->elevator->elevator_data;
1051
1052 WARN_ON(arq->state != AS_RQ_QUEUED);
1053
1054 if (arq->io_context && arq->io_context->aic) {
1055 BUG_ON(!atomic_read(&arq->io_context->aic->nr_queued));
1056 atomic_dec(&arq->io_context->aic->nr_queued);
1057 }
1058
1059 /*
1060 * Update the "next_arq" cache if we are about to remove its
1061 * entry
1062 */
1063 if (ad->next_arq[data_dir] == arq)
1064 ad->next_arq[data_dir] = as_find_next_arq(ad, arq);
1065
1066 list_del_init(&arq->fifo);
98b11471 1067 as_del_arq_hash(arq);
1da177e4
LT
1068 as_del_arq_rb(ad, arq);
1069}
1070
1da177e4
LT
1071/*
1072 * as_fifo_expired returns 0 if there are no expired reads on the fifo,
1073 * 1 otherwise. It is ratelimited so that we only perform the check once per
1074 * `fifo_expire' interval. Otherwise a large number of expired requests
1075 * would create a hopeless seekstorm.
1076 *
1077 * See as_antic_expired comment.
1078 */
1079static int as_fifo_expired(struct as_data *ad, int adir)
1080{
1081 struct as_rq *arq;
1082 long delta_jif;
1083
1084 delta_jif = jiffies - ad->last_check_fifo[adir];
1085 if (unlikely(delta_jif < 0))
1086 delta_jif = -delta_jif;
1087 if (delta_jif < ad->fifo_expire[adir])
1088 return 0;
1089
1090 ad->last_check_fifo[adir] = jiffies;
1091
1092 if (list_empty(&ad->fifo_list[adir]))
1093 return 0;
1094
1095 arq = list_entry_fifo(ad->fifo_list[adir].next);
1096
1097 return time_after(jiffies, arq->expires);
1098}
1099
1100/*
1101 * as_batch_expired returns true if the current batch has expired. A batch
1102 * is a set of reads or a set of writes.
1103 */
1104static inline int as_batch_expired(struct as_data *ad)
1105{
1106 if (ad->changed_batch || ad->new_batch)
1107 return 0;
1108
1109 if (ad->batch_data_dir == REQ_SYNC)
1110 /* TODO! add a check so a complete fifo gets written? */
1111 return time_after(jiffies, ad->current_batch_expires);
1112
1113 return time_after(jiffies, ad->current_batch_expires)
1114 || ad->current_write_count == 0;
1115}
1116
1117/*
1118 * move an entry to dispatch queue
1119 */
1120static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq)
1121{
1122 struct request *rq = arq->request;
1da177e4
LT
1123 const int data_dir = arq->is_sync;
1124
1125 BUG_ON(!ON_RB(&arq->rb_node));
1126
1127 as_antic_stop(ad);
1128 ad->antic_status = ANTIC_OFF;
1129
1130 /*
1131 * This has to be set in order to be correctly updated by
1132 * as_find_next_arq
1133 */
1134 ad->last_sector[data_dir] = rq->sector + rq->nr_sectors;
1135
1136 if (data_dir == REQ_SYNC) {
1137 /* In case we have to anticipate after this */
1138 copy_io_context(&ad->io_context, &arq->io_context);
1139 } else {
1140 if (ad->io_context) {
1141 put_io_context(ad->io_context);
1142 ad->io_context = NULL;
1143 }
1144
1145 if (ad->current_write_count != 0)
1146 ad->current_write_count--;
1147 }
1148 ad->ioc_finished = 0;
1149
1150 ad->next_arq[data_dir] = as_find_next_arq(ad, arq);
1151
1152 /*
1153 * take it off the sort and fifo list, add to dispatch queue
1154 */
1da177e4
LT
1155 as_remove_queued_request(ad->q, rq);
1156 WARN_ON(arq->state != AS_RQ_QUEUED);
1157
b4878f24
JA
1158 elv_dispatch_sort(ad->q, rq);
1159
1da177e4
LT
1160 arq->state = AS_RQ_DISPATCHED;
1161 if (arq->io_context && arq->io_context->aic)
1162 atomic_inc(&arq->io_context->aic->nr_dispatched);
1163 ad->nr_dispatched++;
1164}
1165
1166/*
1167 * as_dispatch_request selects the best request according to
1168 * read/write expire, batch expire, etc, and moves it to the dispatch
1169 * queue. Returns 1 if a request was found, 0 otherwise.
1170 */
b4878f24 1171static int as_dispatch_request(request_queue_t *q, int force)
1da177e4 1172{
b4878f24 1173 struct as_data *ad = q->elevator->elevator_data;
1da177e4
LT
1174 struct as_rq *arq;
1175 const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]);
1176 const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]);
1177
b4878f24
JA
1178 if (unlikely(force)) {
1179 /*
1180 * Forced dispatch, accounting is useless. Reset
1181 * accounting states and dump fifo_lists. Note that
1182 * batch_data_dir is reset to REQ_SYNC to avoid
1183 * screwing write batch accounting as write batch
1184 * accounting occurs on W->R transition.
1185 */
1186 int dispatched = 0;
1187
1188 ad->batch_data_dir = REQ_SYNC;
1189 ad->changed_batch = 0;
1190 ad->new_batch = 0;
1191
1192 while (ad->next_arq[REQ_SYNC]) {
1193 as_move_to_dispatch(ad, ad->next_arq[REQ_SYNC]);
1194 dispatched++;
1195 }
1196 ad->last_check_fifo[REQ_SYNC] = jiffies;
1197
1198 while (ad->next_arq[REQ_ASYNC]) {
1199 as_move_to_dispatch(ad, ad->next_arq[REQ_ASYNC]);
1200 dispatched++;
1201 }
1202 ad->last_check_fifo[REQ_ASYNC] = jiffies;
1203
1204 return dispatched;
1205 }
1206
1da177e4
LT
1207 /* Signal that the write batch was uncontended, so we can't time it */
1208 if (ad->batch_data_dir == REQ_ASYNC && !reads) {
1209 if (ad->current_write_count == 0 || !writes)
1210 ad->write_batch_idled = 1;
1211 }
1212
1213 if (!(reads || writes)
1214 || ad->antic_status == ANTIC_WAIT_REQ
1215 || ad->antic_status == ANTIC_WAIT_NEXT
1216 || ad->changed_batch)
1217 return 0;
1218
f5b3db00 1219 if (!(reads && writes && as_batch_expired(ad))) {
1da177e4
LT
1220 /*
1221 * batch is still running or no reads or no writes
1222 */
1223 arq = ad->next_arq[ad->batch_data_dir];
1224
1225 if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) {
1226 if (as_fifo_expired(ad, REQ_SYNC))
1227 goto fifo_expired;
1228
1229 if (as_can_anticipate(ad, arq)) {
1230 as_antic_waitreq(ad);
1231 return 0;
1232 }
1233 }
1234
1235 if (arq) {
1236 /* we have a "next request" */
1237 if (reads && !writes)
1238 ad->current_batch_expires =
1239 jiffies + ad->batch_expire[REQ_SYNC];
1240 goto dispatch_request;
1241 }
1242 }
1243
1244 /*
1245 * at this point we are not running a batch. select the appropriate
1246 * data direction (read / write)
1247 */
1248
1249 if (reads) {
1250 BUG_ON(RB_EMPTY(&ad->sort_list[REQ_SYNC]));
1251
1252 if (writes && ad->batch_data_dir == REQ_SYNC)
1253 /*
1254 * Last batch was a read, switch to writes
1255 */
1256 goto dispatch_writes;
1257
1258 if (ad->batch_data_dir == REQ_ASYNC) {
1259 WARN_ON(ad->new_batch);
1260 ad->changed_batch = 1;
1261 }
1262 ad->batch_data_dir = REQ_SYNC;
1263 arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
1264 ad->last_check_fifo[ad->batch_data_dir] = jiffies;
1265 goto dispatch_request;
1266 }
1267
1268 /*
1269 * the last batch was a read
1270 */
1271
1272 if (writes) {
1273dispatch_writes:
1274 BUG_ON(RB_EMPTY(&ad->sort_list[REQ_ASYNC]));
1275
1276 if (ad->batch_data_dir == REQ_SYNC) {
1277 ad->changed_batch = 1;
1278
1279 /*
1280 * new_batch might be 1 when the queue runs out of
1281 * reads. A subsequent submission of a write might
1282 * cause a change of batch before the read is finished.
1283 */
1284 ad->new_batch = 0;
1285 }
1286 ad->batch_data_dir = REQ_ASYNC;
1287 ad->current_write_count = ad->write_batch_count;
1288 ad->write_batch_idled = 0;
1289 arq = ad->next_arq[ad->batch_data_dir];
1290 goto dispatch_request;
1291 }
1292
1293 BUG();
1294 return 0;
1295
1296dispatch_request:
1297 /*
1298 * If a request has expired, service it.
1299 */
1300
1301 if (as_fifo_expired(ad, ad->batch_data_dir)) {
1302fifo_expired:
1303 arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
1304 BUG_ON(arq == NULL);
1305 }
1306
1307 if (ad->changed_batch) {
1308 WARN_ON(ad->new_batch);
1309
1310 if (ad->nr_dispatched)
1311 return 0;
1312
1313 if (ad->batch_data_dir == REQ_ASYNC)
1314 ad->current_batch_expires = jiffies +
1315 ad->batch_expire[REQ_ASYNC];
1316 else
1317 ad->new_batch = 1;
1318
1319 ad->changed_batch = 0;
1320 }
1321
1322 /*
1323 * arq is the selected appropriate request.
1324 */
1325 as_move_to_dispatch(ad, arq);
1326
1327 return 1;
1328}
1329
1da177e4
LT
1330/*
1331 * add arq to rbtree and fifo
1332 */
b4878f24 1333static void as_add_request(request_queue_t *q, struct request *rq)
1da177e4 1334{
b4878f24
JA
1335 struct as_data *ad = q->elevator->elevator_data;
1336 struct as_rq *arq = RQ_DATA(rq);
1da177e4
LT
1337 int data_dir;
1338
b4878f24
JA
1339 arq->state = AS_RQ_NEW;
1340
1da177e4 1341 if (rq_data_dir(arq->request) == READ
b31dc66a 1342 || (arq->request->flags & REQ_RW_SYNC))
1da177e4
LT
1343 arq->is_sync = 1;
1344 else
1345 arq->is_sync = 0;
1346 data_dir = arq->is_sync;
1347
1348 arq->io_context = as_get_io_context();
1349
1350 if (arq->io_context) {
1351 as_update_iohist(ad, arq->io_context->aic, arq->request);
1352 atomic_inc(&arq->io_context->aic->nr_queued);
1353 }
1354
ef9be1d3
TH
1355 as_add_arq_rb(ad, arq);
1356 if (rq_mergeable(arq->request))
1357 as_add_arq_hash(ad, arq);
1da177e4 1358
ef9be1d3
TH
1359 /*
1360 * set expire time (only used for reads) and add to fifo list
1361 */
1362 arq->expires = jiffies + ad->fifo_expire[data_dir];
1363 list_add_tail(&arq->fifo, &ad->fifo_list[data_dir]);
1da177e4 1364
ef9be1d3 1365 as_update_arq(ad, arq); /* keep state machine up to date */
1da177e4
LT
1366 arq->state = AS_RQ_QUEUED;
1367}
1368
b4878f24 1369static void as_activate_request(request_queue_t *q, struct request *rq)
1da177e4 1370{
1da177e4
LT
1371 struct as_rq *arq = RQ_DATA(rq);
1372
b4878f24
JA
1373 WARN_ON(arq->state != AS_RQ_DISPATCHED);
1374 arq->state = AS_RQ_REMOVED;
1375 if (arq->io_context && arq->io_context->aic)
1376 atomic_dec(&arq->io_context->aic->nr_dispatched);
1da177e4
LT
1377}
1378
b4878f24 1379static void as_deactivate_request(request_queue_t *q, struct request *rq)
1da177e4 1380{
1da177e4
LT
1381 struct as_rq *arq = RQ_DATA(rq);
1382
b4878f24
JA
1383 WARN_ON(arq->state != AS_RQ_REMOVED);
1384 arq->state = AS_RQ_DISPATCHED;
1385 if (arq->io_context && arq->io_context->aic)
1386 atomic_inc(&arq->io_context->aic->nr_dispatched);
1da177e4
LT
1387}
1388
1389/*
1390 * as_queue_empty tells us if there are requests left in the device. It may
1391 * not be the case that a driver can get the next request even if the queue
1392 * is not empty - it is used in the block layer to check for plugging and
1393 * merging opportunities
1394 */
1395static int as_queue_empty(request_queue_t *q)
1396{
1397 struct as_data *ad = q->elevator->elevator_data;
1398
b4878f24
JA
1399 return list_empty(&ad->fifo_list[REQ_ASYNC])
1400 && list_empty(&ad->fifo_list[REQ_SYNC]);
1da177e4
LT
1401}
1402
f5b3db00
NP
1403static struct request *as_former_request(request_queue_t *q,
1404 struct request *rq)
1da177e4
LT
1405{
1406 struct as_rq *arq = RQ_DATA(rq);
1407 struct rb_node *rbprev = rb_prev(&arq->rb_node);
1408 struct request *ret = NULL;
1409
1410 if (rbprev)
1411 ret = rb_entry_arq(rbprev)->request;
1412
1413 return ret;
1414}
1415
f5b3db00
NP
1416static struct request *as_latter_request(request_queue_t *q,
1417 struct request *rq)
1da177e4
LT
1418{
1419 struct as_rq *arq = RQ_DATA(rq);
1420 struct rb_node *rbnext = rb_next(&arq->rb_node);
1421 struct request *ret = NULL;
1422
1423 if (rbnext)
1424 ret = rb_entry_arq(rbnext)->request;
1425
1426 return ret;
1427}
1428
1429static int
1430as_merge(request_queue_t *q, struct request **req, struct bio *bio)
1431{
1432 struct as_data *ad = q->elevator->elevator_data;
1433 sector_t rb_key = bio->bi_sector + bio_sectors(bio);
1434 struct request *__rq;
1435 int ret;
1436
1da177e4
LT
1437 /*
1438 * see if the merge hash can satisfy a back merge
1439 */
1440 __rq = as_find_arq_hash(ad, bio->bi_sector);
1441 if (__rq) {
1442 BUG_ON(__rq->sector + __rq->nr_sectors != bio->bi_sector);
1443
1444 if (elv_rq_merge_ok(__rq, bio)) {
1445 ret = ELEVATOR_BACK_MERGE;
1446 goto out;
1447 }
1448 }
1449
1450 /*
1451 * check for front merge
1452 */
1453 __rq = as_find_arq_rb(ad, rb_key, bio_data_dir(bio));
1454 if (__rq) {
1455 BUG_ON(rb_key != rq_rb_key(__rq));
1456
1457 if (elv_rq_merge_ok(__rq, bio)) {
1458 ret = ELEVATOR_FRONT_MERGE;
1459 goto out;
1460 }
1461 }
1462
1463 return ELEVATOR_NO_MERGE;
1464out:
1da177e4
LT
1465 if (ret) {
1466 if (rq_mergeable(__rq))
1467 as_hot_arq_hash(ad, RQ_DATA(__rq));
1468 }
1469 *req = __rq;
1470 return ret;
1471}
1472
1473static void as_merged_request(request_queue_t *q, struct request *req)
1474{
1475 struct as_data *ad = q->elevator->elevator_data;
1476 struct as_rq *arq = RQ_DATA(req);
1477
1478 /*
1479 * hash always needs to be repositioned, key is end sector
1480 */
1481 as_del_arq_hash(arq);
1482 as_add_arq_hash(ad, arq);
1483
1484 /*
1485 * if the merge was a front merge, we need to reposition request
1486 */
1487 if (rq_rb_key(req) != arq->rb_key) {
1da177e4 1488 as_del_arq_rb(ad, arq);
ef9be1d3 1489 as_add_arq_rb(ad, arq);
1da177e4
LT
1490 /*
1491 * Note! At this stage of this and the next function, our next
1492 * request may not be optimal - eg the request may have "grown"
1493 * behind the disk head. We currently don't bother adjusting.
1494 */
1495 }
1da177e4
LT
1496}
1497
f5b3db00
NP
1498static void as_merged_requests(request_queue_t *q, struct request *req,
1499 struct request *next)
1da177e4
LT
1500{
1501 struct as_data *ad = q->elevator->elevator_data;
1502 struct as_rq *arq = RQ_DATA(req);
1503 struct as_rq *anext = RQ_DATA(next);
1504
1505 BUG_ON(!arq);
1506 BUG_ON(!anext);
1507
1508 /*
1509 * reposition arq (this is the merged request) in hash, and in rbtree
1510 * in case of a front merge
1511 */
1512 as_del_arq_hash(arq);
1513 as_add_arq_hash(ad, arq);
1514
1515 if (rq_rb_key(req) != arq->rb_key) {
1da177e4 1516 as_del_arq_rb(ad, arq);
ef9be1d3 1517 as_add_arq_rb(ad, arq);
1da177e4
LT
1518 }
1519
1520 /*
1521 * if anext expires before arq, assign its expire time to arq
1522 * and move into anext position (anext will be deleted) in fifo
1523 */
1524 if (!list_empty(&arq->fifo) && !list_empty(&anext->fifo)) {
1525 if (time_before(anext->expires, arq->expires)) {
1526 list_move(&arq->fifo, &anext->fifo);
1527 arq->expires = anext->expires;
1528 /*
1529 * Don't copy here but swap, because when anext is
1530 * removed below, it must contain the unused context
1531 */
1532 swap_io_context(&arq->io_context, &anext->io_context);
1533 }
1534 }
1535
1da177e4
LT
1536 /*
1537 * kill knowledge of next, this one is a goner
1538 */
1539 as_remove_queued_request(q, next);
b4878f24 1540 as_put_io_context(anext);
1da177e4
LT
1541
1542 anext->state = AS_RQ_MERGED;
1543}
1544
1545/*
1546 * This is executed in a "deferred" process context, by kblockd. It calls the
1547 * driver's request_fn so the driver can submit that request.
1548 *
1549 * IMPORTANT! This guy will reenter the elevator, so set up all queue global
1550 * state before calling, and don't rely on any state over calls.
1551 *
1552 * FIXME! dispatch queue is not a queue at all!
1553 */
1554static void as_work_handler(void *data)
1555{
1556 struct request_queue *q = data;
1557 unsigned long flags;
1558
1559 spin_lock_irqsave(q->queue_lock, flags);
b4878f24 1560 if (!as_queue_empty(q))
1da177e4
LT
1561 q->request_fn(q);
1562 spin_unlock_irqrestore(q->queue_lock, flags);
1563}
1564
1565static void as_put_request(request_queue_t *q, struct request *rq)
1566{
1567 struct as_data *ad = q->elevator->elevator_data;
1568 struct as_rq *arq = RQ_DATA(rq);
1569
1570 if (!arq) {
1571 WARN_ON(1);
1572 return;
1573 }
1574
b4878f24
JA
1575 if (unlikely(arq->state != AS_RQ_POSTSCHED &&
1576 arq->state != AS_RQ_PRESCHED &&
1577 arq->state != AS_RQ_MERGED)) {
1da177e4
LT
1578 printk("arq->state %d\n", arq->state);
1579 WARN_ON(1);
1580 }
1581
1582 mempool_free(arq, ad->arq_pool);
1583 rq->elevator_private = NULL;
1584}
1585
22e2c507 1586static int as_set_request(request_queue_t *q, struct request *rq,
8267e268 1587 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
1588{
1589 struct as_data *ad = q->elevator->elevator_data;
1590 struct as_rq *arq = mempool_alloc(ad->arq_pool, gfp_mask);
1591
1592 if (arq) {
1593 memset(arq, 0, sizeof(*arq));
1594 RB_CLEAR(&arq->rb_node);
1595 arq->request = rq;
1596 arq->state = AS_RQ_PRESCHED;
1597 arq->io_context = NULL;
bae386f7 1598 INIT_HLIST_NODE(&arq->hash);
1da177e4
LT
1599 INIT_LIST_HEAD(&arq->fifo);
1600 rq->elevator_private = arq;
1601 return 0;
1602 }
1603
1604 return 1;
1605}
1606
22e2c507 1607static int as_may_queue(request_queue_t *q, int rw, struct bio *bio)
1da177e4
LT
1608{
1609 int ret = ELV_MQUEUE_MAY;
1610 struct as_data *ad = q->elevator->elevator_data;
1611 struct io_context *ioc;
1612 if (ad->antic_status == ANTIC_WAIT_REQ ||
1613 ad->antic_status == ANTIC_WAIT_NEXT) {
1614 ioc = as_get_io_context();
1615 if (ad->io_context == ioc)
1616 ret = ELV_MQUEUE_MUST;
1617 put_io_context(ioc);
1618 }
1619
1620 return ret;
1621}
1622
1623static void as_exit_queue(elevator_t *e)
1624{
1625 struct as_data *ad = e->elevator_data;
1626
1627 del_timer_sync(&ad->antic_timer);
1628 kblockd_flush();
1629
1630 BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC]));
1631 BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC]));
1632
1633 mempool_destroy(ad->arq_pool);
1634 put_io_context(ad->io_context);
1635 kfree(ad->hash);
1636 kfree(ad);
1637}
1638
1639/*
1640 * initialize elevator private data (as_data), and alloc a arq for
1641 * each request on the free lists
1642 */
bc1c1169 1643static void *as_init_queue(request_queue_t *q, elevator_t *e)
1da177e4
LT
1644{
1645 struct as_data *ad;
1646 int i;
1647
1648 if (!arq_pool)
bc1c1169 1649 return NULL;
1da177e4 1650
1946089a 1651 ad = kmalloc_node(sizeof(*ad), GFP_KERNEL, q->node);
1da177e4 1652 if (!ad)
bc1c1169 1653 return NULL;
1da177e4
LT
1654 memset(ad, 0, sizeof(*ad));
1655
1656 ad->q = q; /* Identify what queue the data belongs to */
1657
bae386f7 1658 ad->hash = kmalloc_node(sizeof(struct hlist_head)*AS_HASH_ENTRIES,
1946089a 1659 GFP_KERNEL, q->node);
1da177e4
LT
1660 if (!ad->hash) {
1661 kfree(ad);
bc1c1169 1662 return NULL;
1da177e4
LT
1663 }
1664
1946089a
CL
1665 ad->arq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1666 mempool_free_slab, arq_pool, q->node);
1da177e4
LT
1667 if (!ad->arq_pool) {
1668 kfree(ad->hash);
1669 kfree(ad);
bc1c1169 1670 return NULL;
1da177e4
LT
1671 }
1672
1673 /* anticipatory scheduling helpers */
1674 ad->antic_timer.function = as_antic_timeout;
1675 ad->antic_timer.data = (unsigned long)q;
1676 init_timer(&ad->antic_timer);
1677 INIT_WORK(&ad->antic_work, as_work_handler, q);
1678
1679 for (i = 0; i < AS_HASH_ENTRIES; i++)
bae386f7 1680 INIT_HLIST_HEAD(&ad->hash[i]);
1da177e4
LT
1681
1682 INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]);
1683 INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]);
1684 ad->sort_list[REQ_SYNC] = RB_ROOT;
1685 ad->sort_list[REQ_ASYNC] = RB_ROOT;
1da177e4
LT
1686 ad->fifo_expire[REQ_SYNC] = default_read_expire;
1687 ad->fifo_expire[REQ_ASYNC] = default_write_expire;
1688 ad->antic_expire = default_antic_expire;
1689 ad->batch_expire[REQ_SYNC] = default_read_batch_expire;
1690 ad->batch_expire[REQ_ASYNC] = default_write_batch_expire;
1da177e4
LT
1691
1692 ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC];
1693 ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10;
1694 if (ad->write_batch_count < 2)
1695 ad->write_batch_count = 2;
1696
bc1c1169 1697 return ad;
1da177e4
LT
1698}
1699
1700/*
1701 * sysfs parts below
1702 */
1da177e4
LT
1703
1704static ssize_t
1705as_var_show(unsigned int var, char *page)
1706{
1da177e4
LT
1707 return sprintf(page, "%d\n", var);
1708}
1709
1710static ssize_t
1711as_var_store(unsigned long *var, const char *page, size_t count)
1712{
1da177e4
LT
1713 char *p = (char *) page;
1714
c9b3ad67 1715 *var = simple_strtoul(p, &p, 10);
1da177e4
LT
1716 return count;
1717}
1718
e572ec7e 1719static ssize_t est_time_show(elevator_t *e, char *page)
1da177e4 1720{
3d1ab40f 1721 struct as_data *ad = e->elevator_data;
1da177e4
LT
1722 int pos = 0;
1723
f5b3db00
NP
1724 pos += sprintf(page+pos, "%lu %% exit probability\n",
1725 100*ad->exit_prob/256);
1726 pos += sprintf(page+pos, "%lu %% probability of exiting without a "
1727 "cooperating process submitting IO\n",
1728 100*ad->exit_no_coop/256);
1da177e4 1729 pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean);
f5b3db00
NP
1730 pos += sprintf(page+pos, "%llu sectors new seek distance\n",
1731 (unsigned long long)ad->new_seek_mean);
1da177e4
LT
1732
1733 return pos;
1734}
1735
1736#define SHOW_FUNCTION(__FUNC, __VAR) \
3d1ab40f 1737static ssize_t __FUNC(elevator_t *e, char *page) \
1da177e4 1738{ \
3d1ab40f 1739 struct as_data *ad = e->elevator_data; \
1da177e4
LT
1740 return as_var_show(jiffies_to_msecs((__VAR)), (page)); \
1741}
e572ec7e
AV
1742SHOW_FUNCTION(as_read_expire_show, ad->fifo_expire[REQ_SYNC]);
1743SHOW_FUNCTION(as_write_expire_show, ad->fifo_expire[REQ_ASYNC]);
1744SHOW_FUNCTION(as_antic_expire_show, ad->antic_expire);
1745SHOW_FUNCTION(as_read_batch_expire_show, ad->batch_expire[REQ_SYNC]);
1746SHOW_FUNCTION(as_write_batch_expire_show, ad->batch_expire[REQ_ASYNC]);
1da177e4
LT
1747#undef SHOW_FUNCTION
1748
1749#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
3d1ab40f 1750static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
1da177e4 1751{ \
3d1ab40f
AV
1752 struct as_data *ad = e->elevator_data; \
1753 int ret = as_var_store(__PTR, (page), count); \
1da177e4
LT
1754 if (*(__PTR) < (MIN)) \
1755 *(__PTR) = (MIN); \
1756 else if (*(__PTR) > (MAX)) \
1757 *(__PTR) = (MAX); \
1758 *(__PTR) = msecs_to_jiffies(*(__PTR)); \
1759 return ret; \
1760}
e572ec7e
AV
1761STORE_FUNCTION(as_read_expire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX);
1762STORE_FUNCTION(as_write_expire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX);
1763STORE_FUNCTION(as_antic_expire_store, &ad->antic_expire, 0, INT_MAX);
1764STORE_FUNCTION(as_read_batch_expire_store,
1da177e4 1765 &ad->batch_expire[REQ_SYNC], 0, INT_MAX);
e572ec7e 1766STORE_FUNCTION(as_write_batch_expire_store,
1da177e4
LT
1767 &ad->batch_expire[REQ_ASYNC], 0, INT_MAX);
1768#undef STORE_FUNCTION
1769
e572ec7e
AV
1770#define AS_ATTR(name) \
1771 __ATTR(name, S_IRUGO|S_IWUSR, as_##name##_show, as_##name##_store)
1772
1773static struct elv_fs_entry as_attrs[] = {
1774 __ATTR_RO(est_time),
1775 AS_ATTR(read_expire),
1776 AS_ATTR(write_expire),
1777 AS_ATTR(antic_expire),
1778 AS_ATTR(read_batch_expire),
1779 AS_ATTR(write_batch_expire),
1780 __ATTR_NULL
1da177e4
LT
1781};
1782
1da177e4
LT
1783static struct elevator_type iosched_as = {
1784 .ops = {
1785 .elevator_merge_fn = as_merge,
1786 .elevator_merged_fn = as_merged_request,
1787 .elevator_merge_req_fn = as_merged_requests,
b4878f24
JA
1788 .elevator_dispatch_fn = as_dispatch_request,
1789 .elevator_add_req_fn = as_add_request,
1790 .elevator_activate_req_fn = as_activate_request,
1da177e4
LT
1791 .elevator_deactivate_req_fn = as_deactivate_request,
1792 .elevator_queue_empty_fn = as_queue_empty,
1793 .elevator_completed_req_fn = as_completed_request,
1794 .elevator_former_req_fn = as_former_request,
1795 .elevator_latter_req_fn = as_latter_request,
1796 .elevator_set_req_fn = as_set_request,
1797 .elevator_put_req_fn = as_put_request,
1798 .elevator_may_queue_fn = as_may_queue,
1799 .elevator_init_fn = as_init_queue,
1800 .elevator_exit_fn = as_exit_queue,
e17a9489 1801 .trim = as_trim,
1da177e4
LT
1802 },
1803
3d1ab40f 1804 .elevator_attrs = as_attrs,
1da177e4
LT
1805 .elevator_name = "anticipatory",
1806 .elevator_owner = THIS_MODULE,
1807};
1808
1809static int __init as_init(void)
1810{
1811 int ret;
1812
1813 arq_pool = kmem_cache_create("as_arq", sizeof(struct as_rq),
1814 0, 0, NULL, NULL);
1815 if (!arq_pool)
1816 return -ENOMEM;
1817
1818 ret = elv_register(&iosched_as);
1819 if (!ret) {
1820 /*
1821 * don't allow AS to get unregistered, since we would have
1822 * to browse all tasks in the system and release their
1823 * as_io_context first
1824 */
1825 __module_get(THIS_MODULE);
1826 return 0;
1827 }
1828
1829 kmem_cache_destroy(arq_pool);
1830 return ret;
1831}
1832
1833static void __exit as_exit(void)
1834{
334e94de 1835 DECLARE_COMPLETION(all_gone);
1da177e4 1836 elv_unregister(&iosched_as);
334e94de 1837 ioc_gone = &all_gone;
fba82272
OH
1838 /* ioc_gone's update must be visible before reading ioc_count */
1839 smp_wmb();
334e94de 1840 if (atomic_read(&ioc_count))
fba82272 1841 wait_for_completion(ioc_gone);
334e94de 1842 synchronize_rcu();
83521d3e 1843 kmem_cache_destroy(arq_pool);
1da177e4
LT
1844}
1845
1846module_init(as_init);
1847module_exit(as_exit);
1848
1849MODULE_AUTHOR("Nick Piggin");
1850MODULE_LICENSE("GPL");
1851MODULE_DESCRIPTION("anticipatory IO scheduler");