Merge 4.14.24 into android-4.14
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / arch / x86 / xen / mmu_pv.c
CommitLineData
7e0563de
VK
1/*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41#include <linux/sched/mm.h>
42#include <linux/highmem.h>
43#include <linux/debugfs.h>
44#include <linux/bug.h>
45#include <linux/vmalloc.h>
46#include <linux/export.h>
47#include <linux/init.h>
48#include <linux/gfp.h>
49#include <linux/memblock.h>
50#include <linux/seq_file.h>
51#include <linux/crash_dump.h>
29985b09
JG
52#ifdef CONFIG_KEXEC_CORE
53#include <linux/kexec.h>
54#endif
7e0563de
VK
55
56#include <trace/events/xen.h>
57
58#include <asm/pgtable.h>
59#include <asm/tlbflush.h>
60#include <asm/fixmap.h>
61#include <asm/mmu_context.h>
62#include <asm/setup.h>
63#include <asm/paravirt.h>
64#include <asm/e820/api.h>
65#include <asm/linkage.h>
66#include <asm/page.h>
67#include <asm/init.h>
68#include <asm/pat.h>
69#include <asm/smp.h>
70
71#include <asm/xen/hypercall.h>
72#include <asm/xen/hypervisor.h>
73
74#include <xen/xen.h>
75#include <xen/page.h>
76#include <xen/interface/xen.h>
77#include <xen/interface/hvm/hvm_op.h>
78#include <xen/interface/version.h>
79#include <xen/interface/memory.h>
80#include <xen/hvc-console.h>
81
82#include "multicalls.h"
83#include "mmu.h"
84#include "debugfs.h"
85
86#ifdef CONFIG_X86_32
87/*
88 * Identity map, in addition to plain kernel map. This needs to be
89 * large enough to allocate page table pages to allocate the rest.
90 * Each page can map 2MB.
91 */
92#define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
93static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
94#endif
95#ifdef CONFIG_X86_64
96/* l3 pud for userspace vsyscall mapping */
97static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
98#endif /* CONFIG_X86_64 */
99
100/*
101 * Note about cr3 (pagetable base) values:
102 *
103 * xen_cr3 contains the current logical cr3 value; it contains the
104 * last set cr3. This may not be the current effective cr3, because
105 * its update may be being lazily deferred. However, a vcpu looking
106 * at its own cr3 can use this value knowing that it everything will
107 * be self-consistent.
108 *
109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
110 * hypercall to set the vcpu cr3 is complete (so it may be a little
111 * out of date, but it will never be set early). If one vcpu is
112 * looking at another vcpu's cr3 value, it should use this variable.
113 */
114DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
115DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
116
117static phys_addr_t xen_pt_base, xen_pt_size __initdata;
118
119/*
120 * Just beyond the highest usermode address. STACK_TOP_MAX has a
121 * redzone above it, so round it up to a PGD boundary.
122 */
123#define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
124
125void make_lowmem_page_readonly(void *vaddr)
126{
127 pte_t *pte, ptev;
128 unsigned long address = (unsigned long)vaddr;
129 unsigned int level;
130
131 pte = lookup_address(address, &level);
132 if (pte == NULL)
133 return; /* vaddr missing */
134
135 ptev = pte_wrprotect(*pte);
136
137 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
138 BUG();
139}
140
141void make_lowmem_page_readwrite(void *vaddr)
142{
143 pte_t *pte, ptev;
144 unsigned long address = (unsigned long)vaddr;
145 unsigned int level;
146
147 pte = lookup_address(address, &level);
148 if (pte == NULL)
149 return; /* vaddr missing */
150
151 ptev = pte_mkwrite(*pte);
152
153 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
154 BUG();
155}
156
157
158static bool xen_page_pinned(void *ptr)
159{
160 struct page *page = virt_to_page(ptr);
161
162 return PagePinned(page);
163}
164
7e0563de
VK
165static void xen_extend_mmu_update(const struct mmu_update *update)
166{
167 struct multicall_space mcs;
168 struct mmu_update *u;
169
170 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
171
172 if (mcs.mc != NULL) {
173 mcs.mc->args[1]++;
174 } else {
175 mcs = __xen_mc_entry(sizeof(*u));
176 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
177 }
178
179 u = mcs.args;
180 *u = *update;
181}
182
183static void xen_extend_mmuext_op(const struct mmuext_op *op)
184{
185 struct multicall_space mcs;
186 struct mmuext_op *u;
187
188 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
189
190 if (mcs.mc != NULL) {
191 mcs.mc->args[1]++;
192 } else {
193 mcs = __xen_mc_entry(sizeof(*u));
194 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
195 }
196
197 u = mcs.args;
198 *u = *op;
199}
200
201static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
202{
203 struct mmu_update u;
204
205 preempt_disable();
206
207 xen_mc_batch();
208
209 /* ptr may be ioremapped for 64-bit pagetable setup */
210 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
211 u.val = pmd_val_ma(val);
212 xen_extend_mmu_update(&u);
213
214 xen_mc_issue(PARAVIRT_LAZY_MMU);
215
216 preempt_enable();
217}
218
219static void xen_set_pmd(pmd_t *ptr, pmd_t val)
220{
221 trace_xen_mmu_set_pmd(ptr, val);
222
223 /* If page is not pinned, we can just update the entry
224 directly */
225 if (!xen_page_pinned(ptr)) {
226 *ptr = val;
227 return;
228 }
229
230 xen_set_pmd_hyper(ptr, val);
231}
232
233/*
234 * Associate a virtual page frame with a given physical page frame
235 * and protection flags for that frame.
236 */
237void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
238{
239 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
240}
241
242static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
243{
244 struct mmu_update u;
245
246 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
247 return false;
248
249 xen_mc_batch();
250
251 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
252 u.val = pte_val_ma(pteval);
253 xen_extend_mmu_update(&u);
254
255 xen_mc_issue(PARAVIRT_LAZY_MMU);
256
257 return true;
258}
259
260static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
261{
262 if (!xen_batched_set_pte(ptep, pteval)) {
263 /*
264 * Could call native_set_pte() here and trap and
265 * emulate the PTE write but with 32-bit guests this
266 * needs two traps (one for each of the two 32-bit
267 * words in the PTE) so do one hypercall directly
268 * instead.
269 */
270 struct mmu_update u;
271
272 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
273 u.val = pte_val_ma(pteval);
274 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
275 }
276}
277
278static void xen_set_pte(pte_t *ptep, pte_t pteval)
279{
280 trace_xen_mmu_set_pte(ptep, pteval);
281 __xen_set_pte(ptep, pteval);
282}
283
284static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
285 pte_t *ptep, pte_t pteval)
286{
287 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
288 __xen_set_pte(ptep, pteval);
289}
290
291pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
292 unsigned long addr, pte_t *ptep)
293{
294 /* Just return the pte as-is. We preserve the bits on commit */
295 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
296 return *ptep;
297}
298
299void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
300 pte_t *ptep, pte_t pte)
301{
302 struct mmu_update u;
303
304 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
305 xen_mc_batch();
306
307 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
308 u.val = pte_val_ma(pte);
309 xen_extend_mmu_update(&u);
310
311 xen_mc_issue(PARAVIRT_LAZY_MMU);
312}
313
314/* Assume pteval_t is equivalent to all the other *val_t types. */
315static pteval_t pte_mfn_to_pfn(pteval_t val)
316{
317 if (val & _PAGE_PRESENT) {
318 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
319 unsigned long pfn = mfn_to_pfn(mfn);
320
321 pteval_t flags = val & PTE_FLAGS_MASK;
322 if (unlikely(pfn == ~0))
323 val = flags & ~_PAGE_PRESENT;
324 else
325 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
326 }
327
328 return val;
329}
330
331static pteval_t pte_pfn_to_mfn(pteval_t val)
332{
333 if (val & _PAGE_PRESENT) {
334 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
335 pteval_t flags = val & PTE_FLAGS_MASK;
336 unsigned long mfn;
337
989513a7
JG
338 mfn = __pfn_to_mfn(pfn);
339
7e0563de
VK
340 /*
341 * If there's no mfn for the pfn, then just create an
342 * empty non-present pte. Unfortunately this loses
343 * information about the original pfn, so
344 * pte_mfn_to_pfn is asymmetric.
345 */
346 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
347 mfn = 0;
348 flags = 0;
349 } else
350 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
351 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
352 }
353
354 return val;
355}
356
357__visible pteval_t xen_pte_val(pte_t pte)
358{
359 pteval_t pteval = pte.pte;
360
361 return pte_mfn_to_pfn(pteval);
362}
363PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
364
365__visible pgdval_t xen_pgd_val(pgd_t pgd)
366{
367 return pte_mfn_to_pfn(pgd.pgd);
368}
369PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
370
371__visible pte_t xen_make_pte(pteval_t pte)
372{
373 pte = pte_pfn_to_mfn(pte);
374
375 return native_make_pte(pte);
376}
377PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
378
379__visible pgd_t xen_make_pgd(pgdval_t pgd)
380{
381 pgd = pte_pfn_to_mfn(pgd);
382 return native_make_pgd(pgd);
383}
384PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
385
386__visible pmdval_t xen_pmd_val(pmd_t pmd)
387{
388 return pte_mfn_to_pfn(pmd.pmd);
389}
390PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
391
392static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
393{
394 struct mmu_update u;
395
396 preempt_disable();
397
398 xen_mc_batch();
399
400 /* ptr may be ioremapped for 64-bit pagetable setup */
401 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
402 u.val = pud_val_ma(val);
403 xen_extend_mmu_update(&u);
404
405 xen_mc_issue(PARAVIRT_LAZY_MMU);
406
407 preempt_enable();
408}
409
410static void xen_set_pud(pud_t *ptr, pud_t val)
411{
412 trace_xen_mmu_set_pud(ptr, val);
413
414 /* If page is not pinned, we can just update the entry
415 directly */
416 if (!xen_page_pinned(ptr)) {
417 *ptr = val;
418 return;
419 }
420
421 xen_set_pud_hyper(ptr, val);
422}
423
424#ifdef CONFIG_X86_PAE
425static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
426{
427 trace_xen_mmu_set_pte_atomic(ptep, pte);
428 set_64bit((u64 *)ptep, native_pte_val(pte));
429}
430
431static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
432{
433 trace_xen_mmu_pte_clear(mm, addr, ptep);
434 if (!xen_batched_set_pte(ptep, native_make_pte(0)))
435 native_pte_clear(mm, addr, ptep);
436}
437
438static void xen_pmd_clear(pmd_t *pmdp)
439{
440 trace_xen_mmu_pmd_clear(pmdp);
441 set_pmd(pmdp, __pmd(0));
442}
443#endif /* CONFIG_X86_PAE */
444
445__visible pmd_t xen_make_pmd(pmdval_t pmd)
446{
447 pmd = pte_pfn_to_mfn(pmd);
448 return native_make_pmd(pmd);
449}
450PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
451
af02cd97 452#ifdef CONFIG_X86_64
7e0563de
VK
453__visible pudval_t xen_pud_val(pud_t pud)
454{
455 return pte_mfn_to_pfn(pud.pud);
456}
457PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
458
459__visible pud_t xen_make_pud(pudval_t pud)
460{
461 pud = pte_pfn_to_mfn(pud);
462
463 return native_make_pud(pud);
464}
465PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
466
467static pgd_t *xen_get_user_pgd(pgd_t *pgd)
468{
469 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
470 unsigned offset = pgd - pgd_page;
471 pgd_t *user_ptr = NULL;
472
473 if (offset < pgd_index(USER_LIMIT)) {
474 struct page *page = virt_to_page(pgd_page);
475 user_ptr = (pgd_t *)page->private;
476 if (user_ptr)
477 user_ptr += offset;
478 }
479
480 return user_ptr;
481}
482
483static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
484{
485 struct mmu_update u;
486
487 u.ptr = virt_to_machine(ptr).maddr;
488 u.val = p4d_val_ma(val);
489 xen_extend_mmu_update(&u);
490}
491
492/*
493 * Raw hypercall-based set_p4d, intended for in early boot before
494 * there's a page structure. This implies:
495 * 1. The only existing pagetable is the kernel's
496 * 2. It is always pinned
497 * 3. It has no user pagetable attached to it
498 */
499static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
500{
501 preempt_disable();
502
503 xen_mc_batch();
504
505 __xen_set_p4d_hyper(ptr, val);
506
507 xen_mc_issue(PARAVIRT_LAZY_MMU);
508
509 preempt_enable();
510}
511
512static void xen_set_p4d(p4d_t *ptr, p4d_t val)
513{
514 pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
515 pgd_t pgd_val;
516
517 trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
518
519 /* If page is not pinned, we can just update the entry
520 directly */
521 if (!xen_page_pinned(ptr)) {
522 *ptr = val;
523 if (user_ptr) {
524 WARN_ON(xen_page_pinned(user_ptr));
525 pgd_val.pgd = p4d_val_ma(val);
526 *user_ptr = pgd_val;
527 }
528 return;
529 }
530
531 /* If it's pinned, then we can at least batch the kernel and
532 user updates together. */
533 xen_mc_batch();
534
535 __xen_set_p4d_hyper(ptr, val);
536 if (user_ptr)
537 __xen_set_p4d_hyper((p4d_t *)user_ptr, val);
538
539 xen_mc_issue(PARAVIRT_LAZY_MMU);
540}
af02cd97 541#endif /* CONFIG_X86_64 */
7e0563de
VK
542
543static int xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
544 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
545 bool last, unsigned long limit)
546{
547 int i, nr, flush = 0;
548
549 nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
550 for (i = 0; i < nr; i++) {
551 if (!pmd_none(pmd[i]))
552 flush |= (*func)(mm, pmd_page(pmd[i]), PT_PTE);
553 }
554 return flush;
555}
556
557static int xen_pud_walk(struct mm_struct *mm, pud_t *pud,
558 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
559 bool last, unsigned long limit)
560{
561 int i, nr, flush = 0;
562
563 nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
564 for (i = 0; i < nr; i++) {
565 pmd_t *pmd;
566
567 if (pud_none(pud[i]))
568 continue;
569
570 pmd = pmd_offset(&pud[i], 0);
571 if (PTRS_PER_PMD > 1)
572 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
573 flush |= xen_pmd_walk(mm, pmd, func,
574 last && i == nr - 1, limit);
575 }
576 return flush;
577}
578
579static int xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
580 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
581 bool last, unsigned long limit)
582{
af02cd97
KS
583 int flush = 0;
584 pud_t *pud;
7e0563de 585
7e0563de 586
af02cd97
KS
587 if (p4d_none(*p4d))
588 return flush;
7e0563de 589
af02cd97
KS
590 pud = pud_offset(p4d, 0);
591 if (PTRS_PER_PUD > 1)
592 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
593 flush |= xen_pud_walk(mm, pud, func, last, limit);
7e0563de
VK
594 return flush;
595}
596
597/*
598 * (Yet another) pagetable walker. This one is intended for pinning a
599 * pagetable. This means that it walks a pagetable and calls the
600 * callback function on each page it finds making up the page table,
601 * at every level. It walks the entire pagetable, but it only bothers
602 * pinning pte pages which are below limit. In the normal case this
603 * will be STACK_TOP_MAX, but at boot we need to pin up to
604 * FIXADDR_TOP.
605 *
606 * For 32-bit the important bit is that we don't pin beyond there,
607 * because then we start getting into Xen's ptes.
608 *
609 * For 64-bit, we must skip the Xen hole in the middle of the address
610 * space, just after the big x86-64 virtual hole.
611 */
612static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
613 int (*func)(struct mm_struct *mm, struct page *,
614 enum pt_level),
615 unsigned long limit)
616{
617 int i, nr, flush = 0;
618 unsigned hole_low, hole_high;
619
620 /* The limit is the last byte to be touched */
621 limit--;
622 BUG_ON(limit >= FIXADDR_TOP);
623
7e0563de
VK
624 /*
625 * 64-bit has a great big hole in the middle of the address
626 * space, which contains the Xen mappings. On 32-bit these
627 * will end up making a zero-sized hole and so is a no-op.
628 */
629 hole_low = pgd_index(USER_LIMIT);
630 hole_high = pgd_index(PAGE_OFFSET);
631
632 nr = pgd_index(limit) + 1;
633 for (i = 0; i < nr; i++) {
634 p4d_t *p4d;
635
636 if (i >= hole_low && i < hole_high)
637 continue;
638
639 if (pgd_none(pgd[i]))
640 continue;
641
642 p4d = p4d_offset(&pgd[i], 0);
7e0563de
VK
643 flush |= xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
644 }
645
646 /* Do the top level last, so that the callbacks can use it as
647 a cue to do final things like tlb flushes. */
648 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
649
650 return flush;
651}
652
653static int xen_pgd_walk(struct mm_struct *mm,
654 int (*func)(struct mm_struct *mm, struct page *,
655 enum pt_level),
656 unsigned long limit)
657{
658 return __xen_pgd_walk(mm, mm->pgd, func, limit);
659}
660
661/* If we're using split pte locks, then take the page's lock and
662 return a pointer to it. Otherwise return NULL. */
663static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
664{
665 spinlock_t *ptl = NULL;
666
667#if USE_SPLIT_PTE_PTLOCKS
668 ptl = ptlock_ptr(page);
669 spin_lock_nest_lock(ptl, &mm->page_table_lock);
670#endif
671
672 return ptl;
673}
674
675static void xen_pte_unlock(void *v)
676{
677 spinlock_t *ptl = v;
678 spin_unlock(ptl);
679}
680
681static void xen_do_pin(unsigned level, unsigned long pfn)
682{
683 struct mmuext_op op;
684
685 op.cmd = level;
686 op.arg1.mfn = pfn_to_mfn(pfn);
687
688 xen_extend_mmuext_op(&op);
689}
690
691static int xen_pin_page(struct mm_struct *mm, struct page *page,
692 enum pt_level level)
693{
694 unsigned pgfl = TestSetPagePinned(page);
695 int flush;
696
697 if (pgfl)
698 flush = 0; /* already pinned */
699 else if (PageHighMem(page))
700 /* kmaps need flushing if we found an unpinned
701 highpage */
702 flush = 1;
703 else {
704 void *pt = lowmem_page_address(page);
705 unsigned long pfn = page_to_pfn(page);
706 struct multicall_space mcs = __xen_mc_entry(0);
707 spinlock_t *ptl;
708
709 flush = 0;
710
711 /*
712 * We need to hold the pagetable lock between the time
713 * we make the pagetable RO and when we actually pin
714 * it. If we don't, then other users may come in and
715 * attempt to update the pagetable by writing it,
716 * which will fail because the memory is RO but not
717 * pinned, so Xen won't do the trap'n'emulate.
718 *
719 * If we're using split pte locks, we can't hold the
720 * entire pagetable's worth of locks during the
721 * traverse, because we may wrap the preempt count (8
722 * bits). The solution is to mark RO and pin each PTE
723 * page while holding the lock. This means the number
724 * of locks we end up holding is never more than a
725 * batch size (~32 entries, at present).
726 *
727 * If we're not using split pte locks, we needn't pin
728 * the PTE pages independently, because we're
729 * protected by the overall pagetable lock.
730 */
731 ptl = NULL;
732 if (level == PT_PTE)
733 ptl = xen_pte_lock(page, mm);
734
735 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
736 pfn_pte(pfn, PAGE_KERNEL_RO),
737 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
738
739 if (ptl) {
740 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
741
742 /* Queue a deferred unlock for when this batch
743 is completed. */
744 xen_mc_callback(xen_pte_unlock, ptl);
745 }
746 }
747
748 return flush;
749}
750
751/* This is called just after a mm has been created, but it has not
752 been used yet. We need to make sure that its pagetable is all
753 read-only, and can be pinned. */
754static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
755{
756 trace_xen_mmu_pgd_pin(mm, pgd);
757
758 xen_mc_batch();
759
760 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
761 /* re-enable interrupts for flushing */
762 xen_mc_issue(0);
763
764 kmap_flush_unused();
765
766 xen_mc_batch();
767 }
768
769#ifdef CONFIG_X86_64
770 {
771 pgd_t *user_pgd = xen_get_user_pgd(pgd);
772
773 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
774
775 if (user_pgd) {
776 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
777 xen_do_pin(MMUEXT_PIN_L4_TABLE,
778 PFN_DOWN(__pa(user_pgd)));
779 }
780 }
781#else /* CONFIG_X86_32 */
782#ifdef CONFIG_X86_PAE
783 /* Need to make sure unshared kernel PMD is pinnable */
784 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
785 PT_PMD);
786#endif
787 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
788#endif /* CONFIG_X86_64 */
789 xen_mc_issue(0);
790}
791
792static void xen_pgd_pin(struct mm_struct *mm)
793{
794 __xen_pgd_pin(mm, mm->pgd);
795}
796
797/*
798 * On save, we need to pin all pagetables to make sure they get their
799 * mfns turned into pfns. Search the list for any unpinned pgds and pin
800 * them (unpinned pgds are not currently in use, probably because the
801 * process is under construction or destruction).
802 *
803 * Expected to be called in stop_machine() ("equivalent to taking
804 * every spinlock in the system"), so the locking doesn't really
805 * matter all that much.
806 */
807void xen_mm_pin_all(void)
808{
809 struct page *page;
810
811 spin_lock(&pgd_lock);
812
813 list_for_each_entry(page, &pgd_list, lru) {
814 if (!PagePinned(page)) {
815 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
816 SetPageSavePinned(page);
817 }
818 }
819
820 spin_unlock(&pgd_lock);
821}
822
823/*
824 * The init_mm pagetable is really pinned as soon as its created, but
825 * that's before we have page structures to store the bits. So do all
826 * the book-keeping now.
827 */
828static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
829 enum pt_level level)
830{
831 SetPagePinned(page);
832 return 0;
833}
834
835static void __init xen_mark_init_mm_pinned(void)
836{
837 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
838}
839
840static int xen_unpin_page(struct mm_struct *mm, struct page *page,
841 enum pt_level level)
842{
843 unsigned pgfl = TestClearPagePinned(page);
844
845 if (pgfl && !PageHighMem(page)) {
846 void *pt = lowmem_page_address(page);
847 unsigned long pfn = page_to_pfn(page);
848 spinlock_t *ptl = NULL;
849 struct multicall_space mcs;
850
851 /*
852 * Do the converse to pin_page. If we're using split
853 * pte locks, we must be holding the lock for while
854 * the pte page is unpinned but still RO to prevent
855 * concurrent updates from seeing it in this
856 * partially-pinned state.
857 */
858 if (level == PT_PTE) {
859 ptl = xen_pte_lock(page, mm);
860
861 if (ptl)
862 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
863 }
864
865 mcs = __xen_mc_entry(0);
866
867 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
868 pfn_pte(pfn, PAGE_KERNEL),
869 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
870
871 if (ptl) {
872 /* unlock when batch completed */
873 xen_mc_callback(xen_pte_unlock, ptl);
874 }
875 }
876
877 return 0; /* never need to flush on unpin */
878}
879
880/* Release a pagetables pages back as normal RW */
881static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
882{
883 trace_xen_mmu_pgd_unpin(mm, pgd);
884
885 xen_mc_batch();
886
887 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
888
889#ifdef CONFIG_X86_64
890 {
891 pgd_t *user_pgd = xen_get_user_pgd(pgd);
892
893 if (user_pgd) {
894 xen_do_pin(MMUEXT_UNPIN_TABLE,
895 PFN_DOWN(__pa(user_pgd)));
896 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
897 }
898 }
899#endif
900
901#ifdef CONFIG_X86_PAE
902 /* Need to make sure unshared kernel PMD is unpinned */
903 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
904 PT_PMD);
905#endif
906
907 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
908
909 xen_mc_issue(0);
910}
911
912static void xen_pgd_unpin(struct mm_struct *mm)
913{
914 __xen_pgd_unpin(mm, mm->pgd);
915}
916
917/*
918 * On resume, undo any pinning done at save, so that the rest of the
919 * kernel doesn't see any unexpected pinned pagetables.
920 */
921void xen_mm_unpin_all(void)
922{
923 struct page *page;
924
925 spin_lock(&pgd_lock);
926
927 list_for_each_entry(page, &pgd_list, lru) {
928 if (PageSavePinned(page)) {
929 BUG_ON(!PagePinned(page));
930 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
931 ClearPageSavePinned(page);
932 }
933 }
934
935 spin_unlock(&pgd_lock);
936}
937
938static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
939{
940 spin_lock(&next->page_table_lock);
941 xen_pgd_pin(next);
942 spin_unlock(&next->page_table_lock);
943}
944
945static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
946{
947 spin_lock(&mm->page_table_lock);
948 xen_pgd_pin(mm);
949 spin_unlock(&mm->page_table_lock);
950}
951
3d28ebce 952static void drop_mm_ref_this_cpu(void *info)
7e0563de
VK
953{
954 struct mm_struct *mm = info;
7e0563de 955
3d28ebce 956 if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
7e0563de
VK
957 leave_mm(smp_processor_id());
958
3d28ebce
AL
959 /*
960 * If this cpu still has a stale cr3 reference, then make sure
961 * it has been flushed.
962 */
7e0563de 963 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
3d28ebce 964 xen_mc_flush();
7e0563de
VK
965}
966
3d28ebce
AL
967#ifdef CONFIG_SMP
968/*
969 * Another cpu may still have their %cr3 pointing at the pagetable, so
970 * we need to repoint it somewhere else before we can unpin it.
971 */
7e0563de
VK
972static void xen_drop_mm_ref(struct mm_struct *mm)
973{
974 cpumask_var_t mask;
975 unsigned cpu;
976
3d28ebce 977 drop_mm_ref_this_cpu(mm);
7e0563de
VK
978
979 /* Get the "official" set of cpus referring to our pagetable. */
980 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
981 for_each_online_cpu(cpu) {
94b1b03b 982 if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
7e0563de 983 continue;
3d28ebce 984 smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1);
7e0563de
VK
985 }
986 return;
987 }
7e0563de 988
3d28ebce
AL
989 /*
990 * It's possible that a vcpu may have a stale reference to our
991 * cr3, because its in lazy mode, and it hasn't yet flushed
992 * its set of pending hypercalls yet. In this case, we can
993 * look at its actual current cr3 value, and force it to flush
994 * if needed.
995 */
94b1b03b 996 cpumask_clear(mask);
7e0563de
VK
997 for_each_online_cpu(cpu) {
998 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
999 cpumask_set_cpu(cpu, mask);
1000 }
1001
3d28ebce 1002 smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1);
7e0563de
VK
1003 free_cpumask_var(mask);
1004}
1005#else
1006static void xen_drop_mm_ref(struct mm_struct *mm)
1007{
3d28ebce 1008 drop_mm_ref_this_cpu(mm);
7e0563de
VK
1009}
1010#endif
1011
1012/*
1013 * While a process runs, Xen pins its pagetables, which means that the
1014 * hypervisor forces it to be read-only, and it controls all updates
1015 * to it. This means that all pagetable updates have to go via the
1016 * hypervisor, which is moderately expensive.
1017 *
1018 * Since we're pulling the pagetable down, we switch to use init_mm,
1019 * unpin old process pagetable and mark it all read-write, which
1020 * allows further operations on it to be simple memory accesses.
1021 *
1022 * The only subtle point is that another CPU may be still using the
1023 * pagetable because of lazy tlb flushing. This means we need need to
1024 * switch all CPUs off this pagetable before we can unpin it.
1025 */
1026static void xen_exit_mmap(struct mm_struct *mm)
1027{
1028 get_cpu(); /* make sure we don't move around */
1029 xen_drop_mm_ref(mm);
1030 put_cpu();
1031
1032 spin_lock(&mm->page_table_lock);
1033
1034 /* pgd may not be pinned in the error exit path of execve */
1035 if (xen_page_pinned(mm->pgd))
1036 xen_pgd_unpin(mm);
1037
1038 spin_unlock(&mm->page_table_lock);
1039}
1040
1041static void xen_post_allocator_init(void);
1042
1043static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1044{
1045 struct mmuext_op op;
1046
1047 op.cmd = cmd;
1048 op.arg1.mfn = pfn_to_mfn(pfn);
1049 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1050 BUG();
1051}
1052
1053#ifdef CONFIG_X86_64
1054static void __init xen_cleanhighmap(unsigned long vaddr,
1055 unsigned long vaddr_end)
1056{
1057 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1058 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1059
1060 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1061 * We include the PMD passed in on _both_ boundaries. */
1062 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1063 pmd++, vaddr += PMD_SIZE) {
1064 if (pmd_none(*pmd))
1065 continue;
1066 if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1067 set_pmd(pmd, __pmd(0));
1068 }
1069 /* In case we did something silly, we should crash in this function
1070 * instead of somewhere later and be confusing. */
1071 xen_mc_flush();
1072}
1073
1074/*
1075 * Make a page range writeable and free it.
1076 */
1077static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1078{
1079 void *vaddr = __va(paddr);
1080 void *vaddr_end = vaddr + size;
1081
1082 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1083 make_lowmem_page_readwrite(vaddr);
1084
1085 memblock_free(paddr, size);
1086}
1087
1088static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1089{
1090 unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1091
1092 if (unpin)
1093 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1094 ClearPagePinned(virt_to_page(__va(pa)));
1095 xen_free_ro_pages(pa, PAGE_SIZE);
1096}
1097
1098static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1099{
1100 unsigned long pa;
1101 pte_t *pte_tbl;
1102 int i;
1103
1104 if (pmd_large(*pmd)) {
1105 pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1106 xen_free_ro_pages(pa, PMD_SIZE);
1107 return;
1108 }
1109
1110 pte_tbl = pte_offset_kernel(pmd, 0);
1111 for (i = 0; i < PTRS_PER_PTE; i++) {
1112 if (pte_none(pte_tbl[i]))
1113 continue;
1114 pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1115 xen_free_ro_pages(pa, PAGE_SIZE);
1116 }
1117 set_pmd(pmd, __pmd(0));
1118 xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1119}
1120
1121static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1122{
1123 unsigned long pa;
1124 pmd_t *pmd_tbl;
1125 int i;
1126
1127 if (pud_large(*pud)) {
1128 pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1129 xen_free_ro_pages(pa, PUD_SIZE);
1130 return;
1131 }
1132
1133 pmd_tbl = pmd_offset(pud, 0);
1134 for (i = 0; i < PTRS_PER_PMD; i++) {
1135 if (pmd_none(pmd_tbl[i]))
1136 continue;
1137 xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1138 }
1139 set_pud(pud, __pud(0));
1140 xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1141}
1142
1143static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1144{
1145 unsigned long pa;
1146 pud_t *pud_tbl;
1147 int i;
1148
1149 if (p4d_large(*p4d)) {
1150 pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1151 xen_free_ro_pages(pa, P4D_SIZE);
1152 return;
1153 }
1154
1155 pud_tbl = pud_offset(p4d, 0);
1156 for (i = 0; i < PTRS_PER_PUD; i++) {
1157 if (pud_none(pud_tbl[i]))
1158 continue;
1159 xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1160 }
1161 set_p4d(p4d, __p4d(0));
1162 xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1163}
1164
1165/*
1166 * Since it is well isolated we can (and since it is perhaps large we should)
1167 * also free the page tables mapping the initial P->M table.
1168 */
1169static void __init xen_cleanmfnmap(unsigned long vaddr)
1170{
1171 pgd_t *pgd;
1172 p4d_t *p4d;
7e0563de
VK
1173 bool unpin;
1174
1175 unpin = (vaddr == 2 * PGDIR_SIZE);
1176 vaddr &= PMD_MASK;
1177 pgd = pgd_offset_k(vaddr);
1178 p4d = p4d_offset(pgd, 0);
af02cd97
KS
1179 if (!p4d_none(*p4d))
1180 xen_cleanmfnmap_p4d(p4d, unpin);
7e0563de
VK
1181}
1182
1183static void __init xen_pagetable_p2m_free(void)
1184{
1185 unsigned long size;
1186 unsigned long addr;
1187
1188 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1189
1190 /* No memory or already called. */
1191 if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1192 return;
1193
1194 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1195 memset((void *)xen_start_info->mfn_list, 0xff, size);
1196
1197 addr = xen_start_info->mfn_list;
1198 /*
1199 * We could be in __ka space.
1200 * We roundup to the PMD, which means that if anybody at this stage is
1201 * using the __ka address of xen_start_info or
1202 * xen_start_info->shared_info they are in going to crash. Fortunatly
1203 * we have already revectored in xen_setup_kernel_pagetable and in
1204 * xen_setup_shared_info.
1205 */
1206 size = roundup(size, PMD_SIZE);
1207
1208 if (addr >= __START_KERNEL_map) {
1209 xen_cleanhighmap(addr, addr + size);
1210 size = PAGE_ALIGN(xen_start_info->nr_pages *
1211 sizeof(unsigned long));
1212 memblock_free(__pa(addr), size);
1213 } else {
1214 xen_cleanmfnmap(addr);
1215 }
1216}
1217
1218static void __init xen_pagetable_cleanhighmap(void)
1219{
1220 unsigned long size;
1221 unsigned long addr;
1222
1223 /* At this stage, cleanup_highmap has already cleaned __ka space
1224 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1225 * the ramdisk). We continue on, erasing PMD entries that point to page
1226 * tables - do note that they are accessible at this stage via __va.
0d805ee7
ZD
1227 * As Xen is aligning the memory end to a 4MB boundary, for good
1228 * measure we also round up to PMD_SIZE * 2 - which means that if
7e0563de
VK
1229 * anybody is using __ka address to the initial boot-stack - and try
1230 * to use it - they are going to crash. The xen_start_info has been
1231 * taken care of already in xen_setup_kernel_pagetable. */
1232 addr = xen_start_info->pt_base;
0d805ee7 1233 size = xen_start_info->nr_pt_frames * PAGE_SIZE;
7e0563de 1234
0d805ee7 1235 xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2));
7e0563de 1236 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
7e0563de
VK
1237}
1238#endif
1239
1240static void __init xen_pagetable_p2m_setup(void)
1241{
7e0563de
VK
1242 xen_vmalloc_p2m_tree();
1243
1244#ifdef CONFIG_X86_64
1245 xen_pagetable_p2m_free();
1246
1247 xen_pagetable_cleanhighmap();
1248#endif
1249 /* And revector! Bye bye old array */
1250 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1251}
1252
1253static void __init xen_pagetable_init(void)
1254{
1255 paging_init();
1256 xen_post_allocator_init();
1257
1258 xen_pagetable_p2m_setup();
1259
1260 /* Allocate and initialize top and mid mfn levels for p2m structure */
1261 xen_build_mfn_list_list();
1262
1263 /* Remap memory freed due to conflicts with E820 map */
989513a7 1264 xen_remap_memory();
7e0563de
VK
1265
1266 xen_setup_shared_info();
1267}
1268static void xen_write_cr2(unsigned long cr2)
1269{
1270 this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1271}
1272
1273static unsigned long xen_read_cr2(void)
1274{
1275 return this_cpu_read(xen_vcpu)->arch.cr2;
1276}
1277
1278unsigned long xen_read_cr2_direct(void)
1279{
1280 return this_cpu_read(xen_vcpu_info.arch.cr2);
1281}
1282
1283static void xen_flush_tlb(void)
1284{
1285 struct mmuext_op *op;
1286 struct multicall_space mcs;
1287
1288 trace_xen_mmu_flush_tlb(0);
1289
1290 preempt_disable();
1291
1292 mcs = xen_mc_entry(sizeof(*op));
1293
1294 op = mcs.args;
1295 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1296 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1297
1298 xen_mc_issue(PARAVIRT_LAZY_MMU);
1299
1300 preempt_enable();
1301}
1302
208beef6 1303static void xen_flush_tlb_one_user(unsigned long addr)
7e0563de
VK
1304{
1305 struct mmuext_op *op;
1306 struct multicall_space mcs;
1307
208beef6 1308 trace_xen_mmu_flush_tlb_one_user(addr);
7e0563de
VK
1309
1310 preempt_disable();
1311
1312 mcs = xen_mc_entry(sizeof(*op));
1313 op = mcs.args;
1314 op->cmd = MMUEXT_INVLPG_LOCAL;
1315 op->arg1.linear_addr = addr & PAGE_MASK;
1316 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1317
1318 xen_mc_issue(PARAVIRT_LAZY_MMU);
1319
1320 preempt_enable();
1321}
1322
1323static void xen_flush_tlb_others(const struct cpumask *cpus,
a2055abe 1324 const struct flush_tlb_info *info)
7e0563de
VK
1325{
1326 struct {
1327 struct mmuext_op op;
1328#ifdef CONFIG_SMP
1329 DECLARE_BITMAP(mask, num_processors);
1330#else
1331 DECLARE_BITMAP(mask, NR_CPUS);
1332#endif
1333 } *args;
1334 struct multicall_space mcs;
1335
a2055abe 1336 trace_xen_mmu_flush_tlb_others(cpus, info->mm, info->start, info->end);
7e0563de
VK
1337
1338 if (cpumask_empty(cpus))
1339 return; /* nothing to do */
1340
1341 mcs = xen_mc_entry(sizeof(*args));
1342 args = mcs.args;
1343 args->op.arg2.vcpumask = to_cpumask(args->mask);
1344
1345 /* Remove us, and any offline CPUS. */
1346 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1347 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1348
1349 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
a2055abe
AL
1350 if (info->end != TLB_FLUSH_ALL &&
1351 (info->end - info->start) <= PAGE_SIZE) {
7e0563de 1352 args->op.cmd = MMUEXT_INVLPG_MULTI;
a2055abe 1353 args->op.arg1.linear_addr = info->start;
7e0563de
VK
1354 }
1355
1356 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1357
1358 xen_mc_issue(PARAVIRT_LAZY_MMU);
1359}
1360
1361static unsigned long xen_read_cr3(void)
1362{
1363 return this_cpu_read(xen_cr3);
1364}
1365
1366static void set_current_cr3(void *v)
1367{
1368 this_cpu_write(xen_current_cr3, (unsigned long)v);
1369}
1370
1371static void __xen_write_cr3(bool kernel, unsigned long cr3)
1372{
1373 struct mmuext_op op;
1374 unsigned long mfn;
1375
1376 trace_xen_mmu_write_cr3(kernel, cr3);
1377
1378 if (cr3)
1379 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1380 else
1381 mfn = 0;
1382
1383 WARN_ON(mfn == 0 && kernel);
1384
1385 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1386 op.arg1.mfn = mfn;
1387
1388 xen_extend_mmuext_op(&op);
1389
1390 if (kernel) {
1391 this_cpu_write(xen_cr3, cr3);
1392
1393 /* Update xen_current_cr3 once the batch has actually
1394 been submitted. */
1395 xen_mc_callback(set_current_cr3, (void *)cr3);
1396 }
1397}
1398static void xen_write_cr3(unsigned long cr3)
1399{
1400 BUG_ON(preemptible());
1401
1402 xen_mc_batch(); /* disables interrupts */
1403
1404 /* Update while interrupts are disabled, so its atomic with
1405 respect to ipis */
1406 this_cpu_write(xen_cr3, cr3);
1407
1408 __xen_write_cr3(true, cr3);
1409
1410#ifdef CONFIG_X86_64
1411 {
1412 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1413 if (user_pgd)
1414 __xen_write_cr3(false, __pa(user_pgd));
1415 else
1416 __xen_write_cr3(false, 0);
1417 }
1418#endif
1419
1420 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1421}
1422
1423#ifdef CONFIG_X86_64
1424/*
1425 * At the start of the day - when Xen launches a guest, it has already
1426 * built pagetables for the guest. We diligently look over them
1427 * in xen_setup_kernel_pagetable and graft as appropriate them in the
65ade2f8
KS
1428 * init_top_pgt and its friends. Then when we are happy we load
1429 * the new init_top_pgt - and continue on.
7e0563de
VK
1430 *
1431 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1432 * up the rest of the pagetables. When it has completed it loads the cr3.
1433 * N.B. that baremetal would start at 'start_kernel' (and the early
1434 * #PF handler would create bootstrap pagetables) - so we are running
1435 * with the same assumptions as what to do when write_cr3 is executed
1436 * at this point.
1437 *
1438 * Since there are no user-page tables at all, we have two variants
1439 * of xen_write_cr3 - the early bootup (this one), and the late one
1440 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1441 * the Linux kernel and user-space are both in ring 3 while the
1442 * hypervisor is in ring 0.
1443 */
1444static void __init xen_write_cr3_init(unsigned long cr3)
1445{
1446 BUG_ON(preemptible());
1447
1448 xen_mc_batch(); /* disables interrupts */
1449
1450 /* Update while interrupts are disabled, so its atomic with
1451 respect to ipis */
1452 this_cpu_write(xen_cr3, cr3);
1453
1454 __xen_write_cr3(true, cr3);
1455
1456 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1457}
1458#endif
1459
1460static int xen_pgd_alloc(struct mm_struct *mm)
1461{
1462 pgd_t *pgd = mm->pgd;
1463 int ret = 0;
1464
1465 BUG_ON(PagePinned(virt_to_page(pgd)));
1466
1467#ifdef CONFIG_X86_64
1468 {
1469 struct page *page = virt_to_page(pgd);
1470 pgd_t *user_pgd;
1471
1472 BUG_ON(page->private != 0);
1473
1474 ret = -ENOMEM;
1475
1476 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1477 page->private = (unsigned long)user_pgd;
1478
1479 if (user_pgd != NULL) {
1480#ifdef CONFIG_X86_VSYSCALL_EMULATION
1481 user_pgd[pgd_index(VSYSCALL_ADDR)] =
1482 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1483#endif
1484 ret = 0;
1485 }
1486
1487 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1488 }
1489#endif
1490 return ret;
1491}
1492
1493static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1494{
1495#ifdef CONFIG_X86_64
1496 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1497
1498 if (user_pgd)
1499 free_page((unsigned long)user_pgd);
1500#endif
1501}
1502
1503/*
1504 * Init-time set_pte while constructing initial pagetables, which
1505 * doesn't allow RO page table pages to be remapped RW.
1506 *
1507 * If there is no MFN for this PFN then this page is initially
1508 * ballooned out so clear the PTE (as in decrease_reservation() in
1509 * drivers/xen/balloon.c).
1510 *
1511 * Many of these PTE updates are done on unpinned and writable pages
1512 * and doing a hypercall for these is unnecessary and expensive. At
1513 * this point it is not possible to tell if a page is pinned or not,
1514 * so always write the PTE directly and rely on Xen trapping and
1515 * emulating any updates as necessary.
1516 */
1517__visible pte_t xen_make_pte_init(pteval_t pte)
1518{
1519#ifdef CONFIG_X86_64
1520 unsigned long pfn;
1521
1522 /*
1523 * Pages belonging to the initial p2m list mapped outside the default
1524 * address range must be mapped read-only. This region contains the
1525 * page tables for mapping the p2m list, too, and page tables MUST be
1526 * mapped read-only.
1527 */
1528 pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1529 if (xen_start_info->mfn_list < __START_KERNEL_map &&
1530 pfn >= xen_start_info->first_p2m_pfn &&
1531 pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1532 pte &= ~_PAGE_RW;
1533#endif
1534 pte = pte_pfn_to_mfn(pte);
1535 return native_make_pte(pte);
1536}
1537PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1538
1539static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1540{
1541#ifdef CONFIG_X86_32
1542 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1543 if (pte_mfn(pte) != INVALID_P2M_ENTRY
1544 && pte_val_ma(*ptep) & _PAGE_PRESENT)
1545 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1546 pte_val_ma(pte));
1547#endif
1548 native_set_pte(ptep, pte);
1549}
1550
1551/* Early in boot, while setting up the initial pagetable, assume
1552 everything is pinned. */
1553static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1554{
1555#ifdef CONFIG_FLATMEM
1556 BUG_ON(mem_map); /* should only be used early */
1557#endif
1558 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1559 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1560}
1561
1562/* Used for pmd and pud */
1563static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1564{
1565#ifdef CONFIG_FLATMEM
1566 BUG_ON(mem_map); /* should only be used early */
1567#endif
1568 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1569}
1570
1571/* Early release_pte assumes that all pts are pinned, since there's
1572 only init_mm and anything attached to that is pinned. */
1573static void __init xen_release_pte_init(unsigned long pfn)
1574{
1575 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1576 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1577}
1578
1579static void __init xen_release_pmd_init(unsigned long pfn)
1580{
1581 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1582}
1583
1584static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1585{
1586 struct multicall_space mcs;
1587 struct mmuext_op *op;
1588
1589 mcs = __xen_mc_entry(sizeof(*op));
1590 op = mcs.args;
1591 op->cmd = cmd;
1592 op->arg1.mfn = pfn_to_mfn(pfn);
1593
1594 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1595}
1596
1597static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1598{
1599 struct multicall_space mcs;
1600 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1601
1602 mcs = __xen_mc_entry(0);
1603 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1604 pfn_pte(pfn, prot), 0);
1605}
1606
1607/* This needs to make sure the new pte page is pinned iff its being
1608 attached to a pinned pagetable. */
1609static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1610 unsigned level)
1611{
1612 bool pinned = PagePinned(virt_to_page(mm->pgd));
1613
1614 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1615
1616 if (pinned) {
1617 struct page *page = pfn_to_page(pfn);
1618
1619 SetPagePinned(page);
1620
1621 if (!PageHighMem(page)) {
1622 xen_mc_batch();
1623
1624 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1625
1626 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1627 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1628
1629 xen_mc_issue(PARAVIRT_LAZY_MMU);
1630 } else {
1631 /* make sure there are no stray mappings of
1632 this page */
1633 kmap_flush_unused();
1634 }
1635 }
1636}
1637
1638static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1639{
1640 xen_alloc_ptpage(mm, pfn, PT_PTE);
1641}
1642
1643static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1644{
1645 xen_alloc_ptpage(mm, pfn, PT_PMD);
1646}
1647
1648/* This should never happen until we're OK to use struct page */
1649static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1650{
1651 struct page *page = pfn_to_page(pfn);
1652 bool pinned = PagePinned(page);
1653
1654 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1655
1656 if (pinned) {
1657 if (!PageHighMem(page)) {
1658 xen_mc_batch();
1659
1660 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1661 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1662
1663 __set_pfn_prot(pfn, PAGE_KERNEL);
1664
1665 xen_mc_issue(PARAVIRT_LAZY_MMU);
1666 }
1667 ClearPagePinned(page);
1668 }
1669}
1670
1671static void xen_release_pte(unsigned long pfn)
1672{
1673 xen_release_ptpage(pfn, PT_PTE);
1674}
1675
1676static void xen_release_pmd(unsigned long pfn)
1677{
1678 xen_release_ptpage(pfn, PT_PMD);
1679}
1680
af02cd97 1681#ifdef CONFIG_X86_64
7e0563de
VK
1682static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1683{
1684 xen_alloc_ptpage(mm, pfn, PT_PUD);
1685}
1686
1687static void xen_release_pud(unsigned long pfn)
1688{
1689 xen_release_ptpage(pfn, PT_PUD);
1690}
1691#endif
1692
1693void __init xen_reserve_top(void)
1694{
1695#ifdef CONFIG_X86_32
1696 unsigned long top = HYPERVISOR_VIRT_START;
1697 struct xen_platform_parameters pp;
1698
1699 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1700 top = pp.virt_start;
1701
1702 reserve_top_address(-top);
1703#endif /* CONFIG_X86_32 */
1704}
1705
1706/*
1707 * Like __va(), but returns address in the kernel mapping (which is
1708 * all we have until the physical memory mapping has been set up.
1709 */
1710static void * __init __ka(phys_addr_t paddr)
1711{
1712#ifdef CONFIG_X86_64
1713 return (void *)(paddr + __START_KERNEL_map);
1714#else
1715 return __va(paddr);
1716#endif
1717}
1718
1719/* Convert a machine address to physical address */
1720static unsigned long __init m2p(phys_addr_t maddr)
1721{
1722 phys_addr_t paddr;
1723
1724 maddr &= PTE_PFN_MASK;
1725 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1726
1727 return paddr;
1728}
1729
1730/* Convert a machine address to kernel virtual */
1731static void * __init m2v(phys_addr_t maddr)
1732{
1733 return __ka(m2p(maddr));
1734}
1735
1736/* Set the page permissions on an identity-mapped pages */
1737static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1738 unsigned long flags)
1739{
1740 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1741 pte_t pte = pfn_pte(pfn, prot);
1742
1743 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1744 BUG();
1745}
1746static void __init set_page_prot(void *addr, pgprot_t prot)
1747{
1748 return set_page_prot_flags(addr, prot, UVMF_NONE);
1749}
1750#ifdef CONFIG_X86_32
1751static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1752{
1753 unsigned pmdidx, pteidx;
1754 unsigned ident_pte;
1755 unsigned long pfn;
1756
1757 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1758 PAGE_SIZE);
1759
1760 ident_pte = 0;
1761 pfn = 0;
1762 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1763 pte_t *pte_page;
1764
1765 /* Reuse or allocate a page of ptes */
1766 if (pmd_present(pmd[pmdidx]))
1767 pte_page = m2v(pmd[pmdidx].pmd);
1768 else {
1769 /* Check for free pte pages */
1770 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1771 break;
1772
1773 pte_page = &level1_ident_pgt[ident_pte];
1774 ident_pte += PTRS_PER_PTE;
1775
1776 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1777 }
1778
1779 /* Install mappings */
1780 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1781 pte_t pte;
1782
1783 if (pfn > max_pfn_mapped)
1784 max_pfn_mapped = pfn;
1785
1786 if (!pte_none(pte_page[pteidx]))
1787 continue;
1788
1789 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1790 pte_page[pteidx] = pte;
1791 }
1792 }
1793
1794 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1795 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1796
1797 set_page_prot(pmd, PAGE_KERNEL_RO);
1798}
1799#endif
1800void __init xen_setup_machphys_mapping(void)
1801{
1802 struct xen_machphys_mapping mapping;
1803
1804 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1805 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1806 machine_to_phys_nr = mapping.max_mfn + 1;
1807 } else {
1808 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1809 }
1810#ifdef CONFIG_X86_32
1811 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1812 < machine_to_phys_mapping);
1813#endif
1814}
1815
1816#ifdef CONFIG_X86_64
1817static void __init convert_pfn_mfn(void *v)
1818{
1819 pte_t *pte = v;
1820 int i;
1821
1822 /* All levels are converted the same way, so just treat them
1823 as ptes. */
1824 for (i = 0; i < PTRS_PER_PTE; i++)
1825 pte[i] = xen_make_pte(pte[i].pte);
1826}
1827static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1828 unsigned long addr)
1829{
1830 if (*pt_base == PFN_DOWN(__pa(addr))) {
1831 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1832 clear_page((void *)addr);
1833 (*pt_base)++;
1834 }
1835 if (*pt_end == PFN_DOWN(__pa(addr))) {
1836 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1837 clear_page((void *)addr);
1838 (*pt_end)--;
1839 }
1840}
1841/*
1842 * Set up the initial kernel pagetable.
1843 *
1844 * We can construct this by grafting the Xen provided pagetable into
1845 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1846 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1847 * kernel has a physical mapping to start with - but that's enough to
1848 * get __va working. We need to fill in the rest of the physical
1849 * mapping once some sort of allocator has been set up.
1850 */
1851void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1852{
1853 pud_t *l3;
1854 pmd_t *l2;
1855 unsigned long addr[3];
1856 unsigned long pt_base, pt_end;
1857 unsigned i;
1858
1859 /* max_pfn_mapped is the last pfn mapped in the initial memory
1860 * mappings. Considering that on Xen after the kernel mappings we
1861 * have the mappings of some pages that don't exist in pfn space, we
1862 * set max_pfn_mapped to the last real pfn mapped. */
1863 if (xen_start_info->mfn_list < __START_KERNEL_map)
1864 max_pfn_mapped = xen_start_info->first_p2m_pfn;
1865 else
1866 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1867
1868 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1869 pt_end = pt_base + xen_start_info->nr_pt_frames;
1870
1871 /* Zap identity mapping */
65ade2f8 1872 init_top_pgt[0] = __pgd(0);
7e0563de 1873
989513a7
JG
1874 /* Pre-constructed entries are in pfn, so convert to mfn */
1875 /* L4[272] -> level3_ident_pgt */
1876 /* L4[511] -> level3_kernel_pgt */
65ade2f8 1877 convert_pfn_mfn(init_top_pgt);
7e0563de 1878
989513a7
JG
1879 /* L3_i[0] -> level2_ident_pgt */
1880 convert_pfn_mfn(level3_ident_pgt);
1881 /* L3_k[510] -> level2_kernel_pgt */
1882 /* L3_k[511] -> level2_fixmap_pgt */
1883 convert_pfn_mfn(level3_kernel_pgt);
1884
1885 /* L3_k[511][506] -> level1_fixmap_pgt */
1886 convert_pfn_mfn(level2_fixmap_pgt);
7e0563de 1887
7e0563de
VK
1888 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1889 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1890 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1891
1892 addr[0] = (unsigned long)pgd;
1893 addr[1] = (unsigned long)l3;
1894 addr[2] = (unsigned long)l2;
1895 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1896 * Both L4[272][0] and L4[511][510] have entries that point to the same
1897 * L2 (PMD) tables. Meaning that if you modify it in __va space
1898 * it will be also modified in the __ka space! (But if you just
1899 * modify the PMD table to point to other PTE's or none, then you
1900 * are OK - which is what cleanup_highmap does) */
1901 copy_page(level2_ident_pgt, l2);
1902 /* Graft it onto L4[511][510] */
1903 copy_page(level2_kernel_pgt, l2);
1904
c7f40ff4
JB
1905 /*
1906 * Zap execute permission from the ident map. Due to the sharing of
1907 * L1 entries we need to do this in the L2.
1908 */
1909 if (__supported_pte_mask & _PAGE_NX) {
1910 for (i = 0; i < PTRS_PER_PMD; ++i) {
1911 if (pmd_none(level2_ident_pgt[i]))
1912 continue;
1913 level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX);
1914 }
1915 }
1916
7e0563de
VK
1917 /* Copy the initial P->M table mappings if necessary. */
1918 i = pgd_index(xen_start_info->mfn_list);
1919 if (i && i < pgd_index(__START_KERNEL_map))
65ade2f8 1920 init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
7e0563de 1921
989513a7 1922 /* Make pagetable pieces RO */
65ade2f8 1923 set_page_prot(init_top_pgt, PAGE_KERNEL_RO);
989513a7
JG
1924 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1925 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1926 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1927 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1928 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1929 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1930 set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1931
1932 /* Pin down new L4 */
1933 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
65ade2f8 1934 PFN_DOWN(__pa_symbol(init_top_pgt)));
989513a7
JG
1935
1936 /* Unpin Xen-provided one */
1937 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
7e0563de 1938
989513a7
JG
1939 /*
1940 * At this stage there can be no user pgd, and no page structure to
1941 * attach it to, so make sure we just set kernel pgd.
1942 */
1943 xen_mc_batch();
65ade2f8 1944 __xen_write_cr3(true, __pa(init_top_pgt));
989513a7 1945 xen_mc_issue(PARAVIRT_LAZY_CPU);
7e0563de
VK
1946
1947 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1948 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1949 * the initial domain. For guests using the toolstack, they are in:
1950 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1951 * rip out the [L4] (pgd), but for guests we shave off three pages.
1952 */
1953 for (i = 0; i < ARRAY_SIZE(addr); i++)
1954 check_pt_base(&pt_base, &pt_end, addr[i]);
1955
1956 /* Our (by three pages) smaller Xen pagetable that we are using */
1957 xen_pt_base = PFN_PHYS(pt_base);
1958 xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
1959 memblock_reserve(xen_pt_base, xen_pt_size);
1960
1961 /* Revector the xen_start_info */
1962 xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1963}
1964
1965/*
1966 * Read a value from a physical address.
1967 */
1968static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
1969{
1970 unsigned long *vaddr;
1971 unsigned long val;
1972
1973 vaddr = early_memremap_ro(addr, sizeof(val));
1974 val = *vaddr;
1975 early_memunmap(vaddr, sizeof(val));
1976 return val;
1977}
1978
1979/*
1980 * Translate a virtual address to a physical one without relying on mapped
69861e0a
JG
1981 * page tables. Don't rely on big pages being aligned in (guest) physical
1982 * space!
7e0563de
VK
1983 */
1984static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
1985{
1986 phys_addr_t pa;
1987 pgd_t pgd;
1988 pud_t pud;
1989 pmd_t pmd;
1990 pte_t pte;
1991
6c690ee1 1992 pa = read_cr3_pa();
7e0563de
VK
1993 pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
1994 sizeof(pgd)));
1995 if (!pgd_present(pgd))
1996 return 0;
1997
1998 pa = pgd_val(pgd) & PTE_PFN_MASK;
1999 pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
2000 sizeof(pud)));
2001 if (!pud_present(pud))
2002 return 0;
69861e0a 2003 pa = pud_val(pud) & PTE_PFN_MASK;
7e0563de
VK
2004 if (pud_large(pud))
2005 return pa + (vaddr & ~PUD_MASK);
2006
2007 pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
2008 sizeof(pmd)));
2009 if (!pmd_present(pmd))
2010 return 0;
69861e0a 2011 pa = pmd_val(pmd) & PTE_PFN_MASK;
7e0563de
VK
2012 if (pmd_large(pmd))
2013 return pa + (vaddr & ~PMD_MASK);
2014
2015 pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
2016 sizeof(pte)));
2017 if (!pte_present(pte))
2018 return 0;
2019 pa = pte_pfn(pte) << PAGE_SHIFT;
2020
2021 return pa | (vaddr & ~PAGE_MASK);
2022}
2023
2024/*
2025 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2026 * this area.
2027 */
2028void __init xen_relocate_p2m(void)
2029{
af02cd97 2030 phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
7e0563de 2031 unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
af02cd97 2032 int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
7e0563de
VK
2033 pte_t *pt;
2034 pmd_t *pmd;
2035 pud_t *pud;
7e0563de
VK
2036 pgd_t *pgd;
2037 unsigned long *new_p2m;
2038 int save_pud;
2039
2040 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
2041 n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
2042 n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
2043 n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
2044 n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
af02cd97 2045 n_frames = n_pte + n_pt + n_pmd + n_pud;
7e0563de
VK
2046
2047 new_area = xen_find_free_area(PFN_PHYS(n_frames));
2048 if (!new_area) {
2049 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2050 BUG();
2051 }
2052
2053 /*
2054 * Setup the page tables for addressing the new p2m list.
2055 * We have asked the hypervisor to map the p2m list at the user address
2056 * PUD_SIZE. It may have done so, or it may have used a kernel space
2057 * address depending on the Xen version.
2058 * To avoid any possible virtual address collision, just use
2059 * 2 * PUD_SIZE for the new area.
2060 */
af02cd97 2061 pud_phys = new_area;
7e0563de
VK
2062 pmd_phys = pud_phys + PFN_PHYS(n_pud);
2063 pt_phys = pmd_phys + PFN_PHYS(n_pmd);
2064 p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
2065
6c690ee1 2066 pgd = __va(read_cr3_pa());
7e0563de 2067 new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
7e0563de 2068 save_pud = n_pud;
af02cd97
KS
2069 for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
2070 pud = early_memremap(pud_phys, PAGE_SIZE);
2071 clear_page(pud);
2072 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
2073 idx_pmd++) {
2074 pmd = early_memremap(pmd_phys, PAGE_SIZE);
2075 clear_page(pmd);
2076 for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
2077 idx_pt++) {
2078 pt = early_memremap(pt_phys, PAGE_SIZE);
2079 clear_page(pt);
2080 for (idx_pte = 0;
2081 idx_pte < min(n_pte, PTRS_PER_PTE);
2082 idx_pte++) {
2083 set_pte(pt + idx_pte,
2084 pfn_pte(p2m_pfn, PAGE_KERNEL));
2085 p2m_pfn++;
7e0563de 2086 }
af02cd97
KS
2087 n_pte -= PTRS_PER_PTE;
2088 early_memunmap(pt, PAGE_SIZE);
2089 make_lowmem_page_readonly(__va(pt_phys));
2090 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2091 PFN_DOWN(pt_phys));
2092 set_pmd(pmd + idx_pt,
2093 __pmd(_PAGE_TABLE | pt_phys));
2094 pt_phys += PAGE_SIZE;
7e0563de 2095 }
af02cd97
KS
2096 n_pt -= PTRS_PER_PMD;
2097 early_memunmap(pmd, PAGE_SIZE);
2098 make_lowmem_page_readonly(__va(pmd_phys));
2099 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2100 PFN_DOWN(pmd_phys));
2101 set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys));
2102 pmd_phys += PAGE_SIZE;
7e0563de 2103 }
af02cd97
KS
2104 n_pmd -= PTRS_PER_PUD;
2105 early_memunmap(pud, PAGE_SIZE);
2106 make_lowmem_page_readonly(__va(pud_phys));
2107 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2108 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2109 pud_phys += PAGE_SIZE;
2110 }
7e0563de
VK
2111
2112 /* Now copy the old p2m info to the new area. */
2113 memcpy(new_p2m, xen_p2m_addr, size);
2114 xen_p2m_addr = new_p2m;
2115
2116 /* Release the old p2m list and set new list info. */
2117 p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2118 BUG_ON(!p2m_pfn);
2119 p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2120
2121 if (xen_start_info->mfn_list < __START_KERNEL_map) {
2122 pfn = xen_start_info->first_p2m_pfn;
2123 pfn_end = xen_start_info->first_p2m_pfn +
2124 xen_start_info->nr_p2m_frames;
2125 set_pgd(pgd + 1, __pgd(0));
2126 } else {
2127 pfn = p2m_pfn;
2128 pfn_end = p2m_pfn_end;
2129 }
2130
2131 memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2132 while (pfn < pfn_end) {
2133 if (pfn == p2m_pfn) {
2134 pfn = p2m_pfn_end;
2135 continue;
2136 }
2137 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2138 pfn++;
2139 }
2140
2141 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2142 xen_start_info->first_p2m_pfn = PFN_DOWN(new_area);
2143 xen_start_info->nr_p2m_frames = n_frames;
2144}
2145
2146#else /* !CONFIG_X86_64 */
2147static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2148static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2149
2150static void __init xen_write_cr3_init(unsigned long cr3)
2151{
2152 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2153
6c690ee1 2154 BUG_ON(read_cr3_pa() != __pa(initial_page_table));
7e0563de
VK
2155 BUG_ON(cr3 != __pa(swapper_pg_dir));
2156
2157 /*
2158 * We are switching to swapper_pg_dir for the first time (from
2159 * initial_page_table) and therefore need to mark that page
2160 * read-only and then pin it.
2161 *
2162 * Xen disallows sharing of kernel PMDs for PAE
2163 * guests. Therefore we must copy the kernel PMD from
2164 * initial_page_table into a new kernel PMD to be used in
2165 * swapper_pg_dir.
2166 */
2167 swapper_kernel_pmd =
2168 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2169 copy_page(swapper_kernel_pmd, initial_kernel_pmd);
2170 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2171 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2172 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2173
2174 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2175 xen_write_cr3(cr3);
2176 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2177
2178 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2179 PFN_DOWN(__pa(initial_page_table)));
2180 set_page_prot(initial_page_table, PAGE_KERNEL);
2181 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2182
2183 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2184}
2185
2186/*
2187 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2188 * not the first page table in the page table pool.
2189 * Iterate through the initial page tables to find the real page table base.
2190 */
51ae2538 2191static phys_addr_t __init xen_find_pt_base(pmd_t *pmd)
7e0563de
VK
2192{
2193 phys_addr_t pt_base, paddr;
2194 unsigned pmdidx;
2195
2196 pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
2197
2198 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
2199 if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
2200 paddr = m2p(pmd[pmdidx].pmd);
2201 pt_base = min(pt_base, paddr);
2202 }
2203
2204 return pt_base;
2205}
2206
2207void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2208{
2209 pmd_t *kernel_pmd;
2210
2211 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2212
2213 xen_pt_base = xen_find_pt_base(kernel_pmd);
2214 xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
2215
2216 initial_kernel_pmd =
2217 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2218
2219 max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
2220
2221 copy_page(initial_kernel_pmd, kernel_pmd);
2222
2223 xen_map_identity_early(initial_kernel_pmd, max_pfn);
2224
2225 copy_page(initial_page_table, pgd);
2226 initial_page_table[KERNEL_PGD_BOUNDARY] =
2227 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2228
2229 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2230 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2231 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2232
2233 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2234
2235 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2236 PFN_DOWN(__pa(initial_page_table)));
2237 xen_write_cr3(__pa(initial_page_table));
2238
2239 memblock_reserve(xen_pt_base, xen_pt_size);
2240}
2241#endif /* CONFIG_X86_64 */
2242
2243void __init xen_reserve_special_pages(void)
2244{
2245 phys_addr_t paddr;
2246
2247 memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2248 if (xen_start_info->store_mfn) {
2249 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2250 memblock_reserve(paddr, PAGE_SIZE);
2251 }
2252 if (!xen_initial_domain()) {
2253 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2254 memblock_reserve(paddr, PAGE_SIZE);
2255 }
2256}
2257
2258void __init xen_pt_check_e820(void)
2259{
2260 if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2261 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2262 BUG();
2263 }
2264}
2265
2266static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2267
2268static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2269{
2270 pte_t pte;
2271
2272 phys >>= PAGE_SHIFT;
2273
2274 switch (idx) {
2275 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
7e0563de
VK
2276#ifdef CONFIG_X86_32
2277 case FIX_WP_TEST:
2278# ifdef CONFIG_HIGHMEM
2279 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2280# endif
2281#elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2282 case VSYSCALL_PAGE:
2283#endif
2284 case FIX_TEXT_POKE0:
2285 case FIX_TEXT_POKE1:
7e0563de
VK
2286 /* All local page mappings */
2287 pte = pfn_pte(phys, prot);
2288 break;
2289
2290#ifdef CONFIG_X86_LOCAL_APIC
2291 case FIX_APIC_BASE: /* maps dummy local APIC */
2292 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2293 break;
2294#endif
2295
2296#ifdef CONFIG_X86_IO_APIC
2297 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2298 /*
2299 * We just don't map the IO APIC - all access is via
2300 * hypercalls. Keep the address in the pte for reference.
2301 */
2302 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2303 break;
2304#endif
2305
2306 case FIX_PARAVIRT_BOOTMAP:
2307 /* This is an MFN, but it isn't an IO mapping from the
2308 IO domain */
2309 pte = mfn_pte(phys, prot);
2310 break;
2311
2312 default:
2313 /* By default, set_fixmap is used for hardware mappings */
2314 pte = mfn_pte(phys, prot);
2315 break;
2316 }
2317
2318 __native_set_fixmap(idx, pte);
2319
2320#ifdef CONFIG_X86_VSYSCALL_EMULATION
2321 /* Replicate changes to map the vsyscall page into the user
2322 pagetable vsyscall mapping. */
2323 if (idx == VSYSCALL_PAGE) {
2324 unsigned long vaddr = __fix_to_virt(idx);
2325 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2326 }
2327#endif
2328}
2329
2330static void __init xen_post_allocator_init(void)
2331{
7e0563de
VK
2332 pv_mmu_ops.set_pte = xen_set_pte;
2333 pv_mmu_ops.set_pmd = xen_set_pmd;
2334 pv_mmu_ops.set_pud = xen_set_pud;
af02cd97 2335#ifdef CONFIG_X86_64
7e0563de
VK
2336 pv_mmu_ops.set_p4d = xen_set_p4d;
2337#endif
2338
2339 /* This will work as long as patching hasn't happened yet
2340 (which it hasn't) */
2341 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2342 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2343 pv_mmu_ops.release_pte = xen_release_pte;
2344 pv_mmu_ops.release_pmd = xen_release_pmd;
af02cd97 2345#ifdef CONFIG_X86_64
7e0563de
VK
2346 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2347 pv_mmu_ops.release_pud = xen_release_pud;
2348#endif
2349 pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2350
2351#ifdef CONFIG_X86_64
2352 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2353 SetPagePinned(virt_to_page(level3_user_vsyscall));
2354#endif
2355 xen_mark_init_mm_pinned();
2356}
2357
2358static void xen_leave_lazy_mmu(void)
2359{
2360 preempt_disable();
2361 xen_mc_flush();
2362 paravirt_leave_lazy_mmu();
2363 preempt_enable();
2364}
2365
2366static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2367 .read_cr2 = xen_read_cr2,
2368 .write_cr2 = xen_write_cr2,
2369
2370 .read_cr3 = xen_read_cr3,
2371 .write_cr3 = xen_write_cr3_init,
2372
2373 .flush_tlb_user = xen_flush_tlb,
2374 .flush_tlb_kernel = xen_flush_tlb,
208beef6 2375 .flush_tlb_one_user = xen_flush_tlb_one_user,
7e0563de
VK
2376 .flush_tlb_others = xen_flush_tlb_others,
2377
7e0563de
VK
2378 .pgd_alloc = xen_pgd_alloc,
2379 .pgd_free = xen_pgd_free,
2380
2381 .alloc_pte = xen_alloc_pte_init,
2382 .release_pte = xen_release_pte_init,
2383 .alloc_pmd = xen_alloc_pmd_init,
2384 .release_pmd = xen_release_pmd_init,
2385
2386 .set_pte = xen_set_pte_init,
2387 .set_pte_at = xen_set_pte_at,
2388 .set_pmd = xen_set_pmd_hyper,
2389
2390 .ptep_modify_prot_start = __ptep_modify_prot_start,
2391 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2392
2393 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2394 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2395
2396 .make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2397 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2398
2399#ifdef CONFIG_X86_PAE
2400 .set_pte_atomic = xen_set_pte_atomic,
2401 .pte_clear = xen_pte_clear,
2402 .pmd_clear = xen_pmd_clear,
2403#endif /* CONFIG_X86_PAE */
2404 .set_pud = xen_set_pud_hyper,
2405
2406 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2407 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2408
af02cd97 2409#ifdef CONFIG_X86_64
7e0563de
VK
2410 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2411 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2412 .set_p4d = xen_set_p4d_hyper,
2413
2414 .alloc_pud = xen_alloc_pmd_init,
2415 .release_pud = xen_release_pmd_init,
af02cd97 2416#endif /* CONFIG_X86_64 */
7e0563de
VK
2417
2418 .activate_mm = xen_activate_mm,
2419 .dup_mmap = xen_dup_mmap,
2420 .exit_mmap = xen_exit_mmap,
2421
2422 .lazy_mode = {
2423 .enter = paravirt_enter_lazy_mmu,
2424 .leave = xen_leave_lazy_mmu,
2425 .flush = paravirt_flush_lazy_mmu,
2426 },
2427
2428 .set_fixmap = xen_set_fixmap,
2429};
2430
2431void __init xen_init_mmu_ops(void)
2432{
2433 x86_init.paging.pagetable_init = xen_pagetable_init;
2434
7e0563de
VK
2435 pv_mmu_ops = xen_mmu_ops;
2436
2437 memset(dummy_mapping, 0xff, PAGE_SIZE);
2438}
2439
2440/* Protected by xen_reservation_lock. */
2441#define MAX_CONTIG_ORDER 9 /* 2MB */
2442static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2443
2444#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2445static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2446 unsigned long *in_frames,
2447 unsigned long *out_frames)
2448{
2449 int i;
2450 struct multicall_space mcs;
2451
2452 xen_mc_batch();
2453 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2454 mcs = __xen_mc_entry(0);
2455
2456 if (in_frames)
2457 in_frames[i] = virt_to_mfn(vaddr);
2458
2459 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2460 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2461
2462 if (out_frames)
2463 out_frames[i] = virt_to_pfn(vaddr);
2464 }
2465 xen_mc_issue(0);
2466}
2467
2468/*
2469 * Update the pfn-to-mfn mappings for a virtual address range, either to
2470 * point to an array of mfns, or contiguously from a single starting
2471 * mfn.
2472 */
2473static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2474 unsigned long *mfns,
2475 unsigned long first_mfn)
2476{
2477 unsigned i, limit;
2478 unsigned long mfn;
2479
2480 xen_mc_batch();
2481
2482 limit = 1u << order;
2483 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2484 struct multicall_space mcs;
2485 unsigned flags;
2486
2487 mcs = __xen_mc_entry(0);
2488 if (mfns)
2489 mfn = mfns[i];
2490 else
2491 mfn = first_mfn + i;
2492
2493 if (i < (limit - 1))
2494 flags = 0;
2495 else {
2496 if (order == 0)
2497 flags = UVMF_INVLPG | UVMF_ALL;
2498 else
2499 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2500 }
2501
2502 MULTI_update_va_mapping(mcs.mc, vaddr,
2503 mfn_pte(mfn, PAGE_KERNEL), flags);
2504
2505 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2506 }
2507
2508 xen_mc_issue(0);
2509}
2510
2511/*
2512 * Perform the hypercall to exchange a region of our pfns to point to
2513 * memory with the required contiguous alignment. Takes the pfns as
2514 * input, and populates mfns as output.
2515 *
2516 * Returns a success code indicating whether the hypervisor was able to
2517 * satisfy the request or not.
2518 */
2519static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2520 unsigned long *pfns_in,
2521 unsigned long extents_out,
2522 unsigned int order_out,
2523 unsigned long *mfns_out,
2524 unsigned int address_bits)
2525{
2526 long rc;
2527 int success;
2528
2529 struct xen_memory_exchange exchange = {
2530 .in = {
2531 .nr_extents = extents_in,
2532 .extent_order = order_in,
2533 .extent_start = pfns_in,
2534 .domid = DOMID_SELF
2535 },
2536 .out = {
2537 .nr_extents = extents_out,
2538 .extent_order = order_out,
2539 .extent_start = mfns_out,
2540 .address_bits = address_bits,
2541 .domid = DOMID_SELF
2542 }
2543 };
2544
2545 BUG_ON(extents_in << order_in != extents_out << order_out);
2546
2547 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2548 success = (exchange.nr_exchanged == extents_in);
2549
2550 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2551 BUG_ON(success && (rc != 0));
2552
2553 return success;
2554}
2555
2556int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2557 unsigned int address_bits,
2558 dma_addr_t *dma_handle)
2559{
2560 unsigned long *in_frames = discontig_frames, out_frame;
2561 unsigned long flags;
2562 int success;
2563 unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2564
2565 /*
2566 * Currently an auto-translated guest will not perform I/O, nor will
2567 * it require PAE page directories below 4GB. Therefore any calls to
2568 * this function are redundant and can be ignored.
2569 */
2570
7e0563de
VK
2571 if (unlikely(order > MAX_CONTIG_ORDER))
2572 return -ENOMEM;
2573
2574 memset((void *) vstart, 0, PAGE_SIZE << order);
2575
2576 spin_lock_irqsave(&xen_reservation_lock, flags);
2577
2578 /* 1. Zap current PTEs, remembering MFNs. */
2579 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2580
2581 /* 2. Get a new contiguous memory extent. */
2582 out_frame = virt_to_pfn(vstart);
2583 success = xen_exchange_memory(1UL << order, 0, in_frames,
2584 1, order, &out_frame,
2585 address_bits);
2586
2587 /* 3. Map the new extent in place of old pages. */
2588 if (success)
2589 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2590 else
2591 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2592
2593 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2594
2595 *dma_handle = virt_to_machine(vstart).maddr;
2596 return success ? 0 : -ENOMEM;
2597}
2598EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2599
2600void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2601{
2602 unsigned long *out_frames = discontig_frames, in_frame;
2603 unsigned long flags;
2604 int success;
2605 unsigned long vstart;
2606
7e0563de
VK
2607 if (unlikely(order > MAX_CONTIG_ORDER))
2608 return;
2609
2610 vstart = (unsigned long)phys_to_virt(pstart);
2611 memset((void *) vstart, 0, PAGE_SIZE << order);
2612
2613 spin_lock_irqsave(&xen_reservation_lock, flags);
2614
2615 /* 1. Find start MFN of contiguous extent. */
2616 in_frame = virt_to_mfn(vstart);
2617
2618 /* 2. Zap current PTEs. */
2619 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2620
2621 /* 3. Do the exchange for non-contiguous MFNs. */
2622 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2623 0, out_frames, 0);
2624
2625 /* 4. Map new pages in place of old pages. */
2626 if (success)
2627 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2628 else
2629 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2630
2631 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2632}
2633EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
29985b09
JG
2634
2635#ifdef CONFIG_KEXEC_CORE
2636phys_addr_t paddr_vmcoreinfo_note(void)
2637{
2638 if (xen_pv_domain())
203e9e41 2639 return virt_to_machine(vmcoreinfo_note).maddr;
29985b09 2640 else
203e9e41 2641 return __pa(vmcoreinfo_note);
29985b09
JG
2642}
2643#endif /* CONFIG_KEXEC_CORE */