Merge remote-tracking branches 'asoc/topic/hdmi', 'asoc/topic/intel', 'asoc/topic...
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
448353ca 33#include <linux/swap.h>
05da4558 34#include <linux/hugetlb.h>
2f333bcb 35#include <linux/compiler.h>
bc6678a3 36#include <linux/srcu.h>
5a0e3ad6 37#include <linux/slab.h>
bf998156 38#include <linux/uaccess.h>
6aa8b732 39
e495606d
AK
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
4e542370 42#include <asm/io.h>
13673a90 43#include <asm/vmx.h>
6aa8b732 44
18552672
JR
45/*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
2f333bcb 52bool tdp_enabled = false;
18552672 53
8b1fe17c
XG
54enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
6903074c
XG
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
8b1fe17c 61};
37a7d8b0 62
8b1fe17c 63#undef MMU_DEBUG
37a7d8b0
AK
64
65#ifdef MMU_DEBUG
66
67#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
68#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
69
70#else
71
72#define pgprintk(x...) do { } while (0)
73#define rmap_printk(x...) do { } while (0)
74
75#endif
76
8b1fe17c 77#ifdef MMU_DEBUG
476bc001 78static bool dbg = 0;
6ada8cca 79module_param(dbg, bool, 0644);
37a7d8b0 80#endif
6aa8b732 81
d6c69ee9
YD
82#ifndef MMU_DEBUG
83#define ASSERT(x) do { } while (0)
84#else
6aa8b732
AK
85#define ASSERT(x) \
86 if (!(x)) { \
87 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
88 __FILE__, __LINE__, #x); \
89 }
d6c69ee9 90#endif
6aa8b732 91
957ed9ef
XG
92#define PTE_PREFETCH_NUM 8
93
00763e41 94#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
95#define PT64_SECOND_AVAIL_BITS_SHIFT 52
96
6aa8b732
AK
97#define PT64_LEVEL_BITS 9
98
99#define PT64_LEVEL_SHIFT(level) \
d77c26fc 100 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 101
6aa8b732
AK
102#define PT64_INDEX(address, level)\
103 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
104
105
106#define PT32_LEVEL_BITS 10
107
108#define PT32_LEVEL_SHIFT(level) \
d77c26fc 109 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 110
e04da980
JR
111#define PT32_LVL_OFFSET_MASK(level) \
112 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
114
115#define PT32_INDEX(address, level)\
116 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
117
118
27aba766 119#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
120#define PT64_DIR_BASE_ADDR_MASK \
121 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
122#define PT64_LVL_ADDR_MASK(level) \
123 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 * PT64_LEVEL_BITS))) - 1))
125#define PT64_LVL_OFFSET_MASK(level) \
126 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
128
129#define PT32_BASE_ADDR_MASK PAGE_MASK
130#define PT32_DIR_BASE_ADDR_MASK \
131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
132#define PT32_LVL_ADDR_MASK(level) \
133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134 * PT32_LEVEL_BITS))) - 1))
6aa8b732 135
53166229
GN
136#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
137 | shadow_x_mask | shadow_nx_mask)
6aa8b732 138
fe135d2c
AK
139#define ACC_EXEC_MASK 1
140#define ACC_WRITE_MASK PT_WRITABLE_MASK
141#define ACC_USER_MASK PT_USER_MASK
142#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
143
90bb6fc5
AK
144#include <trace/events/kvm.h>
145
07420171
AK
146#define CREATE_TRACE_POINTS
147#include "mmutrace.h"
148
49fde340
XG
149#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
150#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 151
135f8c2b
AK
152#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153
220f773a
TY
154/* make pte_list_desc fit well in cache line */
155#define PTE_LIST_EXT 3
156
53c07b18
XG
157struct pte_list_desc {
158 u64 *sptes[PTE_LIST_EXT];
159 struct pte_list_desc *more;
cd4a4e53
AK
160};
161
2d11123a
AK
162struct kvm_shadow_walk_iterator {
163 u64 addr;
164 hpa_t shadow_addr;
2d11123a 165 u64 *sptep;
dd3bfd59 166 int level;
2d11123a
AK
167 unsigned index;
168};
169
170#define for_each_shadow_entry(_vcpu, _addr, _walker) \
171 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
172 shadow_walk_okay(&(_walker)); \
173 shadow_walk_next(&(_walker)))
174
c2a2ac2b
XG
175#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
176 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
177 shadow_walk_okay(&(_walker)) && \
178 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
179 __shadow_walk_next(&(_walker), spte))
180
53c07b18 181static struct kmem_cache *pte_list_desc_cache;
d3d25b04 182static struct kmem_cache *mmu_page_header_cache;
45221ab6 183static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 184
7b52345e
SY
185static u64 __read_mostly shadow_nx_mask;
186static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
187static u64 __read_mostly shadow_user_mask;
188static u64 __read_mostly shadow_accessed_mask;
189static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
190static u64 __read_mostly shadow_mmio_mask;
191
192static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 193static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
194
195void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
196{
197 shadow_mmio_mask = mmio_mask;
198}
199EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
200
f2fd125d 201/*
ee3d1570
DM
202 * the low bit of the generation number is always presumed to be zero.
203 * This disables mmio caching during memslot updates. The concept is
204 * similar to a seqcount but instead of retrying the access we just punt
205 * and ignore the cache.
206 *
207 * spte bits 3-11 are used as bits 1-9 of the generation number,
208 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 209 */
ee3d1570 210#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
211#define MMIO_SPTE_GEN_HIGH_SHIFT 52
212
ee3d1570
DM
213#define MMIO_GEN_SHIFT 20
214#define MMIO_GEN_LOW_SHIFT 10
215#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942
XG
216#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
217#define MMIO_MAX_GEN ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
218
219static u64 generation_mmio_spte_mask(unsigned int gen)
220{
221 u64 mask;
222
223 WARN_ON(gen > MMIO_MAX_GEN);
224
225 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
226 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
227 return mask;
228}
229
230static unsigned int get_mmio_spte_generation(u64 spte)
231{
232 unsigned int gen;
233
234 spte &= ~shadow_mmio_mask;
235
236 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
237 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
238 return gen;
239}
240
f8f55942
XG
241static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
242{
00f034a1 243 return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
f8f55942
XG
244}
245
f2fd125d
XG
246static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
247 unsigned access)
ce88decf 248{
f8f55942
XG
249 unsigned int gen = kvm_current_mmio_generation(kvm);
250 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 251
ce88decf 252 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 253 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 254
f8f55942 255 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 256 mmu_spte_set(sptep, mask);
ce88decf
XG
257}
258
259static bool is_mmio_spte(u64 spte)
260{
261 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
262}
263
264static gfn_t get_mmio_spte_gfn(u64 spte)
265{
f2fd125d
XG
266 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
267 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
268}
269
270static unsigned get_mmio_spte_access(u64 spte)
271{
f2fd125d
XG
272 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
273 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
274}
275
f2fd125d
XG
276static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
277 pfn_t pfn, unsigned access)
ce88decf
XG
278{
279 if (unlikely(is_noslot_pfn(pfn))) {
f2fd125d 280 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
281 return true;
282 }
283
284 return false;
285}
c7addb90 286
f8f55942
XG
287static bool check_mmio_spte(struct kvm *kvm, u64 spte)
288{
089504c0
XG
289 unsigned int kvm_gen, spte_gen;
290
291 kvm_gen = kvm_current_mmio_generation(kvm);
292 spte_gen = get_mmio_spte_generation(spte);
293
294 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
295 return likely(kvm_gen == spte_gen);
f8f55942
XG
296}
297
7b52345e 298void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 299 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
300{
301 shadow_user_mask = user_mask;
302 shadow_accessed_mask = accessed_mask;
303 shadow_dirty_mask = dirty_mask;
304 shadow_nx_mask = nx_mask;
305 shadow_x_mask = x_mask;
306}
307EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
308
6aa8b732
AK
309static int is_cpuid_PSE36(void)
310{
311 return 1;
312}
313
73b1087e
AK
314static int is_nx(struct kvm_vcpu *vcpu)
315{
f6801dff 316 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
317}
318
c7addb90
AK
319static int is_shadow_present_pte(u64 pte)
320{
ce88decf 321 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
322}
323
05da4558
MT
324static int is_large_pte(u64 pte)
325{
326 return pte & PT_PAGE_SIZE_MASK;
327}
328
43a3795a 329static int is_rmap_spte(u64 pte)
cd4a4e53 330{
4b1a80fa 331 return is_shadow_present_pte(pte);
cd4a4e53
AK
332}
333
776e6633
MT
334static int is_last_spte(u64 pte, int level)
335{
336 if (level == PT_PAGE_TABLE_LEVEL)
337 return 1;
852e3c19 338 if (is_large_pte(pte))
776e6633
MT
339 return 1;
340 return 0;
341}
342
35149e21 343static pfn_t spte_to_pfn(u64 pte)
0b49ea86 344{
35149e21 345 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
346}
347
da928521
AK
348static gfn_t pse36_gfn_delta(u32 gpte)
349{
350 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
351
352 return (gpte & PT32_DIR_PSE36_MASK) << shift;
353}
354
603e0651 355#ifdef CONFIG_X86_64
d555c333 356static void __set_spte(u64 *sptep, u64 spte)
e663ee64 357{
603e0651 358 *sptep = spte;
e663ee64
AK
359}
360
603e0651 361static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 362{
603e0651
XG
363 *sptep = spte;
364}
365
366static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
367{
368 return xchg(sptep, spte);
369}
c2a2ac2b
XG
370
371static u64 __get_spte_lockless(u64 *sptep)
372{
373 return ACCESS_ONCE(*sptep);
374}
ce88decf
XG
375
376static bool __check_direct_spte_mmio_pf(u64 spte)
377{
378 /* It is valid if the spte is zapped. */
379 return spte == 0ull;
380}
a9221dd5 381#else
603e0651
XG
382union split_spte {
383 struct {
384 u32 spte_low;
385 u32 spte_high;
386 };
387 u64 spte;
388};
a9221dd5 389
c2a2ac2b
XG
390static void count_spte_clear(u64 *sptep, u64 spte)
391{
392 struct kvm_mmu_page *sp = page_header(__pa(sptep));
393
394 if (is_shadow_present_pte(spte))
395 return;
396
397 /* Ensure the spte is completely set before we increase the count */
398 smp_wmb();
399 sp->clear_spte_count++;
400}
401
603e0651
XG
402static void __set_spte(u64 *sptep, u64 spte)
403{
404 union split_spte *ssptep, sspte;
a9221dd5 405
603e0651
XG
406 ssptep = (union split_spte *)sptep;
407 sspte = (union split_spte)spte;
408
409 ssptep->spte_high = sspte.spte_high;
410
411 /*
412 * If we map the spte from nonpresent to present, We should store
413 * the high bits firstly, then set present bit, so cpu can not
414 * fetch this spte while we are setting the spte.
415 */
416 smp_wmb();
417
418 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
419}
420
603e0651
XG
421static void __update_clear_spte_fast(u64 *sptep, u64 spte)
422{
423 union split_spte *ssptep, sspte;
424
425 ssptep = (union split_spte *)sptep;
426 sspte = (union split_spte)spte;
427
428 ssptep->spte_low = sspte.spte_low;
429
430 /*
431 * If we map the spte from present to nonpresent, we should clear
432 * present bit firstly to avoid vcpu fetch the old high bits.
433 */
434 smp_wmb();
435
436 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 437 count_spte_clear(sptep, spte);
603e0651
XG
438}
439
440static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
441{
442 union split_spte *ssptep, sspte, orig;
443
444 ssptep = (union split_spte *)sptep;
445 sspte = (union split_spte)spte;
446
447 /* xchg acts as a barrier before the setting of the high bits */
448 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
449 orig.spte_high = ssptep->spte_high;
450 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 451 count_spte_clear(sptep, spte);
603e0651
XG
452
453 return orig.spte;
454}
c2a2ac2b
XG
455
456/*
457 * The idea using the light way get the spte on x86_32 guest is from
458 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
459 *
460 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
461 * coalesces them and we are running out of the MMU lock. Therefore
462 * we need to protect against in-progress updates of the spte.
463 *
464 * Reading the spte while an update is in progress may get the old value
465 * for the high part of the spte. The race is fine for a present->non-present
466 * change (because the high part of the spte is ignored for non-present spte),
467 * but for a present->present change we must reread the spte.
468 *
469 * All such changes are done in two steps (present->non-present and
470 * non-present->present), hence it is enough to count the number of
471 * present->non-present updates: if it changed while reading the spte,
472 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
473 */
474static u64 __get_spte_lockless(u64 *sptep)
475{
476 struct kvm_mmu_page *sp = page_header(__pa(sptep));
477 union split_spte spte, *orig = (union split_spte *)sptep;
478 int count;
479
480retry:
481 count = sp->clear_spte_count;
482 smp_rmb();
483
484 spte.spte_low = orig->spte_low;
485 smp_rmb();
486
487 spte.spte_high = orig->spte_high;
488 smp_rmb();
489
490 if (unlikely(spte.spte_low != orig->spte_low ||
491 count != sp->clear_spte_count))
492 goto retry;
493
494 return spte.spte;
495}
ce88decf
XG
496
497static bool __check_direct_spte_mmio_pf(u64 spte)
498{
499 union split_spte sspte = (union split_spte)spte;
500 u32 high_mmio_mask = shadow_mmio_mask >> 32;
501
502 /* It is valid if the spte is zapped. */
503 if (spte == 0ull)
504 return true;
505
506 /* It is valid if the spte is being zapped. */
507 if (sspte.spte_low == 0ull &&
508 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
509 return true;
510
511 return false;
512}
603e0651
XG
513#endif
514
c7ba5b48
XG
515static bool spte_is_locklessly_modifiable(u64 spte)
516{
feb3eb70
GN
517 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
518 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
519}
520
8672b721
XG
521static bool spte_has_volatile_bits(u64 spte)
522{
c7ba5b48
XG
523 /*
524 * Always atomicly update spte if it can be updated
525 * out of mmu-lock, it can ensure dirty bit is not lost,
526 * also, it can help us to get a stable is_writable_pte()
527 * to ensure tlb flush is not missed.
528 */
529 if (spte_is_locklessly_modifiable(spte))
530 return true;
531
8672b721
XG
532 if (!shadow_accessed_mask)
533 return false;
534
535 if (!is_shadow_present_pte(spte))
536 return false;
537
4132779b
XG
538 if ((spte & shadow_accessed_mask) &&
539 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
540 return false;
541
542 return true;
543}
544
4132779b
XG
545static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
546{
547 return (old_spte & bit_mask) && !(new_spte & bit_mask);
548}
549
1df9f2dc
XG
550/* Rules for using mmu_spte_set:
551 * Set the sptep from nonpresent to present.
552 * Note: the sptep being assigned *must* be either not present
553 * or in a state where the hardware will not attempt to update
554 * the spte.
555 */
556static void mmu_spte_set(u64 *sptep, u64 new_spte)
557{
558 WARN_ON(is_shadow_present_pte(*sptep));
559 __set_spte(sptep, new_spte);
560}
561
562/* Rules for using mmu_spte_update:
563 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
564 *
565 * Whenever we overwrite a writable spte with a read-only one we
566 * should flush remote TLBs. Otherwise rmap_write_protect
567 * will find a read-only spte, even though the writable spte
568 * might be cached on a CPU's TLB, the return value indicates this
569 * case.
1df9f2dc 570 */
6e7d0354 571static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 572{
c7ba5b48 573 u64 old_spte = *sptep;
6e7d0354 574 bool ret = false;
4132779b
XG
575
576 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 577
6e7d0354
XG
578 if (!is_shadow_present_pte(old_spte)) {
579 mmu_spte_set(sptep, new_spte);
580 return ret;
581 }
4132779b 582
c7ba5b48 583 if (!spte_has_volatile_bits(old_spte))
603e0651 584 __update_clear_spte_fast(sptep, new_spte);
4132779b 585 else
603e0651 586 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 587
c7ba5b48
XG
588 /*
589 * For the spte updated out of mmu-lock is safe, since
590 * we always atomicly update it, see the comments in
591 * spte_has_volatile_bits().
592 */
7f31c959
XG
593 if (spte_is_locklessly_modifiable(old_spte) &&
594 !is_writable_pte(new_spte))
6e7d0354
XG
595 ret = true;
596
4132779b 597 if (!shadow_accessed_mask)
6e7d0354 598 return ret;
4132779b
XG
599
600 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
601 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
602 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
603 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
604
605 return ret;
b79b93f9
AK
606}
607
1df9f2dc
XG
608/*
609 * Rules for using mmu_spte_clear_track_bits:
610 * It sets the sptep from present to nonpresent, and track the
611 * state bits, it is used to clear the last level sptep.
612 */
613static int mmu_spte_clear_track_bits(u64 *sptep)
614{
615 pfn_t pfn;
616 u64 old_spte = *sptep;
617
618 if (!spte_has_volatile_bits(old_spte))
603e0651 619 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 620 else
603e0651 621 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
622
623 if (!is_rmap_spte(old_spte))
624 return 0;
625
626 pfn = spte_to_pfn(old_spte);
86fde74c
XG
627
628 /*
629 * KVM does not hold the refcount of the page used by
630 * kvm mmu, before reclaiming the page, we should
631 * unmap it from mmu first.
632 */
d3fccc7e 633 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 634
1df9f2dc
XG
635 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
636 kvm_set_pfn_accessed(pfn);
637 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
638 kvm_set_pfn_dirty(pfn);
639 return 1;
640}
641
642/*
643 * Rules for using mmu_spte_clear_no_track:
644 * Directly clear spte without caring the state bits of sptep,
645 * it is used to set the upper level spte.
646 */
647static void mmu_spte_clear_no_track(u64 *sptep)
648{
603e0651 649 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
650}
651
c2a2ac2b
XG
652static u64 mmu_spte_get_lockless(u64 *sptep)
653{
654 return __get_spte_lockless(sptep);
655}
656
657static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
658{
c142786c
AK
659 /*
660 * Prevent page table teardown by making any free-er wait during
661 * kvm_flush_remote_tlbs() IPI to all active vcpus.
662 */
663 local_irq_disable();
664 vcpu->mode = READING_SHADOW_PAGE_TABLES;
665 /*
666 * Make sure a following spte read is not reordered ahead of the write
667 * to vcpu->mode.
668 */
669 smp_mb();
c2a2ac2b
XG
670}
671
672static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
673{
c142786c
AK
674 /*
675 * Make sure the write to vcpu->mode is not reordered in front of
676 * reads to sptes. If it does, kvm_commit_zap_page() can see us
677 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
678 */
679 smp_mb();
680 vcpu->mode = OUTSIDE_GUEST_MODE;
681 local_irq_enable();
c2a2ac2b
XG
682}
683
e2dec939 684static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 685 struct kmem_cache *base_cache, int min)
714b93da
AK
686{
687 void *obj;
688
689 if (cache->nobjs >= min)
e2dec939 690 return 0;
714b93da 691 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 692 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 693 if (!obj)
e2dec939 694 return -ENOMEM;
714b93da
AK
695 cache->objects[cache->nobjs++] = obj;
696 }
e2dec939 697 return 0;
714b93da
AK
698}
699
f759e2b4
XG
700static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
701{
702 return cache->nobjs;
703}
704
e8ad9a70
XG
705static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
706 struct kmem_cache *cache)
714b93da
AK
707{
708 while (mc->nobjs)
e8ad9a70 709 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
710}
711
c1158e63 712static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 713 int min)
c1158e63 714{
842f22ed 715 void *page;
c1158e63
AK
716
717 if (cache->nobjs >= min)
718 return 0;
719 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 720 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
721 if (!page)
722 return -ENOMEM;
842f22ed 723 cache->objects[cache->nobjs++] = page;
c1158e63
AK
724 }
725 return 0;
726}
727
728static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
729{
730 while (mc->nobjs)
c4d198d5 731 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
732}
733
2e3e5882 734static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 735{
e2dec939
AK
736 int r;
737
53c07b18 738 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 739 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
740 if (r)
741 goto out;
ad312c7c 742 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
743 if (r)
744 goto out;
ad312c7c 745 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 746 mmu_page_header_cache, 4);
e2dec939
AK
747out:
748 return r;
714b93da
AK
749}
750
751static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
752{
53c07b18
XG
753 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
754 pte_list_desc_cache);
ad312c7c 755 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
756 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
757 mmu_page_header_cache);
714b93da
AK
758}
759
80feb89a 760static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
761{
762 void *p;
763
764 BUG_ON(!mc->nobjs);
765 p = mc->objects[--mc->nobjs];
714b93da
AK
766 return p;
767}
768
53c07b18 769static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 770{
80feb89a 771 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
772}
773
53c07b18 774static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 775{
53c07b18 776 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
777}
778
2032a93d
LJ
779static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
780{
781 if (!sp->role.direct)
782 return sp->gfns[index];
783
784 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
785}
786
787static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
788{
789 if (sp->role.direct)
790 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
791 else
792 sp->gfns[index] = gfn;
793}
794
05da4558 795/*
d4dbf470
TY
796 * Return the pointer to the large page information for a given gfn,
797 * handling slots that are not large page aligned.
05da4558 798 */
d4dbf470
TY
799static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
800 struct kvm_memory_slot *slot,
801 int level)
05da4558
MT
802{
803 unsigned long idx;
804
fb03cb6f 805 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 806 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
807}
808
809static void account_shadowed(struct kvm *kvm, gfn_t gfn)
810{
d25797b2 811 struct kvm_memory_slot *slot;
d4dbf470 812 struct kvm_lpage_info *linfo;
d25797b2 813 int i;
05da4558 814
a1f4d395 815 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
816 for (i = PT_DIRECTORY_LEVEL;
817 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
818 linfo = lpage_info_slot(gfn, slot, i);
819 linfo->write_count += 1;
d25797b2 820 }
332b207d 821 kvm->arch.indirect_shadow_pages++;
05da4558
MT
822}
823
824static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
825{
d25797b2 826 struct kvm_memory_slot *slot;
d4dbf470 827 struct kvm_lpage_info *linfo;
d25797b2 828 int i;
05da4558 829
a1f4d395 830 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
831 for (i = PT_DIRECTORY_LEVEL;
832 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
833 linfo = lpage_info_slot(gfn, slot, i);
834 linfo->write_count -= 1;
835 WARN_ON(linfo->write_count < 0);
d25797b2 836 }
332b207d 837 kvm->arch.indirect_shadow_pages--;
05da4558
MT
838}
839
d25797b2
JR
840static int has_wrprotected_page(struct kvm *kvm,
841 gfn_t gfn,
842 int level)
05da4558 843{
2843099f 844 struct kvm_memory_slot *slot;
d4dbf470 845 struct kvm_lpage_info *linfo;
05da4558 846
a1f4d395 847 slot = gfn_to_memslot(kvm, gfn);
05da4558 848 if (slot) {
d4dbf470
TY
849 linfo = lpage_info_slot(gfn, slot, level);
850 return linfo->write_count;
05da4558
MT
851 }
852
853 return 1;
854}
855
d25797b2 856static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 857{
8f0b1ab6 858 unsigned long page_size;
d25797b2 859 int i, ret = 0;
05da4558 860
8f0b1ab6 861 page_size = kvm_host_page_size(kvm, gfn);
05da4558 862
d25797b2
JR
863 for (i = PT_PAGE_TABLE_LEVEL;
864 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
865 if (page_size >= KVM_HPAGE_SIZE(i))
866 ret = i;
867 else
868 break;
869 }
870
4c2155ce 871 return ret;
05da4558
MT
872}
873
5d163b1c
XG
874static struct kvm_memory_slot *
875gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
876 bool no_dirty_log)
05da4558
MT
877{
878 struct kvm_memory_slot *slot;
5d163b1c
XG
879
880 slot = gfn_to_memslot(vcpu->kvm, gfn);
881 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
882 (no_dirty_log && slot->dirty_bitmap))
883 slot = NULL;
884
885 return slot;
886}
887
888static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
889{
a0a8eaba 890 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
891}
892
893static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
894{
895 int host_level, level, max_level;
05da4558 896
d25797b2
JR
897 host_level = host_mapping_level(vcpu->kvm, large_gfn);
898
899 if (host_level == PT_PAGE_TABLE_LEVEL)
900 return host_level;
901
55dd98c3 902 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
903
904 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
905 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
906 break;
d25797b2
JR
907
908 return level - 1;
05da4558
MT
909}
910
290fc38d 911/*
53c07b18 912 * Pte mapping structures:
cd4a4e53 913 *
53c07b18 914 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 915 *
53c07b18
XG
916 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
917 * pte_list_desc containing more mappings.
53a27b39 918 *
53c07b18 919 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
920 * the spte was not added.
921 *
cd4a4e53 922 */
53c07b18
XG
923static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
924 unsigned long *pte_list)
cd4a4e53 925{
53c07b18 926 struct pte_list_desc *desc;
53a27b39 927 int i, count = 0;
cd4a4e53 928
53c07b18
XG
929 if (!*pte_list) {
930 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
931 *pte_list = (unsigned long)spte;
932 } else if (!(*pte_list & 1)) {
933 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
934 desc = mmu_alloc_pte_list_desc(vcpu);
935 desc->sptes[0] = (u64 *)*pte_list;
d555c333 936 desc->sptes[1] = spte;
53c07b18 937 *pte_list = (unsigned long)desc | 1;
cb16a7b3 938 ++count;
cd4a4e53 939 } else {
53c07b18
XG
940 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
941 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
942 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 943 desc = desc->more;
53c07b18 944 count += PTE_LIST_EXT;
53a27b39 945 }
53c07b18
XG
946 if (desc->sptes[PTE_LIST_EXT-1]) {
947 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
948 desc = desc->more;
949 }
d555c333 950 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 951 ++count;
d555c333 952 desc->sptes[i] = spte;
cd4a4e53 953 }
53a27b39 954 return count;
cd4a4e53
AK
955}
956
53c07b18
XG
957static void
958pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
959 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
960{
961 int j;
962
53c07b18 963 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 964 ;
d555c333
AK
965 desc->sptes[i] = desc->sptes[j];
966 desc->sptes[j] = NULL;
cd4a4e53
AK
967 if (j != 0)
968 return;
969 if (!prev_desc && !desc->more)
53c07b18 970 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
971 else
972 if (prev_desc)
973 prev_desc->more = desc->more;
974 else
53c07b18
XG
975 *pte_list = (unsigned long)desc->more | 1;
976 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
977}
978
53c07b18 979static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 980{
53c07b18
XG
981 struct pte_list_desc *desc;
982 struct pte_list_desc *prev_desc;
cd4a4e53
AK
983 int i;
984
53c07b18
XG
985 if (!*pte_list) {
986 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 987 BUG();
53c07b18
XG
988 } else if (!(*pte_list & 1)) {
989 rmap_printk("pte_list_remove: %p 1->0\n", spte);
990 if ((u64 *)*pte_list != spte) {
991 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
992 BUG();
993 }
53c07b18 994 *pte_list = 0;
cd4a4e53 995 } else {
53c07b18
XG
996 rmap_printk("pte_list_remove: %p many->many\n", spte);
997 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
998 prev_desc = NULL;
999 while (desc) {
53c07b18 1000 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 1001 if (desc->sptes[i] == spte) {
53c07b18 1002 pte_list_desc_remove_entry(pte_list,
714b93da 1003 desc, i,
cd4a4e53
AK
1004 prev_desc);
1005 return;
1006 }
1007 prev_desc = desc;
1008 desc = desc->more;
1009 }
53c07b18 1010 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1011 BUG();
1012 }
1013}
1014
67052b35
XG
1015typedef void (*pte_list_walk_fn) (u64 *spte);
1016static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1017{
1018 struct pte_list_desc *desc;
1019 int i;
1020
1021 if (!*pte_list)
1022 return;
1023
1024 if (!(*pte_list & 1))
1025 return fn((u64 *)*pte_list);
1026
1027 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1028 while (desc) {
1029 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1030 fn(desc->sptes[i]);
1031 desc = desc->more;
1032 }
1033}
1034
9373e2c0 1035static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 1036 struct kvm_memory_slot *slot)
53c07b18 1037{
77d11309 1038 unsigned long idx;
53c07b18 1039
77d11309 1040 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1041 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1042}
1043
9b9b1492
TY
1044/*
1045 * Take gfn and return the reverse mapping to it.
1046 */
1047static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1048{
1049 struct kvm_memory_slot *slot;
1050
1051 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 1052 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
1053}
1054
f759e2b4
XG
1055static bool rmap_can_add(struct kvm_vcpu *vcpu)
1056{
1057 struct kvm_mmu_memory_cache *cache;
1058
1059 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1060 return mmu_memory_cache_free_objects(cache);
1061}
1062
53c07b18
XG
1063static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1064{
1065 struct kvm_mmu_page *sp;
1066 unsigned long *rmapp;
1067
53c07b18
XG
1068 sp = page_header(__pa(spte));
1069 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1070 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1071 return pte_list_add(vcpu, spte, rmapp);
1072}
1073
53c07b18
XG
1074static void rmap_remove(struct kvm *kvm, u64 *spte)
1075{
1076 struct kvm_mmu_page *sp;
1077 gfn_t gfn;
1078 unsigned long *rmapp;
1079
1080 sp = page_header(__pa(spte));
1081 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1082 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1083 pte_list_remove(spte, rmapp);
1084}
1085
1e3f42f0
TY
1086/*
1087 * Used by the following functions to iterate through the sptes linked by a
1088 * rmap. All fields are private and not assumed to be used outside.
1089 */
1090struct rmap_iterator {
1091 /* private fields */
1092 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1093 int pos; /* index of the sptep */
1094};
1095
1096/*
1097 * Iteration must be started by this function. This should also be used after
1098 * removing/dropping sptes from the rmap link because in such cases the
1099 * information in the itererator may not be valid.
1100 *
1101 * Returns sptep if found, NULL otherwise.
1102 */
1103static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1104{
1105 if (!rmap)
1106 return NULL;
1107
1108 if (!(rmap & 1)) {
1109 iter->desc = NULL;
1110 return (u64 *)rmap;
1111 }
1112
1113 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1114 iter->pos = 0;
1115 return iter->desc->sptes[iter->pos];
1116}
1117
1118/*
1119 * Must be used with a valid iterator: e.g. after rmap_get_first().
1120 *
1121 * Returns sptep if found, NULL otherwise.
1122 */
1123static u64 *rmap_get_next(struct rmap_iterator *iter)
1124{
1125 if (iter->desc) {
1126 if (iter->pos < PTE_LIST_EXT - 1) {
1127 u64 *sptep;
1128
1129 ++iter->pos;
1130 sptep = iter->desc->sptes[iter->pos];
1131 if (sptep)
1132 return sptep;
1133 }
1134
1135 iter->desc = iter->desc->more;
1136
1137 if (iter->desc) {
1138 iter->pos = 0;
1139 /* desc->sptes[0] cannot be NULL */
1140 return iter->desc->sptes[iter->pos];
1141 }
1142 }
1143
1144 return NULL;
1145}
1146
c3707958 1147static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1148{
1df9f2dc 1149 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1150 rmap_remove(kvm, sptep);
be38d276
AK
1151}
1152
8e22f955
XG
1153
1154static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1155{
1156 if (is_large_pte(*sptep)) {
1157 WARN_ON(page_header(__pa(sptep))->role.level ==
1158 PT_PAGE_TABLE_LEVEL);
1159 drop_spte(kvm, sptep);
1160 --kvm->stat.lpages;
1161 return true;
1162 }
1163
1164 return false;
1165}
1166
1167static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1168{
1169 if (__drop_large_spte(vcpu->kvm, sptep))
1170 kvm_flush_remote_tlbs(vcpu->kvm);
1171}
1172
1173/*
49fde340 1174 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1175 * spte write-protection is caused by protecting shadow page table.
49fde340 1176 *
b4619660 1177 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1178 * protection:
1179 * - for dirty logging, the spte can be set to writable at anytime if
1180 * its dirty bitmap is properly set.
1181 * - for spte protection, the spte can be writable only after unsync-ing
1182 * shadow page.
8e22f955 1183 *
c126d94f 1184 * Return true if tlb need be flushed.
8e22f955 1185 */
c126d94f 1186static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1187{
1188 u64 spte = *sptep;
1189
49fde340
XG
1190 if (!is_writable_pte(spte) &&
1191 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1192 return false;
1193
1194 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1195
49fde340
XG
1196 if (pt_protect)
1197 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1198 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1199
c126d94f 1200 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1201}
1202
49fde340 1203static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1204 bool pt_protect)
98348e95 1205{
1e3f42f0
TY
1206 u64 *sptep;
1207 struct rmap_iterator iter;
d13bc5b5 1208 bool flush = false;
374cbac0 1209
1e3f42f0
TY
1210 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1211 BUG_ON(!(*sptep & PT_PRESENT_MASK));
a0ed4607 1212
c126d94f 1213 flush |= spte_write_protect(kvm, sptep, pt_protect);
d13bc5b5 1214 sptep = rmap_get_next(&iter);
374cbac0 1215 }
855149aa 1216
d13bc5b5 1217 return flush;
a0ed4607
TY
1218}
1219
5dc99b23
TY
1220/**
1221 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1222 * @kvm: kvm instance
1223 * @slot: slot to protect
1224 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1225 * @mask: indicates which pages we should protect
1226 *
1227 * Used when we do not need to care about huge page mappings: e.g. during dirty
1228 * logging we do not have any such mappings.
1229 */
1230void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1231 struct kvm_memory_slot *slot,
1232 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1233{
1234 unsigned long *rmapp;
a0ed4607 1235
5dc99b23 1236 while (mask) {
65fbe37c
TY
1237 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1238 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1239 __rmap_write_protect(kvm, rmapp, false);
05da4558 1240
5dc99b23
TY
1241 /* clear the first set bit */
1242 mask &= mask - 1;
1243 }
374cbac0
AK
1244}
1245
2f84569f 1246static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1247{
1248 struct kvm_memory_slot *slot;
5dc99b23
TY
1249 unsigned long *rmapp;
1250 int i;
2f84569f 1251 bool write_protected = false;
95d4c16c
TY
1252
1253 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1254
1255 for (i = PT_PAGE_TABLE_LEVEL;
1256 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1257 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1258 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1259 }
1260
1261 return write_protected;
95d4c16c
TY
1262}
1263
8a8365c5 1264static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1265 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1266 unsigned long data)
e930bffe 1267{
1e3f42f0
TY
1268 u64 *sptep;
1269 struct rmap_iterator iter;
e930bffe
AA
1270 int need_tlb_flush = 0;
1271
1e3f42f0
TY
1272 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1273 BUG_ON(!(*sptep & PT_PRESENT_MASK));
8a9522d2
ALC
1274 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
1275 sptep, *sptep, gfn, level);
1e3f42f0
TY
1276
1277 drop_spte(kvm, sptep);
e930bffe
AA
1278 need_tlb_flush = 1;
1279 }
1e3f42f0 1280
e930bffe
AA
1281 return need_tlb_flush;
1282}
1283
8a8365c5 1284static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1285 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1286 unsigned long data)
3da0dd43 1287{
1e3f42f0
TY
1288 u64 *sptep;
1289 struct rmap_iterator iter;
3da0dd43 1290 int need_flush = 0;
1e3f42f0 1291 u64 new_spte;
3da0dd43
IE
1292 pte_t *ptep = (pte_t *)data;
1293 pfn_t new_pfn;
1294
1295 WARN_ON(pte_huge(*ptep));
1296 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1297
1298 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1299 BUG_ON(!is_shadow_present_pte(*sptep));
8a9522d2
ALC
1300 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1301 sptep, *sptep, gfn, level);
1e3f42f0 1302
3da0dd43 1303 need_flush = 1;
1e3f42f0 1304
3da0dd43 1305 if (pte_write(*ptep)) {
1e3f42f0
TY
1306 drop_spte(kvm, sptep);
1307 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1308 } else {
1e3f42f0 1309 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1310 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1311
1312 new_spte &= ~PT_WRITABLE_MASK;
1313 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1314 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1315
1316 mmu_spte_clear_track_bits(sptep);
1317 mmu_spte_set(sptep, new_spte);
1318 sptep = rmap_get_next(&iter);
3da0dd43
IE
1319 }
1320 }
1e3f42f0 1321
3da0dd43
IE
1322 if (need_flush)
1323 kvm_flush_remote_tlbs(kvm);
1324
1325 return 0;
1326}
1327
84504ef3
TY
1328static int kvm_handle_hva_range(struct kvm *kvm,
1329 unsigned long start,
1330 unsigned long end,
1331 unsigned long data,
1332 int (*handler)(struct kvm *kvm,
1333 unsigned long *rmapp,
048212d0 1334 struct kvm_memory_slot *slot,
8a9522d2
ALC
1335 gfn_t gfn,
1336 int level,
84504ef3 1337 unsigned long data))
e930bffe 1338{
be6ba0f0 1339 int j;
f395302e 1340 int ret = 0;
bc6678a3 1341 struct kvm_memslots *slots;
be6ba0f0 1342 struct kvm_memory_slot *memslot;
bc6678a3 1343
90d83dc3 1344 slots = kvm_memslots(kvm);
e930bffe 1345
be6ba0f0 1346 kvm_for_each_memslot(memslot, slots) {
84504ef3 1347 unsigned long hva_start, hva_end;
bcd3ef58 1348 gfn_t gfn_start, gfn_end;
e930bffe 1349
84504ef3
TY
1350 hva_start = max(start, memslot->userspace_addr);
1351 hva_end = min(end, memslot->userspace_addr +
1352 (memslot->npages << PAGE_SHIFT));
1353 if (hva_start >= hva_end)
1354 continue;
1355 /*
1356 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1357 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1358 */
bcd3ef58 1359 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1360 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1361
bcd3ef58
TY
1362 for (j = PT_PAGE_TABLE_LEVEL;
1363 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1364 unsigned long idx, idx_end;
1365 unsigned long *rmapp;
8a9522d2 1366 gfn_t gfn = gfn_start;
d4dbf470 1367
bcd3ef58
TY
1368 /*
1369 * {idx(page_j) | page_j intersects with
1370 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1371 */
1372 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1373 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
852e3c19 1374
bcd3ef58 1375 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
d4dbf470 1376
8a9522d2
ALC
1377 for (; idx <= idx_end;
1378 ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j)))
1379 ret |= handler(kvm, rmapp++, memslot,
1380 gfn, j, data);
e930bffe
AA
1381 }
1382 }
1383
f395302e 1384 return ret;
e930bffe
AA
1385}
1386
84504ef3
TY
1387static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1388 unsigned long data,
1389 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1390 struct kvm_memory_slot *slot,
8a9522d2 1391 gfn_t gfn, int level,
84504ef3
TY
1392 unsigned long data))
1393{
1394 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1395}
1396
1397int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1398{
3da0dd43
IE
1399 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1400}
1401
b3ae2096
TY
1402int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1403{
1404 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1405}
1406
3da0dd43
IE
1407void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1408{
8a8365c5 1409 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1410}
1411
8a8365c5 1412static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1413 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1414 unsigned long data)
e930bffe 1415{
1e3f42f0 1416 u64 *sptep;
79f702a6 1417 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1418 int young = 0;
1419
57128468 1420 BUG_ON(!shadow_accessed_mask);
534e38b4 1421
1e3f42f0
TY
1422 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1423 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1424 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1425
3f6d8c8a 1426 if (*sptep & shadow_accessed_mask) {
e930bffe 1427 young = 1;
3f6d8c8a
XH
1428 clear_bit((ffs(shadow_accessed_mask) - 1),
1429 (unsigned long *)sptep);
e930bffe 1430 }
e930bffe 1431 }
8a9522d2 1432 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1433 return young;
1434}
1435
8ee53820 1436static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1437 struct kvm_memory_slot *slot, gfn_t gfn,
1438 int level, unsigned long data)
8ee53820 1439{
1e3f42f0
TY
1440 u64 *sptep;
1441 struct rmap_iterator iter;
8ee53820
AA
1442 int young = 0;
1443
1444 /*
1445 * If there's no access bit in the secondary pte set by the
1446 * hardware it's up to gup-fast/gup to set the access bit in
1447 * the primary pte or in the page structure.
1448 */
1449 if (!shadow_accessed_mask)
1450 goto out;
1451
1e3f42f0
TY
1452 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1453 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1454 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1455
3f6d8c8a 1456 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1457 young = 1;
1458 break;
1459 }
8ee53820
AA
1460 }
1461out:
1462 return young;
1463}
1464
53a27b39
MT
1465#define RMAP_RECYCLE_THRESHOLD 1000
1466
852e3c19 1467static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1468{
1469 unsigned long *rmapp;
852e3c19
JR
1470 struct kvm_mmu_page *sp;
1471
1472 sp = page_header(__pa(spte));
53a27b39 1473
852e3c19 1474 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1475
8a9522d2 1476 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1477 kvm_flush_remote_tlbs(vcpu->kvm);
1478}
1479
57128468 1480int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1481{
57128468
ALC
1482 /*
1483 * In case of absence of EPT Access and Dirty Bits supports,
1484 * emulate the accessed bit for EPT, by checking if this page has
1485 * an EPT mapping, and clearing it if it does. On the next access,
1486 * a new EPT mapping will be established.
1487 * This has some overhead, but not as much as the cost of swapping
1488 * out actively used pages or breaking up actively used hugepages.
1489 */
1490 if (!shadow_accessed_mask) {
1491 /*
1492 * We are holding the kvm->mmu_lock, and we are blowing up
1493 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1494 * This is correct as long as we don't decouple the mmu_lock
1495 * protected regions (like invalidate_range_start|end does).
1496 */
1497 kvm->mmu_notifier_seq++;
1498 return kvm_handle_hva_range(kvm, start, end, 0,
1499 kvm_unmap_rmapp);
1500 }
1501
1502 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1503}
1504
8ee53820
AA
1505int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1506{
1507 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1508}
1509
d6c69ee9 1510#ifdef MMU_DEBUG
47ad8e68 1511static int is_empty_shadow_page(u64 *spt)
6aa8b732 1512{
139bdb2d
AK
1513 u64 *pos;
1514 u64 *end;
1515
47ad8e68 1516 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1517 if (is_shadow_present_pte(*pos)) {
b8688d51 1518 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1519 pos, *pos);
6aa8b732 1520 return 0;
139bdb2d 1521 }
6aa8b732
AK
1522 return 1;
1523}
d6c69ee9 1524#endif
6aa8b732 1525
45221ab6
DH
1526/*
1527 * This value is the sum of all of the kvm instances's
1528 * kvm->arch.n_used_mmu_pages values. We need a global,
1529 * aggregate version in order to make the slab shrinker
1530 * faster
1531 */
1532static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1533{
1534 kvm->arch.n_used_mmu_pages += nr;
1535 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1536}
1537
834be0d8 1538static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1539{
4db35314 1540 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1541 hlist_del(&sp->hash_link);
bd4c86ea
XG
1542 list_del(&sp->link);
1543 free_page((unsigned long)sp->spt);
834be0d8
GN
1544 if (!sp->role.direct)
1545 free_page((unsigned long)sp->gfns);
e8ad9a70 1546 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1547}
1548
cea0f0e7
AK
1549static unsigned kvm_page_table_hashfn(gfn_t gfn)
1550{
1ae0a13d 1551 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1552}
1553
714b93da 1554static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1555 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1556{
cea0f0e7
AK
1557 if (!parent_pte)
1558 return;
cea0f0e7 1559
67052b35 1560 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1561}
1562
4db35314 1563static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1564 u64 *parent_pte)
1565{
67052b35 1566 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1567}
1568
bcdd9a93
XG
1569static void drop_parent_pte(struct kvm_mmu_page *sp,
1570 u64 *parent_pte)
1571{
1572 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1573 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1574}
1575
67052b35
XG
1576static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1577 u64 *parent_pte, int direct)
ad8cfbe3 1578{
67052b35 1579 struct kvm_mmu_page *sp;
7ddca7e4 1580
80feb89a
TY
1581 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1582 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1583 if (!direct)
80feb89a 1584 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1585 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1586
1587 /*
1588 * The active_mmu_pages list is the FIFO list, do not move the
1589 * page until it is zapped. kvm_zap_obsolete_pages depends on
1590 * this feature. See the comments in kvm_zap_obsolete_pages().
1591 */
67052b35 1592 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1593 sp->parent_ptes = 0;
1594 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1595 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1596 return sp;
ad8cfbe3
MT
1597}
1598
67052b35 1599static void mark_unsync(u64 *spte);
1047df1f 1600static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1601{
67052b35 1602 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1603}
1604
67052b35 1605static void mark_unsync(u64 *spte)
0074ff63 1606{
67052b35 1607 struct kvm_mmu_page *sp;
1047df1f 1608 unsigned int index;
0074ff63 1609
67052b35 1610 sp = page_header(__pa(spte));
1047df1f
XG
1611 index = spte - sp->spt;
1612 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1613 return;
1047df1f 1614 if (sp->unsync_children++)
0074ff63 1615 return;
1047df1f 1616 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1617}
1618
e8bc217a 1619static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1620 struct kvm_mmu_page *sp)
e8bc217a
MT
1621{
1622 return 1;
1623}
1624
a7052897
MT
1625static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1626{
1627}
1628
0f53b5b1
XG
1629static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1630 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1631 const void *pte)
0f53b5b1
XG
1632{
1633 WARN_ON(1);
1634}
1635
60c8aec6
MT
1636#define KVM_PAGE_ARRAY_NR 16
1637
1638struct kvm_mmu_pages {
1639 struct mmu_page_and_offset {
1640 struct kvm_mmu_page *sp;
1641 unsigned int idx;
1642 } page[KVM_PAGE_ARRAY_NR];
1643 unsigned int nr;
1644};
1645
cded19f3
HE
1646static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1647 int idx)
4731d4c7 1648{
60c8aec6 1649 int i;
4731d4c7 1650
60c8aec6
MT
1651 if (sp->unsync)
1652 for (i=0; i < pvec->nr; i++)
1653 if (pvec->page[i].sp == sp)
1654 return 0;
1655
1656 pvec->page[pvec->nr].sp = sp;
1657 pvec->page[pvec->nr].idx = idx;
1658 pvec->nr++;
1659 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1660}
1661
1662static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1663 struct kvm_mmu_pages *pvec)
1664{
1665 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1666
37178b8b 1667 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1668 struct kvm_mmu_page *child;
4731d4c7
MT
1669 u64 ent = sp->spt[i];
1670
7a8f1a74
XG
1671 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1672 goto clear_child_bitmap;
1673
1674 child = page_header(ent & PT64_BASE_ADDR_MASK);
1675
1676 if (child->unsync_children) {
1677 if (mmu_pages_add(pvec, child, i))
1678 return -ENOSPC;
1679
1680 ret = __mmu_unsync_walk(child, pvec);
1681 if (!ret)
1682 goto clear_child_bitmap;
1683 else if (ret > 0)
1684 nr_unsync_leaf += ret;
1685 else
1686 return ret;
1687 } else if (child->unsync) {
1688 nr_unsync_leaf++;
1689 if (mmu_pages_add(pvec, child, i))
1690 return -ENOSPC;
1691 } else
1692 goto clear_child_bitmap;
1693
1694 continue;
1695
1696clear_child_bitmap:
1697 __clear_bit(i, sp->unsync_child_bitmap);
1698 sp->unsync_children--;
1699 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1700 }
1701
4731d4c7 1702
60c8aec6
MT
1703 return nr_unsync_leaf;
1704}
1705
1706static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1707 struct kvm_mmu_pages *pvec)
1708{
1709 if (!sp->unsync_children)
1710 return 0;
1711
1712 mmu_pages_add(pvec, sp, 0);
1713 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1714}
1715
4731d4c7
MT
1716static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1717{
1718 WARN_ON(!sp->unsync);
5e1b3ddb 1719 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1720 sp->unsync = 0;
1721 --kvm->stat.mmu_unsync;
1722}
1723
7775834a
XG
1724static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1725 struct list_head *invalid_list);
1726static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1727 struct list_head *invalid_list);
4731d4c7 1728
f34d251d
XG
1729/*
1730 * NOTE: we should pay more attention on the zapped-obsolete page
1731 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1732 * since it has been deleted from active_mmu_pages but still can be found
1733 * at hast list.
1734 *
1735 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1736 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1737 * all the obsolete pages.
1738 */
1044b030
TY
1739#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1740 hlist_for_each_entry(_sp, \
1741 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1742 if ((_sp)->gfn != (_gfn)) {} else
1743
1744#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1745 for_each_gfn_sp(_kvm, _sp, _gfn) \
1746 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1747
f918b443 1748/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1749static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1750 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1751{
5b7e0102 1752 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1753 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1754 return 1;
1755 }
1756
f918b443 1757 if (clear_unsync)
1d9dc7e0 1758 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1759
a4a8e6f7 1760 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1761 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1762 return 1;
1763 }
1764
77c3913b 1765 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4731d4c7
MT
1766 return 0;
1767}
1768
1d9dc7e0
XG
1769static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1770 struct kvm_mmu_page *sp)
1771{
d98ba053 1772 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1773 int ret;
1774
d98ba053 1775 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1776 if (ret)
d98ba053
XG
1777 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1778
1d9dc7e0
XG
1779 return ret;
1780}
1781
e37fa785
XG
1782#ifdef CONFIG_KVM_MMU_AUDIT
1783#include "mmu_audit.c"
1784#else
1785static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1786static void mmu_audit_disable(void) { }
1787#endif
1788
d98ba053
XG
1789static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1790 struct list_head *invalid_list)
1d9dc7e0 1791{
d98ba053 1792 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1793}
1794
9f1a122f
XG
1795/* @gfn should be write-protected at the call site */
1796static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1797{
9f1a122f 1798 struct kvm_mmu_page *s;
d98ba053 1799 LIST_HEAD(invalid_list);
9f1a122f
XG
1800 bool flush = false;
1801
b67bfe0d 1802 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1803 if (!s->unsync)
9f1a122f
XG
1804 continue;
1805
1806 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1807 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1808 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1809 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1810 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1811 continue;
1812 }
9f1a122f
XG
1813 flush = true;
1814 }
1815
d98ba053 1816 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f 1817 if (flush)
77c3913b 1818 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
9f1a122f
XG
1819}
1820
60c8aec6
MT
1821struct mmu_page_path {
1822 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1823 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1824};
1825
60c8aec6
MT
1826#define for_each_sp(pvec, sp, parents, i) \
1827 for (i = mmu_pages_next(&pvec, &parents, -1), \
1828 sp = pvec.page[i].sp; \
1829 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1830 i = mmu_pages_next(&pvec, &parents, i))
1831
cded19f3
HE
1832static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1833 struct mmu_page_path *parents,
1834 int i)
60c8aec6
MT
1835{
1836 int n;
1837
1838 for (n = i+1; n < pvec->nr; n++) {
1839 struct kvm_mmu_page *sp = pvec->page[n].sp;
1840
1841 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1842 parents->idx[0] = pvec->page[n].idx;
1843 return n;
1844 }
1845
1846 parents->parent[sp->role.level-2] = sp;
1847 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1848 }
1849
1850 return n;
1851}
1852
cded19f3 1853static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1854{
60c8aec6
MT
1855 struct kvm_mmu_page *sp;
1856 unsigned int level = 0;
1857
1858 do {
1859 unsigned int idx = parents->idx[level];
4731d4c7 1860
60c8aec6
MT
1861 sp = parents->parent[level];
1862 if (!sp)
1863 return;
1864
1865 --sp->unsync_children;
1866 WARN_ON((int)sp->unsync_children < 0);
1867 __clear_bit(idx, sp->unsync_child_bitmap);
1868 level++;
1869 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1870}
1871
60c8aec6
MT
1872static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1873 struct mmu_page_path *parents,
1874 struct kvm_mmu_pages *pvec)
4731d4c7 1875{
60c8aec6
MT
1876 parents->parent[parent->role.level-1] = NULL;
1877 pvec->nr = 0;
1878}
4731d4c7 1879
60c8aec6
MT
1880static void mmu_sync_children(struct kvm_vcpu *vcpu,
1881 struct kvm_mmu_page *parent)
1882{
1883 int i;
1884 struct kvm_mmu_page *sp;
1885 struct mmu_page_path parents;
1886 struct kvm_mmu_pages pages;
d98ba053 1887 LIST_HEAD(invalid_list);
60c8aec6
MT
1888
1889 kvm_mmu_pages_init(parent, &parents, &pages);
1890 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1891 bool protected = false;
b1a36821
MT
1892
1893 for_each_sp(pages, sp, parents, i)
1894 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1895
1896 if (protected)
1897 kvm_flush_remote_tlbs(vcpu->kvm);
1898
60c8aec6 1899 for_each_sp(pages, sp, parents, i) {
d98ba053 1900 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1901 mmu_pages_clear_parents(&parents);
1902 }
d98ba053 1903 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1904 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1905 kvm_mmu_pages_init(parent, &parents, &pages);
1906 }
4731d4c7
MT
1907}
1908
c3707958
XG
1909static void init_shadow_page_table(struct kvm_mmu_page *sp)
1910{
1911 int i;
1912
1913 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1914 sp->spt[i] = 0ull;
1915}
1916
a30f47cb
XG
1917static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1918{
1919 sp->write_flooding_count = 0;
1920}
1921
1922static void clear_sp_write_flooding_count(u64 *spte)
1923{
1924 struct kvm_mmu_page *sp = page_header(__pa(spte));
1925
1926 __clear_sp_write_flooding_count(sp);
1927}
1928
5304b8d3
XG
1929static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1930{
1931 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1932}
1933
cea0f0e7
AK
1934static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1935 gfn_t gfn,
1936 gva_t gaddr,
1937 unsigned level,
f6e2c02b 1938 int direct,
41074d07 1939 unsigned access,
f7d9c7b7 1940 u64 *parent_pte)
cea0f0e7
AK
1941{
1942 union kvm_mmu_page_role role;
cea0f0e7 1943 unsigned quadrant;
9f1a122f 1944 struct kvm_mmu_page *sp;
9f1a122f 1945 bool need_sync = false;
cea0f0e7 1946
a770f6f2 1947 role = vcpu->arch.mmu.base_role;
cea0f0e7 1948 role.level = level;
f6e2c02b 1949 role.direct = direct;
84b0c8c6 1950 if (role.direct)
5b7e0102 1951 role.cr4_pae = 0;
41074d07 1952 role.access = access;
c5a78f2b
JR
1953 if (!vcpu->arch.mmu.direct_map
1954 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1955 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1956 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1957 role.quadrant = quadrant;
1958 }
b67bfe0d 1959 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
1960 if (is_obsolete_sp(vcpu->kvm, sp))
1961 continue;
1962
7ae680eb
XG
1963 if (!need_sync && sp->unsync)
1964 need_sync = true;
4731d4c7 1965
7ae680eb
XG
1966 if (sp->role.word != role.word)
1967 continue;
4731d4c7 1968
7ae680eb
XG
1969 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1970 break;
e02aa901 1971
7ae680eb
XG
1972 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1973 if (sp->unsync_children) {
a8eeb04a 1974 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1975 kvm_mmu_mark_parents_unsync(sp);
1976 } else if (sp->unsync)
1977 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1978
a30f47cb 1979 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1980 trace_kvm_mmu_get_page(sp, false);
1981 return sp;
1982 }
dfc5aa00 1983 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1984 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1985 if (!sp)
1986 return sp;
4db35314
AK
1987 sp->gfn = gfn;
1988 sp->role = role;
7ae680eb
XG
1989 hlist_add_head(&sp->hash_link,
1990 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1991 if (!direct) {
b1a36821
MT
1992 if (rmap_write_protect(vcpu->kvm, gfn))
1993 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1994 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1995 kvm_sync_pages(vcpu, gfn);
1996
4731d4c7
MT
1997 account_shadowed(vcpu->kvm, gfn);
1998 }
5304b8d3 1999 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
c3707958 2000 init_shadow_page_table(sp);
f691fe1d 2001 trace_kvm_mmu_get_page(sp, true);
4db35314 2002 return sp;
cea0f0e7
AK
2003}
2004
2d11123a
AK
2005static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2006 struct kvm_vcpu *vcpu, u64 addr)
2007{
2008 iterator->addr = addr;
2009 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2010 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2011
2012 if (iterator->level == PT64_ROOT_LEVEL &&
2013 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2014 !vcpu->arch.mmu.direct_map)
2015 --iterator->level;
2016
2d11123a
AK
2017 if (iterator->level == PT32E_ROOT_LEVEL) {
2018 iterator->shadow_addr
2019 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2020 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2021 --iterator->level;
2022 if (!iterator->shadow_addr)
2023 iterator->level = 0;
2024 }
2025}
2026
2027static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2028{
2029 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2030 return false;
4d88954d 2031
2d11123a
AK
2032 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2033 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2034 return true;
2035}
2036
c2a2ac2b
XG
2037static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2038 u64 spte)
2d11123a 2039{
c2a2ac2b 2040 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2041 iterator->level = 0;
2042 return;
2043 }
2044
c2a2ac2b 2045 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2046 --iterator->level;
2047}
2048
c2a2ac2b
XG
2049static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2050{
2051 return __shadow_walk_next(iterator, *iterator->sptep);
2052}
2053
7a1638ce 2054static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
32ef26a3
AK
2055{
2056 u64 spte;
2057
7a1638ce
YZ
2058 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2059 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2060
24db2734 2061 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
7a1638ce
YZ
2062 shadow_user_mask | shadow_x_mask;
2063
2064 if (accessed)
2065 spte |= shadow_accessed_mask;
24db2734 2066
1df9f2dc 2067 mmu_spte_set(sptep, spte);
32ef26a3
AK
2068}
2069
a357bd22
AK
2070static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2071 unsigned direct_access)
2072{
2073 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2074 struct kvm_mmu_page *child;
2075
2076 /*
2077 * For the direct sp, if the guest pte's dirty bit
2078 * changed form clean to dirty, it will corrupt the
2079 * sp's access: allow writable in the read-only sp,
2080 * so we should update the spte at this point to get
2081 * a new sp with the correct access.
2082 */
2083 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2084 if (child->role.access == direct_access)
2085 return;
2086
bcdd9a93 2087 drop_parent_pte(child, sptep);
a357bd22
AK
2088 kvm_flush_remote_tlbs(vcpu->kvm);
2089 }
2090}
2091
505aef8f 2092static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2093 u64 *spte)
2094{
2095 u64 pte;
2096 struct kvm_mmu_page *child;
2097
2098 pte = *spte;
2099 if (is_shadow_present_pte(pte)) {
505aef8f 2100 if (is_last_spte(pte, sp->role.level)) {
c3707958 2101 drop_spte(kvm, spte);
505aef8f
XG
2102 if (is_large_pte(pte))
2103 --kvm->stat.lpages;
2104 } else {
38e3b2b2 2105 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2106 drop_parent_pte(child, spte);
38e3b2b2 2107 }
505aef8f
XG
2108 return true;
2109 }
2110
2111 if (is_mmio_spte(pte))
ce88decf 2112 mmu_spte_clear_no_track(spte);
c3707958 2113
505aef8f 2114 return false;
38e3b2b2
XG
2115}
2116
90cb0529 2117static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2118 struct kvm_mmu_page *sp)
a436036b 2119{
697fe2e2 2120 unsigned i;
697fe2e2 2121
38e3b2b2
XG
2122 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2123 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2124}
2125
4db35314 2126static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2127{
4db35314 2128 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2129}
2130
31aa2b44 2131static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2132{
1e3f42f0
TY
2133 u64 *sptep;
2134 struct rmap_iterator iter;
a436036b 2135
1e3f42f0
TY
2136 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2137 drop_parent_pte(sp, sptep);
31aa2b44
AK
2138}
2139
60c8aec6 2140static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2141 struct kvm_mmu_page *parent,
2142 struct list_head *invalid_list)
4731d4c7 2143{
60c8aec6
MT
2144 int i, zapped = 0;
2145 struct mmu_page_path parents;
2146 struct kvm_mmu_pages pages;
4731d4c7 2147
60c8aec6 2148 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2149 return 0;
60c8aec6
MT
2150
2151 kvm_mmu_pages_init(parent, &parents, &pages);
2152 while (mmu_unsync_walk(parent, &pages)) {
2153 struct kvm_mmu_page *sp;
2154
2155 for_each_sp(pages, sp, parents, i) {
7775834a 2156 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2157 mmu_pages_clear_parents(&parents);
77662e00 2158 zapped++;
60c8aec6 2159 }
60c8aec6
MT
2160 kvm_mmu_pages_init(parent, &parents, &pages);
2161 }
2162
2163 return zapped;
4731d4c7
MT
2164}
2165
7775834a
XG
2166static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2167 struct list_head *invalid_list)
31aa2b44 2168{
4731d4c7 2169 int ret;
f691fe1d 2170
7775834a 2171 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2172 ++kvm->stat.mmu_shadow_zapped;
7775834a 2173 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2174 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2175 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2176
f6e2c02b 2177 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2178 unaccount_shadowed(kvm, sp->gfn);
5304b8d3 2179
4731d4c7
MT
2180 if (sp->unsync)
2181 kvm_unlink_unsync_page(kvm, sp);
4db35314 2182 if (!sp->root_count) {
54a4f023
GJ
2183 /* Count self */
2184 ret++;
7775834a 2185 list_move(&sp->link, invalid_list);
aa6bd187 2186 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2187 } else {
5b5c6a5a 2188 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2189
2190 /*
2191 * The obsolete pages can not be used on any vcpus.
2192 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2193 */
2194 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2195 kvm_reload_remote_mmus(kvm);
2e53d63a 2196 }
7775834a
XG
2197
2198 sp->role.invalid = 1;
4731d4c7 2199 return ret;
a436036b
AK
2200}
2201
7775834a
XG
2202static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2203 struct list_head *invalid_list)
2204{
945315b9 2205 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2206
2207 if (list_empty(invalid_list))
2208 return;
2209
c142786c
AK
2210 /*
2211 * wmb: make sure everyone sees our modifications to the page tables
2212 * rmb: make sure we see changes to vcpu->mode
2213 */
2214 smp_mb();
4f022648 2215
c142786c
AK
2216 /*
2217 * Wait for all vcpus to exit guest mode and/or lockless shadow
2218 * page table walks.
2219 */
2220 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2221
945315b9 2222 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2223 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2224 kvm_mmu_free_page(sp);
945315b9 2225 }
7775834a
XG
2226}
2227
5da59607
TY
2228static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2229 struct list_head *invalid_list)
2230{
2231 struct kvm_mmu_page *sp;
2232
2233 if (list_empty(&kvm->arch.active_mmu_pages))
2234 return false;
2235
2236 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2237 struct kvm_mmu_page, link);
2238 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2239
2240 return true;
2241}
2242
82ce2c96
IE
2243/*
2244 * Changing the number of mmu pages allocated to the vm
49d5ca26 2245 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2246 */
49d5ca26 2247void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2248{
d98ba053 2249 LIST_HEAD(invalid_list);
82ce2c96 2250
b34cb590
TY
2251 spin_lock(&kvm->mmu_lock);
2252
49d5ca26 2253 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2254 /* Need to free some mmu pages to achieve the goal. */
2255 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2256 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2257 break;
82ce2c96 2258
aa6bd187 2259 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2260 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2261 }
82ce2c96 2262
49d5ca26 2263 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2264
2265 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2266}
2267
1cb3f3ae 2268int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2269{
4db35314 2270 struct kvm_mmu_page *sp;
d98ba053 2271 LIST_HEAD(invalid_list);
a436036b
AK
2272 int r;
2273
9ad17b10 2274 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2275 r = 0;
1cb3f3ae 2276 spin_lock(&kvm->mmu_lock);
b67bfe0d 2277 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2278 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2279 sp->role.word);
2280 r = 1;
f41d335a 2281 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2282 }
d98ba053 2283 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2284 spin_unlock(&kvm->mmu_lock);
2285
a436036b 2286 return r;
cea0f0e7 2287}
1cb3f3ae 2288EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2289
74be52e3
SY
2290/*
2291 * The function is based on mtrr_type_lookup() in
2292 * arch/x86/kernel/cpu/mtrr/generic.c
2293 */
2294static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2295 u64 start, u64 end)
2296{
2297 int i;
2298 u64 base, mask;
2299 u8 prev_match, curr_match;
2300 int num_var_ranges = KVM_NR_VAR_MTRR;
2301
2302 if (!mtrr_state->enabled)
2303 return 0xFF;
2304
2305 /* Make end inclusive end, instead of exclusive */
2306 end--;
2307
2308 /* Look in fixed ranges. Just return the type as per start */
2309 if (mtrr_state->have_fixed && (start < 0x100000)) {
2310 int idx;
2311
2312 if (start < 0x80000) {
2313 idx = 0;
2314 idx += (start >> 16);
2315 return mtrr_state->fixed_ranges[idx];
2316 } else if (start < 0xC0000) {
2317 idx = 1 * 8;
2318 idx += ((start - 0x80000) >> 14);
2319 return mtrr_state->fixed_ranges[idx];
2320 } else if (start < 0x1000000) {
2321 idx = 3 * 8;
2322 idx += ((start - 0xC0000) >> 12);
2323 return mtrr_state->fixed_ranges[idx];
2324 }
2325 }
2326
2327 /*
2328 * Look in variable ranges
2329 * Look of multiple ranges matching this address and pick type
2330 * as per MTRR precedence
2331 */
2332 if (!(mtrr_state->enabled & 2))
2333 return mtrr_state->def_type;
2334
2335 prev_match = 0xFF;
2336 for (i = 0; i < num_var_ranges; ++i) {
2337 unsigned short start_state, end_state;
2338
2339 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2340 continue;
2341
2342 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2343 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2344 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2345 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2346
2347 start_state = ((start & mask) == (base & mask));
2348 end_state = ((end & mask) == (base & mask));
2349 if (start_state != end_state)
2350 return 0xFE;
2351
2352 if ((start & mask) != (base & mask))
2353 continue;
2354
2355 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2356 if (prev_match == 0xFF) {
2357 prev_match = curr_match;
2358 continue;
2359 }
2360
2361 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2362 curr_match == MTRR_TYPE_UNCACHABLE)
2363 return MTRR_TYPE_UNCACHABLE;
2364
2365 if ((prev_match == MTRR_TYPE_WRBACK &&
2366 curr_match == MTRR_TYPE_WRTHROUGH) ||
2367 (prev_match == MTRR_TYPE_WRTHROUGH &&
2368 curr_match == MTRR_TYPE_WRBACK)) {
2369 prev_match = MTRR_TYPE_WRTHROUGH;
2370 curr_match = MTRR_TYPE_WRTHROUGH;
2371 }
2372
2373 if (prev_match != curr_match)
2374 return MTRR_TYPE_UNCACHABLE;
2375 }
2376
2377 if (prev_match != 0xFF)
2378 return prev_match;
2379
2380 return mtrr_state->def_type;
2381}
2382
4b12f0de 2383u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2384{
2385 u8 mtrr;
2386
2387 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2388 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2389 if (mtrr == 0xfe || mtrr == 0xff)
2390 mtrr = MTRR_TYPE_WRBACK;
2391 return mtrr;
2392}
4b12f0de 2393EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2394
9cf5cf5a
XG
2395static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2396{
2397 trace_kvm_mmu_unsync_page(sp);
2398 ++vcpu->kvm->stat.mmu_unsync;
2399 sp->unsync = 1;
2400
2401 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2402}
2403
2404static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2405{
4731d4c7 2406 struct kvm_mmu_page *s;
9cf5cf5a 2407
b67bfe0d 2408 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2409 if (s->unsync)
4731d4c7 2410 continue;
9cf5cf5a
XG
2411 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2412 __kvm_unsync_page(vcpu, s);
4731d4c7 2413 }
4731d4c7
MT
2414}
2415
2416static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2417 bool can_unsync)
2418{
9cf5cf5a 2419 struct kvm_mmu_page *s;
9cf5cf5a
XG
2420 bool need_unsync = false;
2421
b67bfe0d 2422 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2423 if (!can_unsync)
2424 return 1;
2425
9cf5cf5a 2426 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2427 return 1;
9cf5cf5a 2428
9bb4f6b1 2429 if (!s->unsync)
9cf5cf5a 2430 need_unsync = true;
4731d4c7 2431 }
9cf5cf5a
XG
2432 if (need_unsync)
2433 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2434 return 0;
2435}
2436
d555c333 2437static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2438 unsigned pte_access, int level,
c2d0ee46 2439 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2440 bool can_unsync, bool host_writable)
1c4f1fd6 2441{
6e7d0354 2442 u64 spte;
1e73f9dd 2443 int ret = 0;
64d4d521 2444
f2fd125d 2445 if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
ce88decf
XG
2446 return 0;
2447
982c2565 2448 spte = PT_PRESENT_MASK;
947da538 2449 if (!speculative)
3201b5d9 2450 spte |= shadow_accessed_mask;
640d9b0d 2451
7b52345e
SY
2452 if (pte_access & ACC_EXEC_MASK)
2453 spte |= shadow_x_mask;
2454 else
2455 spte |= shadow_nx_mask;
49fde340 2456
1c4f1fd6 2457 if (pte_access & ACC_USER_MASK)
7b52345e 2458 spte |= shadow_user_mask;
49fde340 2459
852e3c19 2460 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2461 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2462 if (tdp_enabled)
4b12f0de 2463 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d3fccc7e 2464 kvm_is_reserved_pfn(pfn));
1c4f1fd6 2465
9bdbba13 2466 if (host_writable)
1403283a 2467 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2468 else
2469 pte_access &= ~ACC_WRITE_MASK;
1403283a 2470
35149e21 2471 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2472
c2288505 2473 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2474
c2193463 2475 /*
7751babd
XG
2476 * Other vcpu creates new sp in the window between
2477 * mapping_level() and acquiring mmu-lock. We can
2478 * allow guest to retry the access, the mapping can
2479 * be fixed if guest refault.
c2193463 2480 */
852e3c19 2481 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2482 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2483 goto done;
38187c83 2484
49fde340 2485 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2486
ecc5589f
MT
2487 /*
2488 * Optimization: for pte sync, if spte was writable the hash
2489 * lookup is unnecessary (and expensive). Write protection
2490 * is responsibility of mmu_get_page / kvm_sync_page.
2491 * Same reasoning can be applied to dirty page accounting.
2492 */
8dae4445 2493 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2494 goto set_pte;
2495
4731d4c7 2496 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2497 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2498 __func__, gfn);
1e73f9dd 2499 ret = 1;
1c4f1fd6 2500 pte_access &= ~ACC_WRITE_MASK;
49fde340 2501 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2502 }
2503 }
2504
1c4f1fd6
AK
2505 if (pte_access & ACC_WRITE_MASK)
2506 mark_page_dirty(vcpu->kvm, gfn);
2507
38187c83 2508set_pte:
6e7d0354 2509 if (mmu_spte_update(sptep, spte))
b330aa0c 2510 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2511done:
1e73f9dd
MT
2512 return ret;
2513}
2514
d555c333 2515static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2516 unsigned pte_access, int write_fault, int *emulate,
2517 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2518 bool host_writable)
1e73f9dd
MT
2519{
2520 int was_rmapped = 0;
53a27b39 2521 int rmap_count;
1e73f9dd 2522
f7616203
XG
2523 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2524 *sptep, write_fault, gfn);
1e73f9dd 2525
d555c333 2526 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2527 /*
2528 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2529 * the parent of the now unreachable PTE.
2530 */
852e3c19
JR
2531 if (level > PT_PAGE_TABLE_LEVEL &&
2532 !is_large_pte(*sptep)) {
1e73f9dd 2533 struct kvm_mmu_page *child;
d555c333 2534 u64 pte = *sptep;
1e73f9dd
MT
2535
2536 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2537 drop_parent_pte(child, sptep);
3be2264b 2538 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2539 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2540 pgprintk("hfn old %llx new %llx\n",
d555c333 2541 spte_to_pfn(*sptep), pfn);
c3707958 2542 drop_spte(vcpu->kvm, sptep);
91546356 2543 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2544 } else
2545 was_rmapped = 1;
1e73f9dd 2546 }
852e3c19 2547
c2288505
XG
2548 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2549 true, host_writable)) {
1e73f9dd 2550 if (write_fault)
b90a0e6c 2551 *emulate = 1;
77c3913b 2552 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2553 }
1e73f9dd 2554
ce88decf
XG
2555 if (unlikely(is_mmio_spte(*sptep) && emulate))
2556 *emulate = 1;
2557
d555c333 2558 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2559 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2560 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2561 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2562 *sptep, sptep);
d555c333 2563 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2564 ++vcpu->kvm->stat.lpages;
2565
ffb61bb3 2566 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2567 if (!was_rmapped) {
2568 rmap_count = rmap_add(vcpu, sptep, gfn);
2569 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2570 rmap_recycle(vcpu, sptep, gfn);
2571 }
1c4f1fd6 2572 }
cb9aaa30 2573
f3ac1a4b 2574 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2575}
2576
957ed9ef
XG
2577static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2578 bool no_dirty_log)
2579{
2580 struct kvm_memory_slot *slot;
957ed9ef 2581
5d163b1c 2582 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2583 if (!slot)
6c8ee57b 2584 return KVM_PFN_ERR_FAULT;
957ed9ef 2585
037d92dc 2586 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2587}
2588
2589static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2590 struct kvm_mmu_page *sp,
2591 u64 *start, u64 *end)
2592{
2593 struct page *pages[PTE_PREFETCH_NUM];
2594 unsigned access = sp->role.access;
2595 int i, ret;
2596 gfn_t gfn;
2597
2598 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2599 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2600 return -1;
2601
2602 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2603 if (ret <= 0)
2604 return -1;
2605
2606 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2607 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2608 sp->role.level, gfn, page_to_pfn(pages[i]),
2609 true, true);
957ed9ef
XG
2610
2611 return 0;
2612}
2613
2614static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2615 struct kvm_mmu_page *sp, u64 *sptep)
2616{
2617 u64 *spte, *start = NULL;
2618 int i;
2619
2620 WARN_ON(!sp->role.direct);
2621
2622 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2623 spte = sp->spt + i;
2624
2625 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2626 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2627 if (!start)
2628 continue;
2629 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2630 break;
2631 start = NULL;
2632 } else if (!start)
2633 start = spte;
2634 }
2635}
2636
2637static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2638{
2639 struct kvm_mmu_page *sp;
2640
2641 /*
2642 * Since it's no accessed bit on EPT, it's no way to
2643 * distinguish between actually accessed translations
2644 * and prefetched, so disable pte prefetch if EPT is
2645 * enabled.
2646 */
2647 if (!shadow_accessed_mask)
2648 return;
2649
2650 sp = page_header(__pa(sptep));
2651 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2652 return;
2653
2654 __direct_pte_prefetch(vcpu, sp, sptep);
2655}
2656
9f652d21 2657static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2658 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2659 bool prefault)
140754bc 2660{
9f652d21 2661 struct kvm_shadow_walk_iterator iterator;
140754bc 2662 struct kvm_mmu_page *sp;
b90a0e6c 2663 int emulate = 0;
140754bc 2664 gfn_t pseudo_gfn;
6aa8b732 2665
989c6b34
MT
2666 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2667 return 0;
2668
9f652d21 2669 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2670 if (iterator.level == level) {
f7616203 2671 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2672 write, &emulate, level, gfn, pfn,
2673 prefault, map_writable);
957ed9ef 2674 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2675 ++vcpu->stat.pf_fixed;
2676 break;
6aa8b732
AK
2677 }
2678
404381c5 2679 drop_large_spte(vcpu, iterator.sptep);
c3707958 2680 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2681 u64 base_addr = iterator.addr;
2682
2683 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2684 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2685 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2686 iterator.level - 1,
2687 1, ACC_ALL, iterator.sptep);
140754bc 2688
7a1638ce 2689 link_shadow_page(iterator.sptep, sp, true);
9f652d21
AK
2690 }
2691 }
b90a0e6c 2692 return emulate;
6aa8b732
AK
2693}
2694
77db5cbd 2695static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2696{
77db5cbd
HY
2697 siginfo_t info;
2698
2699 info.si_signo = SIGBUS;
2700 info.si_errno = 0;
2701 info.si_code = BUS_MCEERR_AR;
2702 info.si_addr = (void __user *)address;
2703 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2704
77db5cbd 2705 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2706}
2707
d7c55201 2708static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2709{
4d8b81ab
XG
2710 /*
2711 * Do not cache the mmio info caused by writing the readonly gfn
2712 * into the spte otherwise read access on readonly gfn also can
2713 * caused mmio page fault and treat it as mmio access.
2714 * Return 1 to tell kvm to emulate it.
2715 */
2716 if (pfn == KVM_PFN_ERR_RO_FAULT)
2717 return 1;
2718
e6c1502b 2719 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2720 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2721 return 0;
d7c55201 2722 }
edba23e5 2723
d7c55201 2724 return -EFAULT;
bf998156
HY
2725}
2726
936a5fe6
AA
2727static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2728 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2729{
2730 pfn_t pfn = *pfnp;
2731 gfn_t gfn = *gfnp;
2732 int level = *levelp;
2733
2734 /*
2735 * Check if it's a transparent hugepage. If this would be an
2736 * hugetlbfs page, level wouldn't be set to
2737 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2738 * here.
2739 */
d3fccc7e 2740 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6
AA
2741 level == PT_PAGE_TABLE_LEVEL &&
2742 PageTransCompound(pfn_to_page(pfn)) &&
2743 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2744 unsigned long mask;
2745 /*
2746 * mmu_notifier_retry was successful and we hold the
2747 * mmu_lock here, so the pmd can't become splitting
2748 * from under us, and in turn
2749 * __split_huge_page_refcount() can't run from under
2750 * us and we can safely transfer the refcount from
2751 * PG_tail to PG_head as we switch the pfn to tail to
2752 * head.
2753 */
2754 *levelp = level = PT_DIRECTORY_LEVEL;
2755 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2756 VM_BUG_ON((gfn & mask) != (pfn & mask));
2757 if (pfn & mask) {
2758 gfn &= ~mask;
2759 *gfnp = gfn;
2760 kvm_release_pfn_clean(pfn);
2761 pfn &= ~mask;
c3586667 2762 kvm_get_pfn(pfn);
936a5fe6
AA
2763 *pfnp = pfn;
2764 }
2765 }
2766}
2767
d7c55201
XG
2768static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2769 pfn_t pfn, unsigned access, int *ret_val)
2770{
2771 bool ret = true;
2772
2773 /* The pfn is invalid, report the error! */
81c52c56 2774 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2775 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2776 goto exit;
2777 }
2778
ce88decf 2779 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2780 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2781
2782 ret = false;
2783exit:
2784 return ret;
2785}
2786
e5552fd2 2787static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2788{
1c118b82
XG
2789 /*
2790 * Do not fix the mmio spte with invalid generation number which
2791 * need to be updated by slow page fault path.
2792 */
2793 if (unlikely(error_code & PFERR_RSVD_MASK))
2794 return false;
2795
c7ba5b48
XG
2796 /*
2797 * #PF can be fast only if the shadow page table is present and it
2798 * is caused by write-protect, that means we just need change the
2799 * W bit of the spte which can be done out of mmu-lock.
2800 */
2801 if (!(error_code & PFERR_PRESENT_MASK) ||
2802 !(error_code & PFERR_WRITE_MASK))
2803 return false;
2804
2805 return true;
2806}
2807
2808static bool
92a476cb
XG
2809fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2810 u64 *sptep, u64 spte)
c7ba5b48 2811{
c7ba5b48
XG
2812 gfn_t gfn;
2813
2814 WARN_ON(!sp->role.direct);
2815
2816 /*
2817 * The gfn of direct spte is stable since it is calculated
2818 * by sp->gfn.
2819 */
2820 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2821
2822 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2823 mark_page_dirty(vcpu->kvm, gfn);
2824
2825 return true;
2826}
2827
2828/*
2829 * Return value:
2830 * - true: let the vcpu to access on the same address again.
2831 * - false: let the real page fault path to fix it.
2832 */
2833static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2834 u32 error_code)
2835{
2836 struct kvm_shadow_walk_iterator iterator;
92a476cb 2837 struct kvm_mmu_page *sp;
c7ba5b48
XG
2838 bool ret = false;
2839 u64 spte = 0ull;
2840
37f6a4e2
MT
2841 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2842 return false;
2843
e5552fd2 2844 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2845 return false;
2846
2847 walk_shadow_page_lockless_begin(vcpu);
2848 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2849 if (!is_shadow_present_pte(spte) || iterator.level < level)
2850 break;
2851
2852 /*
2853 * If the mapping has been changed, let the vcpu fault on the
2854 * same address again.
2855 */
2856 if (!is_rmap_spte(spte)) {
2857 ret = true;
2858 goto exit;
2859 }
2860
92a476cb
XG
2861 sp = page_header(__pa(iterator.sptep));
2862 if (!is_last_spte(spte, sp->role.level))
c7ba5b48
XG
2863 goto exit;
2864
2865 /*
2866 * Check if it is a spurious fault caused by TLB lazily flushed.
2867 *
2868 * Need not check the access of upper level table entries since
2869 * they are always ACC_ALL.
2870 */
2871 if (is_writable_pte(spte)) {
2872 ret = true;
2873 goto exit;
2874 }
2875
2876 /*
2877 * Currently, to simplify the code, only the spte write-protected
2878 * by dirty-log can be fast fixed.
2879 */
2880 if (!spte_is_locklessly_modifiable(spte))
2881 goto exit;
2882
c126d94f
XG
2883 /*
2884 * Do not fix write-permission on the large spte since we only dirty
2885 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2886 * that means other pages are missed if its slot is dirty-logged.
2887 *
2888 * Instead, we let the slow page fault path create a normal spte to
2889 * fix the access.
2890 *
2891 * See the comments in kvm_arch_commit_memory_region().
2892 */
2893 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2894 goto exit;
2895
c7ba5b48
XG
2896 /*
2897 * Currently, fast page fault only works for direct mapping since
2898 * the gfn is not stable for indirect shadow page.
2899 * See Documentation/virtual/kvm/locking.txt to get more detail.
2900 */
92a476cb 2901 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
c7ba5b48 2902exit:
a72faf25
XG
2903 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2904 spte, ret);
c7ba5b48
XG
2905 walk_shadow_page_lockless_end(vcpu);
2906
2907 return ret;
2908}
2909
78b2c54a 2910static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe 2911 gva_t gva, pfn_t *pfn, bool write, bool *writable);
450e0b41 2912static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 2913
c7ba5b48
XG
2914static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2915 gfn_t gfn, bool prefault)
10589a46
MT
2916{
2917 int r;
852e3c19 2918 int level;
936a5fe6 2919 int force_pt_level;
35149e21 2920 pfn_t pfn;
e930bffe 2921 unsigned long mmu_seq;
c7ba5b48 2922 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2923
936a5fe6
AA
2924 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2925 if (likely(!force_pt_level)) {
2926 level = mapping_level(vcpu, gfn);
2927 /*
2928 * This path builds a PAE pagetable - so we can map
2929 * 2mb pages at maximum. Therefore check if the level
2930 * is larger than that.
2931 */
2932 if (level > PT_DIRECTORY_LEVEL)
2933 level = PT_DIRECTORY_LEVEL;
852e3c19 2934
936a5fe6
AA
2935 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2936 } else
2937 level = PT_PAGE_TABLE_LEVEL;
05da4558 2938
c7ba5b48
XG
2939 if (fast_page_fault(vcpu, v, level, error_code))
2940 return 0;
2941
e930bffe 2942 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2943 smp_rmb();
060c2abe 2944
78b2c54a 2945 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2946 return 0;
aaee2c94 2947
d7c55201
XG
2948 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2949 return r;
d196e343 2950
aaee2c94 2951 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 2952 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 2953 goto out_unlock;
450e0b41 2954 make_mmu_pages_available(vcpu);
936a5fe6
AA
2955 if (likely(!force_pt_level))
2956 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2957 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2958 prefault);
aaee2c94
MT
2959 spin_unlock(&vcpu->kvm->mmu_lock);
2960
aaee2c94 2961
10589a46 2962 return r;
e930bffe
AA
2963
2964out_unlock:
2965 spin_unlock(&vcpu->kvm->mmu_lock);
2966 kvm_release_pfn_clean(pfn);
2967 return 0;
10589a46
MT
2968}
2969
2970
17ac10ad
AK
2971static void mmu_free_roots(struct kvm_vcpu *vcpu)
2972{
2973 int i;
4db35314 2974 struct kvm_mmu_page *sp;
d98ba053 2975 LIST_HEAD(invalid_list);
17ac10ad 2976
ad312c7c 2977 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2978 return;
35af577a 2979
81407ca5
JR
2980 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2981 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2982 vcpu->arch.mmu.direct_map)) {
ad312c7c 2983 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2984
35af577a 2985 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
2986 sp = page_header(root);
2987 --sp->root_count;
d98ba053
XG
2988 if (!sp->root_count && sp->role.invalid) {
2989 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2990 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2991 }
aaee2c94 2992 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 2993 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2994 return;
2995 }
35af577a
GN
2996
2997 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 2998 for (i = 0; i < 4; ++i) {
ad312c7c 2999 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3000
417726a3 3001 if (root) {
417726a3 3002 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3003 sp = page_header(root);
3004 --sp->root_count;
2e53d63a 3005 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3006 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3007 &invalid_list);
417726a3 3008 }
ad312c7c 3009 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3010 }
d98ba053 3011 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3012 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3013 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3014}
3015
8986ecc0
MT
3016static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3017{
3018 int ret = 0;
3019
3020 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3021 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3022 ret = 1;
3023 }
3024
3025 return ret;
3026}
3027
651dd37a
JR
3028static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3029{
3030 struct kvm_mmu_page *sp;
7ebaf15e 3031 unsigned i;
651dd37a
JR
3032
3033 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3034 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3035 make_mmu_pages_available(vcpu);
651dd37a
JR
3036 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3037 1, ACC_ALL, NULL);
3038 ++sp->root_count;
3039 spin_unlock(&vcpu->kvm->mmu_lock);
3040 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3041 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3042 for (i = 0; i < 4; ++i) {
3043 hpa_t root = vcpu->arch.mmu.pae_root[i];
3044
3045 ASSERT(!VALID_PAGE(root));
3046 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3047 make_mmu_pages_available(vcpu);
649497d1
AK
3048 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3049 i << 30,
651dd37a
JR
3050 PT32_ROOT_LEVEL, 1, ACC_ALL,
3051 NULL);
3052 root = __pa(sp->spt);
3053 ++sp->root_count;
3054 spin_unlock(&vcpu->kvm->mmu_lock);
3055 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3056 }
6292757f 3057 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3058 } else
3059 BUG();
3060
3061 return 0;
3062}
3063
3064static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3065{
4db35314 3066 struct kvm_mmu_page *sp;
81407ca5
JR
3067 u64 pdptr, pm_mask;
3068 gfn_t root_gfn;
3069 int i;
3bb65a22 3070
5777ed34 3071 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3072
651dd37a
JR
3073 if (mmu_check_root(vcpu, root_gfn))
3074 return 1;
3075
3076 /*
3077 * Do we shadow a long mode page table? If so we need to
3078 * write-protect the guests page table root.
3079 */
3080 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3081 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
3082
3083 ASSERT(!VALID_PAGE(root));
651dd37a 3084
8facbbff 3085 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3086 make_mmu_pages_available(vcpu);
651dd37a
JR
3087 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3088 0, ACC_ALL, NULL);
4db35314
AK
3089 root = __pa(sp->spt);
3090 ++sp->root_count;
8facbbff 3091 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3092 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3093 return 0;
17ac10ad 3094 }
f87f9288 3095
651dd37a
JR
3096 /*
3097 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3098 * or a PAE 3-level page table. In either case we need to be aware that
3099 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3100 */
81407ca5
JR
3101 pm_mask = PT_PRESENT_MASK;
3102 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3103 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3104
17ac10ad 3105 for (i = 0; i < 4; ++i) {
ad312c7c 3106 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
3107
3108 ASSERT(!VALID_PAGE(root));
ad312c7c 3109 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3110 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3111 if (!is_present_gpte(pdptr)) {
ad312c7c 3112 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3113 continue;
3114 }
6de4f3ad 3115 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3116 if (mmu_check_root(vcpu, root_gfn))
3117 return 1;
5a7388c2 3118 }
8facbbff 3119 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3120 make_mmu_pages_available(vcpu);
4db35314 3121 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3122 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3123 ACC_ALL, NULL);
4db35314
AK
3124 root = __pa(sp->spt);
3125 ++sp->root_count;
8facbbff
AK
3126 spin_unlock(&vcpu->kvm->mmu_lock);
3127
81407ca5 3128 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3129 }
6292757f 3130 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3131
3132 /*
3133 * If we shadow a 32 bit page table with a long mode page
3134 * table we enter this path.
3135 */
3136 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3137 if (vcpu->arch.mmu.lm_root == NULL) {
3138 /*
3139 * The additional page necessary for this is only
3140 * allocated on demand.
3141 */
3142
3143 u64 *lm_root;
3144
3145 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3146 if (lm_root == NULL)
3147 return 1;
3148
3149 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3150
3151 vcpu->arch.mmu.lm_root = lm_root;
3152 }
3153
3154 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3155 }
3156
8986ecc0 3157 return 0;
17ac10ad
AK
3158}
3159
651dd37a
JR
3160static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3161{
3162 if (vcpu->arch.mmu.direct_map)
3163 return mmu_alloc_direct_roots(vcpu);
3164 else
3165 return mmu_alloc_shadow_roots(vcpu);
3166}
3167
0ba73cda
MT
3168static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3169{
3170 int i;
3171 struct kvm_mmu_page *sp;
3172
81407ca5
JR
3173 if (vcpu->arch.mmu.direct_map)
3174 return;
3175
0ba73cda
MT
3176 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3177 return;
6903074c 3178
56f17dd3 3179 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3180 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3181 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3182 hpa_t root = vcpu->arch.mmu.root_hpa;
3183 sp = page_header(root);
3184 mmu_sync_children(vcpu, sp);
0375f7fa 3185 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3186 return;
3187 }
3188 for (i = 0; i < 4; ++i) {
3189 hpa_t root = vcpu->arch.mmu.pae_root[i];
3190
8986ecc0 3191 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3192 root &= PT64_BASE_ADDR_MASK;
3193 sp = page_header(root);
3194 mmu_sync_children(vcpu, sp);
3195 }
3196 }
0375f7fa 3197 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3198}
3199
3200void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3201{
3202 spin_lock(&vcpu->kvm->mmu_lock);
3203 mmu_sync_roots(vcpu);
6cffe8ca 3204 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3205}
bfd0a56b 3206EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3207
1871c602 3208static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3209 u32 access, struct x86_exception *exception)
6aa8b732 3210{
ab9ae313
AK
3211 if (exception)
3212 exception->error_code = 0;
6aa8b732
AK
3213 return vaddr;
3214}
3215
6539e738 3216static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3217 u32 access,
3218 struct x86_exception *exception)
6539e738 3219{
ab9ae313
AK
3220 if (exception)
3221 exception->error_code = 0;
54987b7a 3222 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3223}
3224
ce88decf
XG
3225static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3226{
3227 if (direct)
3228 return vcpu_match_mmio_gpa(vcpu, addr);
3229
3230 return vcpu_match_mmio_gva(vcpu, addr);
3231}
3232
3233
3234/*
3235 * On direct hosts, the last spte is only allows two states
3236 * for mmio page fault:
3237 * - It is the mmio spte
3238 * - It is zapped or it is being zapped.
3239 *
3240 * This function completely checks the spte when the last spte
3241 * is not the mmio spte.
3242 */
3243static bool check_direct_spte_mmio_pf(u64 spte)
3244{
3245 return __check_direct_spte_mmio_pf(spte);
3246}
3247
3248static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3249{
3250 struct kvm_shadow_walk_iterator iterator;
3251 u64 spte = 0ull;
3252
37f6a4e2
MT
3253 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3254 return spte;
3255
ce88decf
XG
3256 walk_shadow_page_lockless_begin(vcpu);
3257 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3258 if (!is_shadow_present_pte(spte))
3259 break;
3260 walk_shadow_page_lockless_end(vcpu);
3261
3262 return spte;
3263}
3264
ce88decf
XG
3265int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3266{
3267 u64 spte;
3268
3269 if (quickly_check_mmio_pf(vcpu, addr, direct))
b37fbea6 3270 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3271
3272 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3273
3274 if (is_mmio_spte(spte)) {
3275 gfn_t gfn = get_mmio_spte_gfn(spte);
3276 unsigned access = get_mmio_spte_access(spte);
3277
f8f55942
XG
3278 if (!check_mmio_spte(vcpu->kvm, spte))
3279 return RET_MMIO_PF_INVALID;
3280
ce88decf
XG
3281 if (direct)
3282 addr = 0;
4f022648
XG
3283
3284 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3285 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3286 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3287 }
3288
3289 /*
3290 * It's ok if the gva is remapped by other cpus on shadow guest,
3291 * it's a BUG if the gfn is not a mmio page.
3292 */
3293 if (direct && !check_direct_spte_mmio_pf(spte))
b37fbea6 3294 return RET_MMIO_PF_BUG;
ce88decf
XG
3295
3296 /*
3297 * If the page table is zapped by other cpus, let CPU fault again on
3298 * the address.
3299 */
b37fbea6 3300 return RET_MMIO_PF_RETRY;
ce88decf
XG
3301}
3302EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3303
3304static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3305 u32 error_code, bool direct)
3306{
3307 int ret;
3308
3309 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
b37fbea6 3310 WARN_ON(ret == RET_MMIO_PF_BUG);
ce88decf
XG
3311 return ret;
3312}
3313
6aa8b732 3314static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3315 u32 error_code, bool prefault)
6aa8b732 3316{
e833240f 3317 gfn_t gfn;
e2dec939 3318 int r;
6aa8b732 3319
b8688d51 3320 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3321
f8f55942
XG
3322 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3323 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3324
3325 if (likely(r != RET_MMIO_PF_INVALID))
3326 return r;
3327 }
ce88decf 3328
e2dec939
AK
3329 r = mmu_topup_memory_caches(vcpu);
3330 if (r)
3331 return r;
714b93da 3332
6aa8b732 3333 ASSERT(vcpu);
ad312c7c 3334 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3335
e833240f 3336 gfn = gva >> PAGE_SHIFT;
6aa8b732 3337
e833240f 3338 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3339 error_code, gfn, prefault);
6aa8b732
AK
3340}
3341
7e1fbeac 3342static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3343{
3344 struct kvm_arch_async_pf arch;
fb67e14f 3345
7c90705b 3346 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3347 arch.gfn = gfn;
c4806acd 3348 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3349 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3350
e0ead41a 3351 return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
af585b92
GN
3352}
3353
3354static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3355{
3356 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3357 kvm_event_needs_reinjection(vcpu)))
3358 return false;
3359
3360 return kvm_x86_ops->interrupt_allowed(vcpu);
3361}
3362
78b2c54a 3363static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3364 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3365{
3366 bool async;
3367
612819c3 3368 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3369
3370 if (!async)
3371 return false; /* *pfn has correct page already */
3372
78b2c54a 3373 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3374 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3375 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3376 trace_kvm_async_pf_doublefault(gva, gfn);
3377 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3378 return true;
3379 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3380 return true;
3381 }
3382
612819c3 3383 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3384
3385 return false;
3386}
3387
56028d08 3388static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3389 bool prefault)
fb72d167 3390{
35149e21 3391 pfn_t pfn;
fb72d167 3392 int r;
852e3c19 3393 int level;
936a5fe6 3394 int force_pt_level;
05da4558 3395 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3396 unsigned long mmu_seq;
612819c3
MT
3397 int write = error_code & PFERR_WRITE_MASK;
3398 bool map_writable;
fb72d167
JR
3399
3400 ASSERT(vcpu);
3401 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3402
f8f55942
XG
3403 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3404 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3405
3406 if (likely(r != RET_MMIO_PF_INVALID))
3407 return r;
3408 }
ce88decf 3409
fb72d167
JR
3410 r = mmu_topup_memory_caches(vcpu);
3411 if (r)
3412 return r;
3413
936a5fe6
AA
3414 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3415 if (likely(!force_pt_level)) {
3416 level = mapping_level(vcpu, gfn);
3417 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3418 } else
3419 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3420
c7ba5b48
XG
3421 if (fast_page_fault(vcpu, gpa, level, error_code))
3422 return 0;
3423
e930bffe 3424 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3425 smp_rmb();
af585b92 3426
78b2c54a 3427 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3428 return 0;
3429
d7c55201
XG
3430 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3431 return r;
3432
fb72d167 3433 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3434 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3435 goto out_unlock;
450e0b41 3436 make_mmu_pages_available(vcpu);
936a5fe6
AA
3437 if (likely(!force_pt_level))
3438 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3439 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3440 level, gfn, pfn, prefault);
fb72d167 3441 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3442
3443 return r;
e930bffe
AA
3444
3445out_unlock:
3446 spin_unlock(&vcpu->kvm->mmu_lock);
3447 kvm_release_pfn_clean(pfn);
3448 return 0;
fb72d167
JR
3449}
3450
8a3c1a33
PB
3451static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3452 struct kvm_mmu *context)
6aa8b732 3453{
6aa8b732 3454 context->page_fault = nonpaging_page_fault;
6aa8b732 3455 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3456 context->sync_page = nonpaging_sync_page;
a7052897 3457 context->invlpg = nonpaging_invlpg;
0f53b5b1 3458 context->update_pte = nonpaging_update_pte;
cea0f0e7 3459 context->root_level = 0;
6aa8b732 3460 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3461 context->root_hpa = INVALID_PAGE;
c5a78f2b 3462 context->direct_map = true;
2d48a985 3463 context->nx = false;
6aa8b732
AK
3464}
3465
d8d173da 3466void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3467{
cea0f0e7 3468 mmu_free_roots(vcpu);
6aa8b732
AK
3469}
3470
5777ed34
JR
3471static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3472{
9f8fe504 3473 return kvm_read_cr3(vcpu);
5777ed34
JR
3474}
3475
6389ee94
AK
3476static void inject_page_fault(struct kvm_vcpu *vcpu,
3477 struct x86_exception *fault)
6aa8b732 3478{
6389ee94 3479 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3480}
3481
f2fd125d
XG
3482static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3483 unsigned access, int *nr_present)
ce88decf
XG
3484{
3485 if (unlikely(is_mmio_spte(*sptep))) {
3486 if (gfn != get_mmio_spte_gfn(*sptep)) {
3487 mmu_spte_clear_no_track(sptep);
3488 return true;
3489 }
3490
3491 (*nr_present)++;
f2fd125d 3492 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
3493 return true;
3494 }
3495
3496 return false;
3497}
3498
6fd01b71
AK
3499static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3500{
3501 unsigned index;
3502
3503 index = level - 1;
3504 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3505 return mmu->last_pte_bitmap & (1 << index);
3506}
3507
37406aaa
NHE
3508#define PTTYPE_EPT 18 /* arbitrary */
3509#define PTTYPE PTTYPE_EPT
3510#include "paging_tmpl.h"
3511#undef PTTYPE
3512
6aa8b732
AK
3513#define PTTYPE 64
3514#include "paging_tmpl.h"
3515#undef PTTYPE
3516
3517#define PTTYPE 32
3518#include "paging_tmpl.h"
3519#undef PTTYPE
3520
52fde8df 3521static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3522 struct kvm_mmu *context)
82725b20 3523{
82725b20
DE
3524 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3525 u64 exb_bit_rsvd = 0;
5f7dde7b 3526 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3527 u64 nonleaf_bit8_rsvd = 0;
82725b20 3528
25d92081
YZ
3529 context->bad_mt_xwr = 0;
3530
2d48a985 3531 if (!context->nx)
82725b20 3532 exb_bit_rsvd = rsvd_bits(63, 63);
5f7dde7b
NA
3533 if (!guest_cpuid_has_gbpages(vcpu))
3534 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3535
3536 /*
3537 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3538 * leaf entries) on AMD CPUs only.
3539 */
3540 if (guest_cpuid_is_amd(vcpu))
3541 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3542
4d6931c3 3543 switch (context->root_level) {
82725b20
DE
3544 case PT32_ROOT_LEVEL:
3545 /* no rsvd bits for 2 level 4K page table entries */
3546 context->rsvd_bits_mask[0][1] = 0;
3547 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3548 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3549
3550 if (!is_pse(vcpu)) {
3551 context->rsvd_bits_mask[1][1] = 0;
3552 break;
3553 }
3554
82725b20
DE
3555 if (is_cpuid_PSE36())
3556 /* 36bits PSE 4MB page */
3557 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3558 else
3559 /* 32 bits PSE 4MB page */
3560 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3561 break;
3562 case PT32E_ROOT_LEVEL:
20c466b5
DE
3563 context->rsvd_bits_mask[0][2] =
3564 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3565 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3566 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3567 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3568 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3569 rsvd_bits(maxphyaddr, 62); /* PTE */
3570 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3571 rsvd_bits(maxphyaddr, 62) |
3572 rsvd_bits(13, 20); /* large page */
f815bce8 3573 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3574 break;
3575 case PT64_ROOT_LEVEL:
3576 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
a0c0feb5 3577 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
82725b20 3578 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
a0c0feb5 3579 nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
82725b20 3580 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3581 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3582 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3583 rsvd_bits(maxphyaddr, 51);
3584 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980 3585 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3586 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3587 rsvd_bits(13, 29);
82725b20 3588 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3589 rsvd_bits(maxphyaddr, 51) |
3590 rsvd_bits(13, 20); /* large page */
f815bce8 3591 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3592 break;
3593 }
3594}
3595
25d92081
YZ
3596static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3597 struct kvm_mmu *context, bool execonly)
3598{
3599 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3600 int pte;
3601
3602 context->rsvd_bits_mask[0][3] =
3603 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3604 context->rsvd_bits_mask[0][2] =
3605 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3606 context->rsvd_bits_mask[0][1] =
3607 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3608 context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3609
3610 /* large page */
3611 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3612 context->rsvd_bits_mask[1][2] =
3613 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3614 context->rsvd_bits_mask[1][1] =
3615 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3616 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3617
3618 for (pte = 0; pte < 64; pte++) {
3619 int rwx_bits = pte & 7;
3620 int mt = pte >> 3;
3621 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3622 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3623 (rwx_bits == 0x4 && !execonly))
3624 context->bad_mt_xwr |= (1ull << pte);
3625 }
3626}
3627
97ec8c06 3628void update_permission_bitmask(struct kvm_vcpu *vcpu,
25d92081 3629 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3630{
3631 unsigned bit, byte, pfec;
3632 u8 map;
66386ade 3633 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3634
66386ade 3635 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3636 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3637 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3638 pfec = byte << 1;
3639 map = 0;
3640 wf = pfec & PFERR_WRITE_MASK;
3641 uf = pfec & PFERR_USER_MASK;
3642 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3643 /*
3644 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3645 * subject to SMAP restrictions, and cleared otherwise. The
3646 * bit is only meaningful if the SMAP bit is set in CR4.
3647 */
3648 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3649 for (bit = 0; bit < 8; ++bit) {
3650 x = bit & ACC_EXEC_MASK;
3651 w = bit & ACC_WRITE_MASK;
3652 u = bit & ACC_USER_MASK;
3653
25d92081
YZ
3654 if (!ept) {
3655 /* Not really needed: !nx will cause pte.nx to fault */
3656 x |= !mmu->nx;
3657 /* Allow supervisor writes if !cr0.wp */
3658 w |= !is_write_protection(vcpu) && !uf;
3659 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3660 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3661
3662 /*
3663 * SMAP:kernel-mode data accesses from user-mode
3664 * mappings should fault. A fault is considered
3665 * as a SMAP violation if all of the following
3666 * conditions are ture:
3667 * - X86_CR4_SMAP is set in CR4
3668 * - An user page is accessed
3669 * - Page fault in kernel mode
3670 * - if CPL = 3 or X86_EFLAGS_AC is clear
3671 *
3672 * Here, we cover the first three conditions.
3673 * The fourth is computed dynamically in
3674 * permission_fault() and is in smapf.
3675 *
3676 * Also, SMAP does not affect instruction
3677 * fetches, add the !ff check here to make it
3678 * clearer.
3679 */
3680 smap = cr4_smap && u && !uf && !ff;
25d92081
YZ
3681 } else
3682 /* Not really needed: no U/S accesses on ept */
3683 u = 1;
97d64b78 3684
97ec8c06
FW
3685 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3686 (smapf && smap);
97d64b78
AK
3687 map |= fault << bit;
3688 }
3689 mmu->permissions[byte] = map;
3690 }
3691}
3692
6fd01b71
AK
3693static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3694{
3695 u8 map;
3696 unsigned level, root_level = mmu->root_level;
3697 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3698
3699 if (root_level == PT32E_ROOT_LEVEL)
3700 --root_level;
3701 /* PT_PAGE_TABLE_LEVEL always terminates */
3702 map = 1 | (1 << ps_set_index);
3703 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3704 if (level <= PT_PDPE_LEVEL
3705 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3706 map |= 1 << (ps_set_index | (level - 1));
3707 }
3708 mmu->last_pte_bitmap = map;
3709}
3710
8a3c1a33
PB
3711static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3712 struct kvm_mmu *context,
3713 int level)
6aa8b732 3714{
2d48a985 3715 context->nx = is_nx(vcpu);
4d6931c3 3716 context->root_level = level;
2d48a985 3717
4d6931c3 3718 reset_rsvds_bits_mask(vcpu, context);
25d92081 3719 update_permission_bitmask(vcpu, context, false);
6fd01b71 3720 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3721
3722 ASSERT(is_pae(vcpu));
6aa8b732 3723 context->page_fault = paging64_page_fault;
6aa8b732 3724 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3725 context->sync_page = paging64_sync_page;
a7052897 3726 context->invlpg = paging64_invlpg;
0f53b5b1 3727 context->update_pte = paging64_update_pte;
17ac10ad 3728 context->shadow_root_level = level;
17c3ba9d 3729 context->root_hpa = INVALID_PAGE;
c5a78f2b 3730 context->direct_map = false;
6aa8b732
AK
3731}
3732
8a3c1a33
PB
3733static void paging64_init_context(struct kvm_vcpu *vcpu,
3734 struct kvm_mmu *context)
17ac10ad 3735{
8a3c1a33 3736 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3737}
3738
8a3c1a33
PB
3739static void paging32_init_context(struct kvm_vcpu *vcpu,
3740 struct kvm_mmu *context)
6aa8b732 3741{
2d48a985 3742 context->nx = false;
4d6931c3 3743 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3744
4d6931c3 3745 reset_rsvds_bits_mask(vcpu, context);
25d92081 3746 update_permission_bitmask(vcpu, context, false);
6fd01b71 3747 update_last_pte_bitmap(vcpu, context);
6aa8b732 3748
6aa8b732 3749 context->page_fault = paging32_page_fault;
6aa8b732 3750 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 3751 context->sync_page = paging32_sync_page;
a7052897 3752 context->invlpg = paging32_invlpg;
0f53b5b1 3753 context->update_pte = paging32_update_pte;
6aa8b732 3754 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3755 context->root_hpa = INVALID_PAGE;
c5a78f2b 3756 context->direct_map = false;
6aa8b732
AK
3757}
3758
8a3c1a33
PB
3759static void paging32E_init_context(struct kvm_vcpu *vcpu,
3760 struct kvm_mmu *context)
6aa8b732 3761{
8a3c1a33 3762 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3763}
3764
8a3c1a33 3765static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 3766{
14dfe855 3767 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3768
c445f8ef 3769 context->base_role.word = 0;
fb72d167 3770 context->page_fault = tdp_page_fault;
e8bc217a 3771 context->sync_page = nonpaging_sync_page;
a7052897 3772 context->invlpg = nonpaging_invlpg;
0f53b5b1 3773 context->update_pte = nonpaging_update_pte;
67253af5 3774 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3775 context->root_hpa = INVALID_PAGE;
c5a78f2b 3776 context->direct_map = true;
1c97f0a0 3777 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3778 context->get_cr3 = get_cr3;
e4e517b4 3779 context->get_pdptr = kvm_pdptr_read;
cb659db8 3780 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3781
3782 if (!is_paging(vcpu)) {
2d48a985 3783 context->nx = false;
fb72d167
JR
3784 context->gva_to_gpa = nonpaging_gva_to_gpa;
3785 context->root_level = 0;
3786 } else if (is_long_mode(vcpu)) {
2d48a985 3787 context->nx = is_nx(vcpu);
fb72d167 3788 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3789 reset_rsvds_bits_mask(vcpu, context);
3790 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3791 } else if (is_pae(vcpu)) {
2d48a985 3792 context->nx = is_nx(vcpu);
fb72d167 3793 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3794 reset_rsvds_bits_mask(vcpu, context);
3795 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3796 } else {
2d48a985 3797 context->nx = false;
fb72d167 3798 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3799 reset_rsvds_bits_mask(vcpu, context);
3800 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3801 }
3802
25d92081 3803 update_permission_bitmask(vcpu, context, false);
6fd01b71 3804 update_last_pte_bitmap(vcpu, context);
fb72d167
JR
3805}
3806
8a3c1a33 3807void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3808{
411c588d 3809 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3810 ASSERT(vcpu);
ad312c7c 3811 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3812
3813 if (!is_paging(vcpu))
8a3c1a33 3814 nonpaging_init_context(vcpu, context);
a9058ecd 3815 else if (is_long_mode(vcpu))
8a3c1a33 3816 paging64_init_context(vcpu, context);
6aa8b732 3817 else if (is_pae(vcpu))
8a3c1a33 3818 paging32E_init_context(vcpu, context);
6aa8b732 3819 else
8a3c1a33 3820 paging32_init_context(vcpu, context);
a770f6f2 3821
2c9afa52 3822 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
5b7e0102 3823 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3824 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3825 vcpu->arch.mmu.base_role.smep_andnot_wp
3826 = smep && !is_write_protection(vcpu);
52fde8df
JR
3827}
3828EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3829
8a3c1a33 3830void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
155a97a3
NHE
3831 bool execonly)
3832{
3833 ASSERT(vcpu);
3834 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3835
3836 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3837
3838 context->nx = true;
155a97a3
NHE
3839 context->page_fault = ept_page_fault;
3840 context->gva_to_gpa = ept_gva_to_gpa;
3841 context->sync_page = ept_sync_page;
3842 context->invlpg = ept_invlpg;
3843 context->update_pte = ept_update_pte;
155a97a3
NHE
3844 context->root_level = context->shadow_root_level;
3845 context->root_hpa = INVALID_PAGE;
3846 context->direct_map = false;
3847
3848 update_permission_bitmask(vcpu, context, true);
3849 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
155a97a3
NHE
3850}
3851EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3852
8a3c1a33 3853static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 3854{
8a3c1a33 3855 kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
14dfe855
JR
3856 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3857 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3858 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3859 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
3860}
3861
8a3c1a33 3862static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
3863{
3864 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3865
3866 g_context->get_cr3 = get_cr3;
e4e517b4 3867 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3868 g_context->inject_page_fault = kvm_inject_page_fault;
3869
3870 /*
3871 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3872 * translation of l2_gpa to l1_gpa addresses is done using the
3873 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3874 * functions between mmu and nested_mmu are swapped.
3875 */
3876 if (!is_paging(vcpu)) {
2d48a985 3877 g_context->nx = false;
02f59dc9
JR
3878 g_context->root_level = 0;
3879 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3880 } else if (is_long_mode(vcpu)) {
2d48a985 3881 g_context->nx = is_nx(vcpu);
02f59dc9 3882 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3883 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3884 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3885 } else if (is_pae(vcpu)) {
2d48a985 3886 g_context->nx = is_nx(vcpu);
02f59dc9 3887 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3888 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3889 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3890 } else {
2d48a985 3891 g_context->nx = false;
02f59dc9 3892 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3893 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3894 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3895 }
3896
25d92081 3897 update_permission_bitmask(vcpu, g_context, false);
6fd01b71 3898 update_last_pte_bitmap(vcpu, g_context);
02f59dc9
JR
3899}
3900
8a3c1a33 3901static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 3902{
02f59dc9
JR
3903 if (mmu_is_nested(vcpu))
3904 return init_kvm_nested_mmu(vcpu);
3905 else if (tdp_enabled)
fb72d167
JR
3906 return init_kvm_tdp_mmu(vcpu);
3907 else
3908 return init_kvm_softmmu(vcpu);
3909}
3910
8a3c1a33 3911void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732
AK
3912{
3913 ASSERT(vcpu);
6aa8b732 3914
95f93af4 3915 kvm_mmu_unload(vcpu);
8a3c1a33 3916 init_kvm_mmu(vcpu);
17c3ba9d 3917}
8668a3c4 3918EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3919
3920int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3921{
714b93da
AK
3922 int r;
3923
e2dec939 3924 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3925 if (r)
3926 goto out;
8986ecc0 3927 r = mmu_alloc_roots(vcpu);
e2858b4a 3928 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
3929 if (r)
3930 goto out;
3662cb1c 3931 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3932 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3933out:
3934 return r;
6aa8b732 3935}
17c3ba9d
AK
3936EXPORT_SYMBOL_GPL(kvm_mmu_load);
3937
3938void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3939{
3940 mmu_free_roots(vcpu);
95f93af4 3941 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 3942}
4b16184c 3943EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3944
0028425f 3945static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3946 struct kvm_mmu_page *sp, u64 *spte,
3947 const void *new)
0028425f 3948{
30945387 3949 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3950 ++vcpu->kvm->stat.mmu_pde_zapped;
3951 return;
30945387 3952 }
0028425f 3953
4cee5764 3954 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3955 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3956}
3957
79539cec
AK
3958static bool need_remote_flush(u64 old, u64 new)
3959{
3960 if (!is_shadow_present_pte(old))
3961 return false;
3962 if (!is_shadow_present_pte(new))
3963 return true;
3964 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3965 return true;
53166229
GN
3966 old ^= shadow_nx_mask;
3967 new ^= shadow_nx_mask;
79539cec
AK
3968 return (old & ~new & PT64_PERM_MASK) != 0;
3969}
3970
0671a8e7
XG
3971static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3972 bool remote_flush, bool local_flush)
79539cec 3973{
0671a8e7
XG
3974 if (zap_page)
3975 return;
3976
3977 if (remote_flush)
79539cec 3978 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3979 else if (local_flush)
77c3913b 3980 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
79539cec
AK
3981}
3982
889e5cbc
XG
3983static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3984 const u8 *new, int *bytes)
da4a00f0 3985{
889e5cbc
XG
3986 u64 gentry;
3987 int r;
72016f3a 3988
72016f3a
AK
3989 /*
3990 * Assume that the pte write on a page table of the same type
49b26e26
XG
3991 * as the current vcpu paging mode since we update the sptes only
3992 * when they have the same mode.
72016f3a 3993 */
889e5cbc 3994 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3995 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3996 *gpa &= ~(gpa_t)7;
3997 *bytes = 8;
116eb3d3 3998 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
72016f3a
AK
3999 if (r)
4000 gentry = 0;
08e850c6
AK
4001 new = (const u8 *)&gentry;
4002 }
4003
889e5cbc 4004 switch (*bytes) {
08e850c6
AK
4005 case 4:
4006 gentry = *(const u32 *)new;
4007 break;
4008 case 8:
4009 gentry = *(const u64 *)new;
4010 break;
4011 default:
4012 gentry = 0;
4013 break;
72016f3a
AK
4014 }
4015
889e5cbc
XG
4016 return gentry;
4017}
4018
4019/*
4020 * If we're seeing too many writes to a page, it may no longer be a page table,
4021 * or we may be forking, in which case it is better to unmap the page.
4022 */
a138fe75 4023static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4024{
a30f47cb
XG
4025 /*
4026 * Skip write-flooding detected for the sp whose level is 1, because
4027 * it can become unsync, then the guest page is not write-protected.
4028 */
f71fa31f 4029 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4030 return false;
3246af0e 4031
a30f47cb 4032 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
4033}
4034
4035/*
4036 * Misaligned accesses are too much trouble to fix up; also, they usually
4037 * indicate a page is not used as a page table.
4038 */
4039static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4040 int bytes)
4041{
4042 unsigned offset, pte_size, misaligned;
4043
4044 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4045 gpa, bytes, sp->role.word);
4046
4047 offset = offset_in_page(gpa);
4048 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4049
4050 /*
4051 * Sometimes, the OS only writes the last one bytes to update status
4052 * bits, for example, in linux, andb instruction is used in clear_bit().
4053 */
4054 if (!(offset & (pte_size - 1)) && bytes == 1)
4055 return false;
4056
889e5cbc
XG
4057 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4058 misaligned |= bytes < 4;
4059
4060 return misaligned;
4061}
4062
4063static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4064{
4065 unsigned page_offset, quadrant;
4066 u64 *spte;
4067 int level;
4068
4069 page_offset = offset_in_page(gpa);
4070 level = sp->role.level;
4071 *nspte = 1;
4072 if (!sp->role.cr4_pae) {
4073 page_offset <<= 1; /* 32->64 */
4074 /*
4075 * A 32-bit pde maps 4MB while the shadow pdes map
4076 * only 2MB. So we need to double the offset again
4077 * and zap two pdes instead of one.
4078 */
4079 if (level == PT32_ROOT_LEVEL) {
4080 page_offset &= ~7; /* kill rounding error */
4081 page_offset <<= 1;
4082 *nspte = 2;
4083 }
4084 quadrant = page_offset >> PAGE_SHIFT;
4085 page_offset &= ~PAGE_MASK;
4086 if (quadrant != sp->role.quadrant)
4087 return NULL;
4088 }
4089
4090 spte = &sp->spt[page_offset / sizeof(*spte)];
4091 return spte;
4092}
4093
4094void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4095 const u8 *new, int bytes)
4096{
4097 gfn_t gfn = gpa >> PAGE_SHIFT;
4098 union kvm_mmu_page_role mask = { .word = 0 };
4099 struct kvm_mmu_page *sp;
889e5cbc
XG
4100 LIST_HEAD(invalid_list);
4101 u64 entry, gentry, *spte;
4102 int npte;
a30f47cb 4103 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
4104
4105 /*
4106 * If we don't have indirect shadow pages, it means no page is
4107 * write-protected, so we can exit simply.
4108 */
4109 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4110 return;
4111
4112 zap_page = remote_flush = local_flush = false;
4113
4114 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4115
4116 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4117
4118 /*
4119 * No need to care whether allocation memory is successful
4120 * or not since pte prefetch is skiped if it does not have
4121 * enough objects in the cache.
4122 */
4123 mmu_topup_memory_caches(vcpu);
4124
4125 spin_lock(&vcpu->kvm->mmu_lock);
4126 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4127 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4128
fa1de2bf 4129 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
b67bfe0d 4130 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4131 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4132 detect_write_flooding(sp)) {
0671a8e7 4133 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 4134 &invalid_list);
4cee5764 4135 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4136 continue;
4137 }
889e5cbc
XG
4138
4139 spte = get_written_sptes(sp, gpa, &npte);
4140 if (!spte)
4141 continue;
4142
0671a8e7 4143 local_flush = true;
ac1b714e 4144 while (npte--) {
79539cec 4145 entry = *spte;
38e3b2b2 4146 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4147 if (gentry &&
4148 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4149 & mask.word) && rmap_can_add(vcpu))
7c562522 4150 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4151 if (need_remote_flush(entry, *spte))
0671a8e7 4152 remote_flush = true;
ac1b714e 4153 ++spte;
9b7a0325 4154 }
9b7a0325 4155 }
0671a8e7 4156 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4157 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4158 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4159 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4160}
4161
a436036b
AK
4162int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4163{
10589a46
MT
4164 gpa_t gpa;
4165 int r;
a436036b 4166
c5a78f2b 4167 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4168 return 0;
4169
1871c602 4170 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4171
10589a46 4172 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4173
10589a46 4174 return r;
a436036b 4175}
577bdc49 4176EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4177
81f4f76b 4178static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4179{
d98ba053 4180 LIST_HEAD(invalid_list);
103ad25a 4181
81f4f76b
TY
4182 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4183 return;
4184
5da59607
TY
4185 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4186 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4187 break;
ebeace86 4188
4cee5764 4189 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4190 }
aa6bd187 4191 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4192}
ebeace86 4193
1cb3f3ae
XG
4194static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4195{
4196 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4197 return vcpu_match_mmio_gpa(vcpu, addr);
4198
4199 return vcpu_match_mmio_gva(vcpu, addr);
4200}
4201
dc25e89e
AP
4202int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4203 void *insn, int insn_len)
3067714c 4204{
1cb3f3ae 4205 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4206 enum emulation_result er;
4207
56028d08 4208 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4209 if (r < 0)
4210 goto out;
4211
4212 if (!r) {
4213 r = 1;
4214 goto out;
4215 }
4216
1cb3f3ae
XG
4217 if (is_mmio_page_fault(vcpu, cr2))
4218 emulation_type = 0;
4219
4220 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4221
4222 switch (er) {
4223 case EMULATE_DONE:
4224 return 1;
ac0a48c3 4225 case EMULATE_USER_EXIT:
3067714c 4226 ++vcpu->stat.mmio_exits;
6d77dbfc 4227 /* fall through */
3067714c 4228 case EMULATE_FAIL:
3f5d18a9 4229 return 0;
3067714c
AK
4230 default:
4231 BUG();
4232 }
4233out:
3067714c
AK
4234 return r;
4235}
4236EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4237
a7052897
MT
4238void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4239{
a7052897 4240 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4241 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4242 ++vcpu->stat.invlpg;
4243}
4244EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4245
18552672
JR
4246void kvm_enable_tdp(void)
4247{
4248 tdp_enabled = true;
4249}
4250EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4251
5f4cb662
JR
4252void kvm_disable_tdp(void)
4253{
4254 tdp_enabled = false;
4255}
4256EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4257
6aa8b732
AK
4258static void free_mmu_pages(struct kvm_vcpu *vcpu)
4259{
ad312c7c 4260 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4261 if (vcpu->arch.mmu.lm_root != NULL)
4262 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4263}
4264
4265static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4266{
17ac10ad 4267 struct page *page;
6aa8b732
AK
4268 int i;
4269
4270 ASSERT(vcpu);
4271
17ac10ad
AK
4272 /*
4273 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4274 * Therefore we need to allocate shadow page tables in the first
4275 * 4GB of memory, which happens to fit the DMA32 zone.
4276 */
4277 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4278 if (!page)
d7fa6ab2
WY
4279 return -ENOMEM;
4280
ad312c7c 4281 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4282 for (i = 0; i < 4; ++i)
ad312c7c 4283 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4284
6aa8b732 4285 return 0;
6aa8b732
AK
4286}
4287
8018c27b 4288int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4289{
6aa8b732 4290 ASSERT(vcpu);
e459e322
XG
4291
4292 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4293 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4294 vcpu->arch.mmu.translate_gpa = translate_gpa;
4295 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4296
8018c27b
IM
4297 return alloc_mmu_pages(vcpu);
4298}
6aa8b732 4299
8a3c1a33 4300void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b
IM
4301{
4302 ASSERT(vcpu);
ad312c7c 4303 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4304
8a3c1a33 4305 init_kvm_mmu(vcpu);
6aa8b732
AK
4306}
4307
90cb0529 4308void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4309{
b99db1d3
TY
4310 struct kvm_memory_slot *memslot;
4311 gfn_t last_gfn;
4312 int i;
6aa8b732 4313
b99db1d3
TY
4314 memslot = id_to_memslot(kvm->memslots, slot);
4315 last_gfn = memslot->base_gfn + memslot->npages - 1;
6aa8b732 4316
9d1beefb
TY
4317 spin_lock(&kvm->mmu_lock);
4318
b99db1d3
TY
4319 for (i = PT_PAGE_TABLE_LEVEL;
4320 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4321 unsigned long *rmapp;
4322 unsigned long last_index, index;
6aa8b732 4323
b99db1d3
TY
4324 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4325 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
da8dc75f 4326
b99db1d3
TY
4327 for (index = 0; index <= last_index; ++index, ++rmapp) {
4328 if (*rmapp)
4329 __rmap_write_protect(kvm, rmapp, false);
6b81b05e 4330
198c74f4 4331 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
6b81b05e 4332 cond_resched_lock(&kvm->mmu_lock);
8234b22e 4333 }
6aa8b732 4334 }
b99db1d3 4335
9d1beefb 4336 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4337
4338 /*
4339 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4340 * which do tlb flush out of mmu-lock should be serialized by
4341 * kvm->slots_lock otherwise tlb flush would be missed.
4342 */
4343 lockdep_assert_held(&kvm->slots_lock);
4344
4345 /*
4346 * We can flush all the TLBs out of the mmu lock without TLB
4347 * corruption since we just change the spte from writable to
4348 * readonly so that we only need to care the case of changing
4349 * spte from present to present (changing the spte from present
4350 * to nonpresent will flush all the TLBs immediately), in other
4351 * words, the only case we care is mmu_spte_update() where we
4352 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4353 * instead of PT_WRITABLE_MASK, that means it does not depend
4354 * on PT_WRITABLE_MASK anymore.
4355 */
4356 kvm_flush_remote_tlbs(kvm);
6aa8b732 4357}
37a7d8b0 4358
e7d11c7a 4359#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4360static void kvm_zap_obsolete_pages(struct kvm *kvm)
4361{
4362 struct kvm_mmu_page *sp, *node;
e7d11c7a 4363 int batch = 0;
5304b8d3
XG
4364
4365restart:
4366 list_for_each_entry_safe_reverse(sp, node,
4367 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4368 int ret;
4369
5304b8d3
XG
4370 /*
4371 * No obsolete page exists before new created page since
4372 * active_mmu_pages is the FIFO list.
4373 */
4374 if (!is_obsolete_sp(kvm, sp))
4375 break;
4376
4377 /*
5304b8d3
XG
4378 * Since we are reversely walking the list and the invalid
4379 * list will be moved to the head, skip the invalid page
4380 * can help us to avoid the infinity list walking.
4381 */
4382 if (sp->role.invalid)
4383 continue;
4384
f34d251d
XG
4385 /*
4386 * Need not flush tlb since we only zap the sp with invalid
4387 * generation number.
4388 */
e7d11c7a 4389 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4390 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4391 batch = 0;
5304b8d3
XG
4392 goto restart;
4393 }
4394
365c8868
XG
4395 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4396 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4397 batch += ret;
4398
4399 if (ret)
5304b8d3
XG
4400 goto restart;
4401 }
4402
f34d251d
XG
4403 /*
4404 * Should flush tlb before free page tables since lockless-walking
4405 * may use the pages.
4406 */
365c8868 4407 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4408}
4409
4410/*
4411 * Fast invalidate all shadow pages and use lock-break technique
4412 * to zap obsolete pages.
4413 *
4414 * It's required when memslot is being deleted or VM is being
4415 * destroyed, in these cases, we should ensure that KVM MMU does
4416 * not use any resource of the being-deleted slot or all slots
4417 * after calling the function.
4418 */
4419void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4420{
4421 spin_lock(&kvm->mmu_lock);
35006126 4422 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4423 kvm->arch.mmu_valid_gen++;
4424
f34d251d
XG
4425 /*
4426 * Notify all vcpus to reload its shadow page table
4427 * and flush TLB. Then all vcpus will switch to new
4428 * shadow page table with the new mmu_valid_gen.
4429 *
4430 * Note: we should do this under the protection of
4431 * mmu-lock, otherwise, vcpu would purge shadow page
4432 * but miss tlb flush.
4433 */
4434 kvm_reload_remote_mmus(kvm);
4435
5304b8d3
XG
4436 kvm_zap_obsolete_pages(kvm);
4437 spin_unlock(&kvm->mmu_lock);
4438}
4439
365c8868
XG
4440static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4441{
4442 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4443}
4444
f8f55942
XG
4445void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4446{
4447 /*
4448 * The very rare case: if the generation-number is round,
4449 * zap all shadow pages.
f8f55942 4450 */
ee3d1570 4451 if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
7a2e8aaf 4452 printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4453 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4454 }
f8f55942
XG
4455}
4456
70534a73
DC
4457static unsigned long
4458mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4459{
4460 struct kvm *kvm;
1495f230 4461 int nr_to_scan = sc->nr_to_scan;
70534a73 4462 unsigned long freed = 0;
3ee16c81 4463
2f303b74 4464 spin_lock(&kvm_lock);
3ee16c81
IE
4465
4466 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4467 int idx;
d98ba053 4468 LIST_HEAD(invalid_list);
3ee16c81 4469
35f2d16b
TY
4470 /*
4471 * Never scan more than sc->nr_to_scan VM instances.
4472 * Will not hit this condition practically since we do not try
4473 * to shrink more than one VM and it is very unlikely to see
4474 * !n_used_mmu_pages so many times.
4475 */
4476 if (!nr_to_scan--)
4477 break;
19526396
GN
4478 /*
4479 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4480 * here. We may skip a VM instance errorneosly, but we do not
4481 * want to shrink a VM that only started to populate its MMU
4482 * anyway.
4483 */
365c8868
XG
4484 if (!kvm->arch.n_used_mmu_pages &&
4485 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4486 continue;
19526396 4487
f656ce01 4488 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4489 spin_lock(&kvm->mmu_lock);
3ee16c81 4490
365c8868
XG
4491 if (kvm_has_zapped_obsolete_pages(kvm)) {
4492 kvm_mmu_commit_zap_page(kvm,
4493 &kvm->arch.zapped_obsolete_pages);
4494 goto unlock;
4495 }
4496
70534a73
DC
4497 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4498 freed++;
d98ba053 4499 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4500
365c8868 4501unlock:
3ee16c81 4502 spin_unlock(&kvm->mmu_lock);
f656ce01 4503 srcu_read_unlock(&kvm->srcu, idx);
19526396 4504
70534a73
DC
4505 /*
4506 * unfair on small ones
4507 * per-vm shrinkers cry out
4508 * sadness comes quickly
4509 */
19526396
GN
4510 list_move_tail(&kvm->vm_list, &vm_list);
4511 break;
3ee16c81 4512 }
3ee16c81 4513
2f303b74 4514 spin_unlock(&kvm_lock);
70534a73 4515 return freed;
70534a73
DC
4516}
4517
4518static unsigned long
4519mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4520{
45221ab6 4521 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4522}
4523
4524static struct shrinker mmu_shrinker = {
70534a73
DC
4525 .count_objects = mmu_shrink_count,
4526 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
4527 .seeks = DEFAULT_SEEKS * 10,
4528};
4529
2ddfd20e 4530static void mmu_destroy_caches(void)
b5a33a75 4531{
53c07b18
XG
4532 if (pte_list_desc_cache)
4533 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4534 if (mmu_page_header_cache)
4535 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4536}
4537
4538int kvm_mmu_module_init(void)
4539{
53c07b18
XG
4540 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4541 sizeof(struct pte_list_desc),
20c2df83 4542 0, 0, NULL);
53c07b18 4543 if (!pte_list_desc_cache)
b5a33a75
AK
4544 goto nomem;
4545
d3d25b04
AK
4546 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4547 sizeof(struct kvm_mmu_page),
20c2df83 4548 0, 0, NULL);
d3d25b04
AK
4549 if (!mmu_page_header_cache)
4550 goto nomem;
4551
908c7f19 4552 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
4553 goto nomem;
4554
3ee16c81
IE
4555 register_shrinker(&mmu_shrinker);
4556
b5a33a75
AK
4557 return 0;
4558
4559nomem:
3ee16c81 4560 mmu_destroy_caches();
b5a33a75
AK
4561 return -ENOMEM;
4562}
4563
3ad82a7e
ZX
4564/*
4565 * Caculate mmu pages needed for kvm.
4566 */
4567unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4568{
3ad82a7e
ZX
4569 unsigned int nr_mmu_pages;
4570 unsigned int nr_pages = 0;
bc6678a3 4571 struct kvm_memslots *slots;
be6ba0f0 4572 struct kvm_memory_slot *memslot;
3ad82a7e 4573
90d83dc3
LJ
4574 slots = kvm_memslots(kvm);
4575
be6ba0f0
XG
4576 kvm_for_each_memslot(memslot, slots)
4577 nr_pages += memslot->npages;
3ad82a7e
ZX
4578
4579 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4580 nr_mmu_pages = max(nr_mmu_pages,
4581 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4582
4583 return nr_mmu_pages;
4584}
4585
94d8b056
MT
4586int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4587{
4588 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4589 u64 spte;
94d8b056
MT
4590 int nr_sptes = 0;
4591
37f6a4e2
MT
4592 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4593 return nr_sptes;
4594
c2a2ac2b
XG
4595 walk_shadow_page_lockless_begin(vcpu);
4596 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4597 sptes[iterator.level-1] = spte;
94d8b056 4598 nr_sptes++;
c2a2ac2b 4599 if (!is_shadow_present_pte(spte))
94d8b056
MT
4600 break;
4601 }
c2a2ac2b 4602 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4603
4604 return nr_sptes;
4605}
4606EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4607
c42fffe3
XG
4608void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4609{
4610 ASSERT(vcpu);
4611
95f93af4 4612 kvm_mmu_unload(vcpu);
c42fffe3
XG
4613 free_mmu_pages(vcpu);
4614 mmu_free_memory_caches(vcpu);
b034cf01
XG
4615}
4616
b034cf01
XG
4617void kvm_mmu_module_exit(void)
4618{
4619 mmu_destroy_caches();
4620 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4621 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4622 mmu_audit_disable();
4623}