KVM: x86: switch kvm_set_memory_alias to SRCU update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kvm / i8254.c
CommitLineData
7837699f
SY
1/*
2 * 8253/8254 interval timer emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a copy
10 * of this software and associated documentation files (the "Software"), to deal
11 * in the Software without restriction, including without limitation the rights
12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 * copies of the Software, and to permit persons to whom the Software is
14 * furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included in
17 * all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 * THE SOFTWARE.
26 *
27 * Authors:
28 * Sheng Yang <sheng.yang@intel.com>
29 * Based on QEMU and Xen.
30 */
31
a78d9626
JP
32#define pr_fmt(fmt) "pit: " fmt
33
7837699f
SY
34#include <linux/kvm_host.h>
35
36#include "irq.h"
37#include "i8254.h"
38
39#ifndef CONFIG_X86_64
6f6d6a1a 40#define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
7837699f
SY
41#else
42#define mod_64(x, y) ((x) % (y))
43#endif
44
45#define RW_STATE_LSB 1
46#define RW_STATE_MSB 2
47#define RW_STATE_WORD0 3
48#define RW_STATE_WORD1 4
49
50/* Compute with 96 bit intermediate result: (a*b)/c */
51static u64 muldiv64(u64 a, u32 b, u32 c)
52{
53 union {
54 u64 ll;
55 struct {
56 u32 low, high;
57 } l;
58 } u, res;
59 u64 rl, rh;
60
61 u.ll = a;
62 rl = (u64)u.l.low * (u64)b;
63 rh = (u64)u.l.high * (u64)b;
64 rh += (rl >> 32);
6f6d6a1a
RZ
65 res.l.high = div64_u64(rh, c);
66 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
7837699f
SY
67 return res.ll;
68}
69
70static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
71{
72 struct kvm_kpit_channel_state *c =
73 &kvm->arch.vpit->pit_state.channels[channel];
74
75 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
76
77 switch (c->mode) {
78 default:
79 case 0:
80 case 4:
81 /* XXX: just disable/enable counting */
82 break;
83 case 1:
84 case 2:
85 case 3:
86 case 5:
87 /* Restart counting on rising edge. */
88 if (c->gate < val)
89 c->count_load_time = ktime_get();
90 break;
91 }
92
93 c->gate = val;
94}
95
8b2cf73c 96static int pit_get_gate(struct kvm *kvm, int channel)
7837699f
SY
97{
98 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
99
100 return kvm->arch.vpit->pit_state.channels[channel].gate;
101}
102
fd668423
MT
103static s64 __kpit_elapsed(struct kvm *kvm)
104{
105 s64 elapsed;
106 ktime_t remaining;
107 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
108
0ff77873
MT
109 if (!ps->pit_timer.period)
110 return 0;
111
ede2ccc5
MT
112 /*
113 * The Counter does not stop when it reaches zero. In
114 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
115 * the highest count, either FFFF hex for binary counting
116 * or 9999 for BCD counting, and continues counting.
117 * Modes 2 and 3 are periodic; the Counter reloads
118 * itself with the initial count and continues counting
119 * from there.
120 */
ace15464 121 remaining = hrtimer_get_remaining(&ps->pit_timer.timer);
ede2ccc5
MT
122 elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
123 elapsed = mod_64(elapsed, ps->pit_timer.period);
fd668423
MT
124
125 return elapsed;
126}
127
128static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
129 int channel)
130{
131 if (channel == 0)
132 return __kpit_elapsed(kvm);
133
134 return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
135}
136
7837699f
SY
137static int pit_get_count(struct kvm *kvm, int channel)
138{
139 struct kvm_kpit_channel_state *c =
140 &kvm->arch.vpit->pit_state.channels[channel];
141 s64 d, t;
142 int counter;
143
144 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
145
fd668423 146 t = kpit_elapsed(kvm, c, channel);
7837699f
SY
147 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
148
149 switch (c->mode) {
150 case 0:
151 case 1:
152 case 4:
153 case 5:
154 counter = (c->count - d) & 0xffff;
155 break;
156 case 3:
157 /* XXX: may be incorrect for odd counts */
158 counter = c->count - (mod_64((2 * d), c->count));
159 break;
160 default:
161 counter = c->count - mod_64(d, c->count);
162 break;
163 }
164 return counter;
165}
166
167static int pit_get_out(struct kvm *kvm, int channel)
168{
169 struct kvm_kpit_channel_state *c =
170 &kvm->arch.vpit->pit_state.channels[channel];
171 s64 d, t;
172 int out;
173
174 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
175
fd668423 176 t = kpit_elapsed(kvm, c, channel);
7837699f
SY
177 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
178
179 switch (c->mode) {
180 default:
181 case 0:
182 out = (d >= c->count);
183 break;
184 case 1:
185 out = (d < c->count);
186 break;
187 case 2:
188 out = ((mod_64(d, c->count) == 0) && (d != 0));
189 break;
190 case 3:
191 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
192 break;
193 case 4:
194 case 5:
195 out = (d == c->count);
196 break;
197 }
198
199 return out;
200}
201
202static void pit_latch_count(struct kvm *kvm, int channel)
203{
204 struct kvm_kpit_channel_state *c =
205 &kvm->arch.vpit->pit_state.channels[channel];
206
207 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
208
209 if (!c->count_latched) {
210 c->latched_count = pit_get_count(kvm, channel);
211 c->count_latched = c->rw_mode;
212 }
213}
214
215static void pit_latch_status(struct kvm *kvm, int channel)
216{
217 struct kvm_kpit_channel_state *c =
218 &kvm->arch.vpit->pit_state.channels[channel];
219
220 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
221
222 if (!c->status_latched) {
223 /* TODO: Return NULL COUNT (bit 6). */
224 c->status = ((pit_get_out(kvm, channel) << 7) |
225 (c->rw_mode << 4) |
226 (c->mode << 1) |
227 c->bcd);
228 c->status_latched = 1;
229 }
230}
231
3d80840d
MT
232int pit_has_pending_timer(struct kvm_vcpu *vcpu)
233{
234 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
235
c5af89b6 236 if (pit && kvm_vcpu_is_bsp(vcpu) && pit->pit_state.irq_ack)
3d80840d 237 return atomic_read(&pit->pit_state.pit_timer.pending);
3d80840d
MT
238 return 0;
239}
240
ee032c99 241static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
3cf57fed
MT
242{
243 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
244 irq_ack_notifier);
245 spin_lock(&ps->inject_lock);
246 if (atomic_dec_return(&ps->pit_timer.pending) < 0)
dc7404ce 247 atomic_inc(&ps->pit_timer.pending);
3cf57fed
MT
248 ps->irq_ack = 1;
249 spin_unlock(&ps->inject_lock);
250}
251
2f599714
MT
252void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
253{
254 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
255 struct hrtimer *timer;
256
c5af89b6 257 if (!kvm_vcpu_is_bsp(vcpu) || !pit)
2f599714
MT
258 return;
259
260 timer = &pit->pit_state.pit_timer.timer;
261 if (hrtimer_cancel(timer))
beb20d52 262 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
2f599714
MT
263}
264
d3c7b77d 265static void destroy_pit_timer(struct kvm_timer *pt)
7837699f 266{
a78d9626 267 pr_debug("execute del timer!\n");
7837699f
SY
268 hrtimer_cancel(&pt->timer);
269}
270
d3c7b77d
MT
271static bool kpit_is_periodic(struct kvm_timer *ktimer)
272{
273 struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
274 pit_timer);
275 return ps->is_periodic;
276}
277
386eb6e8 278static struct kvm_timer_ops kpit_ops = {
d3c7b77d
MT
279 .is_periodic = kpit_is_periodic,
280};
281
3cf57fed 282static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
7837699f 283{
d3c7b77d 284 struct kvm_timer *pt = &ps->pit_timer;
7837699f
SY
285 s64 interval;
286
287 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
288
a78d9626 289 pr_debug("create pit timer, interval is %llu nsec\n", interval);
7837699f
SY
290
291 /* TODO The new value only affected after the retriggered */
292 hrtimer_cancel(&pt->timer);
ede2ccc5 293 pt->period = interval;
d3c7b77d
MT
294 ps->is_periodic = is_period;
295
296 pt->timer.function = kvm_timer_fn;
297 pt->t_ops = &kpit_ops;
298 pt->kvm = ps->pit->kvm;
1ed0ce00 299 pt->vcpu = pt->kvm->bsp_vcpu;
d3c7b77d 300
7837699f 301 atomic_set(&pt->pending, 0);
3cf57fed 302 ps->irq_ack = 1;
7837699f
SY
303
304 hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
305 HRTIMER_MODE_ABS);
306}
307
308static void pit_load_count(struct kvm *kvm, int channel, u32 val)
309{
310 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
311
312 WARN_ON(!mutex_is_locked(&ps->lock));
313
a78d9626 314 pr_debug("load_count val is %d, channel is %d\n", val, channel);
7837699f
SY
315
316 /*
ede2ccc5
MT
317 * The largest possible initial count is 0; this is equivalent
318 * to 216 for binary counting and 104 for BCD counting.
7837699f
SY
319 */
320 if (val == 0)
321 val = 0x10000;
322
7837699f
SY
323 ps->channels[channel].count = val;
324
fd668423
MT
325 if (channel != 0) {
326 ps->channels[channel].count_load_time = ktime_get();
7837699f 327 return;
fd668423 328 }
7837699f
SY
329
330 /* Two types of timer
331 * mode 1 is one shot, mode 2 is period, otherwise del timer */
332 switch (ps->channels[0].mode) {
ede2ccc5 333 case 0:
7837699f 334 case 1:
ece15bab
MT
335 /* FIXME: enhance mode 4 precision */
336 case 4:
e9f42757
BK
337 if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)) {
338 create_pit_timer(ps, val, 0);
339 }
7837699f
SY
340 break;
341 case 2:
f6975545 342 case 3:
e9f42757
BK
343 if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)){
344 create_pit_timer(ps, val, 1);
345 }
7837699f
SY
346 break;
347 default:
348 destroy_pit_timer(&ps->pit_timer);
349 }
350}
351
e9f42757 352void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
e0f63cb9 353{
e9f42757
BK
354 u8 saved_mode;
355 if (hpet_legacy_start) {
356 /* save existing mode for later reenablement */
357 saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
358 kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
359 pit_load_count(kvm, channel, val);
360 kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
361 } else {
362 pit_load_count(kvm, channel, val);
363 }
e0f63cb9
SY
364}
365
d76685c4
GH
366static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
367{
368 return container_of(dev, struct kvm_pit, dev);
369}
370
371static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
372{
373 return container_of(dev, struct kvm_pit, speaker_dev);
374}
375
bda9020e
MT
376static inline int pit_in_range(gpa_t addr)
377{
378 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
379 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
380}
381
382static int pit_ioport_write(struct kvm_io_device *this,
383 gpa_t addr, int len, const void *data)
7837699f 384{
d76685c4 385 struct kvm_pit *pit = dev_to_pit(this);
7837699f
SY
386 struct kvm_kpit_state *pit_state = &pit->pit_state;
387 struct kvm *kvm = pit->kvm;
388 int channel, access;
389 struct kvm_kpit_channel_state *s;
390 u32 val = *(u32 *) data;
bda9020e
MT
391 if (!pit_in_range(addr))
392 return -EOPNOTSUPP;
7837699f
SY
393
394 val &= 0xff;
395 addr &= KVM_PIT_CHANNEL_MASK;
396
397 mutex_lock(&pit_state->lock);
398
399 if (val != 0)
a78d9626
JP
400 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
401 (unsigned int)addr, len, val);
7837699f
SY
402
403 if (addr == 3) {
404 channel = val >> 6;
405 if (channel == 3) {
406 /* Read-Back Command. */
407 for (channel = 0; channel < 3; channel++) {
408 s = &pit_state->channels[channel];
409 if (val & (2 << channel)) {
410 if (!(val & 0x20))
411 pit_latch_count(kvm, channel);
412 if (!(val & 0x10))
413 pit_latch_status(kvm, channel);
414 }
415 }
416 } else {
417 /* Select Counter <channel>. */
418 s = &pit_state->channels[channel];
419 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
420 if (access == 0) {
421 pit_latch_count(kvm, channel);
422 } else {
423 s->rw_mode = access;
424 s->read_state = access;
425 s->write_state = access;
426 s->mode = (val >> 1) & 7;
427 if (s->mode > 5)
428 s->mode -= 4;
429 s->bcd = val & 1;
430 }
431 }
432 } else {
433 /* Write Count. */
434 s = &pit_state->channels[addr];
435 switch (s->write_state) {
436 default:
437 case RW_STATE_LSB:
438 pit_load_count(kvm, addr, val);
439 break;
440 case RW_STATE_MSB:
441 pit_load_count(kvm, addr, val << 8);
442 break;
443 case RW_STATE_WORD0:
444 s->write_latch = val;
445 s->write_state = RW_STATE_WORD1;
446 break;
447 case RW_STATE_WORD1:
448 pit_load_count(kvm, addr, s->write_latch | (val << 8));
449 s->write_state = RW_STATE_WORD0;
450 break;
451 }
452 }
453
454 mutex_unlock(&pit_state->lock);
bda9020e 455 return 0;
7837699f
SY
456}
457
bda9020e
MT
458static int pit_ioport_read(struct kvm_io_device *this,
459 gpa_t addr, int len, void *data)
7837699f 460{
d76685c4 461 struct kvm_pit *pit = dev_to_pit(this);
7837699f
SY
462 struct kvm_kpit_state *pit_state = &pit->pit_state;
463 struct kvm *kvm = pit->kvm;
464 int ret, count;
465 struct kvm_kpit_channel_state *s;
bda9020e
MT
466 if (!pit_in_range(addr))
467 return -EOPNOTSUPP;
7837699f
SY
468
469 addr &= KVM_PIT_CHANNEL_MASK;
ee73f656
MT
470 if (addr == 3)
471 return 0;
472
7837699f
SY
473 s = &pit_state->channels[addr];
474
475 mutex_lock(&pit_state->lock);
476
477 if (s->status_latched) {
478 s->status_latched = 0;
479 ret = s->status;
480 } else if (s->count_latched) {
481 switch (s->count_latched) {
482 default:
483 case RW_STATE_LSB:
484 ret = s->latched_count & 0xff;
485 s->count_latched = 0;
486 break;
487 case RW_STATE_MSB:
488 ret = s->latched_count >> 8;
489 s->count_latched = 0;
490 break;
491 case RW_STATE_WORD0:
492 ret = s->latched_count & 0xff;
493 s->count_latched = RW_STATE_MSB;
494 break;
495 }
496 } else {
497 switch (s->read_state) {
498 default:
499 case RW_STATE_LSB:
500 count = pit_get_count(kvm, addr);
501 ret = count & 0xff;
502 break;
503 case RW_STATE_MSB:
504 count = pit_get_count(kvm, addr);
505 ret = (count >> 8) & 0xff;
506 break;
507 case RW_STATE_WORD0:
508 count = pit_get_count(kvm, addr);
509 ret = count & 0xff;
510 s->read_state = RW_STATE_WORD1;
511 break;
512 case RW_STATE_WORD1:
513 count = pit_get_count(kvm, addr);
514 ret = (count >> 8) & 0xff;
515 s->read_state = RW_STATE_WORD0;
516 break;
517 }
518 }
519
520 if (len > sizeof(ret))
521 len = sizeof(ret);
522 memcpy(data, (char *)&ret, len);
523
524 mutex_unlock(&pit_state->lock);
bda9020e 525 return 0;
7837699f
SY
526}
527
bda9020e
MT
528static int speaker_ioport_write(struct kvm_io_device *this,
529 gpa_t addr, int len, const void *data)
7837699f 530{
d76685c4 531 struct kvm_pit *pit = speaker_to_pit(this);
7837699f
SY
532 struct kvm_kpit_state *pit_state = &pit->pit_state;
533 struct kvm *kvm = pit->kvm;
534 u32 val = *(u32 *) data;
bda9020e
MT
535 if (addr != KVM_SPEAKER_BASE_ADDRESS)
536 return -EOPNOTSUPP;
7837699f
SY
537
538 mutex_lock(&pit_state->lock);
539 pit_state->speaker_data_on = (val >> 1) & 1;
540 pit_set_gate(kvm, 2, val & 1);
541 mutex_unlock(&pit_state->lock);
bda9020e 542 return 0;
7837699f
SY
543}
544
bda9020e
MT
545static int speaker_ioport_read(struct kvm_io_device *this,
546 gpa_t addr, int len, void *data)
7837699f 547{
d76685c4 548 struct kvm_pit *pit = speaker_to_pit(this);
7837699f
SY
549 struct kvm_kpit_state *pit_state = &pit->pit_state;
550 struct kvm *kvm = pit->kvm;
551 unsigned int refresh_clock;
552 int ret;
bda9020e
MT
553 if (addr != KVM_SPEAKER_BASE_ADDRESS)
554 return -EOPNOTSUPP;
7837699f
SY
555
556 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
557 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
558
559 mutex_lock(&pit_state->lock);
560 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
561 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
562 if (len > sizeof(ret))
563 len = sizeof(ret);
564 memcpy(data, (char *)&ret, len);
565 mutex_unlock(&pit_state->lock);
bda9020e 566 return 0;
7837699f
SY
567}
568
308b0f23 569void kvm_pit_reset(struct kvm_pit *pit)
7837699f
SY
570{
571 int i;
308b0f23
SY
572 struct kvm_kpit_channel_state *c;
573
574 mutex_lock(&pit->pit_state.lock);
e9f42757 575 pit->pit_state.flags = 0;
308b0f23
SY
576 for (i = 0; i < 3; i++) {
577 c = &pit->pit_state.channels[i];
578 c->mode = 0xff;
579 c->gate = (i != 2);
580 pit_load_count(pit->kvm, i, 0);
581 }
582 mutex_unlock(&pit->pit_state.lock);
583
584 atomic_set(&pit->pit_state.pit_timer.pending, 0);
3cf57fed 585 pit->pit_state.irq_ack = 1;
308b0f23
SY
586}
587
4780c659
AK
588static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
589{
590 struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
591
592 if (!mask) {
593 atomic_set(&pit->pit_state.pit_timer.pending, 0);
594 pit->pit_state.irq_ack = 1;
595 }
596}
597
d76685c4
GH
598static const struct kvm_io_device_ops pit_dev_ops = {
599 .read = pit_ioport_read,
600 .write = pit_ioport_write,
d76685c4
GH
601};
602
603static const struct kvm_io_device_ops speaker_dev_ops = {
604 .read = speaker_ioport_read,
605 .write = speaker_ioport_write,
d76685c4
GH
606};
607
6c474694 608/* Caller must have writers lock on slots_lock */
c5ff41ce 609struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
308b0f23 610{
7837699f
SY
611 struct kvm_pit *pit;
612 struct kvm_kpit_state *pit_state;
090b7aff 613 int ret;
7837699f
SY
614
615 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
616 if (!pit)
617 return NULL;
618
5550af4d 619 pit->irq_source_id = kvm_request_irq_source_id(kvm);
e17d1dc0
AK
620 if (pit->irq_source_id < 0) {
621 kfree(pit);
5550af4d 622 return NULL;
e17d1dc0 623 }
5550af4d 624
7837699f
SY
625 mutex_init(&pit->pit_state.lock);
626 mutex_lock(&pit->pit_state.lock);
3cf57fed 627 spin_lock_init(&pit->pit_state.inject_lock);
7837699f 628
7837699f
SY
629 kvm->arch.vpit = pit;
630 pit->kvm = kvm;
631
632 pit_state = &pit->pit_state;
633 pit_state->pit = pit;
634 hrtimer_init(&pit_state->pit_timer.timer,
635 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
3cf57fed
MT
636 pit_state->irq_ack_notifier.gsi = 0;
637 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
638 kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
52d939a0 639 pit_state->pit_timer.reinject = true;
7837699f
SY
640 mutex_unlock(&pit->pit_state.lock);
641
308b0f23 642 kvm_pit_reset(pit);
7837699f 643
4780c659
AK
644 pit->mask_notifier.func = pit_mask_notifer;
645 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
646
6b66ac1a 647 kvm_iodevice_init(&pit->dev, &pit_dev_ops);
090b7aff
GH
648 ret = __kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
649 if (ret < 0)
650 goto fail;
6b66ac1a
GH
651
652 if (flags & KVM_PIT_SPEAKER_DUMMY) {
653 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
090b7aff
GH
654 ret = __kvm_io_bus_register_dev(&kvm->pio_bus,
655 &pit->speaker_dev);
656 if (ret < 0)
657 goto fail_unregister;
6b66ac1a
GH
658 }
659
7837699f 660 return pit;
090b7aff
GH
661
662fail_unregister:
663 __kvm_io_bus_unregister_dev(&kvm->pio_bus, &pit->dev);
664
665fail:
666 if (pit->irq_source_id >= 0)
667 kvm_free_irq_source_id(kvm, pit->irq_source_id);
668
669 kfree(pit);
670 return NULL;
7837699f
SY
671}
672
673void kvm_free_pit(struct kvm *kvm)
674{
675 struct hrtimer *timer;
676
677 if (kvm->arch.vpit) {
4780c659
AK
678 kvm_unregister_irq_mask_notifier(kvm, 0,
679 &kvm->arch.vpit->mask_notifier);
84fde248
GN
680 kvm_unregister_irq_ack_notifier(kvm,
681 &kvm->arch.vpit->pit_state.irq_ack_notifier);
7837699f
SY
682 mutex_lock(&kvm->arch.vpit->pit_state.lock);
683 timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
684 hrtimer_cancel(timer);
5550af4d 685 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
7837699f
SY
686 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
687 kfree(kvm->arch.vpit);
688 }
689}
690
8b2cf73c 691static void __inject_pit_timer_intr(struct kvm *kvm)
7837699f 692{
23930f95
JK
693 struct kvm_vcpu *vcpu;
694 int i;
695
5550af4d
SY
696 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
697 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
23930f95
JK
698
699 /*
8fdb2351
JK
700 * Provides NMI watchdog support via Virtual Wire mode.
701 * The route is: PIT -> PIC -> LVT0 in NMI mode.
702 *
703 * Note: Our Virtual Wire implementation is simplified, only
704 * propagating PIT interrupts to all VCPUs when they have set
705 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
706 * VCPU0, and only if its LVT0 is in EXTINT mode.
23930f95 707 */
cc6e462c 708 if (kvm->arch.vapics_in_nmi_mode > 0)
988a2cae
GN
709 kvm_for_each_vcpu(i, vcpu, kvm)
710 kvm_apic_nmi_wd_deliver(vcpu);
7837699f
SY
711}
712
713void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
714{
715 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
716 struct kvm *kvm = vcpu->kvm;
717 struct kvm_kpit_state *ps;
718
95fb4eb6 719 if (pit) {
3cf57fed 720 int inject = 0;
7837699f
SY
721 ps = &pit->pit_state;
722
3cf57fed
MT
723 /* Try to inject pending interrupts when
724 * last one has been acked.
725 */
726 spin_lock(&ps->inject_lock);
727 if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
728 ps->irq_ack = 0;
729 inject = 1;
7837699f 730 }
3cf57fed
MT
731 spin_unlock(&ps->inject_lock);
732 if (inject)
733 __inject_pit_timer_intr(kvm);
7837699f
SY
734 }
735}