KVM: fix i8259 reset irq acking
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kvm / i8254.c
CommitLineData
7837699f
SY
1/*
2 * 8253/8254 interval timer emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a copy
10 * of this software and associated documentation files (the "Software"), to deal
11 * in the Software without restriction, including without limitation the rights
12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 * copies of the Software, and to permit persons to whom the Software is
14 * furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included in
17 * all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 * THE SOFTWARE.
26 *
27 * Authors:
28 * Sheng Yang <sheng.yang@intel.com>
29 * Based on QEMU and Xen.
30 */
31
32#include <linux/kvm_host.h>
33
34#include "irq.h"
35#include "i8254.h"
36
37#ifndef CONFIG_X86_64
6f6d6a1a 38#define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
7837699f
SY
39#else
40#define mod_64(x, y) ((x) % (y))
41#endif
42
43#define RW_STATE_LSB 1
44#define RW_STATE_MSB 2
45#define RW_STATE_WORD0 3
46#define RW_STATE_WORD1 4
47
48/* Compute with 96 bit intermediate result: (a*b)/c */
49static u64 muldiv64(u64 a, u32 b, u32 c)
50{
51 union {
52 u64 ll;
53 struct {
54 u32 low, high;
55 } l;
56 } u, res;
57 u64 rl, rh;
58
59 u.ll = a;
60 rl = (u64)u.l.low * (u64)b;
61 rh = (u64)u.l.high * (u64)b;
62 rh += (rl >> 32);
6f6d6a1a
RZ
63 res.l.high = div64_u64(rh, c);
64 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
7837699f
SY
65 return res.ll;
66}
67
68static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
69{
70 struct kvm_kpit_channel_state *c =
71 &kvm->arch.vpit->pit_state.channels[channel];
72
73 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
74
75 switch (c->mode) {
76 default:
77 case 0:
78 case 4:
79 /* XXX: just disable/enable counting */
80 break;
81 case 1:
82 case 2:
83 case 3:
84 case 5:
85 /* Restart counting on rising edge. */
86 if (c->gate < val)
87 c->count_load_time = ktime_get();
88 break;
89 }
90
91 c->gate = val;
92}
93
8b2cf73c 94static int pit_get_gate(struct kvm *kvm, int channel)
7837699f
SY
95{
96 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
97
98 return kvm->arch.vpit->pit_state.channels[channel].gate;
99}
100
101static int pit_get_count(struct kvm *kvm, int channel)
102{
103 struct kvm_kpit_channel_state *c =
104 &kvm->arch.vpit->pit_state.channels[channel];
105 s64 d, t;
106 int counter;
107
108 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
109
110 t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
111 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
112
113 switch (c->mode) {
114 case 0:
115 case 1:
116 case 4:
117 case 5:
118 counter = (c->count - d) & 0xffff;
119 break;
120 case 3:
121 /* XXX: may be incorrect for odd counts */
122 counter = c->count - (mod_64((2 * d), c->count));
123 break;
124 default:
125 counter = c->count - mod_64(d, c->count);
126 break;
127 }
128 return counter;
129}
130
131static int pit_get_out(struct kvm *kvm, int channel)
132{
133 struct kvm_kpit_channel_state *c =
134 &kvm->arch.vpit->pit_state.channels[channel];
135 s64 d, t;
136 int out;
137
138 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
139
140 t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
141 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
142
143 switch (c->mode) {
144 default:
145 case 0:
146 out = (d >= c->count);
147 break;
148 case 1:
149 out = (d < c->count);
150 break;
151 case 2:
152 out = ((mod_64(d, c->count) == 0) && (d != 0));
153 break;
154 case 3:
155 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
156 break;
157 case 4:
158 case 5:
159 out = (d == c->count);
160 break;
161 }
162
163 return out;
164}
165
166static void pit_latch_count(struct kvm *kvm, int channel)
167{
168 struct kvm_kpit_channel_state *c =
169 &kvm->arch.vpit->pit_state.channels[channel];
170
171 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
172
173 if (!c->count_latched) {
174 c->latched_count = pit_get_count(kvm, channel);
175 c->count_latched = c->rw_mode;
176 }
177}
178
179static void pit_latch_status(struct kvm *kvm, int channel)
180{
181 struct kvm_kpit_channel_state *c =
182 &kvm->arch.vpit->pit_state.channels[channel];
183
184 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
185
186 if (!c->status_latched) {
187 /* TODO: Return NULL COUNT (bit 6). */
188 c->status = ((pit_get_out(kvm, channel) << 7) |
189 (c->rw_mode << 4) |
190 (c->mode << 1) |
191 c->bcd);
192 c->status_latched = 1;
193 }
194}
195
8b2cf73c 196static int __pit_timer_fn(struct kvm_kpit_state *ps)
7837699f
SY
197{
198 struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0];
199 struct kvm_kpit_timer *pt = &ps->pit_timer;
200
622395a9 201 if (!atomic_inc_and_test(&pt->pending))
06e05645 202 set_bit(KVM_REQ_PENDING_TIMER, &vcpu0->requests);
622395a9
MT
203 if (vcpu0 && waitqueue_active(&vcpu0->wq)) {
204 vcpu0->arch.mp_state = KVM_MP_STATE_RUNNABLE;
205 wake_up_interruptible(&vcpu0->wq);
7837699f
SY
206 }
207
208 pt->timer.expires = ktime_add_ns(pt->timer.expires, pt->period);
209 pt->scheduled = ktime_to_ns(pt->timer.expires);
3cf57fed
MT
210 if (pt->period)
211 ps->channels[0].count_load_time = pt->timer.expires;
7837699f
SY
212
213 return (pt->period == 0 ? 0 : 1);
214}
215
3d80840d
MT
216int pit_has_pending_timer(struct kvm_vcpu *vcpu)
217{
218 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
219
3cf57fed 220 if (pit && vcpu->vcpu_id == 0 && pit->pit_state.irq_ack)
3d80840d 221 return atomic_read(&pit->pit_state.pit_timer.pending);
3d80840d
MT
222 return 0;
223}
224
3cf57fed
MT
225void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
226{
227 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
228 irq_ack_notifier);
229 spin_lock(&ps->inject_lock);
230 if (atomic_dec_return(&ps->pit_timer.pending) < 0)
231 WARN_ON(1);
232 ps->irq_ack = 1;
233 spin_unlock(&ps->inject_lock);
234}
235
7837699f
SY
236static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
237{
238 struct kvm_kpit_state *ps;
239 int restart_timer = 0;
240
241 ps = container_of(data, struct kvm_kpit_state, pit_timer.timer);
242
243 restart_timer = __pit_timer_fn(ps);
244
245 if (restart_timer)
246 return HRTIMER_RESTART;
247 else
248 return HRTIMER_NORESTART;
249}
250
2f599714
MT
251void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
252{
253 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
254 struct hrtimer *timer;
255
256 if (vcpu->vcpu_id != 0 || !pit)
257 return;
258
259 timer = &pit->pit_state.pit_timer.timer;
260 if (hrtimer_cancel(timer))
261 hrtimer_start(timer, timer->expires, HRTIMER_MODE_ABS);
262}
263
7837699f
SY
264static void destroy_pit_timer(struct kvm_kpit_timer *pt)
265{
266 pr_debug("pit: execute del timer!\n");
267 hrtimer_cancel(&pt->timer);
268}
269
3cf57fed 270static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
7837699f 271{
3cf57fed 272 struct kvm_kpit_timer *pt = &ps->pit_timer;
7837699f
SY
273 s64 interval;
274
275 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
276
277 pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
278
279 /* TODO The new value only affected after the retriggered */
280 hrtimer_cancel(&pt->timer);
281 pt->period = (is_period == 0) ? 0 : interval;
282 pt->timer.function = pit_timer_fn;
283 atomic_set(&pt->pending, 0);
3cf57fed 284 ps->irq_ack = 1;
7837699f
SY
285
286 hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
287 HRTIMER_MODE_ABS);
288}
289
290static void pit_load_count(struct kvm *kvm, int channel, u32 val)
291{
292 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
293
294 WARN_ON(!mutex_is_locked(&ps->lock));
295
296 pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
297
298 /*
299 * Though spec said the state of 8254 is undefined after power-up,
300 * seems some tricky OS like Windows XP depends on IRQ0 interrupt
301 * when booting up.
302 * So here setting initialize rate for it, and not a specific number
303 */
304 if (val == 0)
305 val = 0x10000;
306
307 ps->channels[channel].count_load_time = ktime_get();
308 ps->channels[channel].count = val;
309
310 if (channel != 0)
311 return;
312
313 /* Two types of timer
314 * mode 1 is one shot, mode 2 is period, otherwise del timer */
315 switch (ps->channels[0].mode) {
316 case 1:
ece15bab
MT
317 /* FIXME: enhance mode 4 precision */
318 case 4:
3cf57fed 319 create_pit_timer(ps, val, 0);
7837699f
SY
320 break;
321 case 2:
f6975545 322 case 3:
3cf57fed 323 create_pit_timer(ps, val, 1);
7837699f
SY
324 break;
325 default:
326 destroy_pit_timer(&ps->pit_timer);
327 }
328}
329
e0f63cb9
SY
330void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
331{
332 mutex_lock(&kvm->arch.vpit->pit_state.lock);
333 pit_load_count(kvm, channel, val);
334 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
335}
336
7837699f
SY
337static void pit_ioport_write(struct kvm_io_device *this,
338 gpa_t addr, int len, const void *data)
339{
340 struct kvm_pit *pit = (struct kvm_pit *)this->private;
341 struct kvm_kpit_state *pit_state = &pit->pit_state;
342 struct kvm *kvm = pit->kvm;
343 int channel, access;
344 struct kvm_kpit_channel_state *s;
345 u32 val = *(u32 *) data;
346
347 val &= 0xff;
348 addr &= KVM_PIT_CHANNEL_MASK;
349
350 mutex_lock(&pit_state->lock);
351
352 if (val != 0)
353 pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
354 (unsigned int)addr, len, val);
355
356 if (addr == 3) {
357 channel = val >> 6;
358 if (channel == 3) {
359 /* Read-Back Command. */
360 for (channel = 0; channel < 3; channel++) {
361 s = &pit_state->channels[channel];
362 if (val & (2 << channel)) {
363 if (!(val & 0x20))
364 pit_latch_count(kvm, channel);
365 if (!(val & 0x10))
366 pit_latch_status(kvm, channel);
367 }
368 }
369 } else {
370 /* Select Counter <channel>. */
371 s = &pit_state->channels[channel];
372 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
373 if (access == 0) {
374 pit_latch_count(kvm, channel);
375 } else {
376 s->rw_mode = access;
377 s->read_state = access;
378 s->write_state = access;
379 s->mode = (val >> 1) & 7;
380 if (s->mode > 5)
381 s->mode -= 4;
382 s->bcd = val & 1;
383 }
384 }
385 } else {
386 /* Write Count. */
387 s = &pit_state->channels[addr];
388 switch (s->write_state) {
389 default:
390 case RW_STATE_LSB:
391 pit_load_count(kvm, addr, val);
392 break;
393 case RW_STATE_MSB:
394 pit_load_count(kvm, addr, val << 8);
395 break;
396 case RW_STATE_WORD0:
397 s->write_latch = val;
398 s->write_state = RW_STATE_WORD1;
399 break;
400 case RW_STATE_WORD1:
401 pit_load_count(kvm, addr, s->write_latch | (val << 8));
402 s->write_state = RW_STATE_WORD0;
403 break;
404 }
405 }
406
407 mutex_unlock(&pit_state->lock);
408}
409
410static void pit_ioport_read(struct kvm_io_device *this,
411 gpa_t addr, int len, void *data)
412{
413 struct kvm_pit *pit = (struct kvm_pit *)this->private;
414 struct kvm_kpit_state *pit_state = &pit->pit_state;
415 struct kvm *kvm = pit->kvm;
416 int ret, count;
417 struct kvm_kpit_channel_state *s;
418
419 addr &= KVM_PIT_CHANNEL_MASK;
420 s = &pit_state->channels[addr];
421
422 mutex_lock(&pit_state->lock);
423
424 if (s->status_latched) {
425 s->status_latched = 0;
426 ret = s->status;
427 } else if (s->count_latched) {
428 switch (s->count_latched) {
429 default:
430 case RW_STATE_LSB:
431 ret = s->latched_count & 0xff;
432 s->count_latched = 0;
433 break;
434 case RW_STATE_MSB:
435 ret = s->latched_count >> 8;
436 s->count_latched = 0;
437 break;
438 case RW_STATE_WORD0:
439 ret = s->latched_count & 0xff;
440 s->count_latched = RW_STATE_MSB;
441 break;
442 }
443 } else {
444 switch (s->read_state) {
445 default:
446 case RW_STATE_LSB:
447 count = pit_get_count(kvm, addr);
448 ret = count & 0xff;
449 break;
450 case RW_STATE_MSB:
451 count = pit_get_count(kvm, addr);
452 ret = (count >> 8) & 0xff;
453 break;
454 case RW_STATE_WORD0:
455 count = pit_get_count(kvm, addr);
456 ret = count & 0xff;
457 s->read_state = RW_STATE_WORD1;
458 break;
459 case RW_STATE_WORD1:
460 count = pit_get_count(kvm, addr);
461 ret = (count >> 8) & 0xff;
462 s->read_state = RW_STATE_WORD0;
463 break;
464 }
465 }
466
467 if (len > sizeof(ret))
468 len = sizeof(ret);
469 memcpy(data, (char *)&ret, len);
470
471 mutex_unlock(&pit_state->lock);
472}
473
92760499
LV
474static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
475 int len, int is_write)
7837699f
SY
476{
477 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
478 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
479}
480
481static void speaker_ioport_write(struct kvm_io_device *this,
482 gpa_t addr, int len, const void *data)
483{
484 struct kvm_pit *pit = (struct kvm_pit *)this->private;
485 struct kvm_kpit_state *pit_state = &pit->pit_state;
486 struct kvm *kvm = pit->kvm;
487 u32 val = *(u32 *) data;
488
489 mutex_lock(&pit_state->lock);
490 pit_state->speaker_data_on = (val >> 1) & 1;
491 pit_set_gate(kvm, 2, val & 1);
492 mutex_unlock(&pit_state->lock);
493}
494
495static void speaker_ioport_read(struct kvm_io_device *this,
496 gpa_t addr, int len, void *data)
497{
498 struct kvm_pit *pit = (struct kvm_pit *)this->private;
499 struct kvm_kpit_state *pit_state = &pit->pit_state;
500 struct kvm *kvm = pit->kvm;
501 unsigned int refresh_clock;
502 int ret;
503
504 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
505 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
506
507 mutex_lock(&pit_state->lock);
508 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
509 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
510 if (len > sizeof(ret))
511 len = sizeof(ret);
512 memcpy(data, (char *)&ret, len);
513 mutex_unlock(&pit_state->lock);
514}
515
92760499
LV
516static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
517 int len, int is_write)
7837699f
SY
518{
519 return (addr == KVM_SPEAKER_BASE_ADDRESS);
520}
521
308b0f23 522void kvm_pit_reset(struct kvm_pit *pit)
7837699f
SY
523{
524 int i;
308b0f23
SY
525 struct kvm_kpit_channel_state *c;
526
527 mutex_lock(&pit->pit_state.lock);
528 for (i = 0; i < 3; i++) {
529 c = &pit->pit_state.channels[i];
530 c->mode = 0xff;
531 c->gate = (i != 2);
532 pit_load_count(pit->kvm, i, 0);
533 }
534 mutex_unlock(&pit->pit_state.lock);
535
536 atomic_set(&pit->pit_state.pit_timer.pending, 0);
3cf57fed 537 pit->pit_state.irq_ack = 1;
308b0f23
SY
538}
539
540struct kvm_pit *kvm_create_pit(struct kvm *kvm)
541{
7837699f
SY
542 struct kvm_pit *pit;
543 struct kvm_kpit_state *pit_state;
7837699f
SY
544
545 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
546 if (!pit)
547 return NULL;
548
549 mutex_init(&pit->pit_state.lock);
550 mutex_lock(&pit->pit_state.lock);
3cf57fed 551 spin_lock_init(&pit->pit_state.inject_lock);
7837699f
SY
552
553 /* Initialize PIO device */
554 pit->dev.read = pit_ioport_read;
555 pit->dev.write = pit_ioport_write;
556 pit->dev.in_range = pit_in_range;
557 pit->dev.private = pit;
558 kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
559
560 pit->speaker_dev.read = speaker_ioport_read;
561 pit->speaker_dev.write = speaker_ioport_write;
562 pit->speaker_dev.in_range = speaker_in_range;
563 pit->speaker_dev.private = pit;
564 kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
565
566 kvm->arch.vpit = pit;
567 pit->kvm = kvm;
568
569 pit_state = &pit->pit_state;
570 pit_state->pit = pit;
571 hrtimer_init(&pit_state->pit_timer.timer,
572 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
3cf57fed
MT
573 pit_state->irq_ack_notifier.gsi = 0;
574 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
575 kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
7837699f
SY
576 mutex_unlock(&pit->pit_state.lock);
577
308b0f23 578 kvm_pit_reset(pit);
7837699f
SY
579
580 return pit;
581}
582
583void kvm_free_pit(struct kvm *kvm)
584{
585 struct hrtimer *timer;
586
587 if (kvm->arch.vpit) {
588 mutex_lock(&kvm->arch.vpit->pit_state.lock);
589 timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
590 hrtimer_cancel(timer);
591 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
592 kfree(kvm->arch.vpit);
593 }
594}
595
8b2cf73c 596static void __inject_pit_timer_intr(struct kvm *kvm)
7837699f
SY
597{
598 mutex_lock(&kvm->lock);
599 kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 1);
600 kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 0);
601 kvm_pic_set_irq(pic_irqchip(kvm), 0, 1);
602 kvm_pic_set_irq(pic_irqchip(kvm), 0, 0);
603 mutex_unlock(&kvm->lock);
604}
605
606void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
607{
608 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
609 struct kvm *kvm = vcpu->kvm;
610 struct kvm_kpit_state *ps;
611
612 if (vcpu && pit) {
3cf57fed 613 int inject = 0;
7837699f
SY
614 ps = &pit->pit_state;
615
3cf57fed
MT
616 /* Try to inject pending interrupts when
617 * last one has been acked.
618 */
619 spin_lock(&ps->inject_lock);
620 if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
621 ps->irq_ack = 0;
622 inject = 1;
7837699f 623 }
3cf57fed
MT
624 spin_unlock(&ps->inject_lock);
625 if (inject)
626 __inject_pit_timer_intr(kvm);
7837699f
SY
627 }
628}