hw-breakpoints: reset bits in dr6 after the corresponding exception is handled
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / kprobes.c
CommitLineData
1da177e4
LT
1/*
2 * Kernel Probes (KProbes)
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
d6be29b8
MH
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
1da177e4
LT
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
d6be29b8
MH
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
da07ab03
MH
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
d6be29b8
MH
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kprobes.h>
44#include <linux/ptrace.h>
1da177e4
LT
45#include <linux/string.h>
46#include <linux/slab.h>
b506a9d0 47#include <linux/hardirq.h>
1da177e4 48#include <linux/preempt.h>
c28f8966 49#include <linux/module.h>
1eeb66a1 50#include <linux/kdebug.h>
9ec4b1f3 51
8533bbe9
MH
52#include <asm/cacheflush.h>
53#include <asm/desc.h>
1da177e4 54#include <asm/pgtable.h>
c28f8966 55#include <asm/uaccess.h>
19d36ccd 56#include <asm/alternative.h>
62edab90 57#include <asm/debugreg.h>
1da177e4 58
1da177e4
LT
59void jprobe_return_end(void);
60
e7a510f9
AM
61DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
62DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
1da177e4 63
d6be29b8 64#ifdef CONFIG_X86_64
8533bbe9 65#define stack_addr(regs) ((unsigned long *)regs->sp)
d6be29b8
MH
66#else
67/*
68 * "&regs->sp" looks wrong, but it's correct for x86_32. x86_32 CPUs
69 * don't save the ss and esp registers if the CPU is already in kernel
70 * mode when it traps. So for kprobes, regs->sp and regs->ss are not
71 * the [nonexistent] saved stack pointer and ss register, but rather
72 * the top 8 bytes of the pre-int3 stack. So &regs->sp happens to
73 * point to the top of the pre-int3 stack.
74 */
75#define stack_addr(regs) ((unsigned long *)&regs->sp)
76#endif
8533bbe9
MH
77
78#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
79 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
80 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
81 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
82 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
83 << (row % 32))
84 /*
85 * Undefined/reserved opcodes, conditional jump, Opcode Extension
86 * Groups, and some special opcodes can not boost.
87 */
88static const u32 twobyte_is_boostable[256 / 32] = {
89 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
90 /* ---------------------------------------------- */
91 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
92 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
93 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
94 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
95 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
96 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
97 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
98 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
99 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
100 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
101 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
102 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
103 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
104 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
105 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
106 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
107 /* ----------------------------------------------- */
108 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
109};
110static const u32 onebyte_has_modrm[256 / 32] = {
111 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
112 /* ----------------------------------------------- */
113 W(0x00, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 00 */
114 W(0x10, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) , /* 10 */
115 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 20 */
116 W(0x30, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) , /* 30 */
117 W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
118 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
119 W(0x60, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0) | /* 60 */
120 W(0x70, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 70 */
121 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
122 W(0x90, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 90 */
123 W(0xa0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* a0 */
124 W(0xb0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* b0 */
125 W(0xc0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) | /* c0 */
126 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
127 W(0xe0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* e0 */
128 W(0xf0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) /* f0 */
129 /* ----------------------------------------------- */
130 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
131};
132static const u32 twobyte_has_modrm[256 / 32] = {
133 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
134 /* ----------------------------------------------- */
135 W(0x00, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1) | /* 0f */
136 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0) , /* 1f */
137 W(0x20, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 2f */
138 W(0x30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 3f */
139 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 4f */
140 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 5f */
141 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 6f */
142 W(0x70, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1) , /* 7f */
143 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 8f */
144 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 9f */
145 W(0xa0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) | /* af */
146 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* bf */
147 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) | /* cf */
148 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* df */
149 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* ef */
150 W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* ff */
151 /* ----------------------------------------------- */
152 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
153};
154#undef W
155
f438d914
MH
156struct kretprobe_blackpoint kretprobe_blacklist[] = {
157 {"__switch_to", }, /* This function switches only current task, but
158 doesn't switch kernel stack.*/
159 {NULL, NULL} /* Terminator */
160};
161const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
162
aa470140 163/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
e7b5e11e 164static void __kprobes set_jmp_op(void *from, void *to)
aa470140
MH
165{
166 struct __arch_jmp_op {
167 char op;
168 s32 raddr;
169 } __attribute__((packed)) * jop;
170 jop = (struct __arch_jmp_op *)from;
171 jop->raddr = (s32)((long)(to) - ((long)(from) + 5));
172 jop->op = RELATIVEJUMP_INSTRUCTION;
173}
174
9930927f
HH
175/*
176 * Check for the REX prefix which can only exist on X86_64
177 * X86_32 always returns 0
178 */
179static int __kprobes is_REX_prefix(kprobe_opcode_t *insn)
180{
181#ifdef CONFIG_X86_64
182 if ((*insn & 0xf0) == 0x40)
183 return 1;
184#endif
185 return 0;
186}
187
aa470140 188/*
d6be29b8
MH
189 * Returns non-zero if opcode is boostable.
190 * RIP relative instructions are adjusted at copying time in 64 bits mode
aa470140 191 */
e7b5e11e 192static int __kprobes can_boost(kprobe_opcode_t *opcodes)
aa470140 193{
aa470140
MH
194 kprobe_opcode_t opcode;
195 kprobe_opcode_t *orig_opcodes = opcodes;
196
cde5edbd 197 if (search_exception_tables((unsigned long)opcodes))
30390880
MH
198 return 0; /* Page fault may occur on this address. */
199
aa470140
MH
200retry:
201 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
202 return 0;
203 opcode = *(opcodes++);
204
205 /* 2nd-byte opcode */
206 if (opcode == 0x0f) {
207 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
208 return 0;
8533bbe9
MH
209 return test_bit(*opcodes,
210 (unsigned long *)twobyte_is_boostable);
aa470140
MH
211 }
212
213 switch (opcode & 0xf0) {
d6be29b8 214#ifdef CONFIG_X86_64
aa470140
MH
215 case 0x40:
216 goto retry; /* REX prefix is boostable */
d6be29b8 217#endif
aa470140
MH
218 case 0x60:
219 if (0x63 < opcode && opcode < 0x67)
220 goto retry; /* prefixes */
221 /* can't boost Address-size override and bound */
222 return (opcode != 0x62 && opcode != 0x67);
223 case 0x70:
224 return 0; /* can't boost conditional jump */
225 case 0xc0:
226 /* can't boost software-interruptions */
227 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
228 case 0xd0:
229 /* can boost AA* and XLAT */
230 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
231 case 0xe0:
232 /* can boost in/out and absolute jmps */
233 return ((opcode & 0x04) || opcode == 0xea);
234 case 0xf0:
235 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
236 goto retry; /* lock/rep(ne) prefix */
237 /* clear and set flags are boostable */
238 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
239 default:
240 /* segment override prefixes are boostable */
241 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
242 goto retry; /* prefixes */
243 /* CS override prefix and call are not boostable */
244 return (opcode != 0x2e && opcode != 0x9a);
245 }
246}
247
1da177e4 248/*
d6be29b8 249 * Returns non-zero if opcode modifies the interrupt flag.
1da177e4 250 */
8645419c 251static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
1da177e4
LT
252{
253 switch (*insn) {
254 case 0xfa: /* cli */
255 case 0xfb: /* sti */
256 case 0xcf: /* iret/iretd */
257 case 0x9d: /* popf/popfd */
258 return 1;
259 }
9930927f 260
8533bbe9 261 /*
9930927f 262 * on X86_64, 0x40-0x4f are REX prefixes so we need to look
8533bbe9
MH
263 * at the next byte instead.. but of course not recurse infinitely
264 */
9930927f 265 if (is_REX_prefix(insn))
8533bbe9 266 return is_IF_modifier(++insn);
9930927f 267
1da177e4
LT
268 return 0;
269}
270
271/*
8533bbe9
MH
272 * Adjust the displacement if the instruction uses the %rip-relative
273 * addressing mode.
aa470140 274 * If it does, Return the address of the 32-bit displacement word.
1da177e4 275 * If not, return null.
31f80e45 276 * Only applicable to 64-bit x86.
1da177e4 277 */
8533bbe9 278static void __kprobes fix_riprel(struct kprobe *p)
1da177e4 279{
31f80e45 280#ifdef CONFIG_X86_64
8533bbe9
MH
281 u8 *insn = p->ainsn.insn;
282 s64 disp;
1da177e4
LT
283 int need_modrm;
284
285 /* Skip legacy instruction prefixes. */
286 while (1) {
287 switch (*insn) {
288 case 0x66:
289 case 0x67:
290 case 0x2e:
291 case 0x3e:
292 case 0x26:
293 case 0x64:
294 case 0x65:
295 case 0x36:
296 case 0xf0:
297 case 0xf3:
298 case 0xf2:
299 ++insn;
300 continue;
301 }
302 break;
303 }
304
305 /* Skip REX instruction prefix. */
9930927f 306 if (is_REX_prefix(insn))
1da177e4
LT
307 ++insn;
308
d6be29b8
MH
309 if (*insn == 0x0f) {
310 /* Two-byte opcode. */
1da177e4 311 ++insn;
8533bbe9
MH
312 need_modrm = test_bit(*insn,
313 (unsigned long *)twobyte_has_modrm);
d6be29b8
MH
314 } else
315 /* One-byte opcode. */
8533bbe9
MH
316 need_modrm = test_bit(*insn,
317 (unsigned long *)onebyte_has_modrm);
1da177e4
LT
318
319 if (need_modrm) {
320 u8 modrm = *++insn;
d6be29b8
MH
321 if ((modrm & 0xc7) == 0x05) {
322 /* %rip+disp32 addressing mode */
1da177e4 323 /* Displacement follows ModRM byte. */
8533bbe9
MH
324 ++insn;
325 /*
326 * The copied instruction uses the %rip-relative
327 * addressing mode. Adjust the displacement for the
328 * difference between the original location of this
329 * instruction and the location of the copy that will
330 * actually be run. The tricky bit here is making sure
331 * that the sign extension happens correctly in this
332 * calculation, since we need a signed 32-bit result to
333 * be sign-extended to 64 bits when it's added to the
334 * %rip value and yield the same 64-bit result that the
335 * sign-extension of the original signed 32-bit
336 * displacement would have given.
337 */
338 disp = (u8 *) p->addr + *((s32 *) insn) -
339 (u8 *) p->ainsn.insn;
340 BUG_ON((s64) (s32) disp != disp); /* Sanity check. */
341 *(s32 *)insn = (s32) disp;
1da177e4
LT
342 }
343 }
d6be29b8 344#endif
31f80e45 345}
1da177e4 346
f709b122 347static void __kprobes arch_copy_kprobe(struct kprobe *p)
1da177e4 348{
8533bbe9 349 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
31f80e45 350
8533bbe9 351 fix_riprel(p);
31f80e45 352
8533bbe9 353 if (can_boost(p->addr))
aa470140 354 p->ainsn.boostable = 0;
8533bbe9 355 else
aa470140 356 p->ainsn.boostable = -1;
8533bbe9 357
7e1048b1 358 p->opcode = *p->addr;
1da177e4
LT
359}
360
8533bbe9
MH
361int __kprobes arch_prepare_kprobe(struct kprobe *p)
362{
363 /* insn: must be on special executable page on x86. */
364 p->ainsn.insn = get_insn_slot();
365 if (!p->ainsn.insn)
366 return -ENOMEM;
367 arch_copy_kprobe(p);
368 return 0;
369}
370
0f2fbdcb 371void __kprobes arch_arm_kprobe(struct kprobe *p)
1da177e4 372{
19d36ccd 373 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
1da177e4
LT
374}
375
0f2fbdcb 376void __kprobes arch_disarm_kprobe(struct kprobe *p)
1da177e4 377{
19d36ccd 378 text_poke(p->addr, &p->opcode, 1);
7e1048b1
RL
379}
380
0498b635 381void __kprobes arch_remove_kprobe(struct kprobe *p)
7e1048b1 382{
12941560
MH
383 if (p->ainsn.insn) {
384 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
385 p->ainsn.insn = NULL;
386 }
1da177e4
LT
387}
388
3b60211c 389static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 390{
e7a510f9
AM
391 kcb->prev_kprobe.kp = kprobe_running();
392 kcb->prev_kprobe.status = kcb->kprobe_status;
8533bbe9
MH
393 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
394 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
aa3d7e3d
PP
395}
396
3b60211c 397static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 398{
e7a510f9
AM
399 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
400 kcb->kprobe_status = kcb->prev_kprobe.status;
8533bbe9
MH
401 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
402 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
aa3d7e3d
PP
403}
404
3b60211c 405static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
e7a510f9 406 struct kprobe_ctlblk *kcb)
aa3d7e3d 407{
e7a510f9 408 __get_cpu_var(current_kprobe) = p;
8533bbe9 409 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
053de044 410 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
aa3d7e3d 411 if (is_IF_modifier(p->ainsn.insn))
053de044 412 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
aa3d7e3d
PP
413}
414
e7b5e11e 415static void __kprobes clear_btf(void)
1ecc798c
RM
416{
417 if (test_thread_flag(TIF_DEBUGCTLMSR))
5b0e5084 418 update_debugctlmsr(0);
1ecc798c
RM
419}
420
e7b5e11e 421static void __kprobes restore_btf(void)
1ecc798c
RM
422{
423 if (test_thread_flag(TIF_DEBUGCTLMSR))
5b0e5084 424 update_debugctlmsr(current->thread.debugctlmsr);
1ecc798c
RM
425}
426
0f2fbdcb 427static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
1da177e4 428{
1ecc798c 429 clear_btf();
053de044
GOC
430 regs->flags |= X86_EFLAGS_TF;
431 regs->flags &= ~X86_EFLAGS_IF;
e7b5e11e 432 /* single step inline if the instruction is an int3 */
1da177e4 433 if (p->opcode == BREAKPOINT_INSTRUCTION)
65ea5b03 434 regs->ip = (unsigned long)p->addr;
1da177e4 435 else
65ea5b03 436 regs->ip = (unsigned long)p->ainsn.insn;
1da177e4
LT
437}
438
4c4308cb 439void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
0f2fbdcb 440 struct pt_regs *regs)
73649dab 441{
8533bbe9 442 unsigned long *sara = stack_addr(regs);
ba8af12f 443
4c4308cb 444 ri->ret_addr = (kprobe_opcode_t *) *sara;
8533bbe9 445
4c4308cb
CH
446 /* Replace the return addr with trampoline addr */
447 *sara = (unsigned long) &kretprobe_trampoline;
73649dab 448}
f315decb 449
f315decb
AS
450static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs,
451 struct kprobe_ctlblk *kcb)
452{
5a4ccaf3 453#if !defined(CONFIG_PREEMPT) || defined(CONFIG_FREEZER)
f315decb
AS
454 if (p->ainsn.boostable == 1 && !p->post_handler) {
455 /* Boost up -- we can execute copied instructions directly */
456 reset_current_kprobe();
457 regs->ip = (unsigned long)p->ainsn.insn;
458 preempt_enable_no_resched();
459 return;
460 }
461#endif
462 prepare_singlestep(p, regs);
463 kcb->kprobe_status = KPROBE_HIT_SS;
464}
465
40102d4a
HH
466/*
467 * We have reentered the kprobe_handler(), since another probe was hit while
468 * within the handler. We save the original kprobes variables and just single
469 * step on the instruction of the new probe without calling any user handlers.
470 */
59e87cdc
MH
471static int __kprobes reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
472 struct kprobe_ctlblk *kcb)
40102d4a 473{
f315decb
AS
474 switch (kcb->kprobe_status) {
475 case KPROBE_HIT_SSDONE:
59e87cdc 476#ifdef CONFIG_X86_64
59e87cdc
MH
477 /* TODO: Provide re-entrancy from post_kprobes_handler() and
478 * avoid exception stack corruption while single-stepping on
479 * the instruction of the new probe.
480 */
481 arch_disarm_kprobe(p);
482 regs->ip = (unsigned long)p->addr;
483 reset_current_kprobe();
f315decb
AS
484 preempt_enable_no_resched();
485 break;
59e87cdc 486#endif
f315decb 487 case KPROBE_HIT_ACTIVE:
fb8830e7
AS
488 save_previous_kprobe(kcb);
489 set_current_kprobe(p, regs, kcb);
490 kprobes_inc_nmissed_count(p);
491 prepare_singlestep(p, regs);
492 kcb->kprobe_status = KPROBE_REENTER;
f315decb
AS
493 break;
494 case KPROBE_HIT_SS:
fb8830e7 495 if (p == kprobe_running()) {
a5c15d41 496 regs->flags &= ~X86_EFLAGS_TF;
f315decb
AS
497 regs->flags |= kcb->kprobe_saved_flags;
498 return 0;
499 } else {
fb8830e7
AS
500 /* A probe has been hit in the codepath leading up
501 * to, or just after, single-stepping of a probed
502 * instruction. This entire codepath should strictly
503 * reside in .kprobes.text section. Raise a warning
504 * to highlight this peculiar case.
505 */
f315decb 506 }
f315decb
AS
507 default:
508 /* impossible cases */
509 WARN_ON(1);
fb8830e7 510 return 0;
59e87cdc 511 }
f315decb 512
59e87cdc 513 return 1;
40102d4a 514}
73649dab 515
8533bbe9
MH
516/*
517 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
518 * remain disabled thorough out this function.
519 */
520static int __kprobes kprobe_handler(struct pt_regs *regs)
1da177e4 521{
8533bbe9 522 kprobe_opcode_t *addr;
f315decb 523 struct kprobe *p;
d217d545
AM
524 struct kprobe_ctlblk *kcb;
525
8533bbe9 526 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
f315decb
AS
527 if (*addr != BREAKPOINT_INSTRUCTION) {
528 /*
529 * The breakpoint instruction was removed right
530 * after we hit it. Another cpu has removed
531 * either a probepoint or a debugger breakpoint
532 * at this address. In either case, no further
533 * handling of this interrupt is appropriate.
534 * Back up over the (now missing) int3 and run
535 * the original instruction.
536 */
537 regs->ip = (unsigned long)addr;
538 return 1;
539 }
8533bbe9 540
d217d545
AM
541 /*
542 * We don't want to be preempted for the entire
f315decb
AS
543 * duration of kprobe processing. We conditionally
544 * re-enable preemption at the end of this function,
545 * and also in reenter_kprobe() and setup_singlestep().
d217d545
AM
546 */
547 preempt_disable();
1da177e4 548
f315decb 549 kcb = get_kprobe_ctlblk();
b9760156 550 p = get_kprobe(addr);
f315decb 551
b9760156 552 if (p) {
b9760156 553 if (kprobe_running()) {
f315decb
AS
554 if (reenter_kprobe(p, regs, kcb))
555 return 1;
1da177e4 556 } else {
b9760156
HH
557 set_current_kprobe(p, regs, kcb);
558 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
f315decb 559
1da177e4 560 /*
f315decb
AS
561 * If we have no pre-handler or it returned 0, we
562 * continue with normal processing. If we have a
563 * pre-handler and it returned non-zero, it prepped
564 * for calling the break_handler below on re-entry
565 * for jprobe processing, so get out doing nothing
566 * more here.
1da177e4 567 */
f315decb
AS
568 if (!p->pre_handler || !p->pre_handler(p, regs))
569 setup_singlestep(p, regs, kcb);
570 return 1;
b9760156 571 }
f315decb
AS
572 } else if (kprobe_running()) {
573 p = __get_cpu_var(current_kprobe);
574 if (p->break_handler && p->break_handler(p, regs)) {
575 setup_singlestep(p, regs, kcb);
576 return 1;
1da177e4 577 }
f315decb 578 } /* else: not a kprobe fault; let the kernel handle it */
1da177e4 579
d217d545 580 preempt_enable_no_resched();
f315decb 581 return 0;
1da177e4
LT
582}
583
73649dab 584/*
da07ab03
MH
585 * When a retprobed function returns, this code saves registers and
586 * calls trampoline_handler() runs, which calls the kretprobe's handler.
73649dab 587 */
f1452d42 588static void __used __kprobes kretprobe_trampoline_holder(void)
1017579a 589{
d6be29b8
MH
590 asm volatile (
591 ".global kretprobe_trampoline\n"
da07ab03 592 "kretprobe_trampoline: \n"
d6be29b8 593#ifdef CONFIG_X86_64
da07ab03
MH
594 /* We don't bother saving the ss register */
595 " pushq %rsp\n"
596 " pushfq\n"
597 /*
598 * Skip cs, ip, orig_ax.
599 * trampoline_handler() will plug in these values
600 */
601 " subq $24, %rsp\n"
602 " pushq %rdi\n"
603 " pushq %rsi\n"
604 " pushq %rdx\n"
605 " pushq %rcx\n"
606 " pushq %rax\n"
607 " pushq %r8\n"
608 " pushq %r9\n"
609 " pushq %r10\n"
610 " pushq %r11\n"
611 " pushq %rbx\n"
612 " pushq %rbp\n"
613 " pushq %r12\n"
614 " pushq %r13\n"
615 " pushq %r14\n"
616 " pushq %r15\n"
617 " movq %rsp, %rdi\n"
618 " call trampoline_handler\n"
619 /* Replace saved sp with true return address. */
620 " movq %rax, 152(%rsp)\n"
621 " popq %r15\n"
622 " popq %r14\n"
623 " popq %r13\n"
624 " popq %r12\n"
625 " popq %rbp\n"
626 " popq %rbx\n"
627 " popq %r11\n"
628 " popq %r10\n"
629 " popq %r9\n"
630 " popq %r8\n"
631 " popq %rax\n"
632 " popq %rcx\n"
633 " popq %rdx\n"
634 " popq %rsi\n"
635 " popq %rdi\n"
636 /* Skip orig_ax, ip, cs */
637 " addq $24, %rsp\n"
638 " popfq\n"
d6be29b8
MH
639#else
640 " pushf\n"
641 /*
fee039a1 642 * Skip cs, ip, orig_ax and gs.
d6be29b8
MH
643 * trampoline_handler() will plug in these values
644 */
fee039a1 645 " subl $16, %esp\n"
d6be29b8 646 " pushl %fs\n"
d6be29b8 647 " pushl %es\n"
fee039a1 648 " pushl %ds\n"
d6be29b8
MH
649 " pushl %eax\n"
650 " pushl %ebp\n"
651 " pushl %edi\n"
652 " pushl %esi\n"
653 " pushl %edx\n"
654 " pushl %ecx\n"
655 " pushl %ebx\n"
656 " movl %esp, %eax\n"
657 " call trampoline_handler\n"
658 /* Move flags to cs */
fee039a1
MH
659 " movl 56(%esp), %edx\n"
660 " movl %edx, 52(%esp)\n"
d6be29b8 661 /* Replace saved flags with true return address. */
fee039a1 662 " movl %eax, 56(%esp)\n"
d6be29b8
MH
663 " popl %ebx\n"
664 " popl %ecx\n"
665 " popl %edx\n"
666 " popl %esi\n"
667 " popl %edi\n"
668 " popl %ebp\n"
669 " popl %eax\n"
fee039a1
MH
670 /* Skip ds, es, fs, gs, orig_ax and ip */
671 " addl $24, %esp\n"
d6be29b8
MH
672 " popf\n"
673#endif
da07ab03 674 " ret\n");
1017579a 675}
73649dab
RL
676
677/*
da07ab03 678 * Called from kretprobe_trampoline
73649dab 679 */
f1452d42 680static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
73649dab 681{
62c27be0 682 struct kretprobe_instance *ri = NULL;
99219a3f 683 struct hlist_head *head, empty_rp;
62c27be0 684 struct hlist_node *node, *tmp;
991a51d8 685 unsigned long flags, orig_ret_address = 0;
d6be29b8 686 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
73649dab 687
99219a3f 688 INIT_HLIST_HEAD(&empty_rp);
ef53d9c5 689 kretprobe_hash_lock(current, &head, &flags);
8533bbe9 690 /* fixup registers */
d6be29b8 691#ifdef CONFIG_X86_64
da07ab03 692 regs->cs = __KERNEL_CS;
d6be29b8
MH
693#else
694 regs->cs = __KERNEL_CS | get_kernel_rpl();
fee039a1 695 regs->gs = 0;
d6be29b8 696#endif
da07ab03 697 regs->ip = trampoline_address;
8533bbe9 698 regs->orig_ax = ~0UL;
73649dab 699
ba8af12f
RL
700 /*
701 * It is possible to have multiple instances associated with a given
8533bbe9 702 * task either because multiple functions in the call path have
025dfdaf 703 * return probes installed on them, and/or more than one
ba8af12f
RL
704 * return probe was registered for a target function.
705 *
706 * We can handle this because:
8533bbe9 707 * - instances are always pushed into the head of the list
ba8af12f 708 * - when multiple return probes are registered for the same
8533bbe9
MH
709 * function, the (chronologically) first instance's ret_addr
710 * will be the real return address, and all the rest will
711 * point to kretprobe_trampoline.
ba8af12f
RL
712 */
713 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
62c27be0 714 if (ri->task != current)
ba8af12f 715 /* another task is sharing our hash bucket */
62c27be0 716 continue;
ba8af12f 717
da07ab03
MH
718 if (ri->rp && ri->rp->handler) {
719 __get_cpu_var(current_kprobe) = &ri->rp->kp;
720 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
ba8af12f 721 ri->rp->handler(ri, regs);
da07ab03
MH
722 __get_cpu_var(current_kprobe) = NULL;
723 }
ba8af12f
RL
724
725 orig_ret_address = (unsigned long)ri->ret_addr;
99219a3f 726 recycle_rp_inst(ri, &empty_rp);
ba8af12f
RL
727
728 if (orig_ret_address != trampoline_address)
729 /*
730 * This is the real return address. Any other
731 * instances associated with this task are for
732 * other calls deeper on the call stack
733 */
734 break;
73649dab 735 }
ba8af12f 736
0f95b7fc 737 kretprobe_assert(ri, orig_ret_address, trampoline_address);
ba8af12f 738
ef53d9c5 739 kretprobe_hash_unlock(current, &flags);
ba8af12f 740
99219a3f 741 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
742 hlist_del(&ri->hlist);
743 kfree(ri);
744 }
da07ab03 745 return (void *)orig_ret_address;
73649dab
RL
746}
747
1da177e4
LT
748/*
749 * Called after single-stepping. p->addr is the address of the
750 * instruction whose first byte has been replaced by the "int 3"
751 * instruction. To avoid the SMP problems that can occur when we
752 * temporarily put back the original opcode to single-step, we
753 * single-stepped a copy of the instruction. The address of this
754 * copy is p->ainsn.insn.
755 *
756 * This function prepares to return from the post-single-step
757 * interrupt. We have to fix up the stack as follows:
758 *
759 * 0) Except in the case of absolute or indirect jump or call instructions,
65ea5b03 760 * the new ip is relative to the copied instruction. We need to make
1da177e4
LT
761 * it relative to the original instruction.
762 *
763 * 1) If the single-stepped instruction was pushfl, then the TF and IF
65ea5b03 764 * flags are set in the just-pushed flags, and may need to be cleared.
1da177e4
LT
765 *
766 * 2) If the single-stepped instruction was a call, the return address
767 * that is atop the stack is the address following the copied instruction.
768 * We need to make it the address following the original instruction.
aa470140
MH
769 *
770 * If this is the first time we've single-stepped the instruction at
771 * this probepoint, and the instruction is boostable, boost it: add a
772 * jump instruction after the copied instruction, that jumps to the next
773 * instruction after the probepoint.
1da177e4 774 */
e7a510f9
AM
775static void __kprobes resume_execution(struct kprobe *p,
776 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
1da177e4 777{
8533bbe9
MH
778 unsigned long *tos = stack_addr(regs);
779 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
780 unsigned long orig_ip = (unsigned long)p->addr;
1da177e4
LT
781 kprobe_opcode_t *insn = p->ainsn.insn;
782
783 /*skip the REX prefix*/
9930927f 784 if (is_REX_prefix(insn))
1da177e4
LT
785 insn++;
786
053de044 787 regs->flags &= ~X86_EFLAGS_TF;
1da177e4 788 switch (*insn) {
0b0122fa 789 case 0x9c: /* pushfl */
053de044 790 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
8533bbe9 791 *tos |= kcb->kprobe_old_flags;
1da177e4 792 break;
0b0122fa
MH
793 case 0xc2: /* iret/ret/lret */
794 case 0xc3:
0b9e2cac 795 case 0xca:
0b0122fa
MH
796 case 0xcb:
797 case 0xcf:
798 case 0xea: /* jmp absolute -- ip is correct */
799 /* ip is already adjusted, no more changes required */
aa470140 800 p->ainsn.boostable = 1;
0b0122fa
MH
801 goto no_change;
802 case 0xe8: /* call relative - Fix return addr */
8533bbe9 803 *tos = orig_ip + (*tos - copy_ip);
1da177e4 804 break;
e7b5e11e 805#ifdef CONFIG_X86_32
d6be29b8
MH
806 case 0x9a: /* call absolute -- same as call absolute, indirect */
807 *tos = orig_ip + (*tos - copy_ip);
808 goto no_change;
809#endif
1da177e4 810 case 0xff:
dc49e344 811 if ((insn[1] & 0x30) == 0x10) {
8533bbe9
MH
812 /*
813 * call absolute, indirect
814 * Fix return addr; ip is correct.
815 * But this is not boostable
816 */
817 *tos = orig_ip + (*tos - copy_ip);
0b0122fa 818 goto no_change;
8533bbe9
MH
819 } else if (((insn[1] & 0x31) == 0x20) ||
820 ((insn[1] & 0x31) == 0x21)) {
821 /*
822 * jmp near and far, absolute indirect
823 * ip is correct. And this is boostable
824 */
aa470140 825 p->ainsn.boostable = 1;
0b0122fa 826 goto no_change;
1da177e4 827 }
1da177e4
LT
828 default:
829 break;
830 }
831
aa470140 832 if (p->ainsn.boostable == 0) {
8533bbe9
MH
833 if ((regs->ip > copy_ip) &&
834 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
aa470140
MH
835 /*
836 * These instructions can be executed directly if it
837 * jumps back to correct address.
838 */
839 set_jmp_op((void *)regs->ip,
8533bbe9 840 (void *)orig_ip + (regs->ip - copy_ip));
aa470140
MH
841 p->ainsn.boostable = 1;
842 } else {
843 p->ainsn.boostable = -1;
844 }
845 }
846
8533bbe9 847 regs->ip += orig_ip - copy_ip;
65ea5b03 848
0b0122fa 849no_change:
1ecc798c 850 restore_btf();
1da177e4
LT
851}
852
8533bbe9
MH
853/*
854 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
855 * remain disabled thoroughout this function.
856 */
857static int __kprobes post_kprobe_handler(struct pt_regs *regs)
1da177e4 858{
e7a510f9
AM
859 struct kprobe *cur = kprobe_running();
860 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
861
862 if (!cur)
1da177e4
LT
863 return 0;
864
acb5b8a2
YL
865 resume_execution(cur, regs, kcb);
866 regs->flags |= kcb->kprobe_saved_flags;
acb5b8a2 867
e7a510f9
AM
868 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
869 kcb->kprobe_status = KPROBE_HIT_SSDONE;
870 cur->post_handler(cur, regs, 0);
aa3d7e3d 871 }
1da177e4 872
8533bbe9 873 /* Restore back the original saved kprobes variables and continue. */
e7a510f9
AM
874 if (kcb->kprobe_status == KPROBE_REENTER) {
875 restore_previous_kprobe(kcb);
aa3d7e3d 876 goto out;
aa3d7e3d 877 }
e7a510f9 878 reset_current_kprobe();
aa3d7e3d 879out:
1da177e4
LT
880 preempt_enable_no_resched();
881
882 /*
65ea5b03 883 * if somebody else is singlestepping across a probe point, flags
1da177e4
LT
884 * will have TF set, in which case, continue the remaining processing
885 * of do_debug, as if this is not a probe hit.
886 */
053de044 887 if (regs->flags & X86_EFLAGS_TF)
1da177e4
LT
888 return 0;
889
890 return 1;
891}
892
0f2fbdcb 893int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1da177e4 894{
e7a510f9
AM
895 struct kprobe *cur = kprobe_running();
896 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
897
d6be29b8 898 switch (kcb->kprobe_status) {
c28f8966
PP
899 case KPROBE_HIT_SS:
900 case KPROBE_REENTER:
901 /*
902 * We are here because the instruction being single
903 * stepped caused a page fault. We reset the current
65ea5b03 904 * kprobe and the ip points back to the probe address
c28f8966
PP
905 * and allow the page fault handler to continue as a
906 * normal page fault.
907 */
65ea5b03 908 regs->ip = (unsigned long)cur->addr;
8533bbe9 909 regs->flags |= kcb->kprobe_old_flags;
c28f8966
PP
910 if (kcb->kprobe_status == KPROBE_REENTER)
911 restore_previous_kprobe(kcb);
912 else
913 reset_current_kprobe();
1da177e4 914 preempt_enable_no_resched();
c28f8966
PP
915 break;
916 case KPROBE_HIT_ACTIVE:
917 case KPROBE_HIT_SSDONE:
918 /*
919 * We increment the nmissed count for accounting,
8533bbe9 920 * we can also use npre/npostfault count for accounting
c28f8966
PP
921 * these specific fault cases.
922 */
923 kprobes_inc_nmissed_count(cur);
924
925 /*
926 * We come here because instructions in the pre/post
927 * handler caused the page_fault, this could happen
928 * if handler tries to access user space by
929 * copy_from_user(), get_user() etc. Let the
930 * user-specified handler try to fix it first.
931 */
932 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
933 return 1;
934
935 /*
936 * In case the user-specified fault handler returned
937 * zero, try to fix up.
938 */
d6be29b8
MH
939 if (fixup_exception(regs))
940 return 1;
6d48583b 941
c28f8966 942 /*
8533bbe9 943 * fixup routine could not handle it,
c28f8966
PP
944 * Let do_page_fault() fix it.
945 */
946 break;
947 default:
948 break;
1da177e4
LT
949 }
950 return 0;
951}
952
953/*
954 * Wrapper routine for handling exceptions.
955 */
0f2fbdcb
PP
956int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
957 unsigned long val, void *data)
1da177e4 958{
ade1af77 959 struct die_args *args = data;
66ff2d06
AM
960 int ret = NOTIFY_DONE;
961
8533bbe9 962 if (args->regs && user_mode_vm(args->regs))
2326c770 963 return ret;
964
1da177e4
LT
965 switch (val) {
966 case DIE_INT3:
967 if (kprobe_handler(args->regs))
66ff2d06 968 ret = NOTIFY_STOP;
1da177e4
LT
969 break;
970 case DIE_DEBUG:
62edab90
P
971 if (post_kprobe_handler(args->regs)) {
972 /*
973 * Reset the BS bit in dr6 (pointed by args->err) to
974 * denote completion of processing
975 */
976 (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
66ff2d06 977 ret = NOTIFY_STOP;
62edab90 978 }
1da177e4
LT
979 break;
980 case DIE_GPF:
b506a9d0
QB
981 /*
982 * To be potentially processing a kprobe fault and to
983 * trust the result from kprobe_running(), we have
984 * be non-preemptible.
985 */
986 if (!preemptible() && kprobe_running() &&
1da177e4 987 kprobe_fault_handler(args->regs, args->trapnr))
66ff2d06 988 ret = NOTIFY_STOP;
1da177e4
LT
989 break;
990 default:
991 break;
992 }
66ff2d06 993 return ret;
1da177e4
LT
994}
995
0f2fbdcb 996int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4
LT
997{
998 struct jprobe *jp = container_of(p, struct jprobe, kp);
999 unsigned long addr;
e7a510f9 1000 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4 1001
e7a510f9 1002 kcb->jprobe_saved_regs = *regs;
8533bbe9
MH
1003 kcb->jprobe_saved_sp = stack_addr(regs);
1004 addr = (unsigned long)(kcb->jprobe_saved_sp);
1005
1da177e4
LT
1006 /*
1007 * As Linus pointed out, gcc assumes that the callee
1008 * owns the argument space and could overwrite it, e.g.
1009 * tailcall optimization. So, to be absolutely safe
1010 * we also save and restore enough stack bytes to cover
1011 * the argument area.
1012 */
e7a510f9 1013 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
d6be29b8 1014 MIN_STACK_SIZE(addr));
053de044 1015 regs->flags &= ~X86_EFLAGS_IF;
58dfe883 1016 trace_hardirqs_off();
65ea5b03 1017 regs->ip = (unsigned long)(jp->entry);
1da177e4
LT
1018 return 1;
1019}
1020
0f2fbdcb 1021void __kprobes jprobe_return(void)
1da177e4 1022{
e7a510f9
AM
1023 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1024
d6be29b8
MH
1025 asm volatile (
1026#ifdef CONFIG_X86_64
1027 " xchg %%rbx,%%rsp \n"
1028#else
1029 " xchgl %%ebx,%%esp \n"
1030#endif
1031 " int3 \n"
1032 " .globl jprobe_return_end\n"
1033 " jprobe_return_end: \n"
1034 " nop \n"::"b"
1035 (kcb->jprobe_saved_sp):"memory");
1da177e4
LT
1036}
1037
0f2fbdcb 1038int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4 1039{
e7a510f9 1040 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
65ea5b03 1041 u8 *addr = (u8 *) (regs->ip - 1);
1da177e4
LT
1042 struct jprobe *jp = container_of(p, struct jprobe, kp);
1043
d6be29b8
MH
1044 if ((addr > (u8 *) jprobe_return) &&
1045 (addr < (u8 *) jprobe_return_end)) {
8533bbe9 1046 if (stack_addr(regs) != kcb->jprobe_saved_sp) {
29b6cd79 1047 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
d6be29b8
MH
1048 printk(KERN_ERR
1049 "current sp %p does not match saved sp %p\n",
8533bbe9 1050 stack_addr(regs), kcb->jprobe_saved_sp);
d6be29b8 1051 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1da177e4 1052 show_registers(saved_regs);
d6be29b8 1053 printk(KERN_ERR "Current registers\n");
1da177e4
LT
1054 show_registers(regs);
1055 BUG();
1056 }
e7a510f9 1057 *regs = kcb->jprobe_saved_regs;
8533bbe9
MH
1058 memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
1059 kcb->jprobes_stack,
1060 MIN_STACK_SIZE(kcb->jprobe_saved_sp));
d217d545 1061 preempt_enable_no_resched();
1da177e4
LT
1062 return 1;
1063 }
1064 return 0;
1065}
ba8af12f 1066
6772926b 1067int __init arch_init_kprobes(void)
ba8af12f 1068{
da07ab03 1069 return 0;
ba8af12f 1070}
bf8f6e5b
AM
1071
1072int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1073{
bf8f6e5b
AM
1074 return 0;
1075}