atomic: use <linux/atomic.h>
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / irqinit.c
CommitLineData
77883860 1#include <linux/linkage.h>
1da177e4
LT
2#include <linux/errno.h>
3#include <linux/signal.h>
4#include <linux/sched.h>
5#include <linux/ioport.h>
6#include <linux/interrupt.h>
77883860 7#include <linux/timex.h>
1da177e4 8#include <linux/random.h>
47f16ca7 9#include <linux/kprobes.h>
1da177e4
LT
10#include <linux/init.h>
11#include <linux/kernel_stat.h>
12#include <linux/sysdev.h>
13#include <linux/bitops.h>
77883860 14#include <linux/acpi.h>
aa09e6cd
JSR
15#include <linux/io.h>
16#include <linux/delay.h>
1da177e4 17
60063497 18#include <linux/atomic.h>
1da177e4 19#include <asm/system.h>
1da177e4 20#include <asm/timer.h>
77883860 21#include <asm/hw_irq.h>
1da177e4 22#include <asm/pgtable.h>
1da177e4
LT
23#include <asm/desc.h>
24#include <asm/apic.h>
8e6dafd6 25#include <asm/setup.h>
1da177e4 26#include <asm/i8259.h>
aa09e6cd 27#include <asm/traps.h>
3879a6f3 28#include <asm/prom.h>
1da177e4 29
77883860
PE
30/*
31 * ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts:
32 * (these are usually mapped to vectors 0x30-0x3f)
33 */
34
35/*
36 * The IO-APIC gives us many more interrupt sources. Most of these
37 * are unused but an SMP system is supposed to have enough memory ...
38 * sometimes (mostly wrt. hw bugs) we get corrupted vectors all
39 * across the spectrum, so we really want to be prepared to get all
40 * of these. Plus, more powerful systems might have more than 64
41 * IO-APIC registers.
42 *
43 * (these are usually mapped into the 0x30-0xff vector range)
44 */
1da177e4 45
320fd996 46#ifdef CONFIG_X86_32
1da177e4
LT
47/*
48 * Note that on a 486, we don't want to do a SIGFPE on an irq13
49 * as the irq is unreliable, and exception 16 works correctly
50 * (ie as explained in the intel literature). On a 386, you
51 * can't use exception 16 due to bad IBM design, so we have to
52 * rely on the less exact irq13.
53 *
54 * Careful.. Not only is IRQ13 unreliable, but it is also
55 * leads to races. IBM designers who came up with it should
56 * be shot.
57 */
1da177e4 58
7d12e780 59static irqreturn_t math_error_irq(int cpl, void *dev_id)
1da177e4 60{
aa09e6cd 61 outb(0, 0xF0);
1da177e4
LT
62 if (ignore_fpu_irq || !boot_cpu_data.hard_math)
63 return IRQ_NONE;
9b6dba9e 64 math_error(get_irq_regs(), 0, 16);
1da177e4
LT
65 return IRQ_HANDLED;
66}
67
68/*
69 * New motherboards sometimes make IRQ 13 be a PCI interrupt,
70 * so allow interrupt sharing.
71 */
6a61f6a5
TG
72static struct irqaction fpu_irq = {
73 .handler = math_error_irq,
6a61f6a5 74 .name = "fpu",
9bbbff25 75 .flags = IRQF_NO_THREAD,
6a61f6a5 76};
1da177e4 77#endif
1da177e4 78
2ae111cd
CG
79/*
80 * IRQ2 is cascade interrupt to second interrupt controller
81 */
82static struct irqaction irq2 = {
83 .handler = no_action,
2ae111cd 84 .name = "cascade",
9bbbff25 85 .flags = IRQF_NO_THREAD,
2ae111cd
CG
86};
87
497c9a19 88DEFINE_PER_CPU(vector_irq_t, vector_irq) = {
97943390 89 [0 ... NR_VECTORS - 1] = -1,
497c9a19
YL
90};
91
b77b881f
YL
92int vector_used_by_percpu_irq(unsigned int vector)
93{
94 int cpu;
95
96 for_each_online_cpu(cpu) {
97 if (per_cpu(vector_irq, cpu)[vector] != -1)
98 return 1;
99 }
100
101 return 0;
102}
103
d9112f43 104void __init init_ISA_irqs(void)
1da177e4 105{
011d578f
TG
106 struct irq_chip *chip = legacy_pic->chip;
107 const char *name = chip->name;
1da177e4
LT
108 int i;
109
598c73d2 110#if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
7371d9fc
PE
111 init_bsp_APIC();
112#endif
b81bb373 113 legacy_pic->init(0);
1da177e4 114
011d578f 115 for (i = 0; i < legacy_pic->nr_legacy_irqs; i++)
2c778651 116 irq_set_chip_and_handler_name(i, chip, handle_level_irq, name);
7371d9fc 117}
1da177e4 118
54e2603f 119void __init init_IRQ(void)
66bcaf0b 120{
97943390
SS
121 int i;
122
bcc7c124
SAS
123 /*
124 * We probably need a better place for this, but it works for
125 * now ...
126 */
127 x86_add_irq_domains();
128
97943390
SS
129 /*
130 * On cpu 0, Assign IRQ0_VECTOR..IRQ15_VECTOR's to IRQ 0..15.
131 * If these IRQ's are handled by legacy interrupt-controllers like PIC,
132 * then this configuration will likely be static after the boot. If
133 * these IRQ's are handled by more mordern controllers like IO-APIC,
134 * then this vector space can be freed and re-used dynamically as the
135 * irq's migrate etc.
136 */
28c6a0ba 137 for (i = 0; i < legacy_pic->nr_legacy_irqs; i++)
97943390
SS
138 per_cpu(vector_irq, 0)[IRQ0_VECTOR + i] = i;
139
66bcaf0b
TG
140 x86_init.irqs.intr_init();
141}
2ae111cd 142
36e9e1ea
SS
143/*
144 * Setup the vector to irq mappings.
145 */
146void setup_vector_irq(int cpu)
147{
148#ifndef CONFIG_X86_IO_APIC
149 int irq;
150
151 /*
152 * On most of the platforms, legacy PIC delivers the interrupts on the
153 * boot cpu. But there are certain platforms where PIC interrupts are
154 * delivered to multiple cpu's. If the legacy IRQ is handled by the
155 * legacy PIC, for the new cpu that is coming online, setup the static
156 * legacy vector to irq mapping:
157 */
158 for (irq = 0; irq < legacy_pic->nr_legacy_irqs; irq++)
159 per_cpu(vector_irq, cpu)[IRQ0_VECTOR + irq] = irq;
160#endif
161
162 __setup_vector_irq(cpu);
163}
164
36290d87
PE
165static void __init smp_intr_init(void)
166{
b0096bb0
PE
167#ifdef CONFIG_SMP
168#if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
2ae111cd
CG
169 /*
170 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
171 * IPI, driven by wakeup.
172 */
173 alloc_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
174
02cf94c3 175 /* IPIs for invalidation */
3a09fb45
SL
176#define ALLOC_INVTLB_VEC(NR) \
177 alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+NR, \
178 invalidate_interrupt##NR)
179
180 switch (NUM_INVALIDATE_TLB_VECTORS) {
181 default:
182 ALLOC_INVTLB_VEC(31);
183 case 31:
184 ALLOC_INVTLB_VEC(30);
185 case 30:
186 ALLOC_INVTLB_VEC(29);
187 case 29:
188 ALLOC_INVTLB_VEC(28);
189 case 28:
190 ALLOC_INVTLB_VEC(27);
191 case 27:
192 ALLOC_INVTLB_VEC(26);
193 case 26:
194 ALLOC_INVTLB_VEC(25);
195 case 25:
196 ALLOC_INVTLB_VEC(24);
197 case 24:
198 ALLOC_INVTLB_VEC(23);
199 case 23:
200 ALLOC_INVTLB_VEC(22);
201 case 22:
202 ALLOC_INVTLB_VEC(21);
203 case 21:
204 ALLOC_INVTLB_VEC(20);
205 case 20:
206 ALLOC_INVTLB_VEC(19);
207 case 19:
208 ALLOC_INVTLB_VEC(18);
209 case 18:
210 ALLOC_INVTLB_VEC(17);
211 case 17:
212 ALLOC_INVTLB_VEC(16);
213 case 16:
214 ALLOC_INVTLB_VEC(15);
215 case 15:
216 ALLOC_INVTLB_VEC(14);
217 case 14:
218 ALLOC_INVTLB_VEC(13);
219 case 13:
220 ALLOC_INVTLB_VEC(12);
221 case 12:
222 ALLOC_INVTLB_VEC(11);
223 case 11:
224 ALLOC_INVTLB_VEC(10);
225 case 10:
226 ALLOC_INVTLB_VEC(9);
227 case 9:
228 ALLOC_INVTLB_VEC(8);
229 case 8:
230 ALLOC_INVTLB_VEC(7);
231 case 7:
232 ALLOC_INVTLB_VEC(6);
233 case 6:
234 ALLOC_INVTLB_VEC(5);
235 case 5:
236 ALLOC_INVTLB_VEC(4);
237 case 4:
238 ALLOC_INVTLB_VEC(3);
239 case 3:
240 ALLOC_INVTLB_VEC(2);
241 case 2:
242 ALLOC_INVTLB_VEC(1);
243 case 1:
244 ALLOC_INVTLB_VEC(0);
245 break;
246 }
2ae111cd
CG
247
248 /* IPI for generic function call */
249 alloc_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
250
b0096bb0 251 /* IPI for generic single function call */
b77b881f 252 alloc_intr_gate(CALL_FUNCTION_SINGLE_VECTOR,
b0096bb0 253 call_function_single_interrupt);
497c9a19
YL
254
255 /* Low priority IPI to cleanup after moving an irq */
256 set_intr_gate(IRQ_MOVE_CLEANUP_VECTOR, irq_move_cleanup_interrupt);
b77b881f 257 set_bit(IRQ_MOVE_CLEANUP_VECTOR, used_vectors);
4ef702c1
AK
258
259 /* IPI used for rebooting/stopping */
260 alloc_intr_gate(REBOOT_VECTOR, reboot_interrupt);
2ae111cd 261#endif
b0096bb0 262#endif /* CONFIG_SMP */
36290d87
PE
263}
264
22813c45 265static void __init apic_intr_init(void)
1da177e4 266{
36290d87 267 smp_intr_init();
2ae111cd 268
48b1fddb 269#ifdef CONFIG_X86_THERMAL_VECTOR
ab19c25a 270 alloc_intr_gate(THERMAL_APIC_VECTOR, thermal_interrupt);
48b1fddb 271#endif
6effa8f6 272#ifdef CONFIG_X86_MCE_THRESHOLD
ab19c25a
PE
273 alloc_intr_gate(THRESHOLD_APIC_VECTOR, threshold_interrupt);
274#endif
275
276#if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
2ae111cd
CG
277 /* self generated IPI for local APIC timer */
278 alloc_intr_gate(LOCAL_TIMER_VECTOR, apic_timer_interrupt);
279
4a4de9c7
DS
280 /* IPI for X86 platform specific use */
281 alloc_intr_gate(X86_PLATFORM_IPI_VECTOR, x86_platform_ipi);
acaabe79 282
2ae111cd
CG
283 /* IPI vectors for APIC spurious and error interrupts */
284 alloc_intr_gate(SPURIOUS_APIC_VECTOR, spurious_interrupt);
285 alloc_intr_gate(ERROR_APIC_VECTOR, error_interrupt);
2ae111cd 286
e360adbe
PZ
287 /* IRQ work interrupts: */
288# ifdef CONFIG_IRQ_WORK
289 alloc_intr_gate(IRQ_WORK_VECTOR, irq_work_interrupt);
47f16ca7
IM
290# endif
291
2ae111cd 292#endif
22813c45 293}
2ae111cd 294
22813c45
PE
295void __init native_init_IRQ(void)
296{
297 int i;
298
299 /* Execute any quirks before the call gates are initialised: */
d9112f43 300 x86_init.irqs.pre_vector_init();
22813c45 301
77857dc0
YL
302 apic_intr_init();
303
22813c45
PE
304 /*
305 * Cover the whole vector space, no vector can escape
306 * us. (some of these will be overridden and become
307 * 'special' SMP interrupts)
308 */
d3496c85 309 for (i = FIRST_EXTERNAL_VECTOR; i < NR_VECTORS; i++) {
77857dc0
YL
310 /* IA32_SYSCALL_VECTOR could be used in trap_init already. */
311 if (!test_bit(i, used_vectors))
320fd996 312 set_intr_gate(i, interrupt[i-FIRST_EXTERNAL_VECTOR]);
22813c45 313 }
7856f6cc 314
3879a6f3 315 if (!acpi_ioapic && !of_ioapic)
2ae111cd
CG
316 setup_irq(2, &irq2);
317
320fd996 318#ifdef CONFIG_X86_32
1da177e4
LT
319 /*
320 * External FPU? Set up irq13 if so, for
321 * original braindamaged IBM FERR coupling.
322 */
323 if (boot_cpu_data.hard_math && !cpu_has_fpu)
324 setup_irq(FPU_IRQ, &fpu_irq);
325
326 irq_ctx_init(smp_processor_id());
320fd996 327#endif
1da177e4 328}