Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / tile / kernel / intvec_32.S
CommitLineData
867e359b
CM
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * Linux interrupt vectors.
15 */
16
17#include <linux/linkage.h>
18#include <linux/errno.h>
19#include <linux/init.h>
9f9c0382 20#include <linux/unistd.h>
867e359b
CM
21#include <asm/ptrace.h>
22#include <asm/thread_info.h>
867e359b 23#include <asm/irqflags.h>
d52104b2 24#include <asm/atomic_32.h>
867e359b
CM
25#include <asm/asm-offsets.h>
26#include <hv/hypervisor.h>
27#include <arch/abi.h>
28#include <arch/interrupts.h>
29#include <arch/spr_def.h>
30
31#ifdef CONFIG_PREEMPT
32# error "No support for kernel preemption currently"
33#endif
34
867e359b
CM
35#define PTREGS_PTR(reg, ptreg) addli reg, sp, C_ABI_SAVE_AREA_SIZE + (ptreg)
36
37#define PTREGS_OFFSET_SYSCALL PTREGS_OFFSET_REG(TREG_SYSCALL_NR)
38
39#if !CHIP_HAS_WH64()
40 /* By making this an empty macro, we can use wh64 in the code. */
41 .macro wh64 reg
42 .endm
43#endif
44
45 .macro push_reg reg, ptr=sp, delta=-4
46 {
47 sw \ptr, \reg
48 addli \ptr, \ptr, \delta
49 }
50 .endm
51
52 .macro pop_reg reg, ptr=sp, delta=4
53 {
54 lw \reg, \ptr
55 addli \ptr, \ptr, \delta
56 }
57 .endm
58
59 .macro pop_reg_zero reg, zreg, ptr=sp, delta=4
60 {
61 move \zreg, zero
62 lw \reg, \ptr
63 addi \ptr, \ptr, \delta
64 }
65 .endm
66
67 .macro push_extra_callee_saves reg
68 PTREGS_PTR(\reg, PTREGS_OFFSET_REG(51))
69 push_reg r51, \reg
70 push_reg r50, \reg
71 push_reg r49, \reg
72 push_reg r48, \reg
73 push_reg r47, \reg
74 push_reg r46, \reg
75 push_reg r45, \reg
76 push_reg r44, \reg
77 push_reg r43, \reg
78 push_reg r42, \reg
79 push_reg r41, \reg
80 push_reg r40, \reg
81 push_reg r39, \reg
82 push_reg r38, \reg
83 push_reg r37, \reg
84 push_reg r36, \reg
85 push_reg r35, \reg
86 push_reg r34, \reg, PTREGS_OFFSET_BASE - PTREGS_OFFSET_REG(34)
87 .endm
88
89 .macro panic str
90 .pushsection .rodata, "a"
911:
92 .asciz "\str"
93 .popsection
94 {
95 moveli r0, lo16(1b)
96 }
97 {
98 auli r0, r0, ha16(1b)
99 jal panic
100 }
101 .endm
102
103#ifdef __COLLECT_LINKER_FEEDBACK__
104 .pushsection .text.intvec_feedback,"ax"
105intvec_feedback:
106 .popsection
107#endif
108
109 /*
110 * Default interrupt handler.
111 *
112 * vecnum is where we'll put this code.
113 * c_routine is the C routine we'll call.
114 *
115 * The C routine is passed two arguments:
116 * - A pointer to the pt_regs state.
117 * - The interrupt vector number.
118 *
119 * The "processing" argument specifies the code for processing
120 * the interrupt. Defaults to "handle_interrupt".
121 */
122 .macro int_hand vecnum, vecname, c_routine, processing=handle_interrupt
123 .org (\vecnum << 8)
124intvec_\vecname:
125 .ifc \vecnum, INT_SWINT_1
126 blz TREG_SYSCALL_NR_NAME, sys_cmpxchg
127 .endif
128
129 /* Temporarily save a register so we have somewhere to work. */
130
a78c942d
CM
131 mtspr SPR_SYSTEM_SAVE_K_1, r0
132 mfspr r0, SPR_EX_CONTEXT_K_1
867e359b
CM
133
134 /* The cmpxchg code clears sp to force us to reset it here on fault. */
135 {
136 bz sp, 2f
137 andi r0, r0, SPR_EX_CONTEXT_1_1__PL_MASK /* mask off ICS */
138 }
139
140 .ifc \vecnum, INT_DOUBLE_FAULT
141 /*
142 * For double-faults from user-space, fall through to the normal
143 * register save and stack setup path. Otherwise, it's the
144 * hypervisor giving us one last chance to dump diagnostics, and we
145 * branch to the kernel_double_fault routine to do so.
146 */
147 bz r0, 1f
148 j _kernel_double_fault
1491:
150 .else
151 /*
152 * If we're coming from user-space, then set sp to the top of
153 * the kernel stack. Otherwise, assume sp is already valid.
154 */
155 {
156 bnz r0, 0f
157 move r0, sp
158 }
159 .endif
160
161 .ifc \c_routine, do_page_fault
162 /*
163 * The page_fault handler may be downcalled directly by the
164 * hypervisor even when Linux is running and has ICS set.
165 *
a78c942d 166 * In this case the contents of EX_CONTEXT_K_1 reflect the
867e359b
CM
167 * previous fault and can't be relied on to choose whether or
168 * not to reinitialize the stack pointer. So we add a test
a78c942d 169 * to see whether SYSTEM_SAVE_K_2 has the high bit set,
867e359b
CM
170 * and if so we don't reinitialize sp, since we must be coming
171 * from Linux. (In fact the precise case is !(val & ~1),
172 * but any Linux PC has to have the high bit set.)
173 *
a78c942d 174 * Note that the hypervisor *always* sets SYSTEM_SAVE_K_2 for
867e359b
CM
175 * any path that turns into a downcall to one of our TLB handlers.
176 */
a78c942d 177 mfspr r0, SPR_SYSTEM_SAVE_K_2
867e359b
CM
178 {
179 blz r0, 0f /* high bit in S_S_1_2 is for a PC to use */
180 move r0, sp
181 }
182 .endif
183
1842:
185 /*
a78c942d 186 * SYSTEM_SAVE_K_0 holds the cpu number in the low bits, and
867e359b
CM
187 * the current stack top in the higher bits. So we recover
188 * our stack top by just masking off the low bits, then
189 * point sp at the top aligned address on the actual stack page.
190 */
a78c942d 191 mfspr r0, SPR_SYSTEM_SAVE_K_0
867e359b
CM
192 mm r0, r0, zero, LOG2_THREAD_SIZE, 31
193
1940:
195 /*
196 * Align the stack mod 64 so we can properly predict what
197 * cache lines we need to write-hint to reduce memory fetch
198 * latency as we enter the kernel. The layout of memory is
199 * as follows, with cache line 0 at the lowest VA, and cache
200 * line 4 just below the r0 value this "andi" computes.
201 * Note that we never write to cache line 4, and we skip
202 * cache line 1 for syscalls.
203 *
204 * cache line 4: ptregs padding (two words)
205 * cache line 3: r46...lr, pc, ex1, faultnum, orig_r0, flags, pad
206 * cache line 2: r30...r45
207 * cache line 1: r14...r29
208 * cache line 0: 2 x frame, r0..r13
209 */
210 andi r0, r0, -64
211
212 /*
213 * Push the first four registers on the stack, so that we can set
214 * them to vector-unique values before we jump to the common code.
215 *
216 * Registers are pushed on the stack as a struct pt_regs,
217 * with the sp initially just above the struct, and when we're
218 * done, sp points to the base of the struct, minus
219 * C_ABI_SAVE_AREA_SIZE, so we can directly jal to C code.
220 *
221 * This routine saves just the first four registers, plus the
222 * stack context so we can do proper backtracing right away,
223 * and defers to handle_interrupt to save the rest.
224 * The backtracer needs pc, ex1, lr, sp, r52, and faultnum.
225 */
226 addli r0, r0, PTREGS_OFFSET_LR - (PTREGS_SIZE + KSTK_PTREGS_GAP)
227 wh64 r0 /* cache line 3 */
228 {
229 sw r0, lr
230 addli r0, r0, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR
231 }
232 {
233 sw r0, sp
234 addli sp, r0, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_SP
235 }
236 {
237 sw sp, r52
238 addli sp, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(52)
239 }
240 wh64 sp /* cache line 0 */
241 {
242 sw sp, r1
243 addli sp, sp, PTREGS_OFFSET_REG(2) - PTREGS_OFFSET_REG(1)
244 }
245 {
246 sw sp, r2
247 addli sp, sp, PTREGS_OFFSET_REG(3) - PTREGS_OFFSET_REG(2)
248 }
249 {
250 sw sp, r3
251 addli sp, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_REG(3)
252 }
a78c942d 253 mfspr r0, SPR_EX_CONTEXT_K_0
867e359b
CM
254 .ifc \processing,handle_syscall
255 /*
256 * Bump the saved PC by one bundle so that when we return, we won't
257 * execute the same swint instruction again. We need to do this while
258 * we're in the critical section.
259 */
260 addi r0, r0, 8
261 .endif
262 {
263 sw sp, r0
264 addli sp, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_PC
265 }
a78c942d 266 mfspr r0, SPR_EX_CONTEXT_K_1
867e359b
CM
267 {
268 sw sp, r0
269 addi sp, sp, PTREGS_OFFSET_FAULTNUM - PTREGS_OFFSET_EX1
270 /*
271 * Use r0 for syscalls so it's a temporary; use r1 for interrupts
272 * so that it gets passed through unchanged to the handler routine.
273 * Note that the .if conditional confusingly spans bundles.
274 */
275 .ifc \processing,handle_syscall
276 movei r0, \vecnum
277 }
278 {
279 sw sp, r0
280 .else
281 movei r1, \vecnum
282 }
283 {
284 sw sp, r1
285 .endif
286 addli sp, sp, PTREGS_OFFSET_REG(0) - PTREGS_OFFSET_FAULTNUM
287 }
a78c942d 288 mfspr r0, SPR_SYSTEM_SAVE_K_1 /* Original r0 */
867e359b
CM
289 {
290 sw sp, r0
291 addi sp, sp, -PTREGS_OFFSET_REG(0) - 4
292 }
293 {
294 sw sp, zero /* write zero into "Next SP" frame pointer */
295 addi sp, sp, -4 /* leave SP pointing at bottom of frame */
296 }
297 .ifc \processing,handle_syscall
298 j handle_syscall
299 .else
300 /*
301 * Capture per-interrupt SPR context to registers.
302 * We overload the meaning of r3 on this path such that if its bit 31
303 * is set, we have to mask all interrupts including NMIs before
304 * clearing the interrupt critical section bit.
305 * See discussion below at "finish_interrupt_save".
306 */
307 .ifc \c_routine, do_page_fault
a78c942d
CM
308 mfspr r2, SPR_SYSTEM_SAVE_K_3 /* address of page fault */
309 mfspr r3, SPR_SYSTEM_SAVE_K_2 /* info about page fault */
867e359b
CM
310 .else
311 .ifc \vecnum, INT_DOUBLE_FAULT
312 {
a78c942d 313 mfspr r2, SPR_SYSTEM_SAVE_K_2 /* double fault info from HV */
867e359b
CM
314 movei r3, 0
315 }
316 .else
317 .ifc \c_routine, do_trap
318 {
319 mfspr r2, GPV_REASON
320 movei r3, 0
321 }
322 .else
323 .ifc \c_routine, op_handle_perf_interrupt
324 {
325 mfspr r2, PERF_COUNT_STS
326 movei r3, -1 /* not used, but set for consistency */
327 }
328 .else
329#if CHIP_HAS_AUX_PERF_COUNTERS()
330 .ifc \c_routine, op_handle_aux_perf_interrupt
331 {
332 mfspr r2, AUX_PERF_COUNT_STS
333 movei r3, -1 /* not used, but set for consistency */
334 }
335 .else
336#endif
337 movei r3, 0
338#if CHIP_HAS_AUX_PERF_COUNTERS()
339 .endif
340#endif
341 .endif
342 .endif
343 .endif
344 .endif
345 /* Put function pointer in r0 */
346 moveli r0, lo16(\c_routine)
347 {
348 auli r0, r0, ha16(\c_routine)
349 j \processing
350 }
351 .endif
352 ENDPROC(intvec_\vecname)
353
354#ifdef __COLLECT_LINKER_FEEDBACK__
355 .pushsection .text.intvec_feedback,"ax"
356 .org (\vecnum << 5)
357 FEEDBACK_ENTER_EXPLICIT(intvec_\vecname, .intrpt1, 1 << 8)
358 jrp lr
359 .popsection
360#endif
361
362 .endm
363
364
365 /*
366 * Save the rest of the registers that we didn't save in the actual
367 * vector itself. We can't use r0-r10 inclusive here.
368 */
369 .macro finish_interrupt_save, function
370
371 /* If it's a syscall, save a proper orig_r0, otherwise just zero. */
372 PTREGS_PTR(r52, PTREGS_OFFSET_ORIG_R0)
373 {
374 .ifc \function,handle_syscall
375 sw r52, r0
376 .else
377 sw r52, zero
378 .endif
379 PTREGS_PTR(r52, PTREGS_OFFSET_TP)
380 }
381
382 /*
383 * For ordinary syscalls, we save neither caller- nor callee-
384 * save registers, since the syscall invoker doesn't expect the
385 * caller-saves to be saved, and the called kernel functions will
386 * take care of saving the callee-saves for us.
387 *
388 * For interrupts we save just the caller-save registers. Saving
389 * them is required (since the "caller" can't save them). Again,
390 * the called kernel functions will restore the callee-save
391 * registers for us appropriately.
392 *
393 * On return, we normally restore nothing special for syscalls,
394 * and just the caller-save registers for interrupts.
395 *
396 * However, there are some important caveats to all this:
397 *
398 * - We always save a few callee-save registers to give us
399 * some scratchpad registers to carry across function calls.
400 *
401 * - fork/vfork/etc require us to save all the callee-save
402 * registers, which we do in PTREGS_SYSCALL_ALL_REGS, below.
403 *
404 * - We always save r0..r5 and r10 for syscalls, since we need
405 * to reload them a bit later for the actual kernel call, and
406 * since we might need them for -ERESTARTNOINTR, etc.
407 *
408 * - Before invoking a signal handler, we save the unsaved
409 * callee-save registers so they are visible to the
410 * signal handler or any ptracer.
411 *
412 * - If the unsaved callee-save registers are modified, we set
413 * a bit in pt_regs so we know to reload them from pt_regs
414 * and not just rely on the kernel function unwinding.
415 * (Done for ptrace register writes and SA_SIGINFO handler.)
416 */
417 {
418 sw r52, tp
419 PTREGS_PTR(r52, PTREGS_OFFSET_REG(33))
420 }
421 wh64 r52 /* cache line 2 */
422 push_reg r33, r52
423 push_reg r32, r52
424 push_reg r31, r52
425 .ifc \function,handle_syscall
426 push_reg r30, r52, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(30)
427 push_reg TREG_SYSCALL_NR_NAME, r52, \
428 PTREGS_OFFSET_REG(5) - PTREGS_OFFSET_SYSCALL
429 .else
430
431 push_reg r30, r52, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(30)
432 wh64 r52 /* cache line 1 */
433 push_reg r29, r52
434 push_reg r28, r52
435 push_reg r27, r52
436 push_reg r26, r52
437 push_reg r25, r52
438 push_reg r24, r52
439 push_reg r23, r52
440 push_reg r22, r52
441 push_reg r21, r52
442 push_reg r20, r52
443 push_reg r19, r52
444 push_reg r18, r52
445 push_reg r17, r52
446 push_reg r16, r52
447 push_reg r15, r52
448 push_reg r14, r52
449 push_reg r13, r52
450 push_reg r12, r52
451 push_reg r11, r52
452 push_reg r10, r52
453 push_reg r9, r52
454 push_reg r8, r52
455 push_reg r7, r52
456 push_reg r6, r52
457
458 .endif
459
460 push_reg r5, r52
461 sw r52, r4
462
463 /* Load tp with our per-cpu offset. */
464#ifdef CONFIG_SMP
465 {
a78c942d 466 mfspr r20, SPR_SYSTEM_SAVE_K_0
867e359b
CM
467 moveli r21, lo16(__per_cpu_offset)
468 }
469 {
470 auli r21, r21, ha16(__per_cpu_offset)
471 mm r20, r20, zero, 0, LOG2_THREAD_SIZE-1
472 }
473 s2a r20, r20, r21
474 lw tp, r20
475#else
476 move tp, zero
477#endif
478
479 /*
480 * If we will be returning to the kernel, we will need to
481 * reset the interrupt masks to the state they had before.
482 * Set DISABLE_IRQ in flags iff we came from PL1 with irqs disabled.
483 * We load flags in r32 here so we can jump to .Lrestore_regs
484 * directly after do_page_fault_ics() if necessary.
485 */
a78c942d 486 mfspr r32, SPR_EX_CONTEXT_K_1
867e359b
CM
487 {
488 andi r32, r32, SPR_EX_CONTEXT_1_1__PL_MASK /* mask off ICS */
489 PTREGS_PTR(r21, PTREGS_OFFSET_FLAGS)
490 }
491 bzt r32, 1f /* zero if from user space */
492 IRQS_DISABLED(r32) /* zero if irqs enabled */
493#if PT_FLAGS_DISABLE_IRQ != 1
494# error Value of IRQS_DISABLED used to set PT_FLAGS_DISABLE_IRQ; fix
495#endif
4961:
497 .ifnc \function,handle_syscall
498 /* Record the fact that we saved the caller-save registers above. */
499 ori r32, r32, PT_FLAGS_CALLER_SAVES
500 .endif
501 sw r21, r32
502
503#ifdef __COLLECT_LINKER_FEEDBACK__
504 /*
505 * Notify the feedback routines that we were in the
506 * appropriate fixed interrupt vector area. Note that we
507 * still have ICS set at this point, so we can't invoke any
508 * atomic operations or we will panic. The feedback
509 * routines internally preserve r0..r10 and r30 up.
510 */
511 .ifnc \function,handle_syscall
512 shli r20, r1, 5
513 .else
514 moveli r20, INT_SWINT_1 << 5
515 .endif
516 addli r20, r20, lo16(intvec_feedback)
517 auli r20, r20, ha16(intvec_feedback)
518 jalr r20
519
520 /* And now notify the feedback routines that we are here. */
521 FEEDBACK_ENTER(\function)
522#endif
523
524 /*
525 * we've captured enough state to the stack (including in
526 * particular our EX_CONTEXT state) that we can now release
527 * the interrupt critical section and replace it with our
528 * standard "interrupts disabled" mask value. This allows
529 * synchronous interrupts (and profile interrupts) to punch
530 * through from this point onwards.
531 *
532 * If bit 31 of r3 is set during a non-NMI interrupt, we know we
533 * are on the path where the hypervisor has punched through our
534 * ICS with a page fault, so we call out to do_page_fault_ics()
535 * to figure out what to do with it. If the fault was in
536 * an atomic op, we unlock the atomic lock, adjust the
537 * saved register state a little, and return "zero" in r4,
538 * falling through into the normal page-fault interrupt code.
539 * If the fault was in a kernel-space atomic operation, then
540 * do_page_fault_ics() resolves it itself, returns "one" in r4,
541 * and as a result goes directly to restoring registers and iret,
542 * without trying to adjust the interrupt masks at all.
543 * The do_page_fault_ics() API involves passing and returning
544 * a five-word struct (in registers) to avoid writing the
545 * save and restore code here.
546 */
547 .ifc \function,handle_nmi
548 IRQ_DISABLE_ALL(r20)
549 .else
550 .ifnc \function,handle_syscall
551 bgezt r3, 1f
552 {
553 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
554 jal do_page_fault_ics
555 }
556 FEEDBACK_REENTER(\function)
557 bzt r4, 1f
558 j .Lrestore_regs
5591:
560 .endif
561 IRQ_DISABLE(r20, r21)
562 .endif
563 mtspr INTERRUPT_CRITICAL_SECTION, zero
564
565#if CHIP_HAS_WH64()
566 /*
567 * Prepare the first 256 stack bytes to be rapidly accessible
568 * without having to fetch the background data. We don't really
569 * know how far to write-hint, but kernel stacks generally
570 * aren't that big, and write-hinting here does take some time.
571 */
572 addi r52, sp, -64
573 {
574 wh64 r52
575 addi r52, r52, -64
576 }
577 {
578 wh64 r52
579 addi r52, r52, -64
580 }
581 {
582 wh64 r52
583 addi r52, r52, -64
584 }
585 wh64 r52
586#endif
587
588#ifdef CONFIG_TRACE_IRQFLAGS
589 .ifnc \function,handle_nmi
590 /*
591 * We finally have enough state set up to notify the irq
592 * tracing code that irqs were disabled on entry to the handler.
593 * The TRACE_IRQS_OFF call clobbers registers r0-r29.
594 * For syscalls, we already have the register state saved away
595 * on the stack, so we don't bother to do any register saves here,
596 * and later we pop the registers back off the kernel stack.
597 * For interrupt handlers, save r0-r3 in callee-saved registers.
598 */
599 .ifnc \function,handle_syscall
600 { move r30, r0; move r31, r1 }
601 { move r32, r2; move r33, r3 }
602 .endif
603 TRACE_IRQS_OFF
604 .ifnc \function,handle_syscall
605 { move r0, r30; move r1, r31 }
606 { move r2, r32; move r3, r33 }
607 .endif
608 .endif
609#endif
610
611 .endm
612
613 .macro check_single_stepping, kind, not_single_stepping
614 /*
615 * Check for single stepping in user-level priv
616 * kind can be "normal", "ill", or "syscall"
617 * At end, if fall-thru
618 * r29: thread_info->step_state
619 * r28: &pt_regs->pc
620 * r27: pt_regs->pc
621 * r26: thread_info->step_state->buffer
622 */
623
624 /* Check for single stepping */
625 GET_THREAD_INFO(r29)
626 {
627 /* Get pointer to field holding step state */
628 addi r29, r29, THREAD_INFO_STEP_STATE_OFFSET
629
630 /* Get pointer to EX1 in register state */
631 PTREGS_PTR(r27, PTREGS_OFFSET_EX1)
632 }
633 {
634 /* Get pointer to field holding PC */
635 PTREGS_PTR(r28, PTREGS_OFFSET_PC)
636
637 /* Load the pointer to the step state */
638 lw r29, r29
639 }
640 /* Load EX1 */
641 lw r27, r27
642 {
643 /* Points to flags */
644 addi r23, r29, SINGLESTEP_STATE_FLAGS_OFFSET
645
646 /* No single stepping if there is no step state structure */
647 bzt r29, \not_single_stepping
648 }
649 {
650 /* mask off ICS and any other high bits */
651 andi r27, r27, SPR_EX_CONTEXT_1_1__PL_MASK
652
653 /* Load pointer to single step instruction buffer */
654 lw r26, r29
655 }
656 /* Check priv state */
657 bnz r27, \not_single_stepping
658
659 /* Get flags */
660 lw r22, r23
661 {
662 /* Branch if single-step mode not enabled */
663 bbnst r22, \not_single_stepping
664
665 /* Clear enabled flag */
666 andi r22, r22, ~SINGLESTEP_STATE_MASK_IS_ENABLED
667 }
668 .ifc \kind,normal
669 {
670 /* Load PC */
671 lw r27, r28
672
673 /* Point to the entry containing the original PC */
674 addi r24, r29, SINGLESTEP_STATE_ORIG_PC_OFFSET
675 }
676 {
677 /* Disable single stepping flag */
678 sw r23, r22
679 }
680 {
681 /* Get the original pc */
682 lw r24, r24
683
684 /* See if the PC is at the start of the single step buffer */
685 seq r25, r26, r27
686 }
687 /*
688 * NOTE: it is really expected that the PC be in the single step buffer
689 * at this point
690 */
691 bzt r25, \not_single_stepping
692
693 /* Restore the original PC */
694 sw r28, r24
695 .else
696 .ifc \kind,syscall
697 {
698 /* Load PC */
699 lw r27, r28
700
701 /* Point to the entry containing the next PC */
702 addi r24, r29, SINGLESTEP_STATE_NEXT_PC_OFFSET
703 }
704 {
705 /* Increment the stopped PC by the bundle size */
706 addi r26, r26, 8
707
708 /* Disable single stepping flag */
709 sw r23, r22
710 }
711 {
712 /* Get the next pc */
713 lw r24, r24
714
715 /*
716 * See if the PC is one bundle past the start of the
717 * single step buffer
718 */
719 seq r25, r26, r27
720 }
721 {
722 /*
723 * NOTE: it is really expected that the PC be in the
724 * single step buffer at this point
725 */
726 bzt r25, \not_single_stepping
727 }
728 /* Set to the next PC */
729 sw r28, r24
730 .else
731 {
732 /* Point to 3rd bundle in buffer */
733 addi r25, r26, 16
734
735 /* Load PC */
736 lw r27, r28
737 }
738 {
739 /* Disable single stepping flag */
740 sw r23, r22
741
742 /* See if the PC is in the single step buffer */
743 slte_u r24, r26, r27
744 }
745 {
746 slte_u r25, r27, r25
747
748 /*
749 * NOTE: it is really expected that the PC be in the
750 * single step buffer at this point
751 */
752 bzt r24, \not_single_stepping
753 }
754 bzt r25, \not_single_stepping
755 .endif
756 .endif
757 .endm
758
759 /*
760 * Redispatch a downcall.
761 */
762 .macro dc_dispatch vecnum, vecname
763 .org (\vecnum << 8)
764intvec_\vecname:
765 j hv_downcall_dispatch
766 ENDPROC(intvec_\vecname)
767 .endm
768
769 /*
770 * Common code for most interrupts. The C function we're eventually
771 * going to is in r0, and the faultnum is in r1; the original
772 * values for those registers are on the stack.
773 */
774 .pushsection .text.handle_interrupt,"ax"
775handle_interrupt:
776 finish_interrupt_save handle_interrupt
777
778 /*
779 * Check for if we are single stepping in user level. If so, then
780 * we need to restore the PC.
781 */
782
783 check_single_stepping normal, .Ldispatch_interrupt
784.Ldispatch_interrupt:
785
786 /* Jump to the C routine; it should enable irqs as soon as possible. */
787 {
788 jalr r0
789 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
790 }
791 FEEDBACK_REENTER(handle_interrupt)
792 {
793 movei r30, 0 /* not an NMI */
794 j interrupt_return
795 }
796 STD_ENDPROC(handle_interrupt)
797
798/*
799 * This routine takes a boolean in r30 indicating if this is an NMI.
800 * If so, we also expect a boolean in r31 indicating whether to
801 * re-enable the oprofile interrupts.
e1d5c019
CM
802 *
803 * Note that .Lresume_userspace is jumped to directly in several
804 * places, and we need to make sure r30 is set correctly in those
805 * callers as well.
867e359b
CM
806 */
807STD_ENTRY(interrupt_return)
808 /* If we're resuming to kernel space, don't check thread flags. */
809 {
810 bnz r30, .Lrestore_all /* NMIs don't special-case user-space */
811 PTREGS_PTR(r29, PTREGS_OFFSET_EX1)
812 }
813 lw r29, r29
814 andi r29, r29, SPR_EX_CONTEXT_1_1__PL_MASK /* mask off ICS */
815 {
816 bzt r29, .Lresume_userspace
817 PTREGS_PTR(r29, PTREGS_OFFSET_PC)
818 }
819
820 /* If we're resuming to _cpu_idle_nap, bump PC forward by 8. */
821 {
822 lw r28, r29
823 moveli r27, lo16(_cpu_idle_nap)
824 }
825 {
826 auli r27, r27, ha16(_cpu_idle_nap)
827 }
828 {
829 seq r27, r27, r28
830 }
831 {
832 bbns r27, .Lrestore_all
833 addi r28, r28, 8
834 }
835 sw r29, r28
836 j .Lrestore_all
837
838.Lresume_userspace:
839 FEEDBACK_REENTER(interrupt_return)
840
fc327e26
CM
841 /*
842 * Use r33 to hold whether we have already loaded the callee-saves
843 * into ptregs. We don't want to do it twice in this loop, since
844 * then we'd clobber whatever changes are made by ptrace, etc.
845 * Get base of stack in r32.
846 */
847 {
848 GET_THREAD_INFO(r32)
849 movei r33, 0
850 }
851
852.Lretry_work_pending:
867e359b
CM
853 /*
854 * Disable interrupts so as to make sure we don't
855 * miss an interrupt that sets any of the thread flags (like
856 * need_resched or sigpending) between sampling and the iret.
857 * Routines like schedule() or do_signal() may re-enable
858 * interrupts before returning.
859 */
860 IRQ_DISABLE(r20, r21)
861 TRACE_IRQS_OFF /* Note: clobbers registers r0-r29 */
862
867e359b
CM
863
864 /* Check to see if there is any work to do before returning to user. */
865 {
866 addi r29, r32, THREAD_INFO_FLAGS_OFFSET
313ce674 867 moveli r1, lo16(_TIF_ALLWORK_MASK)
867e359b
CM
868 }
869 {
870 lw r29, r29
313ce674 871 auli r1, r1, ha16(_TIF_ALLWORK_MASK)
867e359b 872 }
313ce674
CM
873 and r1, r29, r1
874 bzt r1, .Lrestore_all
875
876 /*
877 * Make sure we have all the registers saved for signal
fc327e26
CM
878 * handling, notify-resume, or single-step. Call out to C
879 * code to figure out exactly what we need to do for each flag bit,
880 * then if necessary, reload the flags and recheck.
313ce674 881 */
313ce674
CM
882 {
883 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
fc327e26 884 bnz r33, 1f
313ce674 885 }
fc327e26
CM
886 push_extra_callee_saves r0
887 movei r33, 1
8881: jal do_work_pending
889 bnz r0, .Lretry_work_pending
867e359b
CM
890
891 /*
892 * In the NMI case we
893 * omit the call to single_process_check_nohz, which normally checks
894 * to see if we should start or stop the scheduler tick, because
895 * we can't call arbitrary Linux code from an NMI context.
896 * We always call the homecache TLB deferral code to re-trigger
897 * the deferral mechanism.
898 *
899 * The other chunk of responsibility this code has is to reset the
900 * interrupt masks appropriately to reset irqs and NMIs. We have
901 * to call TRACE_IRQS_OFF and TRACE_IRQS_ON to support all the
902 * lockdep-type stuff, but we can't set ICS until afterwards, since
903 * ICS can only be used in very tight chunks of code to avoid
904 * tripping over various assertions that it is off.
905 *
906 * (There is what looks like a window of vulnerability here since
907 * we might take a profile interrupt between the two SPR writes
908 * that set the mask, but since we write the low SPR word first,
909 * and our interrupt entry code checks the low SPR word, any
910 * profile interrupt will actually disable interrupts in both SPRs
911 * before returning, which is OK.)
912 */
913.Lrestore_all:
914 PTREGS_PTR(r0, PTREGS_OFFSET_EX1)
915 {
916 lw r0, r0
917 PTREGS_PTR(r32, PTREGS_OFFSET_FLAGS)
918 }
919 {
920 andi r0, r0, SPR_EX_CONTEXT_1_1__PL_MASK
921 lw r32, r32
922 }
923 bnz r0, 1f
924 j 2f
925#if PT_FLAGS_DISABLE_IRQ != 1
926# error Assuming PT_FLAGS_DISABLE_IRQ == 1 so we can use bbnst below
927#endif
9281: bbnst r32, 2f
929 IRQ_DISABLE(r20,r21)
930 TRACE_IRQS_OFF
931 movei r0, 1
932 mtspr INTERRUPT_CRITICAL_SECTION, r0
933 bzt r30, .Lrestore_regs
934 j 3f
9352: TRACE_IRQS_ON
936 movei r0, 1
937 mtspr INTERRUPT_CRITICAL_SECTION, r0
938 IRQ_ENABLE(r20, r21)
939 bzt r30, .Lrestore_regs
9403:
941
942
943 /*
944 * We now commit to returning from this interrupt, since we will be
945 * doing things like setting EX_CONTEXT SPRs and unwinding the stack
946 * frame. No calls should be made to any other code after this point.
947 * This code should only be entered with ICS set.
948 * r32 must still be set to ptregs.flags.
949 * We launch loads to each cache line separately first, so we can
950 * get some parallelism out of the memory subsystem.
951 * We start zeroing caller-saved registers throughout, since
952 * that will save some cycles if this turns out to be a syscall.
953 */
954.Lrestore_regs:
955 FEEDBACK_REENTER(interrupt_return) /* called from elsewhere */
956
957 /*
958 * Rotate so we have one high bit and one low bit to test.
959 * - low bit says whether to restore all the callee-saved registers,
960 * or just r30-r33, and r52 up.
961 * - high bit (i.e. sign bit) says whether to restore all the
962 * caller-saved registers, or just r0.
963 */
964#if PT_FLAGS_CALLER_SAVES != 2 || PT_FLAGS_RESTORE_REGS != 4
965# error Rotate trick does not work :-)
966#endif
967 {
968 rli r20, r32, 30
969 PTREGS_PTR(sp, PTREGS_OFFSET_REG(0))
970 }
971
972 /*
973 * Load cache lines 0, 2, and 3 in that order, then use
974 * the last loaded value, which makes it likely that the other
975 * cache lines have also loaded, at which point we should be
976 * able to safely read all the remaining words on those cache
977 * lines without waiting for the memory subsystem.
978 */
ba00376b 979 pop_reg_zero r0, r28, sp, PTREGS_OFFSET_REG(30) - PTREGS_OFFSET_REG(0)
867e359b
CM
980 pop_reg_zero r30, r2, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_REG(30)
981 pop_reg_zero r21, r3, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_PC
982 pop_reg_zero lr, r4, sp, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_EX1
983 {
a78c942d 984 mtspr SPR_EX_CONTEXT_K_0, r21
867e359b
CM
985 move r5, zero
986 }
987 {
a78c942d 988 mtspr SPR_EX_CONTEXT_K_1, lr
867e359b
CM
989 andi lr, lr, SPR_EX_CONTEXT_1_1__PL_MASK /* mask off ICS */
990 }
991
992 /* Restore callee-saveds that we actually use. */
993 pop_reg_zero r52, r6, sp, PTREGS_OFFSET_REG(31) - PTREGS_OFFSET_REG(52)
994 pop_reg_zero r31, r7
995 pop_reg_zero r32, r8
996 pop_reg_zero r33, r9, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(33)
997
998 /*
999 * If we modified other callee-saveds, restore them now.
1000 * This is rare, but could be via ptrace or signal handler.
1001 */
1002 {
1003 move r10, zero
1004 bbs r20, .Lrestore_callees
1005 }
1006.Lcontinue_restore_regs:
1007
1008 /* Check if we're returning from a syscall. */
1009 {
1010 move r11, zero
1011 blzt r20, 1f /* no, so go restore callee-save registers */
1012 }
1013
1014 /*
1015 * Check if we're returning to userspace.
1016 * Note that if we're not, we don't worry about zeroing everything.
1017 */
1018 {
1019 addli sp, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(29)
1020 bnz lr, .Lkernel_return
1021 }
1022
1023 /*
1024 * On return from syscall, we've restored r0 from pt_regs, but we
1025 * clear the remainder of the caller-saved registers. We could
1026 * restore the syscall arguments, but there's not much point,
1027 * and it ensures user programs aren't trying to use the
1028 * caller-saves if we clear them, as well as avoiding leaking
1029 * kernel pointers into userspace.
1030 */
1031 pop_reg_zero lr, r12, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR
1032 pop_reg_zero tp, r13, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP
1033 {
1034 lw sp, sp
1035 move r14, zero
1036 move r15, zero
1037 }
1038 { move r16, zero; move r17, zero }
1039 { move r18, zero; move r19, zero }
1040 { move r20, zero; move r21, zero }
1041 { move r22, zero; move r23, zero }
1042 { move r24, zero; move r25, zero }
1043 { move r26, zero; move r27, zero }
ba00376b
CM
1044
1045 /* Set r1 to errno if we are returning an error, otherwise zero. */
1046 {
a4dbc5ee 1047 moveli r29, 4096
ba00376b
CM
1048 sub r1, zero, r0
1049 }
1050 slt_u r29, r1, r29
1051 {
1052 mnz r1, r29, r1
1053 move r29, zero
1054 }
867e359b
CM
1055 iret
1056
1057 /*
1058 * Not a syscall, so restore caller-saved registers.
1059 * First kick off a load for cache line 1, which we're touching
1060 * for the first time here.
1061 */
1062 .align 64
10631: pop_reg r29, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(29)
1064 pop_reg r1
1065 pop_reg r2
1066 pop_reg r3
1067 pop_reg r4
1068 pop_reg r5
1069 pop_reg r6
1070 pop_reg r7
1071 pop_reg r8
1072 pop_reg r9
1073 pop_reg r10
1074 pop_reg r11
1075 pop_reg r12
1076 pop_reg r13
1077 pop_reg r14
1078 pop_reg r15
1079 pop_reg r16
1080 pop_reg r17
1081 pop_reg r18
1082 pop_reg r19
1083 pop_reg r20
1084 pop_reg r21
1085 pop_reg r22
1086 pop_reg r23
1087 pop_reg r24
1088 pop_reg r25
1089 pop_reg r26
1090 pop_reg r27
1091 pop_reg r28, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(28)
1092 /* r29 already restored above */
1093 bnz lr, .Lkernel_return
1094 pop_reg lr, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR
1095 pop_reg tp, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP
1096 lw sp, sp
1097 iret
1098
1099 /*
1100 * We can't restore tp when in kernel mode, since a thread might
1101 * have migrated from another cpu and brought a stale tp value.
1102 */
1103.Lkernel_return:
1104 pop_reg lr, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR
1105 lw sp, sp
1106 iret
1107
1108 /* Restore callee-saved registers from r34 to r51. */
1109.Lrestore_callees:
1110 addli sp, sp, PTREGS_OFFSET_REG(34) - PTREGS_OFFSET_REG(29)
1111 pop_reg r34
1112 pop_reg r35
1113 pop_reg r36
1114 pop_reg r37
1115 pop_reg r38
1116 pop_reg r39
1117 pop_reg r40
1118 pop_reg r41
1119 pop_reg r42
1120 pop_reg r43
1121 pop_reg r44
1122 pop_reg r45
1123 pop_reg r46
1124 pop_reg r47
1125 pop_reg r48
1126 pop_reg r49
1127 pop_reg r50
1128 pop_reg r51, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(51)
1129 j .Lcontinue_restore_regs
867e359b
CM
1130 STD_ENDPROC(interrupt_return)
1131
867e359b
CM
1132 /*
1133 * Some interrupts don't check for single stepping
1134 */
1135 .pushsection .text.handle_interrupt_no_single_step,"ax"
1136handle_interrupt_no_single_step:
1137 finish_interrupt_save handle_interrupt_no_single_step
1138 {
1139 jalr r0
1140 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1141 }
1142 FEEDBACK_REENTER(handle_interrupt_no_single_step)
1143 {
1144 movei r30, 0 /* not an NMI */
1145 j interrupt_return
1146 }
1147 STD_ENDPROC(handle_interrupt_no_single_step)
1148
1149 /*
1150 * "NMI" interrupts mask ALL interrupts before calling the
1151 * handler, and don't check thread flags, etc., on the way
1152 * back out. In general, the only things we do here for NMIs
1153 * are the register save/restore, fixing the PC if we were
1154 * doing single step, and the dataplane kernel-TLB management.
1155 * We don't (for example) deal with start/stop of the sched tick.
1156 */
1157 .pushsection .text.handle_nmi,"ax"
1158handle_nmi:
1159 finish_interrupt_save handle_nmi
1160 check_single_stepping normal, .Ldispatch_nmi
1161.Ldispatch_nmi:
1162 {
1163 jalr r0
1164 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1165 }
1166 FEEDBACK_REENTER(handle_nmi)
1167 j interrupt_return
1168 STD_ENDPROC(handle_nmi)
1169
1170 /*
1171 * Parallel code for syscalls to handle_interrupt.
1172 */
1173 .pushsection .text.handle_syscall,"ax"
1174handle_syscall:
1175 finish_interrupt_save handle_syscall
1176
1177 /*
1178 * Check for if we are single stepping in user level. If so, then
1179 * we need to restore the PC.
1180 */
1181 check_single_stepping syscall, .Ldispatch_syscall
1182.Ldispatch_syscall:
1183
1184 /* Enable irqs. */
1185 TRACE_IRQS_ON
1186 IRQ_ENABLE(r20, r21)
1187
1188 /* Bump the counter for syscalls made on this tile. */
1189 moveli r20, lo16(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET)
1190 auli r20, r20, ha16(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET)
1191 add r20, r20, tp
1192 lw r21, r20
1193 addi r21, r21, 1
fc327e26
CM
1194 {
1195 sw r20, r21
1196 GET_THREAD_INFO(r31)
1197 }
867e359b
CM
1198
1199 /* Trace syscalls, if requested. */
867e359b
CM
1200 addi r31, r31, THREAD_INFO_FLAGS_OFFSET
1201 lw r30, r31
1202 andi r30, r30, _TIF_SYSCALL_TRACE
1203 bzt r30, .Lrestore_syscall_regs
ef182724
SM
1204 {
1205 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1206 jal do_syscall_trace_enter
1207 }
867e359b
CM
1208 FEEDBACK_REENTER(handle_syscall)
1209
1210 /*
1211 * We always reload our registers from the stack at this
1212 * point. They might be valid, if we didn't build with
1213 * TRACE_IRQFLAGS, and this isn't a dataplane tile, and we're not
1214 * doing syscall tracing, but there are enough cases now that it
1215 * seems simplest just to do the reload unconditionally.
1216 */
1217.Lrestore_syscall_regs:
1218 PTREGS_PTR(r11, PTREGS_OFFSET_REG(0))
1219 pop_reg r0, r11
1220 pop_reg r1, r11
1221 pop_reg r2, r11
1222 pop_reg r3, r11
1223 pop_reg r4, r11
1224 pop_reg r5, r11, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(5)
1225 pop_reg TREG_SYSCALL_NR_NAME, r11
1226
1227 /* Ensure that the syscall number is within the legal range. */
1228 moveli r21, __NR_syscalls
1229 {
1230 slt_u r21, TREG_SYSCALL_NR_NAME, r21
1231 moveli r20, lo16(sys_call_table)
1232 }
1233 {
1234 bbns r21, .Linvalid_syscall
1235 auli r20, r20, ha16(sys_call_table)
1236 }
1237 s2a r20, TREG_SYSCALL_NR_NAME, r20
1238 lw r20, r20
1239
1240 /* Jump to syscall handler. */
81711cee
CM
1241 jalr r20
1242.Lhandle_syscall_link: /* value of "lr" after "jalr r20" above */
867e359b
CM
1243
1244 /*
1245 * Write our r0 onto the stack so it gets restored instead
1246 * of whatever the user had there before.
1247 */
1248 PTREGS_PTR(r29, PTREGS_OFFSET_REG(0))
1249 sw r29, r0
1250
81711cee
CM
1251.Lsyscall_sigreturn_skip:
1252 FEEDBACK_REENTER(handle_syscall)
1253
867e359b
CM
1254 /* Do syscall trace again, if requested. */
1255 lw r30, r31
1256 andi r30, r30, _TIF_SYSCALL_TRACE
1257 bzt r30, 1f
ef182724
SM
1258 {
1259 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1260 jal do_syscall_trace_exit
1261 }
867e359b 1262 FEEDBACK_REENTER(handle_syscall)
e1d5c019
CM
12631: {
1264 movei r30, 0 /* not an NMI */
1265 j .Lresume_userspace /* jump into middle of interrupt_return */
1266 }
867e359b
CM
1267
1268.Linvalid_syscall:
1269 /* Report an invalid syscall back to the user program */
1270 {
1271 PTREGS_PTR(r29, PTREGS_OFFSET_REG(0))
1272 movei r28, -ENOSYS
1273 }
1274 sw r29, r28
e1d5c019
CM
1275 {
1276 movei r30, 0 /* not an NMI */
1277 j .Lresume_userspace /* jump into middle of interrupt_return */
1278 }
867e359b
CM
1279 STD_ENDPROC(handle_syscall)
1280
1281 /* Return the address for oprofile to suppress in backtraces. */
1282STD_ENTRY_SECTION(handle_syscall_link_address, .text.handle_syscall)
1283 lnk r0
1284 {
1285 addli r0, r0, .Lhandle_syscall_link - .
1286 jrp lr
1287 }
1288 STD_ENDPROC(handle_syscall_link_address)
1289
1290STD_ENTRY(ret_from_fork)
1291 jal sim_notify_fork
1292 jal schedule_tail
1293 FEEDBACK_REENTER(ret_from_fork)
e1d5c019
CM
1294 {
1295 movei r30, 0 /* not an NMI */
1296 j .Lresume_userspace /* jump into middle of interrupt_return */
1297 }
867e359b
CM
1298 STD_ENDPROC(ret_from_fork)
1299
0f8b9838
CM
1300STD_ENTRY(ret_from_kernel_thread)
1301 jal sim_notify_fork
1302 jal schedule_tail
1303 FEEDBACK_REENTER(ret_from_fork)
1304 {
1305 move r0, r31
1306 jalr r30
1307 }
1308 FEEDBACK_REENTER(ret_from_kernel_thread)
1309 {
1310 movei r30, 0 /* not an NMI */
1311 j .Lresume_userspace /* jump into middle of interrupt_return */
1312 }
1313 STD_ENDPROC(ret_from_kernel_thread)
1314
867e359b
CM
1315 /*
1316 * Code for ill interrupt.
1317 */
1318 .pushsection .text.handle_ill,"ax"
1319handle_ill:
1320 finish_interrupt_save handle_ill
1321
1322 /*
1323 * Check for if we are single stepping in user level. If so, then
1324 * we need to restore the PC.
1325 */
1326 check_single_stepping ill, .Ldispatch_normal_ill
1327
1328 {
1329 /* See if the PC is the 1st bundle in the buffer */
1330 seq r25, r27, r26
1331
1332 /* Point to the 2nd bundle in the buffer */
1333 addi r26, r26, 8
1334 }
1335 {
1336 /* Point to the original pc */
1337 addi r24, r29, SINGLESTEP_STATE_ORIG_PC_OFFSET
1338
1339 /* Branch if the PC is the 1st bundle in the buffer */
1340 bnz r25, 3f
1341 }
1342 {
1343 /* See if the PC is the 2nd bundle of the buffer */
1344 seq r25, r27, r26
1345
1346 /* Set PC to next instruction */
1347 addi r24, r29, SINGLESTEP_STATE_NEXT_PC_OFFSET
1348 }
1349 {
1350 /* Point to flags */
1351 addi r25, r29, SINGLESTEP_STATE_FLAGS_OFFSET
1352
1353 /* Branch if PC is in the second bundle */
1354 bz r25, 2f
1355 }
1356 /* Load flags */
1357 lw r25, r25
1358 {
1359 /*
1360 * Get the offset for the register to restore
1361 * Note: the lower bound is 2, so we have implicit scaling by 4.
1362 * No multiplication of the register number by the size of a register
1363 * is needed.
1364 */
1365 mm r27, r25, zero, SINGLESTEP_STATE_TARGET_LB, \
1366 SINGLESTEP_STATE_TARGET_UB
1367
1368 /* Mask Rewrite_LR */
1369 andi r25, r25, SINGLESTEP_STATE_MASK_UPDATE
1370 }
1371 {
1372 addi r29, r29, SINGLESTEP_STATE_UPDATE_VALUE_OFFSET
1373
1374 /* Don't rewrite temp register */
1375 bz r25, 3f
1376 }
1377 {
1378 /* Get the temp value */
1379 lw r29, r29
1380
1381 /* Point to where the register is stored */
1382 add r27, r27, sp
1383 }
1384
1385 /* Add in the C ABI save area size to the register offset */
1386 addi r27, r27, C_ABI_SAVE_AREA_SIZE
1387
1388 /* Restore the user's register with the temp value */
1389 sw r27, r29
1390 j 3f
1391
13922:
1393 /* Must be in the third bundle */
1394 addi r24, r29, SINGLESTEP_STATE_BRANCH_NEXT_PC_OFFSET
1395
13963:
1397 /* set PC and continue */
1398 lw r26, r24
fc327e26
CM
1399 {
1400 sw r28, r26
1401 GET_THREAD_INFO(r0)
1402 }
867e359b 1403
233325b9
CM
1404 /*
1405 * Clear TIF_SINGLESTEP to prevent recursion if we execute an ill.
1406 * The normal non-arch flow redundantly clears TIF_SINGLESTEP, but we
1407 * need to clear it here and can't really impose on all other arches.
1408 * So what's another write between friends?
1409 */
867e359b
CM
1410
1411 addi r1, r0, THREAD_INFO_FLAGS_OFFSET
1412 {
1413 lw r2, r1
1414 addi r0, r0, THREAD_INFO_TASK_OFFSET /* currently a no-op */
1415 }
1416 andi r2, r2, ~_TIF_SINGLESTEP
1417 sw r1, r2
1418
1419 /* Issue a sigtrap */
1420 {
1421 lw r0, r0 /* indirect thru thread_info to get task_info*/
1422 addi r1, sp, C_ABI_SAVE_AREA_SIZE /* put ptregs pointer into r1 */
1423 move r2, zero /* load error code into r2 */
1424 }
1425
1426 jal send_sigtrap /* issue a SIGTRAP */
1427 FEEDBACK_REENTER(handle_ill)
e1d5c019
CM
1428 {
1429 movei r30, 0 /* not an NMI */
1430 j .Lresume_userspace /* jump into middle of interrupt_return */
1431 }
867e359b
CM
1432
1433.Ldispatch_normal_ill:
1434 {
1435 jalr r0
1436 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1437 }
1438 FEEDBACK_REENTER(handle_ill)
1439 {
1440 movei r30, 0 /* not an NMI */
1441 j interrupt_return
1442 }
1443 STD_ENDPROC(handle_ill)
1444
867e359b
CM
1445/* Various stub interrupt handlers and syscall handlers */
1446
1447STD_ENTRY_LOCAL(_kernel_double_fault)
a78c942d 1448 mfspr r1, SPR_EX_CONTEXT_K_0
867e359b
CM
1449 move r2, lr
1450 move r3, sp
1451 move r4, r52
1452 addi sp, sp, -C_ABI_SAVE_AREA_SIZE
1453 j kernel_double_fault
1454 STD_ENDPROC(_kernel_double_fault)
1455
1456STD_ENTRY_LOCAL(bad_intr)
a78c942d 1457 mfspr r2, SPR_EX_CONTEXT_K_0
867e359b
CM
1458 panic "Unhandled interrupt %#x: PC %#lx"
1459 STD_ENDPROC(bad_intr)
1460
81711cee
CM
1461/*
1462 * Special-case sigreturn to not write r0 to the stack on return.
1463 * This is technically more efficient, but it also avoids difficulties
1464 * in the 64-bit OS when handling 32-bit compat code, since we must not
1465 * sign-extend r0 for the sigreturn return-value case.
1466 */
1467#define PTREGS_SYSCALL_SIGRETURN(x, reg) \
1468 STD_ENTRY(_##x); \
1469 addli lr, lr, .Lsyscall_sigreturn_skip - .Lhandle_syscall_link; \
1470 { \
1471 PTREGS_PTR(reg, PTREGS_OFFSET_BASE); \
1472 j x \
1473 }; \
1474 STD_ENDPROC(_##x)
1475
81711cee 1476PTREGS_SYSCALL_SIGRETURN(sys_rt_sigreturn, r0)
867e359b 1477
6b14e419 1478/* Save additional callee-saves to pt_regs and jump to standard function. */
d929b6ae
CM
1479STD_ENTRY(_sys_clone)
1480 push_extra_callee_saves r4
1481 j sys_clone
1482 STD_ENDPROC(_sys_clone)
867e359b
CM
1483
1484/*
1485 * This entrypoint is taken for the cmpxchg and atomic_update fast
1486 * swints. We may wish to generalize it to other fast swints at some
1487 * point, but for now there are just two very similar ones, which
1488 * makes it faster.
1489 *
1490 * The fast swint code is designed to have a small footprint. It does
1491 * not save or restore any GPRs, counting on the caller-save registers
1492 * to be available to it on entry. It does not modify any callee-save
1493 * registers (including "lr"). It does not check what PL it is being
1494 * called at, so you'd better not call it other than at PL0.
d6f0f22c
CM
1495 * The <atomic.h> wrapper assumes it only clobbers r20-r29, so if
1496 * it ever is necessary to use more registers, be aware.
867e359b
CM
1497 *
1498 * It does not use the stack, but since it might be re-interrupted by
1499 * a page fault which would assume the stack was valid, it does
1500 * save/restore the stack pointer and zero it out to make sure it gets reset.
1501 * Since we always keep interrupts disabled, the hypervisor won't
a78c942d 1502 * clobber our EX_CONTEXT_K_x registers, so we don't save/restore them
867e359b
CM
1503 * (other than to advance the PC on return).
1504 *
1505 * We have to manually validate the user vs kernel address range
1506 * (since at PL1 we can read/write both), and for performance reasons
1507 * we don't allow cmpxchg on the fc000000 memory region, since we only
1508 * validate that the user address is below PAGE_OFFSET.
1509 *
1510 * We place it in the __HEAD section to ensure it is relatively
1511 * near to the intvec_SWINT_1 code (reachable by a conditional branch).
1512 *
df29ccb6
CM
1513 * Our use of ATOMIC_LOCK_REG here must match do_page_fault_ics().
1514 *
1515 * As we do in lib/atomic_asm_32.S, we bypass a store if the value we
1516 * would store is the same as the value we just loaded.
867e359b
CM
1517 */
1518 __HEAD
1519 .align 64
1520 /* Align much later jump on the start of a cache line. */
1521#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
76c567fb
CM
1522 nop
1523#if PAGE_SIZE >= 0x10000
1524 nop
1525#endif
867e359b
CM
1526#endif
1527ENTRY(sys_cmpxchg)
1528
1529 /*
1530 * Save "sp" and set it zero for any possible page fault.
1531 *
1532 * HACK: We want to both zero sp and check r0's alignment,
1533 * so we do both at once. If "sp" becomes nonzero we
1534 * know r0 is unaligned and branch to the error handler that
1535 * restores sp, so this is OK.
1536 *
1537 * ICS is disabled right now so having a garbage but nonzero
1538 * sp is OK, since we won't execute any faulting instructions
1539 * when it is nonzero.
1540 */
1541 {
1542 move r27, sp
1543 andi sp, r0, 3
1544 }
1545
1546 /*
1547 * Get the lock address in ATOMIC_LOCK_REG, and also validate that the
1548 * address is less than PAGE_OFFSET, since that won't trap at PL1.
1549 * We only use bits less than PAGE_SHIFT to avoid having to worry
1550 * about aliasing among multiple mappings of the same physical page,
1551 * and we ignore the low 3 bits so we have one lock that covers
1552 * both a cmpxchg64() and a cmpxchg() on either its low or high word.
5fb682b0 1553 * NOTE: this must match __atomic_hashed_lock() in lib/atomic_32.c.
867e359b
CM
1554 */
1555
76c567fb
CM
1556#if (PAGE_OFFSET & 0xffff) != 0
1557# error Code here assumes PAGE_OFFSET can be loaded with just hi16()
1558#endif
1559
867e359b
CM
1560#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
1561 {
1562 /* Check for unaligned input. */
1563 bnz sp, .Lcmpxchg_badaddr
1564 mm r25, r0, zero, 3, PAGE_SHIFT-1
1565 }
1566 {
1567 crc32_32 r25, zero, r25
1568 moveli r21, lo16(atomic_lock_ptr)
1569 }
1570 {
1571 auli r21, r21, ha16(atomic_lock_ptr)
1572 auli r23, zero, hi16(PAGE_OFFSET) /* hugepage-aligned */
1573 }
1574 {
1575 shri r20, r25, 32 - ATOMIC_HASH_L1_SHIFT
1576 slt_u r23, r0, r23
df29ccb6 1577 lw r26, r0 /* see comment in the "#else" for the "lw r26". */
867e359b
CM
1578 }
1579 {
1580 s2a r21, r20, r21
1581 bbns r23, .Lcmpxchg_badaddr
1582 }
1583 {
1584 lw r21, r21
1585 seqi r23, TREG_SYSCALL_NR_NAME, __NR_FAST_cmpxchg64
1586 andi r25, r25, ATOMIC_HASH_L2_SIZE - 1
1587 }
1588 {
1589 /* Branch away at this point if we're doing a 64-bit cmpxchg. */
1590 bbs r23, .Lcmpxchg64
1591 andi r23, r0, 7 /* Precompute alignment for cmpxchg64. */
1592 }
867e359b 1593 {
867e359b 1594 s2a ATOMIC_LOCK_REG_NAME, r25, r21
df29ccb6 1595 j .Lcmpxchg32_tns /* see comment in the #else for the jump. */
867e359b
CM
1596 }
1597
1598#else /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
1599 {
1600 /* Check for unaligned input. */
1601 bnz sp, .Lcmpxchg_badaddr
1602 auli r23, zero, hi16(PAGE_OFFSET) /* hugepage-aligned */
1603 }
1604 {
1605 /*
1606 * Slide bits into position for 'mm'. We want to ignore
1607 * the low 3 bits of r0, and consider only the next
1608 * ATOMIC_HASH_SHIFT bits.
1609 * Because of C pointer arithmetic, we want to compute this:
1610 *
1611 * ((char*)atomic_locks +
1612 * (((r0 >> 3) & (1 << (ATOMIC_HASH_SIZE - 1))) << 2))
1613 *
1614 * Instead of two shifts we just ">> 1", and use 'mm'
1615 * to ignore the low and high bits we don't want.
1616 */
1617 shri r25, r0, 1
1618
1619 slt_u r23, r0, r23
1620
1621 /*
1622 * Ensure that the TLB is loaded before we take out the lock.
1623 * On tilepro, this will start fetching the value all the way
1624 * into our L1 as well (and if it gets modified before we
1625 * grab the lock, it will be invalidated from our cache
1626 * before we reload it). On tile64, we'll start fetching it
1627 * into our L1 if we're the home, and if we're not, we'll
1628 * still at least start fetching it into the home's L2.
1629 */
1630 lw r26, r0
1631 }
1632 {
76c567fb 1633 auli r21, zero, ha16(atomic_locks)
867e359b
CM
1634
1635 bbns r23, .Lcmpxchg_badaddr
1636 }
76c567fb
CM
1637#if PAGE_SIZE < 0x10000
1638 /* atomic_locks is page-aligned so for big pages we don't need this. */
1639 addli r21, r21, lo16(atomic_locks)
1640#endif
867e359b
CM
1641 {
1642 /*
1643 * Insert the hash bits into the page-aligned pointer.
1644 * ATOMIC_HASH_SHIFT is so big that we don't actually hash
1645 * the unmasked address bits, as that may cause unnecessary
1646 * collisions.
1647 */
1648 mm ATOMIC_LOCK_REG_NAME, r25, r21, 2, (ATOMIC_HASH_SHIFT + 2) - 1
1649
1650 seqi r23, TREG_SYSCALL_NR_NAME, __NR_FAST_cmpxchg64
1651 }
1652 {
1653 /* Branch away at this point if we're doing a 64-bit cmpxchg. */
1654 bbs r23, .Lcmpxchg64
1655 andi r23, r0, 7 /* Precompute alignment for cmpxchg64. */
1656 }
1657 {
1658 /*
1659 * We very carefully align the code that actually runs with
df29ccb6 1660 * the lock held (twelve bundles) so that we know it is all in
867e359b
CM
1661 * the icache when we start. This instruction (the jump) is
1662 * at the start of the first cache line, address zero mod 64;
df29ccb6
CM
1663 * we jump to the very end of the second cache line to get that
1664 * line loaded in the icache, then fall through to issue the tns
1665 * in the third cache line, at which point it's all cached.
1666 * Note that is for performance, not correctness.
867e359b
CM
1667 */
1668 j .Lcmpxchg32_tns
1669 }
1670
1671#endif /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
1672
df29ccb6
CM
1673/* Symbol for do_page_fault_ics() to use to compare against the PC. */
1674.global __sys_cmpxchg_grab_lock
1675__sys_cmpxchg_grab_lock:
867e359b
CM
1676
1677 /*
1678 * Perform the actual cmpxchg or atomic_update.
867e359b
CM
1679 */
1680.Ldo_cmpxchg32:
1681 {
1682 lw r21, r0
1683 seqi r23, TREG_SYSCALL_NR_NAME, __NR_FAST_atomic_update
1684 move r24, r2
1685 }
1686 {
1687 seq r22, r21, r1 /* See if cmpxchg matches. */
1688 and r25, r21, r1 /* If atomic_update, compute (*mem & mask) */
1689 }
1690 {
1691 or r22, r22, r23 /* Skip compare branch for atomic_update. */
1692 add r25, r25, r2 /* Compute (*mem & mask) + addend. */
1693 }
1694 {
1695 mvnz r24, r23, r25 /* Use atomic_update value if appropriate. */
df29ccb6 1696 bbns r22, .Lcmpxchg32_nostore
867e359b 1697 }
df29ccb6
CM
1698 seq r22, r24, r21 /* Are we storing the value we loaded? */
1699 bbs r22, .Lcmpxchg32_nostore
867e359b
CM
1700 sw r0, r24
1701
df29ccb6 1702 /* The following instruction is the start of the second cache line. */
867e359b
CM
1703 /* Do slow mtspr here so the following "mf" waits less. */
1704 {
1705 move sp, r27
a78c942d 1706 mtspr SPR_EX_CONTEXT_K_0, r28
867e359b
CM
1707 }
1708 mf
1709
867e359b
CM
1710 {
1711 move r0, r21
1712 sw ATOMIC_LOCK_REG_NAME, zero
1713 }
1714 iret
1715
1716 /* Duplicated code here in the case where we don't overlap "mf" */
df29ccb6 1717.Lcmpxchg32_nostore:
867e359b
CM
1718 {
1719 move r0, r21
1720 sw ATOMIC_LOCK_REG_NAME, zero
1721 }
1722 {
1723 move sp, r27
a78c942d 1724 mtspr SPR_EX_CONTEXT_K_0, r28
867e359b
CM
1725 }
1726 iret
1727
1728 /*
1729 * The locking code is the same for 32-bit cmpxchg/atomic_update,
1730 * and for 64-bit cmpxchg. We provide it as a macro and put
1731 * it into both versions. We can't share the code literally
1732 * since it depends on having the right branch-back address.
867e359b
CM
1733 */
1734 .macro cmpxchg_lock, bitwidth
1735
1736 /* Lock; if we succeed, jump back up to the read-modify-write. */
1737#ifdef CONFIG_SMP
1738 tns r21, ATOMIC_LOCK_REG_NAME
1739#else
1740 /*
1741 * Non-SMP preserves all the lock infrastructure, to keep the
1742 * code simpler for the interesting (SMP) case. However, we do
1743 * one small optimization here and in atomic_asm.S, which is
1744 * to fake out acquiring the actual lock in the atomic_lock table.
1745 */
1746 movei r21, 0
1747#endif
1748
1749 /* Issue the slow SPR here while the tns result is in flight. */
a78c942d 1750 mfspr r28, SPR_EX_CONTEXT_K_0
867e359b
CM
1751
1752 {
1753 addi r28, r28, 8 /* return to the instruction after the swint1 */
1754 bzt r21, .Ldo_cmpxchg\bitwidth
1755 }
1756 /*
1757 * The preceding instruction is the last thing that must be
df29ccb6 1758 * hot in the icache before we do the "tns" above.
867e359b
CM
1759 */
1760
1761#ifdef CONFIG_SMP
1762 /*
1763 * We failed to acquire the tns lock on our first try. Now use
1764 * bounded exponential backoff to retry, like __atomic_spinlock().
1765 */
1766 {
1767 moveli r23, 2048 /* maximum backoff time in cycles */
1768 moveli r25, 32 /* starting backoff time in cycles */
1769 }
17701: mfspr r26, CYCLE_LOW /* get start point for this backoff */
17712: mfspr r22, CYCLE_LOW /* test to see if we've backed off enough */
1772 sub r22, r22, r26
1773 slt r22, r22, r25
1774 bbst r22, 2b
1775 {
1776 shli r25, r25, 1 /* double the backoff; retry the tns */
1777 tns r21, ATOMIC_LOCK_REG_NAME
1778 }
1779 slt r26, r23, r25 /* is the proposed backoff too big? */
1780 {
1781 mvnz r25, r26, r23
1782 bzt r21, .Ldo_cmpxchg\bitwidth
1783 }
1784 j 1b
1785#endif /* CONFIG_SMP */
1786 .endm
1787
1788.Lcmpxchg32_tns:
df29ccb6
CM
1789 /*
1790 * This is the last instruction on the second cache line.
1791 * The nop here loads the second line, then we fall through
1792 * to the tns to load the third line before we take the lock.
1793 */
1794 nop
867e359b
CM
1795 cmpxchg_lock 32
1796
1797 /*
1798 * This code is invoked from sys_cmpxchg after most of the
1799 * preconditions have been checked. We still need to check
1800 * that r0 is 8-byte aligned, since if it's not we won't
1801 * actually be atomic. However, ATOMIC_LOCK_REG has the atomic
1802 * lock pointer and r27/r28 have the saved SP/PC.
1803 * r23 is holding "r0 & 7" so we can test for alignment.
1804 * The compare value is in r2/r3; the new value is in r4/r5.
1805 * On return, we must put the old value in r0/r1.
1806 */
1807 .align 64
1808.Lcmpxchg64:
1809 {
1810#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
1811 s2a ATOMIC_LOCK_REG_NAME, r25, r21
1812#endif
1813 bzt r23, .Lcmpxchg64_tns
1814 }
1815 j .Lcmpxchg_badaddr
1816
1817.Ldo_cmpxchg64:
1818 {
1819 lw r21, r0
1820 addi r25, r0, 4
1821 }
1822 {
1823 lw r1, r25
1824 }
1825 seq r26, r21, r2
1826 {
1827 bz r26, .Lcmpxchg64_mismatch
1828 seq r26, r1, r3
1829 }
1830 {
1831 bz r26, .Lcmpxchg64_mismatch
1832 }
1833 sw r0, r4
1834 sw r25, r5
1835
1836 /*
1837 * The 32-bit path provides optimized "match" and "mismatch"
1838 * iret paths, but we don't have enough bundles in this cache line
1839 * to do that, so we just make even the "mismatch" path do an "mf".
1840 */
1841.Lcmpxchg64_mismatch:
1842 {
1843 move sp, r27
a78c942d 1844 mtspr SPR_EX_CONTEXT_K_0, r28
867e359b
CM
1845 }
1846 mf
1847 {
1848 move r0, r21
1849 sw ATOMIC_LOCK_REG_NAME, zero
1850 }
1851 iret
1852
1853.Lcmpxchg64_tns:
1854 cmpxchg_lock 64
1855
1856
1857 /*
1858 * Reset sp and revector to sys_cmpxchg_badaddr(), which will
1859 * just raise the appropriate signal and exit. Doing it this
1860 * way means we don't have to duplicate the code in intvec.S's
1861 * int_hand macro that locates the top of the stack.
1862 */
1863.Lcmpxchg_badaddr:
1864 {
1865 moveli TREG_SYSCALL_NR_NAME, __NR_cmpxchg_badaddr
1866 move sp, r27
1867 }
1868 j intvec_SWINT_1
1869 ENDPROC(sys_cmpxchg)
1870 ENTRY(__sys_cmpxchg_end)
1871
1872
1873/* The single-step support may need to read all the registers. */
1874int_unalign:
1875 push_extra_callee_saves r0
1876 j do_trap
1877
1878/* Include .intrpt1 array of interrupt vectors */
1879 .section ".intrpt1", "ax"
1880
1881#define op_handle_perf_interrupt bad_intr
1882#define op_handle_aux_perf_interrupt bad_intr
1883
9f9c0382 1884#ifndef CONFIG_HARDWALL
867e359b 1885#define do_hardwall_trap bad_intr
9f9c0382 1886#endif
867e359b
CM
1887
1888 int_hand INT_ITLB_MISS, ITLB_MISS, \
1889 do_page_fault, handle_interrupt_no_single_step
1890 int_hand INT_MEM_ERROR, MEM_ERROR, bad_intr
1891 int_hand INT_ILL, ILL, do_trap, handle_ill
1892 int_hand INT_GPV, GPV, do_trap
1893 int_hand INT_SN_ACCESS, SN_ACCESS, do_trap
1894 int_hand INT_IDN_ACCESS, IDN_ACCESS, do_trap
1895 int_hand INT_UDN_ACCESS, UDN_ACCESS, do_trap
1896 int_hand INT_IDN_REFILL, IDN_REFILL, bad_intr
1897 int_hand INT_UDN_REFILL, UDN_REFILL, bad_intr
1898 int_hand INT_IDN_COMPLETE, IDN_COMPLETE, bad_intr
1899 int_hand INT_UDN_COMPLETE, UDN_COMPLETE, bad_intr
1900 int_hand INT_SWINT_3, SWINT_3, do_trap
1901 int_hand INT_SWINT_2, SWINT_2, do_trap
1902 int_hand INT_SWINT_1, SWINT_1, SYSCALL, handle_syscall
1903 int_hand INT_SWINT_0, SWINT_0, do_trap
1904 int_hand INT_UNALIGN_DATA, UNALIGN_DATA, int_unalign
1905 int_hand INT_DTLB_MISS, DTLB_MISS, do_page_fault
1906 int_hand INT_DTLB_ACCESS, DTLB_ACCESS, do_page_fault
1907 int_hand INT_DMATLB_MISS, DMATLB_MISS, do_page_fault
1908 int_hand INT_DMATLB_ACCESS, DMATLB_ACCESS, do_page_fault
1909 int_hand INT_SNITLB_MISS, SNITLB_MISS, do_page_fault
1910 int_hand INT_SN_NOTIFY, SN_NOTIFY, bad_intr
1911 int_hand INT_SN_FIREWALL, SN_FIREWALL, do_hardwall_trap
1912 int_hand INT_IDN_FIREWALL, IDN_FIREWALL, bad_intr
1913 int_hand INT_UDN_FIREWALL, UDN_FIREWALL, do_hardwall_trap
1914 int_hand INT_TILE_TIMER, TILE_TIMER, do_timer_interrupt
1915 int_hand INT_IDN_TIMER, IDN_TIMER, bad_intr
1916 int_hand INT_UDN_TIMER, UDN_TIMER, bad_intr
1917 int_hand INT_DMA_NOTIFY, DMA_NOTIFY, bad_intr
1918 int_hand INT_IDN_CA, IDN_CA, bad_intr
1919 int_hand INT_UDN_CA, UDN_CA, bad_intr
1920 int_hand INT_IDN_AVAIL, IDN_AVAIL, bad_intr
1921 int_hand INT_UDN_AVAIL, UDN_AVAIL, bad_intr
1922 int_hand INT_PERF_COUNT, PERF_COUNT, \
1923 op_handle_perf_interrupt, handle_nmi
1924 int_hand INT_INTCTRL_3, INTCTRL_3, bad_intr
a78c942d
CM
1925#if CONFIG_KERNEL_PL == 2
1926 dc_dispatch INT_INTCTRL_2, INTCTRL_2
1927 int_hand INT_INTCTRL_1, INTCTRL_1, bad_intr
1928#else
867e359b
CM
1929 int_hand INT_INTCTRL_2, INTCTRL_2, bad_intr
1930 dc_dispatch INT_INTCTRL_1, INTCTRL_1
a78c942d 1931#endif
867e359b
CM
1932 int_hand INT_INTCTRL_0, INTCTRL_0, bad_intr
1933 int_hand INT_MESSAGE_RCV_DWNCL, MESSAGE_RCV_DWNCL, \
b2ce2bda 1934 hv_message_intr
867e359b 1935 int_hand INT_DEV_INTR_DWNCL, DEV_INTR_DWNCL, \
b2ce2bda 1936 tile_dev_intr
867e359b
CM
1937 int_hand INT_I_ASID, I_ASID, bad_intr
1938 int_hand INT_D_ASID, D_ASID, bad_intr
1939 int_hand INT_DMATLB_MISS_DWNCL, DMATLB_MISS_DWNCL, \
b2ce2bda 1940 do_page_fault
867e359b 1941 int_hand INT_SNITLB_MISS_DWNCL, SNITLB_MISS_DWNCL, \
b2ce2bda 1942 do_page_fault
867e359b 1943 int_hand INT_DMATLB_ACCESS_DWNCL, DMATLB_ACCESS_DWNCL, \
b2ce2bda 1944 do_page_fault
867e359b
CM
1945 int_hand INT_SN_CPL, SN_CPL, bad_intr
1946 int_hand INT_DOUBLE_FAULT, DOUBLE_FAULT, do_trap
1947#if CHIP_HAS_AUX_PERF_COUNTERS()
1948 int_hand INT_AUX_PERF_COUNT, AUX_PERF_COUNT, \
1949 op_handle_aux_perf_interrupt, handle_nmi
1950#endif
1951
1952 /* Synthetic interrupt delivered only by the simulator */
1953 int_hand INT_BREAKPOINT, BREAKPOINT, do_breakpoint