[SPARC/64] Rename some functions like PowerPC
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / sparc64 / kernel / time.c
CommitLineData
1da177e4
LT
1/* $Id: time.c,v 1.42 2002/01/23 14:33:55 davem Exp $
2 * time.c: UltraSparc timer and TOD clock support.
3 *
4 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
6 *
7 * Based largely on code which is:
8 *
9 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
10 */
11
1da177e4
LT
12#include <linux/errno.h>
13#include <linux/module.h>
14#include <linux/sched.h>
15#include <linux/kernel.h>
16#include <linux/param.h>
17#include <linux/string.h>
18#include <linux/mm.h>
19#include <linux/interrupt.h>
20#include <linux/time.h>
21#include <linux/timex.h>
22#include <linux/init.h>
23#include <linux/ioport.h>
24#include <linux/mc146818rtc.h>
25#include <linux/delay.h>
26#include <linux/profile.h>
27#include <linux/bcd.h>
28#include <linux/jiffies.h>
29#include <linux/cpufreq.h>
30#include <linux/percpu.h>
31#include <linux/profile.h>
8ba706a9
DM
32#include <linux/miscdevice.h>
33#include <linux/rtc.h>
777a4475 34#include <linux/kernel_stat.h>
112f4871
DM
35#include <linux/clockchips.h>
36#include <linux/clocksource.h>
1da177e4
LT
37
38#include <asm/oplib.h>
39#include <asm/mostek.h>
40#include <asm/timer.h>
41#include <asm/irq.h>
42#include <asm/io.h>
ff0d2fc6
DM
43#include <asm/prom.h>
44#include <asm/of_device.h>
1da177e4
LT
45#include <asm/starfire.h>
46#include <asm/smp.h>
47#include <asm/sections.h>
48#include <asm/cpudata.h>
8ba706a9 49#include <asm/uaccess.h>
07f8e5f3 50#include <asm/prom.h>
63540ba3 51#include <asm/irq_regs.h>
1da177e4
LT
52
53DEFINE_SPINLOCK(mostek_lock);
54DEFINE_SPINLOCK(rtc_lock);
ef0299bf 55void __iomem *mstk48t02_regs = NULL;
1da177e4
LT
56#ifdef CONFIG_PCI
57unsigned long ds1287_regs = 0UL;
d037e053 58static void __iomem *bq4802_regs;
1da177e4
LT
59#endif
60
ef0299bf
AV
61static void __iomem *mstk48t08_regs;
62static void __iomem *mstk48t59_regs;
1da177e4
LT
63
64static int set_rtc_mmss(unsigned long);
65
1da177e4 66#define TICK_PRIV_BIT (1UL << 63)
112f4871 67#define TICKCMP_IRQ_BIT (1UL << 63)
1da177e4
LT
68
69#ifdef CONFIG_SMP
70unsigned long profile_pc(struct pt_regs *regs)
71{
72 unsigned long pc = instruction_pointer(regs);
73
74 if (in_lock_functions(pc))
75 return regs->u_regs[UREG_RETPC];
76 return pc;
77}
78EXPORT_SYMBOL(profile_pc);
79#endif
80
81static void tick_disable_protection(void)
82{
83 /* Set things up so user can access tick register for profiling
84 * purposes. Also workaround BB_ERRATA_1 by doing a dummy
85 * read back of %tick after writing it.
86 */
87 __asm__ __volatile__(
88 " ba,pt %%xcc, 1f\n"
89 " nop\n"
90 " .align 64\n"
91 "1: rd %%tick, %%g2\n"
92 " add %%g2, 6, %%g2\n"
93 " andn %%g2, %0, %%g2\n"
94 " wrpr %%g2, 0, %%tick\n"
95 " rdpr %%tick, %%g0"
96 : /* no outputs */
97 : "r" (TICK_PRIV_BIT)
98 : "g2");
99}
100
112f4871 101static void tick_disable_irq(void)
1da177e4 102{
1da177e4 103 __asm__ __volatile__(
1da177e4 104 " ba,pt %%xcc, 1f\n"
112f4871 105 " nop\n"
1da177e4 106 " .align 64\n"
112f4871 107 "1: wr %0, 0x0, %%tick_cmpr\n"
1da177e4
LT
108 " rd %%tick_cmpr, %%g0"
109 : /* no outputs */
112f4871
DM
110 : "r" (TICKCMP_IRQ_BIT));
111}
112
113static void tick_init_tick(void)
114{
115 tick_disable_protection();
116 tick_disable_irq();
1da177e4
LT
117}
118
119static unsigned long tick_get_tick(void)
120{
121 unsigned long ret;
122
123 __asm__ __volatile__("rd %%tick, %0\n\t"
124 "mov %0, %0"
125 : "=r" (ret));
126
127 return ret & ~TICK_PRIV_BIT;
128}
129
112f4871 130static int tick_add_compare(unsigned long adj)
1da177e4 131{
112f4871 132 unsigned long orig_tick, new_tick, new_compare;
1da177e4 133
112f4871
DM
134 __asm__ __volatile__("rd %%tick, %0"
135 : "=r" (orig_tick));
1da177e4 136
112f4871 137 orig_tick &= ~TICKCMP_IRQ_BIT;
1da177e4
LT
138
139 /* Workaround for Spitfire Errata (#54 I think??), I discovered
140 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
141 * number 103640.
142 *
143 * On Blackbird writes to %tick_cmpr can fail, the
144 * workaround seems to be to execute the wr instruction
145 * at the start of an I-cache line, and perform a dummy
146 * read back from %tick_cmpr right after writing to it. -DaveM
147 */
112f4871
DM
148 __asm__ __volatile__("ba,pt %%xcc, 1f\n\t"
149 " add %1, %2, %0\n\t"
1da177e4
LT
150 ".align 64\n"
151 "1:\n\t"
152 "wr %0, 0, %%tick_cmpr\n\t"
112f4871
DM
153 "rd %%tick_cmpr, %%g0\n\t"
154 : "=r" (new_compare)
155 : "r" (orig_tick), "r" (adj));
156
157 __asm__ __volatile__("rd %%tick, %0"
158 : "=r" (new_tick));
159 new_tick &= ~TICKCMP_IRQ_BIT;
1da177e4 160
112f4871 161 return ((long)(new_tick - (orig_tick+adj))) > 0L;
1da177e4
LT
162}
163
112f4871 164static unsigned long tick_add_tick(unsigned long adj)
1da177e4 165{
112f4871 166 unsigned long new_tick;
1da177e4
LT
167
168 /* Also need to handle Blackbird bug here too. */
169 __asm__ __volatile__("rd %%tick, %0\n\t"
112f4871 170 "add %0, %1, %0\n\t"
1da177e4 171 "wrpr %0, 0, %%tick\n\t"
112f4871
DM
172 : "=&r" (new_tick)
173 : "r" (adj));
1da177e4
LT
174
175 return new_tick;
176}
177
d369ddd2 178static struct sparc64_tick_ops tick_operations __read_mostly = {
112f4871 179 .name = "tick",
1da177e4 180 .init_tick = tick_init_tick,
112f4871 181 .disable_irq = tick_disable_irq,
1da177e4 182 .get_tick = tick_get_tick,
1da177e4
LT
183 .add_tick = tick_add_tick,
184 .add_compare = tick_add_compare,
185 .softint_mask = 1UL << 0,
186};
187
fc321495
DM
188struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations;
189
112f4871
DM
190static void stick_disable_irq(void)
191{
192 __asm__ __volatile__(
193 "wr %0, 0x0, %%asr25"
194 : /* no outputs */
195 : "r" (TICKCMP_IRQ_BIT));
196}
197
198static void stick_init_tick(void)
1da177e4 199{
7aa62645
DM
200 /* Writes to the %tick and %stick register are not
201 * allowed on sun4v. The Hypervisor controls that
202 * bit, per-strand.
203 */
204 if (tlb_type != hypervisor) {
205 tick_disable_protection();
112f4871 206 tick_disable_irq();
7aa62645
DM
207
208 /* Let the user get at STICK too. */
209 __asm__ __volatile__(
210 " rd %%asr24, %%g2\n"
211 " andn %%g2, %0, %%g2\n"
212 " wr %%g2, 0, %%asr24"
213 : /* no outputs */
214 : "r" (TICK_PRIV_BIT)
215 : "g1", "g2");
216 }
1da177e4 217
112f4871 218 stick_disable_irq();
1da177e4
LT
219}
220
221static unsigned long stick_get_tick(void)
222{
223 unsigned long ret;
224
225 __asm__ __volatile__("rd %%asr24, %0"
226 : "=r" (ret));
227
228 return ret & ~TICK_PRIV_BIT;
229}
230
112f4871 231static unsigned long stick_add_tick(unsigned long adj)
1da177e4 232{
112f4871 233 unsigned long new_tick;
1da177e4
LT
234
235 __asm__ __volatile__("rd %%asr24, %0\n\t"
112f4871 236 "add %0, %1, %0\n\t"
1da177e4 237 "wr %0, 0, %%asr24\n\t"
112f4871
DM
238 : "=&r" (new_tick)
239 : "r" (adj));
1da177e4
LT
240
241 return new_tick;
242}
243
112f4871 244static int stick_add_compare(unsigned long adj)
1da177e4 245{
112f4871 246 unsigned long orig_tick, new_tick;
1da177e4 247
112f4871
DM
248 __asm__ __volatile__("rd %%asr24, %0"
249 : "=r" (orig_tick));
250 orig_tick &= ~TICKCMP_IRQ_BIT;
251
252 __asm__ __volatile__("wr %0, 0, %%asr25"
253 : /* no outputs */
254 : "r" (orig_tick + adj));
255
256 __asm__ __volatile__("rd %%asr24, %0"
257 : "=r" (new_tick));
258 new_tick &= ~TICKCMP_IRQ_BIT;
1da177e4 259
112f4871 260 return ((long)(new_tick - (orig_tick+adj))) > 0L;
1da177e4
LT
261}
262
d369ddd2 263static struct sparc64_tick_ops stick_operations __read_mostly = {
112f4871 264 .name = "stick",
1da177e4 265 .init_tick = stick_init_tick,
112f4871 266 .disable_irq = stick_disable_irq,
1da177e4 267 .get_tick = stick_get_tick,
1da177e4
LT
268 .add_tick = stick_add_tick,
269 .add_compare = stick_add_compare,
270 .softint_mask = 1UL << 16,
271};
272
273/* On Hummingbird the STICK/STICK_CMPR register is implemented
274 * in I/O space. There are two 64-bit registers each, the
275 * first holds the low 32-bits of the value and the second holds
276 * the high 32-bits.
277 *
278 * Since STICK is constantly updating, we have to access it carefully.
279 *
280 * The sequence we use to read is:
9eb3394b
RM
281 * 1) read high
282 * 2) read low
283 * 3) read high again, if it rolled re-read both low and high again.
1da177e4
LT
284 *
285 * Writing STICK safely is also tricky:
286 * 1) write low to zero
287 * 2) write high
288 * 3) write low
289 */
290#define HBIRD_STICKCMP_ADDR 0x1fe0000f060UL
291#define HBIRD_STICK_ADDR 0x1fe0000f070UL
292
293static unsigned long __hbird_read_stick(void)
294{
295 unsigned long ret, tmp1, tmp2, tmp3;
9eb3394b 296 unsigned long addr = HBIRD_STICK_ADDR+8;
1da177e4 297
9eb3394b
RM
298 __asm__ __volatile__("ldxa [%1] %5, %2\n"
299 "1:\n\t"
1da177e4 300 "sub %1, 0x8, %1\n\t"
9eb3394b
RM
301 "ldxa [%1] %5, %3\n\t"
302 "add %1, 0x8, %1\n\t"
1da177e4
LT
303 "ldxa [%1] %5, %4\n\t"
304 "cmp %4, %2\n\t"
9eb3394b
RM
305 "bne,a,pn %%xcc, 1b\n\t"
306 " mov %4, %2\n\t"
307 "sllx %4, 32, %4\n\t"
1da177e4
LT
308 "or %3, %4, %0\n\t"
309 : "=&r" (ret), "=&r" (addr),
310 "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3)
311 : "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr));
312
313 return ret;
314}
315
1da177e4
LT
316static void __hbird_write_stick(unsigned long val)
317{
318 unsigned long low = (val & 0xffffffffUL);
319 unsigned long high = (val >> 32UL);
320 unsigned long addr = HBIRD_STICK_ADDR;
321
322 __asm__ __volatile__("stxa %%g0, [%0] %4\n\t"
323 "add %0, 0x8, %0\n\t"
324 "stxa %3, [%0] %4\n\t"
325 "sub %0, 0x8, %0\n\t"
326 "stxa %2, [%0] %4"
327 : "=&r" (addr)
328 : "0" (addr), "r" (low), "r" (high),
329 "i" (ASI_PHYS_BYPASS_EC_E));
330}
331
332static void __hbird_write_compare(unsigned long val)
333{
334 unsigned long low = (val & 0xffffffffUL);
335 unsigned long high = (val >> 32UL);
336 unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL;
337
338 __asm__ __volatile__("stxa %3, [%0] %4\n\t"
339 "sub %0, 0x8, %0\n\t"
340 "stxa %2, [%0] %4"
341 : "=&r" (addr)
342 : "0" (addr), "r" (low), "r" (high),
343 "i" (ASI_PHYS_BYPASS_EC_E));
344}
345
112f4871 346static void hbtick_disable_irq(void)
1da177e4 347{
112f4871
DM
348 __hbird_write_compare(TICKCMP_IRQ_BIT);
349}
1da177e4 350
112f4871
DM
351static void hbtick_init_tick(void)
352{
1da177e4
LT
353 tick_disable_protection();
354
355 /* XXX This seems to be necessary to 'jumpstart' Hummingbird
356 * XXX into actually sending STICK interrupts. I think because
357 * XXX of how we store %tick_cmpr in head.S this somehow resets the
358 * XXX {TICK + STICK} interrupt mux. -DaveM
359 */
360 __hbird_write_stick(__hbird_read_stick());
361
112f4871 362 hbtick_disable_irq();
1da177e4
LT
363}
364
365static unsigned long hbtick_get_tick(void)
366{
367 return __hbird_read_stick() & ~TICK_PRIV_BIT;
368}
369
112f4871 370static unsigned long hbtick_add_tick(unsigned long adj)
1da177e4
LT
371{
372 unsigned long val;
373
374 val = __hbird_read_stick() + adj;
375 __hbird_write_stick(val);
376
1da177e4
LT
377 return val;
378}
379
112f4871 380static int hbtick_add_compare(unsigned long adj)
1da177e4 381{
112f4871
DM
382 unsigned long val = __hbird_read_stick();
383 unsigned long val2;
1da177e4 384
112f4871
DM
385 val &= ~TICKCMP_IRQ_BIT;
386 val += adj;
1da177e4
LT
387 __hbird_write_compare(val);
388
112f4871
DM
389 val2 = __hbird_read_stick() & ~TICKCMP_IRQ_BIT;
390
391 return ((long)(val2 - val)) > 0L;
1da177e4
LT
392}
393
d369ddd2 394static struct sparc64_tick_ops hbtick_operations __read_mostly = {
112f4871 395 .name = "hbtick",
1da177e4 396 .init_tick = hbtick_init_tick,
112f4871 397 .disable_irq = hbtick_disable_irq,
1da177e4 398 .get_tick = hbtick_get_tick,
1da177e4
LT
399 .add_tick = hbtick_add_tick,
400 .add_compare = hbtick_add_compare,
401 .softint_mask = 1UL << 0,
402};
403
d369ddd2 404static unsigned long timer_ticks_per_nsec_quotient __read_mostly;
1da177e4
LT
405
406#define TICK_SIZE (tick_nsec / 1000)
407
a58c9f3c
DM
408#define USEC_AFTER 500000
409#define USEC_BEFORE 500000
410
411static void sync_cmos_clock(unsigned long dummy);
412
413static DEFINE_TIMER(sync_cmos_timer, sync_cmos_clock, 0, 0);
414
415static void sync_cmos_clock(unsigned long dummy)
1da177e4 416{
a58c9f3c
DM
417 struct timeval now, next;
418 int fail = 1;
419
420 /*
421 * If we have an externally synchronized Linux clock, then update
422 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
423 * called as close as possible to 500 ms before the new second starts.
424 * This code is run on a timer. If the clock is set, that timer
425 * may not expire at the correct time. Thus, we adjust...
426 */
427 if (!ntp_synced())
428 /*
429 * Not synced, exit, do not restart a timer (if one is
430 * running, let it run out).
431 */
432 return;
433
434 do_gettimeofday(&now);
435 if (now.tv_usec >= USEC_AFTER - ((unsigned) TICK_SIZE) / 2 &&
436 now.tv_usec <= USEC_BEFORE + ((unsigned) TICK_SIZE) / 2)
437 fail = set_rtc_mmss(now.tv_sec);
438
439 next.tv_usec = USEC_AFTER - now.tv_usec;
440 if (next.tv_usec <= 0)
441 next.tv_usec += USEC_PER_SEC;
442
443 if (!fail)
444 next.tv_sec = 659;
445 else
446 next.tv_sec = 0;
447
448 if (next.tv_usec >= USEC_PER_SEC) {
449 next.tv_sec++;
450 next.tv_usec -= USEC_PER_SEC;
1da177e4 451 }
a58c9f3c
DM
452 mod_timer(&sync_cmos_timer, jiffies + timeval_to_jiffies(&next));
453}
454
455void notify_arch_cmos_timer(void)
456{
457 mod_timer(&sync_cmos_timer, jiffies + 1);
1da177e4
LT
458}
459
1da177e4
LT
460/* Kick start a stopped clock (procedure from the Sun NVRAM/hostid FAQ). */
461static void __init kick_start_clock(void)
462{
ef0299bf 463 void __iomem *regs = mstk48t02_regs;
1da177e4
LT
464 u8 sec, tmp;
465 int i, count;
466
467 prom_printf("CLOCK: Clock was stopped. Kick start ");
468
469 spin_lock_irq(&mostek_lock);
470
471 /* Turn on the kick start bit to start the oscillator. */
472 tmp = mostek_read(regs + MOSTEK_CREG);
473 tmp |= MSTK_CREG_WRITE;
474 mostek_write(regs + MOSTEK_CREG, tmp);
475 tmp = mostek_read(regs + MOSTEK_SEC);
476 tmp &= ~MSTK_STOP;
477 mostek_write(regs + MOSTEK_SEC, tmp);
478 tmp = mostek_read(regs + MOSTEK_HOUR);
479 tmp |= MSTK_KICK_START;
480 mostek_write(regs + MOSTEK_HOUR, tmp);
481 tmp = mostek_read(regs + MOSTEK_CREG);
482 tmp &= ~MSTK_CREG_WRITE;
483 mostek_write(regs + MOSTEK_CREG, tmp);
484
485 spin_unlock_irq(&mostek_lock);
486
487 /* Delay to allow the clock oscillator to start. */
488 sec = MSTK_REG_SEC(regs);
489 for (i = 0; i < 3; i++) {
490 while (sec == MSTK_REG_SEC(regs))
491 for (count = 0; count < 100000; count++)
492 /* nothing */ ;
493 prom_printf(".");
494 sec = MSTK_REG_SEC(regs);
495 }
496 prom_printf("\n");
497
498 spin_lock_irq(&mostek_lock);
499
500 /* Turn off kick start and set a "valid" time and date. */
501 tmp = mostek_read(regs + MOSTEK_CREG);
502 tmp |= MSTK_CREG_WRITE;
503 mostek_write(regs + MOSTEK_CREG, tmp);
504 tmp = mostek_read(regs + MOSTEK_HOUR);
505 tmp &= ~MSTK_KICK_START;
506 mostek_write(regs + MOSTEK_HOUR, tmp);
507 MSTK_SET_REG_SEC(regs,0);
508 MSTK_SET_REG_MIN(regs,0);
509 MSTK_SET_REG_HOUR(regs,0);
510 MSTK_SET_REG_DOW(regs,5);
511 MSTK_SET_REG_DOM(regs,1);
512 MSTK_SET_REG_MONTH(regs,8);
513 MSTK_SET_REG_YEAR(regs,1996 - MSTK_YEAR_ZERO);
514 tmp = mostek_read(regs + MOSTEK_CREG);
515 tmp &= ~MSTK_CREG_WRITE;
516 mostek_write(regs + MOSTEK_CREG, tmp);
517
518 spin_unlock_irq(&mostek_lock);
519
520 /* Ensure the kick start bit is off. If it isn't, turn it off. */
521 while (mostek_read(regs + MOSTEK_HOUR) & MSTK_KICK_START) {
522 prom_printf("CLOCK: Kick start still on!\n");
523
524 spin_lock_irq(&mostek_lock);
525
526 tmp = mostek_read(regs + MOSTEK_CREG);
527 tmp |= MSTK_CREG_WRITE;
528 mostek_write(regs + MOSTEK_CREG, tmp);
529
530 tmp = mostek_read(regs + MOSTEK_HOUR);
531 tmp &= ~MSTK_KICK_START;
532 mostek_write(regs + MOSTEK_HOUR, tmp);
533
534 tmp = mostek_read(regs + MOSTEK_CREG);
535 tmp &= ~MSTK_CREG_WRITE;
536 mostek_write(regs + MOSTEK_CREG, tmp);
537
538 spin_unlock_irq(&mostek_lock);
539 }
540
541 prom_printf("CLOCK: Kick start procedure successful.\n");
542}
543
544/* Return nonzero if the clock chip battery is low. */
545static int __init has_low_battery(void)
546{
ef0299bf 547 void __iomem *regs = mstk48t02_regs;
1da177e4
LT
548 u8 data1, data2;
549
550 spin_lock_irq(&mostek_lock);
551
552 data1 = mostek_read(regs + MOSTEK_EEPROM); /* Read some data. */
553 mostek_write(regs + MOSTEK_EEPROM, ~data1); /* Write back the complement. */
554 data2 = mostek_read(regs + MOSTEK_EEPROM); /* Read back the complement. */
555 mostek_write(regs + MOSTEK_EEPROM, data1); /* Restore original value. */
556
557 spin_unlock_irq(&mostek_lock);
558
559 return (data1 == data2); /* Was the write blocked? */
560}
561
562/* Probe for the real time clock chip. */
563static void __init set_system_time(void)
564{
565 unsigned int year, mon, day, hour, min, sec;
ef0299bf 566 void __iomem *mregs = mstk48t02_regs;
1da177e4
LT
567#ifdef CONFIG_PCI
568 unsigned long dregs = ds1287_regs;
d037e053 569 void __iomem *bregs = bq4802_regs;
1da177e4
LT
570#else
571 unsigned long dregs = 0UL;
d037e053 572 void __iomem *bregs = 0UL;
1da177e4
LT
573#endif
574 u8 tmp;
575
d037e053 576 if (!mregs && !dregs && !bregs) {
1da177e4
LT
577 prom_printf("Something wrong, clock regs not mapped yet.\n");
578 prom_halt();
579 }
580
581 if (mregs) {
582 spin_lock_irq(&mostek_lock);
583
584 /* Traditional Mostek chip. */
585 tmp = mostek_read(mregs + MOSTEK_CREG);
586 tmp |= MSTK_CREG_READ;
587 mostek_write(mregs + MOSTEK_CREG, tmp);
588
589 sec = MSTK_REG_SEC(mregs);
590 min = MSTK_REG_MIN(mregs);
591 hour = MSTK_REG_HOUR(mregs);
592 day = MSTK_REG_DOM(mregs);
593 mon = MSTK_REG_MONTH(mregs);
594 year = MSTK_CVT_YEAR( MSTK_REG_YEAR(mregs) );
d037e053
DM
595 } else if (bregs) {
596 unsigned char val = readb(bregs + 0x0e);
597 unsigned int century;
598
599 /* BQ4802 RTC chip. */
600
601 writeb(val | 0x08, bregs + 0x0e);
602
603 sec = readb(bregs + 0x00);
604 min = readb(bregs + 0x02);
605 hour = readb(bregs + 0x04);
606 day = readb(bregs + 0x06);
607 mon = readb(bregs + 0x09);
608 year = readb(bregs + 0x0a);
609 century = readb(bregs + 0x0f);
610
611 writeb(val, bregs + 0x0e);
612
613 BCD_TO_BIN(sec);
614 BCD_TO_BIN(min);
615 BCD_TO_BIN(hour);
616 BCD_TO_BIN(day);
617 BCD_TO_BIN(mon);
618 BCD_TO_BIN(year);
619 BCD_TO_BIN(century);
620
621 year += (century * 100);
1da177e4 622 } else {
1da177e4
LT
623 /* Dallas 12887 RTC chip. */
624
1da177e4
LT
625 do {
626 sec = CMOS_READ(RTC_SECONDS);
627 min = CMOS_READ(RTC_MINUTES);
628 hour = CMOS_READ(RTC_HOURS);
629 day = CMOS_READ(RTC_DAY_OF_MONTH);
630 mon = CMOS_READ(RTC_MONTH);
631 year = CMOS_READ(RTC_YEAR);
632 } while (sec != CMOS_READ(RTC_SECONDS));
3dedf53b 633
1da177e4
LT
634 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
635 BCD_TO_BIN(sec);
636 BCD_TO_BIN(min);
637 BCD_TO_BIN(hour);
638 BCD_TO_BIN(day);
639 BCD_TO_BIN(mon);
640 BCD_TO_BIN(year);
641 }
642 if ((year += 1900) < 1970)
643 year += 100;
644 }
645
646 xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
647 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
648 set_normalized_timespec(&wall_to_monotonic,
649 -xtime.tv_sec, -xtime.tv_nsec);
650
651 if (mregs) {
652 tmp = mostek_read(mregs + MOSTEK_CREG);
653 tmp &= ~MSTK_CREG_READ;
654 mostek_write(mregs + MOSTEK_CREG, tmp);
655
656 spin_unlock_irq(&mostek_lock);
657 }
658}
659
4bdff414
DM
660/* davem suggests we keep this within the 4M locked kernel image */
661static u32 starfire_get_time(void)
662{
663 static char obp_gettod[32];
664 static u32 unix_tod;
665
666 sprintf(obp_gettod, "h# %08x unix-gettod",
667 (unsigned int) (long) &unix_tod);
668 prom_feval(obp_gettod);
669
670 return unix_tod;
671}
672
8ba706a9
DM
673static int starfire_set_time(u32 val)
674{
675 /* Do nothing, time is set using the service processor
676 * console on this platform.
677 */
678 return 0;
679}
680
4bdff414
DM
681static u32 hypervisor_get_time(void)
682{
7db35f31 683 unsigned long ret, time;
4bdff414
DM
684 int retries = 10000;
685
686retry:
7db35f31
DM
687 ret = sun4v_tod_get(&time);
688 if (ret == HV_EOK)
689 return time;
690 if (ret == HV_EWOULDBLOCK) {
4bdff414
DM
691 if (--retries > 0) {
692 udelay(100);
693 goto retry;
694 }
695 printk(KERN_WARNING "SUN4V: tod_get() timed out.\n");
696 return 0;
697 }
698 printk(KERN_WARNING "SUN4V: tod_get() not supported.\n");
699 return 0;
700}
701
8ba706a9
DM
702static int hypervisor_set_time(u32 secs)
703{
7db35f31 704 unsigned long ret;
8ba706a9
DM
705 int retries = 10000;
706
707retry:
7db35f31
DM
708 ret = sun4v_tod_set(secs);
709 if (ret == HV_EOK)
8ba706a9 710 return 0;
7db35f31 711 if (ret == HV_EWOULDBLOCK) {
8ba706a9
DM
712 if (--retries > 0) {
713 udelay(100);
714 goto retry;
715 }
716 printk(KERN_WARNING "SUN4V: tod_set() timed out.\n");
717 return -EAGAIN;
718 }
719 printk(KERN_WARNING "SUN4V: tod_set() not supported.\n");
720 return -EOPNOTSUPP;
721}
722
6a23acf3 723static int __init clock_model_matches(const char *model)
690c8fd3
DM
724{
725 if (strcmp(model, "mk48t02") &&
726 strcmp(model, "mk48t08") &&
727 strcmp(model, "mk48t59") &&
728 strcmp(model, "m5819") &&
729 strcmp(model, "m5819p") &&
730 strcmp(model, "m5823") &&
d037e053
DM
731 strcmp(model, "ds1287") &&
732 strcmp(model, "bq4802"))
690c8fd3
DM
733 return 0;
734
735 return 1;
736}
737
ee5caf0e 738static int __devinit clock_probe(struct of_device *op, const struct of_device_id *match)
690c8fd3 739{
ee5caf0e 740 struct device_node *dp = op->node;
6a23acf3 741 const char *model = of_get_property(dp, "model", NULL);
d037e053 742 const char *compat = of_get_property(dp, "compatible", NULL);
ee5caf0e
DM
743 unsigned long size, flags;
744 void __iomem *regs;
690c8fd3 745
d037e053
DM
746 if (!model)
747 model = compat;
748
ee5caf0e
DM
749 if (!model || !clock_model_matches(model))
750 return -ENODEV;
690c8fd3 751
91521485
DM
752 /* On an Enterprise system there can be multiple mostek clocks.
753 * We should only match the one that is on the central FHC bus.
754 */
c3a8b85f
DM
755 if (!strcmp(dp->parent->name, "fhc") &&
756 strcmp(dp->parent->parent->name, "central") != 0)
91521485
DM
757 return -ENODEV;
758
ee5caf0e
DM
759 size = (op->resource[0].end - op->resource[0].start) + 1;
760 regs = of_ioremap(&op->resource[0], 0, size, "clock");
761 if (!regs)
762 return -ENOMEM;
690c8fd3 763
7233589d 764#ifdef CONFIG_PCI
690c8fd3
DM
765 if (!strcmp(model, "ds1287") ||
766 !strcmp(model, "m5819") ||
767 !strcmp(model, "m5819p") ||
768 !strcmp(model, "m5823")) {
ee5caf0e 769 ds1287_regs = (unsigned long) regs;
d037e053
DM
770 } else if (!strcmp(model, "bq4802")) {
771 bq4802_regs = regs;
7233589d
RD
772 } else
773#endif
774 if (model[5] == '0' && model[6] == '2') {
ee5caf0e
DM
775 mstk48t02_regs = regs;
776 } else if(model[5] == '0' && model[6] == '8') {
777 mstk48t08_regs = regs;
778 mstk48t02_regs = mstk48t08_regs + MOSTEK_48T08_48T02;
690c8fd3 779 } else {
ee5caf0e 780 mstk48t59_regs = regs;
690c8fd3
DM
781 mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02;
782 }
690c8fd3 783
ee5caf0e 784 printk(KERN_INFO "%s: Clock regs at %p\n", dp->full_name, regs);
690c8fd3 785
ee5caf0e 786 local_irq_save(flags);
690c8fd3 787
ee5caf0e
DM
788 if (mstk48t02_regs != NULL) {
789 /* Report a low battery voltage condition. */
790 if (has_low_battery())
791 prom_printf("NVRAM: Low battery voltage!\n");
690c8fd3 792
ee5caf0e
DM
793 /* Kick start the clock if it is completely stopped. */
794 if (mostek_read(mstk48t02_regs + MOSTEK_SEC) & MSTK_STOP)
795 kick_start_clock();
690c8fd3
DM
796 }
797
ee5caf0e
DM
798 set_system_time();
799
800 local_irq_restore(flags);
690c8fd3
DM
801
802 return 0;
803}
690c8fd3 804
ee5caf0e
DM
805static struct of_device_id clock_match[] = {
806 {
807 .name = "eeprom",
808 },
809 {
810 .name = "rtc",
811 },
812 {},
813};
690c8fd3 814
ee5caf0e
DM
815static struct of_platform_driver clock_driver = {
816 .name = "clock",
817 .match_table = clock_match,
818 .probe = clock_probe,
819};
690c8fd3 820
ee5caf0e 821static int __init clock_init(void)
690c8fd3 822{
1da177e4 823 if (this_is_starfire) {
4bdff414
DM
824 xtime.tv_sec = starfire_get_time();
825 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
826 set_normalized_timespec(&wall_to_monotonic,
827 -xtime.tv_sec, -xtime.tv_nsec);
ee5caf0e 828 return 0;
4bdff414
DM
829 }
830 if (tlb_type == hypervisor) {
831 xtime.tv_sec = hypervisor_get_time();
1da177e4
LT
832 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
833 set_normalized_timespec(&wall_to_monotonic,
834 -xtime.tv_sec, -xtime.tv_nsec);
ee5caf0e 835 return 0;
1da177e4
LT
836 }
837
37b7754a 838 return of_register_driver(&clock_driver, &of_platform_bus_type);
1da177e4
LT
839}
840
ee5caf0e
DM
841/* Must be after subsys_initcall() so that busses are probed. Must
842 * be before device_initcall() because things like the RTC driver
843 * need to see the clock registers.
844 */
845fs_initcall(clock_init);
846
1da177e4
LT
847/* This is gets the master TICK_INT timer going. */
848static unsigned long sparc64_init_timers(void)
849{
07f8e5f3 850 struct device_node *dp;
1da177e4 851 unsigned long clock;
1da177e4 852
07f8e5f3 853 dp = of_find_node_by_path("/");
1da177e4
LT
854 if (tlb_type == spitfire) {
855 unsigned long ver, manuf, impl;
856
857 __asm__ __volatile__ ("rdpr %%ver, %0"
858 : "=&r" (ver));
859 manuf = ((ver >> 48) & 0xffff);
860 impl = ((ver >> 32) & 0xffff);
861 if (manuf == 0x17 && impl == 0x13) {
862 /* Hummingbird, aka Ultra-IIe */
863 tick_ops = &hbtick_operations;
5cbc3073 864 clock = of_getintprop_default(dp, "stick-frequency", 0);
1da177e4
LT
865 } else {
866 tick_ops = &tick_operations;
5cbc3073 867 clock = local_cpu_data().clock_tick;
1da177e4
LT
868 }
869 } else {
870 tick_ops = &stick_operations;
5cbc3073 871 clock = of_getintprop_default(dp, "stick-frequency", 0);
1da177e4 872 }
1da177e4 873
1da177e4
LT
874 return clock;
875}
876
1da177e4 877struct freq_table {
1da177e4
LT
878 unsigned long clock_tick_ref;
879 unsigned int ref_freq;
880};
3763be32 881static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 };
1da177e4
LT
882
883unsigned long sparc64_get_clock_tick(unsigned int cpu)
884{
885 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
886
887 if (ft->clock_tick_ref)
888 return ft->clock_tick_ref;
889 return cpu_data(cpu).clock_tick;
890}
891
892#ifdef CONFIG_CPU_FREQ
893
894static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
895 void *data)
896{
897 struct cpufreq_freqs *freq = data;
898 unsigned int cpu = freq->cpu;
899 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
900
901 if (!ft->ref_freq) {
902 ft->ref_freq = freq->old;
1da177e4
LT
903 ft->clock_tick_ref = cpu_data(cpu).clock_tick;
904 }
905 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
906 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
907 (val == CPUFREQ_RESUMECHANGE)) {
1da177e4
LT
908 cpu_data(cpu).clock_tick =
909 cpufreq_scale(ft->clock_tick_ref,
910 ft->ref_freq,
911 freq->new);
912 }
913
914 return 0;
915}
916
917static struct notifier_block sparc64_cpufreq_notifier_block = {
918 .notifier_call = sparc64_cpufreq_notifier
919};
920
921#endif /* CONFIG_CPU_FREQ */
922
112f4871
DM
923static int sparc64_next_event(unsigned long delta,
924 struct clock_event_device *evt)
925{
d62c6f09 926 return tick_ops->add_compare(delta) ? -ETIME : 0;
112f4871
DM
927}
928
929static void sparc64_timer_setup(enum clock_event_mode mode,
930 struct clock_event_device *evt)
931{
932 switch (mode) {
933 case CLOCK_EVT_MODE_ONESHOT:
934 break;
935
936 case CLOCK_EVT_MODE_SHUTDOWN:
937 tick_ops->disable_irq();
938 break;
939
940 case CLOCK_EVT_MODE_PERIODIC:
941 case CLOCK_EVT_MODE_UNUSED:
942 WARN_ON(1);
943 break;
944 };
945}
946
947static struct clock_event_device sparc64_clockevent = {
948 .features = CLOCK_EVT_FEAT_ONESHOT,
949 .set_mode = sparc64_timer_setup,
950 .set_next_event = sparc64_next_event,
951 .rating = 100,
952 .shift = 30,
953 .irq = -1,
1da177e4 954};
112f4871 955static DEFINE_PER_CPU(struct clock_event_device, sparc64_events);
1da177e4 956
112f4871 957void timer_interrupt(int irq, struct pt_regs *regs)
1da177e4 958{
112f4871
DM
959 struct pt_regs *old_regs = set_irq_regs(regs);
960 unsigned long tick_mask = tick_ops->softint_mask;
961 int cpu = smp_processor_id();
962 struct clock_event_device *evt = &per_cpu(sparc64_events, cpu);
963
964 clear_softint(tick_mask);
965
966 irq_enter();
967
968 kstat_this_cpu.irqs[0]++;
969
970 if (unlikely(!evt->event_handler)) {
971 printk(KERN_WARNING
972 "Spurious SPARC64 timer interrupt on cpu %d\n", cpu);
973 } else
974 evt->event_handler(evt);
975
976 irq_exit();
977
978 set_irq_regs(old_regs);
979}
1da177e4 980
112f4871
DM
981void __devinit setup_sparc64_timer(void)
982{
983 struct clock_event_device *sevt;
984 unsigned long pstate;
1da177e4 985
112f4871
DM
986 /* Guarantee that the following sequences execute
987 * uninterrupted.
1da177e4 988 */
112f4871
DM
989 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
990 "wrpr %0, %1, %%pstate"
991 : "=r" (pstate)
992 : "i" (PSTATE_IE));
993
994 tick_ops->init_tick();
995
996 /* Restore PSTATE_IE. */
997 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
998 : /* no outputs */
999 : "r" (pstate));
1000
1001 sevt = &__get_cpu_var(sparc64_events);
1002
1003 memcpy(sevt, &sparc64_clockevent, sizeof(*sevt));
1004 sevt->cpumask = cpumask_of_cpu(smp_processor_id());
1005
1006 clockevents_register_device(sevt);
1007}
1008
03983ab8 1009#define SPARC64_NSEC_PER_CYC_SHIFT 10UL
112f4871
DM
1010
1011static struct clocksource clocksource_tick = {
1012 .rating = 100,
1013 .mask = CLOCKSOURCE_MASK(64),
1014 .shift = 16,
1015 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
1016};
1017
1018static void __init setup_clockevent_multiplier(unsigned long hz)
1019{
1020 unsigned long mult, shift = 32;
1021
1022 while (1) {
1023 mult = div_sc(hz, NSEC_PER_SEC, shift);
1024 if (mult && (mult >> 32UL) == 0UL)
1025 break;
1026
1027 shift--;
1028 }
1029
1030 sparc64_clockevent.shift = shift;
1031 sparc64_clockevent.mult = mult;
1032}
1033
8b99cfb8
DM
1034static unsigned long tb_ticks_per_usec __read_mostly;
1035
1036void __delay(unsigned long loops)
1037{
1038 unsigned long bclock, now;
1039
1040 bclock = tick_ops->get_tick();
1041 do {
1042 now = tick_ops->get_tick();
1043 } while ((now-bclock) < loops);
1044}
1045EXPORT_SYMBOL(__delay);
1046
1047void udelay(unsigned long usecs)
1048{
1049 __delay(tb_ticks_per_usec * usecs);
1050}
1051EXPORT_SYMBOL(udelay);
1052
112f4871
DM
1053void __init time_init(void)
1054{
1055 unsigned long clock = sparc64_init_timers();
1da177e4 1056
8b99cfb8
DM
1057 tb_ticks_per_usec = clock / USEC_PER_SEC;
1058
1da177e4 1059 timer_ticks_per_nsec_quotient =
112f4871
DM
1060 clocksource_hz2mult(clock, SPARC64_NSEC_PER_CYC_SHIFT);
1061
1062 clocksource_tick.name = tick_ops->name;
1063 clocksource_tick.mult =
1064 clocksource_hz2mult(clock,
1065 clocksource_tick.shift);
1066 clocksource_tick.read = tick_ops->get_tick;
1067
1068 printk("clocksource: mult[%x] shift[%d]\n",
1069 clocksource_tick.mult, clocksource_tick.shift);
1070
1071 clocksource_register(&clocksource_tick);
1072
1073 sparc64_clockevent.name = tick_ops->name;
1074
1075 setup_clockevent_multiplier(clock);
1076
1077 sparc64_clockevent.max_delta_ns =
1078 clockevent_delta2ns(0x7fffffffffffffff, &sparc64_clockevent);
1079 sparc64_clockevent.min_delta_ns =
1080 clockevent_delta2ns(0xF, &sparc64_clockevent);
1081
1082 printk("clockevent: mult[%lx] shift[%d]\n",
1083 sparc64_clockevent.mult, sparc64_clockevent.shift);
1084
1085 setup_sparc64_timer();
1da177e4
LT
1086
1087#ifdef CONFIG_CPU_FREQ
1088 cpufreq_register_notifier(&sparc64_cpufreq_notifier_block,
1089 CPUFREQ_TRANSITION_NOTIFIER);
1090#endif
1091}
1092
1093unsigned long long sched_clock(void)
1094{
1095 unsigned long ticks = tick_ops->get_tick();
1096
1097 return (ticks * timer_ticks_per_nsec_quotient)
1098 >> SPARC64_NSEC_PER_CYC_SHIFT;
1099}
1100
1101static int set_rtc_mmss(unsigned long nowtime)
1102{
1103 int real_seconds, real_minutes, chip_minutes;
ef0299bf 1104 void __iomem *mregs = mstk48t02_regs;
1da177e4
LT
1105#ifdef CONFIG_PCI
1106 unsigned long dregs = ds1287_regs;
d037e053 1107 void __iomem *bregs = bq4802_regs;
1da177e4
LT
1108#else
1109 unsigned long dregs = 0UL;
d037e053 1110 void __iomem *bregs = 0UL;
1da177e4
LT
1111#endif
1112 unsigned long flags;
1113 u8 tmp;
1114
1115 /*
1116 * Not having a register set can lead to trouble.
1117 * Also starfire doesn't have a tod clock.
1118 */
d037e053 1119 if (!mregs && !dregs & !bregs)
1da177e4
LT
1120 return -1;
1121
1122 if (mregs) {
1123 spin_lock_irqsave(&mostek_lock, flags);
1124
1125 /* Read the current RTC minutes. */
1126 tmp = mostek_read(mregs + MOSTEK_CREG);
1127 tmp |= MSTK_CREG_READ;
1128 mostek_write(mregs + MOSTEK_CREG, tmp);
1129
1130 chip_minutes = MSTK_REG_MIN(mregs);
1131
1132 tmp = mostek_read(mregs + MOSTEK_CREG);
1133 tmp &= ~MSTK_CREG_READ;
1134 mostek_write(mregs + MOSTEK_CREG, tmp);
1135
1136 /*
1137 * since we're only adjusting minutes and seconds,
1138 * don't interfere with hour overflow. This avoids
1139 * messing with unknown time zones but requires your
1140 * RTC not to be off by more than 15 minutes
1141 */
1142 real_seconds = nowtime % 60;
1143 real_minutes = nowtime / 60;
1144 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1145 real_minutes += 30; /* correct for half hour time zone */
1146 real_minutes %= 60;
1147
1148 if (abs(real_minutes - chip_minutes) < 30) {
1149 tmp = mostek_read(mregs + MOSTEK_CREG);
1150 tmp |= MSTK_CREG_WRITE;
1151 mostek_write(mregs + MOSTEK_CREG, tmp);
1152
1153 MSTK_SET_REG_SEC(mregs,real_seconds);
1154 MSTK_SET_REG_MIN(mregs,real_minutes);
1155
1156 tmp = mostek_read(mregs + MOSTEK_CREG);
1157 tmp &= ~MSTK_CREG_WRITE;
1158 mostek_write(mregs + MOSTEK_CREG, tmp);
1159
1160 spin_unlock_irqrestore(&mostek_lock, flags);
1161
1162 return 0;
1163 } else {
1164 spin_unlock_irqrestore(&mostek_lock, flags);
1165
1166 return -1;
1167 }
d037e053
DM
1168 } else if (bregs) {
1169 int retval = 0;
1170 unsigned char val = readb(bregs + 0x0e);
1171
1172 /* BQ4802 RTC chip. */
1173
1174 writeb(val | 0x08, bregs + 0x0e);
1175
1176 chip_minutes = readb(bregs + 0x02);
1177 BCD_TO_BIN(chip_minutes);
1178 real_seconds = nowtime % 60;
1179 real_minutes = nowtime / 60;
1180 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1181 real_minutes += 30;
1182 real_minutes %= 60;
1183
1184 if (abs(real_minutes - chip_minutes) < 30) {
1185 BIN_TO_BCD(real_seconds);
1186 BIN_TO_BCD(real_minutes);
1187 writeb(real_seconds, bregs + 0x00);
1188 writeb(real_minutes, bregs + 0x02);
1189 } else {
1190 printk(KERN_WARNING
1191 "set_rtc_mmss: can't update from %d to %d\n",
1192 chip_minutes, real_minutes);
1193 retval = -1;
1194 }
1195
1196 writeb(val, bregs + 0x0e);
1197
1198 return retval;
1da177e4
LT
1199 } else {
1200 int retval = 0;
1201 unsigned char save_control, save_freq_select;
1202
1203 /* Stolen from arch/i386/kernel/time.c, see there for
1204 * credits and descriptive comments.
1205 */
1206 spin_lock_irqsave(&rtc_lock, flags);
1207 save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
1208 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
1209
1210 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
1211 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
1212
1213 chip_minutes = CMOS_READ(RTC_MINUTES);
1214 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1215 BCD_TO_BIN(chip_minutes);
1216 real_seconds = nowtime % 60;
1217 real_minutes = nowtime / 60;
1218 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1219 real_minutes += 30;
1220 real_minutes %= 60;
1221
1222 if (abs(real_minutes - chip_minutes) < 30) {
1223 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1224 BIN_TO_BCD(real_seconds);
1225 BIN_TO_BCD(real_minutes);
1226 }
1227 CMOS_WRITE(real_seconds,RTC_SECONDS);
1228 CMOS_WRITE(real_minutes,RTC_MINUTES);
1229 } else {
1230 printk(KERN_WARNING
1231 "set_rtc_mmss: can't update from %d to %d\n",
1232 chip_minutes, real_minutes);
1233 retval = -1;
1234 }
1235
1236 CMOS_WRITE(save_control, RTC_CONTROL);
1237 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
1238 spin_unlock_irqrestore(&rtc_lock, flags);
1239
1240 return retval;
1241 }
1242}
8ba706a9
DM
1243
1244#define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
1245static unsigned char mini_rtc_status; /* bitmapped status byte. */
1246
8ba706a9
DM
1247#define FEBRUARY 2
1248#define STARTOFTIME 1970
1249#define SECDAY 86400L
1250#define SECYR (SECDAY * 365)
1251#define leapyear(year) ((year) % 4 == 0 && \
1252 ((year) % 100 != 0 || (year) % 400 == 0))
1253#define days_in_year(a) (leapyear(a) ? 366 : 365)
1254#define days_in_month(a) (month_days[(a) - 1])
1255
1256static int month_days[12] = {
1257 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1258};
1259
1260/*
1261 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1262 */
1263static void GregorianDay(struct rtc_time * tm)
1264{
1265 int leapsToDate;
1266 int lastYear;
1267 int day;
1268 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1269
1270 lastYear = tm->tm_year - 1;
1271
1272 /*
1273 * Number of leap corrections to apply up to end of last year
1274 */
1275 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1276
1277 /*
1278 * This year is a leap year if it is divisible by 4 except when it is
1279 * divisible by 100 unless it is divisible by 400
1280 *
1281 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1282 */
1283 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1284
1285 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1286 tm->tm_mday;
1287
1288 tm->tm_wday = day % 7;
1289}
1290
1291static void to_tm(int tim, struct rtc_time *tm)
1292{
1293 register int i;
1294 register long hms, day;
1295
1296 day = tim / SECDAY;
1297 hms = tim % SECDAY;
1298
1299 /* Hours, minutes, seconds are easy */
1300 tm->tm_hour = hms / 3600;
1301 tm->tm_min = (hms % 3600) / 60;
1302 tm->tm_sec = (hms % 3600) % 60;
1303
1304 /* Number of years in days */
1305 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1306 day -= days_in_year(i);
1307 tm->tm_year = i;
1308
1309 /* Number of months in days left */
1310 if (leapyear(tm->tm_year))
1311 days_in_month(FEBRUARY) = 29;
1312 for (i = 1; day >= days_in_month(i); i++)
1313 day -= days_in_month(i);
1314 days_in_month(FEBRUARY) = 28;
1315 tm->tm_mon = i;
1316
1317 /* Days are what is left over (+1) from all that. */
1318 tm->tm_mday = day + 1;
1319
1320 /*
1321 * Determine the day of week
1322 */
1323 GregorianDay(tm);
1324}
1325
1326/* Both Starfire and SUN4V give us seconds since Jan 1st, 1970,
1327 * aka Unix time. So we have to convert to/from rtc_time.
1328 */
d037e053 1329static void starfire_get_rtc_time(struct rtc_time *time)
8ba706a9 1330{
d037e053 1331 u32 seconds = starfire_get_time();
8ba706a9 1332
d037e053
DM
1333 to_tm(seconds, time);
1334 time->tm_year -= 1900;
1335 time->tm_mon -= 1;
1336}
1337
1338static int starfire_set_rtc_time(struct rtc_time *time)
1339{
1340 u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1,
1341 time->tm_mday, time->tm_hour,
1342 time->tm_min, time->tm_sec);
1343
1344 return starfire_set_time(seconds);
1345}
1346
1347static void hypervisor_get_rtc_time(struct rtc_time *time)
1348{
1349 u32 seconds = hypervisor_get_time();
8ba706a9
DM
1350
1351 to_tm(seconds, time);
c4f8ef77
DM
1352 time->tm_year -= 1900;
1353 time->tm_mon -= 1;
8ba706a9
DM
1354}
1355
d037e053 1356static int hypervisor_set_rtc_time(struct rtc_time *time)
8ba706a9
DM
1357{
1358 u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1,
1359 time->tm_mday, time->tm_hour,
1360 time->tm_min, time->tm_sec);
d037e053
DM
1361
1362 return hypervisor_set_time(seconds);
1363}
1364
7189859f 1365#ifdef CONFIG_PCI
d037e053
DM
1366static void bq4802_get_rtc_time(struct rtc_time *time)
1367{
1368 unsigned char val = readb(bq4802_regs + 0x0e);
1369 unsigned int century;
1370
1371 writeb(val | 0x08, bq4802_regs + 0x0e);
1372
1373 time->tm_sec = readb(bq4802_regs + 0x00);
1374 time->tm_min = readb(bq4802_regs + 0x02);
1375 time->tm_hour = readb(bq4802_regs + 0x04);
1376 time->tm_mday = readb(bq4802_regs + 0x06);
1377 time->tm_mon = readb(bq4802_regs + 0x09);
1378 time->tm_year = readb(bq4802_regs + 0x0a);
1379 time->tm_wday = readb(bq4802_regs + 0x08);
1380 century = readb(bq4802_regs + 0x0f);
1381
1382 writeb(val, bq4802_regs + 0x0e);
1383
1384 BCD_TO_BIN(time->tm_sec);
1385 BCD_TO_BIN(time->tm_min);
1386 BCD_TO_BIN(time->tm_hour);
1387 BCD_TO_BIN(time->tm_mday);
1388 BCD_TO_BIN(time->tm_mon);
1389 BCD_TO_BIN(time->tm_year);
1390 BCD_TO_BIN(time->tm_wday);
1391 BCD_TO_BIN(century);
1392
1393 time->tm_year += (century * 100);
1394 time->tm_year -= 1900;
1395
1396 time->tm_mon--;
1397}
1398
1399static int bq4802_set_rtc_time(struct rtc_time *time)
1400{
1401 unsigned char val = readb(bq4802_regs + 0x0e);
1402 unsigned char sec, min, hrs, day, mon, yrs, century;
1403 unsigned int year;
1404
1405 year = time->tm_year + 1900;
1406 century = year / 100;
1407 yrs = year % 100;
1408
1409 mon = time->tm_mon + 1; /* tm_mon starts at zero */
1410 day = time->tm_mday;
1411 hrs = time->tm_hour;
1412 min = time->tm_min;
1413 sec = time->tm_sec;
1414
1415 BIN_TO_BCD(sec);
1416 BIN_TO_BCD(min);
1417 BIN_TO_BCD(hrs);
1418 BIN_TO_BCD(day);
1419 BIN_TO_BCD(mon);
1420 BIN_TO_BCD(yrs);
1421 BIN_TO_BCD(century);
1422
1423 writeb(val | 0x08, bq4802_regs + 0x0e);
1424
1425 writeb(sec, bq4802_regs + 0x00);
1426 writeb(min, bq4802_regs + 0x02);
1427 writeb(hrs, bq4802_regs + 0x04);
1428 writeb(day, bq4802_regs + 0x06);
1429 writeb(mon, bq4802_regs + 0x09);
1430 writeb(yrs, bq4802_regs + 0x0a);
1431 writeb(century, bq4802_regs + 0x0f);
1432
1433 writeb(val, bq4802_regs + 0x0e);
1434
1435 return 0;
1436}
7189859f 1437#endif /* CONFIG_PCI */
d037e053
DM
1438
1439struct mini_rtc_ops {
1440 void (*get_rtc_time)(struct rtc_time *);
1441 int (*set_rtc_time)(struct rtc_time *);
1442};
1443
1444static struct mini_rtc_ops starfire_rtc_ops = {
1445 .get_rtc_time = starfire_get_rtc_time,
1446 .set_rtc_time = starfire_set_rtc_time,
1447};
1448
1449static struct mini_rtc_ops hypervisor_rtc_ops = {
1450 .get_rtc_time = hypervisor_get_rtc_time,
1451 .set_rtc_time = hypervisor_set_rtc_time,
1452};
1453
7189859f 1454#ifdef CONFIG_PCI
d037e053
DM
1455static struct mini_rtc_ops bq4802_rtc_ops = {
1456 .get_rtc_time = bq4802_get_rtc_time,
1457 .set_rtc_time = bq4802_set_rtc_time,
1458};
7189859f 1459#endif /* CONFIG_PCI */
d037e053
DM
1460
1461static struct mini_rtc_ops *mini_rtc_ops;
1462
1463static inline void mini_get_rtc_time(struct rtc_time *time)
1464{
1465 unsigned long flags;
1466
1467 spin_lock_irqsave(&rtc_lock, flags);
1468 mini_rtc_ops->get_rtc_time(time);
1469 spin_unlock_irqrestore(&rtc_lock, flags);
1470}
1471
1472static inline int mini_set_rtc_time(struct rtc_time *time)
1473{
8ba706a9
DM
1474 unsigned long flags;
1475 int err;
1476
1477 spin_lock_irqsave(&rtc_lock, flags);
d037e053 1478 err = mini_rtc_ops->set_rtc_time(time);
8ba706a9
DM
1479 spin_unlock_irqrestore(&rtc_lock, flags);
1480
1481 return err;
1482}
1483
1484static int mini_rtc_ioctl(struct inode *inode, struct file *file,
1485 unsigned int cmd, unsigned long arg)
1486{
1487 struct rtc_time wtime;
1488 void __user *argp = (void __user *)arg;
1489
1490 switch (cmd) {
1491
1492 case RTC_PLL_GET:
1493 return -EINVAL;
1494
1495 case RTC_PLL_SET:
1496 return -EINVAL;
1497
1498 case RTC_UIE_OFF: /* disable ints from RTC updates. */
1499 return 0;
1500
1501 case RTC_UIE_ON: /* enable ints for RTC updates. */
1502 return -EINVAL;
1503
1504 case RTC_RD_TIME: /* Read the time/date from RTC */
1505 /* this doesn't get week-day, who cares */
1506 memset(&wtime, 0, sizeof(wtime));
1507 mini_get_rtc_time(&wtime);
1508
1509 return copy_to_user(argp, &wtime, sizeof(wtime)) ? -EFAULT : 0;
1510
1511 case RTC_SET_TIME: /* Set the RTC */
1512 {
644923d4 1513 int year, days;
8ba706a9
DM
1514
1515 if (!capable(CAP_SYS_TIME))
1516 return -EACCES;
1517
1518 if (copy_from_user(&wtime, argp, sizeof(wtime)))
1519 return -EFAULT;
1520
1521 year = wtime.tm_year + 1900;
644923d4
TB
1522 days = month_days[wtime.tm_mon] +
1523 ((wtime.tm_mon == 1) && leapyear(year));
8ba706a9 1524
644923d4
TB
1525 if ((wtime.tm_mon < 0 || wtime.tm_mon > 11) ||
1526 (wtime.tm_mday < 1))
8ba706a9
DM
1527 return -EINVAL;
1528
644923d4 1529 if (wtime.tm_mday < 0 || wtime.tm_mday > days)
8ba706a9
DM
1530 return -EINVAL;
1531
1532 if (wtime.tm_hour < 0 || wtime.tm_hour >= 24 ||
1533 wtime.tm_min < 0 || wtime.tm_min >= 60 ||
1534 wtime.tm_sec < 0 || wtime.tm_sec >= 60)
1535 return -EINVAL;
1536
1537 return mini_set_rtc_time(&wtime);
1538 }
1539 }
1540
1541 return -EINVAL;
1542}
1543
1544static int mini_rtc_open(struct inode *inode, struct file *file)
1545{
1546 if (mini_rtc_status & RTC_IS_OPEN)
1547 return -EBUSY;
1548
1549 mini_rtc_status |= RTC_IS_OPEN;
1550
1551 return 0;
1552}
1553
1554static int mini_rtc_release(struct inode *inode, struct file *file)
1555{
1556 mini_rtc_status &= ~RTC_IS_OPEN;
1557 return 0;
1558}
1559
1560
5dfe4c96 1561static const struct file_operations mini_rtc_fops = {
8ba706a9
DM
1562 .owner = THIS_MODULE,
1563 .ioctl = mini_rtc_ioctl,
1564 .open = mini_rtc_open,
1565 .release = mini_rtc_release,
1566};
1567
1568static struct miscdevice rtc_mini_dev =
1569{
1570 .minor = RTC_MINOR,
1571 .name = "rtc",
1572 .fops = &mini_rtc_fops,
1573};
1574
1575static int __init rtc_mini_init(void)
1576{
1577 int retval;
1578
d037e053
DM
1579 if (tlb_type == hypervisor)
1580 mini_rtc_ops = &hypervisor_rtc_ops;
1581 else if (this_is_starfire)
1582 mini_rtc_ops = &starfire_rtc_ops;
7189859f 1583#ifdef CONFIG_PCI
d037e053
DM
1584 else if (bq4802_regs)
1585 mini_rtc_ops = &bq4802_rtc_ops;
7189859f 1586#endif /* CONFIG_PCI */
d037e053 1587 else
8ba706a9
DM
1588 return -ENODEV;
1589
1590 printk(KERN_INFO "Mini RTC Driver\n");
1591
1592 retval = misc_register(&rtc_mini_dev);
1593 if (retval < 0)
1594 return retval;
1595
1596 return 0;
1597}
1598
1599static void __exit rtc_mini_exit(void)
1600{
1601 misc_deregister(&rtc_mini_dev);
1602}
1603
1604
1605module_init(rtc_mini_init);
1606module_exit(rtc_mini_exit);