sparc64: Convert over to NO_BOOTMEM.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / sparc / mm / init_64.c
CommitLineData
b00dc837 1/*
1da177e4
LT
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
c4bce90e 8#include <linux/module.h>
1da177e4
LT
9#include <linux/kernel.h>
10#include <linux/sched.h>
11#include <linux/string.h>
12#include <linux/init.h>
13#include <linux/bootmem.h>
14#include <linux/mm.h>
15#include <linux/hugetlb.h>
1da177e4
LT
16#include <linux/initrd.h>
17#include <linux/swap.h>
18#include <linux/pagemap.h>
c9cf5528 19#include <linux/poison.h>
1da177e4
LT
20#include <linux/fs.h>
21#include <linux/seq_file.h>
05e14cb3 22#include <linux/kprobes.h>
1ac4f5eb 23#include <linux/cache.h>
13edad7a 24#include <linux/sort.h>
5cbc3073 25#include <linux/percpu.h>
95f72d1e 26#include <linux/memblock.h>
919ee677 27#include <linux/mmzone.h>
5a0e3ad6 28#include <linux/gfp.h>
1da177e4
LT
29
30#include <asm/head.h>
1da177e4
LT
31#include <asm/page.h>
32#include <asm/pgalloc.h>
33#include <asm/pgtable.h>
34#include <asm/oplib.h>
35#include <asm/iommu.h>
36#include <asm/io.h>
37#include <asm/uaccess.h>
38#include <asm/mmu_context.h>
39#include <asm/tlbflush.h>
40#include <asm/dma.h>
41#include <asm/starfire.h>
42#include <asm/tlb.h>
43#include <asm/spitfire.h>
44#include <asm/sections.h>
517af332 45#include <asm/tsb.h>
481295f9 46#include <asm/hypervisor.h>
372b07bb 47#include <asm/prom.h>
5cbc3073 48#include <asm/mdesc.h>
3d5ae6b6 49#include <asm/cpudata.h>
4f70f7a9 50#include <asm/irq.h>
1da177e4 51
27137e52 52#include "init_64.h"
9cc3a1ac
DM
53
54unsigned long kern_linear_pte_xor[2] __read_mostly;
55
56/* A bitmap, one bit for every 256MB of physical memory. If the bit
57 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
58 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
59 */
60unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
61
d1acb421 62#ifndef CONFIG_DEBUG_PAGEALLOC
2d9e2763
DM
63/* A special kernel TSB for 4MB and 256MB linear mappings.
64 * Space is allocated for this right after the trap table
65 * in arch/sparc64/kernel/head.S
66 */
67extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
d1acb421 68#endif
d7744a09 69
13edad7a
DM
70#define MAX_BANKS 32
71
9a2ed5cc
DM
72static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
73static int pavail_ents __devinitdata;
13edad7a
DM
74
75static int cmp_p64(const void *a, const void *b)
76{
77 const struct linux_prom64_registers *x = a, *y = b;
78
79 if (x->phys_addr > y->phys_addr)
80 return 1;
81 if (x->phys_addr < y->phys_addr)
82 return -1;
83 return 0;
84}
85
86static void __init read_obp_memory(const char *property,
87 struct linux_prom64_registers *regs,
88 int *num_ents)
89{
8d125562 90 phandle node = prom_finddevice("/memory");
13edad7a
DM
91 int prop_size = prom_getproplen(node, property);
92 int ents, ret, i;
93
94 ents = prop_size / sizeof(struct linux_prom64_registers);
95 if (ents > MAX_BANKS) {
96 prom_printf("The machine has more %s property entries than "
97 "this kernel can support (%d).\n",
98 property, MAX_BANKS);
99 prom_halt();
100 }
101
102 ret = prom_getproperty(node, property, (char *) regs, prop_size);
103 if (ret == -1) {
104 prom_printf("Couldn't get %s property from /memory.\n");
105 prom_halt();
106 }
107
13edad7a
DM
108 /* Sanitize what we got from the firmware, by page aligning
109 * everything.
110 */
111 for (i = 0; i < ents; i++) {
112 unsigned long base, size;
113
114 base = regs[i].phys_addr;
115 size = regs[i].reg_size;
10147570 116
13edad7a
DM
117 size &= PAGE_MASK;
118 if (base & ~PAGE_MASK) {
119 unsigned long new_base = PAGE_ALIGN(base);
120
121 size -= new_base - base;
122 if ((long) size < 0L)
123 size = 0UL;
124 base = new_base;
125 }
0015d3d6
DM
126 if (size == 0UL) {
127 /* If it is empty, simply get rid of it.
128 * This simplifies the logic of the other
129 * functions that process these arrays.
130 */
131 memmove(&regs[i], &regs[i + 1],
132 (ents - i - 1) * sizeof(regs[0]));
486ad10a 133 i--;
0015d3d6
DM
134 ents--;
135 continue;
486ad10a 136 }
0015d3d6
DM
137 regs[i].phys_addr = base;
138 regs[i].reg_size = size;
486ad10a
DM
139 }
140
141 *num_ents = ents;
142
c9c10830 143 sort(regs, ents, sizeof(struct linux_prom64_registers),
13edad7a
DM
144 cmp_p64, NULL);
145}
1da177e4 146
d8ed1d43
DM
147unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
148 sizeof(unsigned long)];
917c3660 149EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
1da177e4 150
d1112018 151/* Kernel physical address base and size in bytes. */
1ac4f5eb
DM
152unsigned long kern_base __read_mostly;
153unsigned long kern_size __read_mostly;
1da177e4 154
1da177e4
LT
155/* Initial ramdisk setup */
156extern unsigned long sparc_ramdisk_image64;
157extern unsigned int sparc_ramdisk_image;
158extern unsigned int sparc_ramdisk_size;
159
1ac4f5eb 160struct page *mem_map_zero __read_mostly;
35802c0b 161EXPORT_SYMBOL(mem_map_zero);
1da177e4 162
0835ae0f
DM
163unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
164
165unsigned long sparc64_kern_pri_context __read_mostly;
166unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
167unsigned long sparc64_kern_sec_context __read_mostly;
168
64658743 169int num_kernel_image_mappings;
1da177e4 170
1da177e4
LT
171#ifdef CONFIG_DEBUG_DCFLUSH
172atomic_t dcpage_flushes = ATOMIC_INIT(0);
173#ifdef CONFIG_SMP
174atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
175#endif
176#endif
177
7a591cfe 178inline void flush_dcache_page_impl(struct page *page)
1da177e4 179{
7a591cfe 180 BUG_ON(tlb_type == hypervisor);
1da177e4
LT
181#ifdef CONFIG_DEBUG_DCFLUSH
182 atomic_inc(&dcpage_flushes);
183#endif
184
185#ifdef DCACHE_ALIASING_POSSIBLE
186 __flush_dcache_page(page_address(page),
187 ((tlb_type == spitfire) &&
188 page_mapping(page) != NULL));
189#else
190 if (page_mapping(page) != NULL &&
191 tlb_type == spitfire)
192 __flush_icache_page(__pa(page_address(page)));
193#endif
194}
195
196#define PG_dcache_dirty PG_arch_1
22adb358
DM
197#define PG_dcache_cpu_shift 32UL
198#define PG_dcache_cpu_mask \
199 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
1da177e4
LT
200
201#define dcache_dirty_cpu(page) \
48b0e548 202 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
1da177e4 203
d979f179 204static inline void set_dcache_dirty(struct page *page, int this_cpu)
1da177e4
LT
205{
206 unsigned long mask = this_cpu;
48b0e548
DM
207 unsigned long non_cpu_bits;
208
209 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
210 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
211
1da177e4
LT
212 __asm__ __volatile__("1:\n\t"
213 "ldx [%2], %%g7\n\t"
214 "and %%g7, %1, %%g1\n\t"
215 "or %%g1, %0, %%g1\n\t"
216 "casx [%2], %%g7, %%g1\n\t"
217 "cmp %%g7, %%g1\n\t"
218 "bne,pn %%xcc, 1b\n\t"
b445e26c 219 " nop"
1da177e4
LT
220 : /* no outputs */
221 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
222 : "g1", "g7");
223}
224
d979f179 225static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
1da177e4
LT
226{
227 unsigned long mask = (1UL << PG_dcache_dirty);
228
229 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
230 "1:\n\t"
231 "ldx [%2], %%g7\n\t"
48b0e548 232 "srlx %%g7, %4, %%g1\n\t"
1da177e4
LT
233 "and %%g1, %3, %%g1\n\t"
234 "cmp %%g1, %0\n\t"
235 "bne,pn %%icc, 2f\n\t"
236 " andn %%g7, %1, %%g1\n\t"
237 "casx [%2], %%g7, %%g1\n\t"
238 "cmp %%g7, %%g1\n\t"
239 "bne,pn %%xcc, 1b\n\t"
b445e26c 240 " nop\n"
1da177e4
LT
241 "2:"
242 : /* no outputs */
243 : "r" (cpu), "r" (mask), "r" (&page->flags),
48b0e548
DM
244 "i" (PG_dcache_cpu_mask),
245 "i" (PG_dcache_cpu_shift)
1da177e4
LT
246 : "g1", "g7");
247}
248
517af332
DM
249static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
250{
251 unsigned long tsb_addr = (unsigned long) ent;
252
3b3ab2eb 253 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
517af332
DM
254 tsb_addr = __pa(tsb_addr);
255
256 __tsb_insert(tsb_addr, tag, pte);
257}
258
c4bce90e
DM
259unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
260unsigned long _PAGE_SZBITS __read_mostly;
261
ff9aefbf 262static void flush_dcache(unsigned long pfn)
1da177e4 263{
ff9aefbf 264 struct page *page;
7a591cfe 265
ff9aefbf 266 page = pfn_to_page(pfn);
1a78cedb 267 if (page) {
7a591cfe 268 unsigned long pg_flags;
7a591cfe 269
ff9aefbf
SR
270 pg_flags = page->flags;
271 if (pg_flags & (1UL << PG_dcache_dirty)) {
7a591cfe
DM
272 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
273 PG_dcache_cpu_mask);
274 int this_cpu = get_cpu();
275
276 /* This is just to optimize away some function calls
277 * in the SMP case.
278 */
279 if (cpu == this_cpu)
280 flush_dcache_page_impl(page);
281 else
282 smp_flush_dcache_page_impl(page, cpu);
283
284 clear_dcache_dirty_cpu(page, cpu);
285
286 put_cpu();
287 }
1da177e4 288 }
ff9aefbf
SR
289}
290
4b3073e1 291void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
ff9aefbf
SR
292{
293 struct mm_struct *mm;
294 struct tsb *tsb;
295 unsigned long tag, flags;
296 unsigned long tsb_index, tsb_hash_shift;
4b3073e1 297 pte_t pte = *ptep;
ff9aefbf
SR
298
299 if (tlb_type != hypervisor) {
300 unsigned long pfn = pte_pfn(pte);
301
302 if (pfn_valid(pfn))
303 flush_dcache(pfn);
304 }
bd40791e
DM
305
306 mm = vma->vm_mm;
7a1ac526 307
dcc1e8dd
DM
308 tsb_index = MM_TSB_BASE;
309 tsb_hash_shift = PAGE_SHIFT;
310
7a1ac526
DM
311 spin_lock_irqsave(&mm->context.lock, flags);
312
dcc1e8dd
DM
313#ifdef CONFIG_HUGETLB_PAGE
314 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
315 if ((tlb_type == hypervisor &&
316 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
317 (tlb_type != hypervisor &&
318 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
319 tsb_index = MM_TSB_HUGE;
320 tsb_hash_shift = HPAGE_SHIFT;
321 }
322 }
323#endif
324
325 tsb = mm->context.tsb_block[tsb_index].tsb;
326 tsb += ((address >> tsb_hash_shift) &
327 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
74ae9987
DM
328 tag = (address >> 22UL);
329 tsb_insert(tsb, tag, pte_val(pte));
7a1ac526
DM
330
331 spin_unlock_irqrestore(&mm->context.lock, flags);
1da177e4
LT
332}
333
334void flush_dcache_page(struct page *page)
335{
a9546f59
DM
336 struct address_space *mapping;
337 int this_cpu;
1da177e4 338
7a591cfe
DM
339 if (tlb_type == hypervisor)
340 return;
341
a9546f59
DM
342 /* Do not bother with the expensive D-cache flush if it
343 * is merely the zero page. The 'bigcore' testcase in GDB
344 * causes this case to run millions of times.
345 */
346 if (page == ZERO_PAGE(0))
347 return;
348
349 this_cpu = get_cpu();
350
351 mapping = page_mapping(page);
1da177e4 352 if (mapping && !mapping_mapped(mapping)) {
a9546f59 353 int dirty = test_bit(PG_dcache_dirty, &page->flags);
1da177e4 354 if (dirty) {
a9546f59
DM
355 int dirty_cpu = dcache_dirty_cpu(page);
356
1da177e4
LT
357 if (dirty_cpu == this_cpu)
358 goto out;
359 smp_flush_dcache_page_impl(page, dirty_cpu);
360 }
361 set_dcache_dirty(page, this_cpu);
362 } else {
363 /* We could delay the flush for the !page_mapping
364 * case too. But that case is for exec env/arg
365 * pages and those are %99 certainly going to get
366 * faulted into the tlb (and thus flushed) anyways.
367 */
368 flush_dcache_page_impl(page);
369 }
370
371out:
372 put_cpu();
373}
917c3660 374EXPORT_SYMBOL(flush_dcache_page);
1da177e4 375
05e14cb3 376void __kprobes flush_icache_range(unsigned long start, unsigned long end)
1da177e4 377{
a43fe0e7 378 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
1da177e4
LT
379 if (tlb_type == spitfire) {
380 unsigned long kaddr;
381
a94aa253
DM
382 /* This code only runs on Spitfire cpus so this is
383 * why we can assume _PAGE_PADDR_4U.
384 */
385 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
386 unsigned long paddr, mask = _PAGE_PADDR_4U;
387
388 if (kaddr >= PAGE_OFFSET)
389 paddr = kaddr & mask;
390 else {
391 pgd_t *pgdp = pgd_offset_k(kaddr);
392 pud_t *pudp = pud_offset(pgdp, kaddr);
393 pmd_t *pmdp = pmd_offset(pudp, kaddr);
394 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
395
396 paddr = pte_val(*ptep) & mask;
397 }
398 __flush_icache_page(paddr);
399 }
1da177e4
LT
400 }
401}
917c3660 402EXPORT_SYMBOL(flush_icache_range);
1da177e4 403
1da177e4
LT
404void mmu_info(struct seq_file *m)
405{
406 if (tlb_type == cheetah)
407 seq_printf(m, "MMU Type\t: Cheetah\n");
408 else if (tlb_type == cheetah_plus)
409 seq_printf(m, "MMU Type\t: Cheetah+\n");
410 else if (tlb_type == spitfire)
411 seq_printf(m, "MMU Type\t: Spitfire\n");
a43fe0e7
DM
412 else if (tlb_type == hypervisor)
413 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
1da177e4
LT
414 else
415 seq_printf(m, "MMU Type\t: ???\n");
416
417#ifdef CONFIG_DEBUG_DCFLUSH
418 seq_printf(m, "DCPageFlushes\t: %d\n",
419 atomic_read(&dcpage_flushes));
420#ifdef CONFIG_SMP
421 seq_printf(m, "DCPageFlushesXC\t: %d\n",
422 atomic_read(&dcpage_flushes_xcall));
423#endif /* CONFIG_SMP */
424#endif /* CONFIG_DEBUG_DCFLUSH */
425}
426
a94aa253
DM
427struct linux_prom_translation prom_trans[512] __read_mostly;
428unsigned int prom_trans_ents __read_mostly;
429
1da177e4
LT
430unsigned long kern_locked_tte_data;
431
c9c10830
DM
432/* The obp translations are saved based on 8k pagesize, since obp can
433 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
74bf4312 434 * HI_OBP_ADDRESS range are handled in ktlb.S.
c9c10830 435 */
5085b4a5
DM
436static inline int in_obp_range(unsigned long vaddr)
437{
438 return (vaddr >= LOW_OBP_ADDRESS &&
439 vaddr < HI_OBP_ADDRESS);
440}
441
c9c10830 442static int cmp_ptrans(const void *a, const void *b)
405599bd 443{
c9c10830 444 const struct linux_prom_translation *x = a, *y = b;
405599bd 445
c9c10830
DM
446 if (x->virt > y->virt)
447 return 1;
448 if (x->virt < y->virt)
449 return -1;
450 return 0;
405599bd
DM
451}
452
c9c10830 453/* Read OBP translations property into 'prom_trans[]'. */
9ad98c5b 454static void __init read_obp_translations(void)
405599bd 455{
c9c10830 456 int n, node, ents, first, last, i;
1da177e4
LT
457
458 node = prom_finddevice("/virtual-memory");
459 n = prom_getproplen(node, "translations");
405599bd 460 if (unlikely(n == 0 || n == -1)) {
b206fc4c 461 prom_printf("prom_mappings: Couldn't get size.\n");
1da177e4
LT
462 prom_halt();
463 }
405599bd
DM
464 if (unlikely(n > sizeof(prom_trans))) {
465 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
1da177e4
LT
466 prom_halt();
467 }
405599bd 468
b206fc4c 469 if ((n = prom_getproperty(node, "translations",
405599bd
DM
470 (char *)&prom_trans[0],
471 sizeof(prom_trans))) == -1) {
b206fc4c 472 prom_printf("prom_mappings: Couldn't get property.\n");
1da177e4
LT
473 prom_halt();
474 }
9ad98c5b 475
b206fc4c 476 n = n / sizeof(struct linux_prom_translation);
9ad98c5b 477
c9c10830
DM
478 ents = n;
479
480 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
481 cmp_ptrans, NULL);
482
483 /* Now kick out all the non-OBP entries. */
484 for (i = 0; i < ents; i++) {
485 if (in_obp_range(prom_trans[i].virt))
486 break;
487 }
488 first = i;
489 for (; i < ents; i++) {
490 if (!in_obp_range(prom_trans[i].virt))
491 break;
492 }
493 last = i;
494
495 for (i = 0; i < (last - first); i++) {
496 struct linux_prom_translation *src = &prom_trans[i + first];
497 struct linux_prom_translation *dest = &prom_trans[i];
498
499 *dest = *src;
500 }
501 for (; i < ents; i++) {
502 struct linux_prom_translation *dest = &prom_trans[i];
503 dest->virt = dest->size = dest->data = 0x0UL;
504 }
505
506 prom_trans_ents = last - first;
507
508 if (tlb_type == spitfire) {
509 /* Clear diag TTE bits. */
510 for (i = 0; i < prom_trans_ents; i++)
511 prom_trans[i].data &= ~0x0003fe0000000000UL;
512 }
f4142cba
DM
513
514 /* Force execute bit on. */
515 for (i = 0; i < prom_trans_ents; i++)
516 prom_trans[i].data |= (tlb_type == hypervisor ?
517 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
405599bd 518}
1da177e4 519
d82ace7d
DM
520static void __init hypervisor_tlb_lock(unsigned long vaddr,
521 unsigned long pte,
522 unsigned long mmu)
523{
7db35f31
DM
524 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
525
526 if (ret != 0) {
12e126ad 527 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
7db35f31 528 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
12e126ad
DM
529 prom_halt();
530 }
d82ace7d
DM
531}
532
c4bce90e
DM
533static unsigned long kern_large_tte(unsigned long paddr);
534
898cf0ec 535static void __init remap_kernel(void)
405599bd
DM
536{
537 unsigned long phys_page, tte_vaddr, tte_data;
64658743 538 int i, tlb_ent = sparc64_highest_locked_tlbent();
405599bd 539
1da177e4 540 tte_vaddr = (unsigned long) KERNBASE;
bff06d55 541 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
c4bce90e 542 tte_data = kern_large_tte(phys_page);
1da177e4
LT
543
544 kern_locked_tte_data = tte_data;
545
d82ace7d
DM
546 /* Now lock us into the TLBs via Hypervisor or OBP. */
547 if (tlb_type == hypervisor) {
64658743 548 for (i = 0; i < num_kernel_image_mappings; i++) {
d82ace7d
DM
549 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
550 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
64658743
DM
551 tte_vaddr += 0x400000;
552 tte_data += 0x400000;
d82ace7d
DM
553 }
554 } else {
64658743
DM
555 for (i = 0; i < num_kernel_image_mappings; i++) {
556 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
557 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
558 tte_vaddr += 0x400000;
559 tte_data += 0x400000;
d82ace7d 560 }
64658743 561 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
1da177e4 562 }
0835ae0f
DM
563 if (tlb_type == cheetah_plus) {
564 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
565 CTX_CHEETAH_PLUS_NUC);
566 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
567 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
568 }
405599bd 569}
1da177e4 570
405599bd 571
c9c10830 572static void __init inherit_prom_mappings(void)
9ad98c5b 573{
405599bd 574 /* Now fixup OBP's idea about where we really are mapped. */
3c62a2d3 575 printk("Remapping the kernel... ");
405599bd 576 remap_kernel();
3c62a2d3 577 printk("done.\n");
1da177e4
LT
578}
579
1da177e4
LT
580void prom_world(int enter)
581{
1da177e4
LT
582 if (!enter)
583 set_fs((mm_segment_t) { get_thread_current_ds() });
584
3487d1d4 585 __asm__ __volatile__("flushw");
1da177e4
LT
586}
587
1da177e4
LT
588void __flush_dcache_range(unsigned long start, unsigned long end)
589{
590 unsigned long va;
591
592 if (tlb_type == spitfire) {
593 int n = 0;
594
595 for (va = start; va < end; va += 32) {
596 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
597 if (++n >= 512)
598 break;
599 }
a43fe0e7 600 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
601 start = __pa(start);
602 end = __pa(end);
603 for (va = start; va < end; va += 32)
604 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
605 "membar #Sync"
606 : /* no outputs */
607 : "r" (va),
608 "i" (ASI_DCACHE_INVALIDATE));
609 }
610}
917c3660 611EXPORT_SYMBOL(__flush_dcache_range);
1da177e4 612
85f1e1f6
DM
613/* get_new_mmu_context() uses "cache + 1". */
614DEFINE_SPINLOCK(ctx_alloc_lock);
615unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
616#define MAX_CTX_NR (1UL << CTX_NR_BITS)
617#define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
618DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
619
1da177e4
LT
620/* Caller does TLB context flushing on local CPU if necessary.
621 * The caller also ensures that CTX_VALID(mm->context) is false.
622 *
623 * We must be careful about boundary cases so that we never
624 * let the user have CTX 0 (nucleus) or we ever use a CTX
625 * version of zero (and thus NO_CONTEXT would not be caught
626 * by version mis-match tests in mmu_context.h).
a0663a79
DM
627 *
628 * Always invoked with interrupts disabled.
1da177e4
LT
629 */
630void get_new_mmu_context(struct mm_struct *mm)
631{
632 unsigned long ctx, new_ctx;
633 unsigned long orig_pgsz_bits;
a77754b4 634 unsigned long flags;
a0663a79 635 int new_version;
1da177e4 636
a77754b4 637 spin_lock_irqsave(&ctx_alloc_lock, flags);
1da177e4
LT
638 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
639 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
640 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
a0663a79 641 new_version = 0;
1da177e4
LT
642 if (new_ctx >= (1 << CTX_NR_BITS)) {
643 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
644 if (new_ctx >= ctx) {
645 int i;
646 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
647 CTX_FIRST_VERSION;
648 if (new_ctx == 1)
649 new_ctx = CTX_FIRST_VERSION;
650
651 /* Don't call memset, for 16 entries that's just
652 * plain silly...
653 */
654 mmu_context_bmap[0] = 3;
655 mmu_context_bmap[1] = 0;
656 mmu_context_bmap[2] = 0;
657 mmu_context_bmap[3] = 0;
658 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
659 mmu_context_bmap[i + 0] = 0;
660 mmu_context_bmap[i + 1] = 0;
661 mmu_context_bmap[i + 2] = 0;
662 mmu_context_bmap[i + 3] = 0;
663 }
a0663a79 664 new_version = 1;
1da177e4
LT
665 goto out;
666 }
667 }
668 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
669 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
670out:
671 tlb_context_cache = new_ctx;
672 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
a77754b4 673 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
a0663a79
DM
674
675 if (unlikely(new_version))
676 smp_new_mmu_context_version();
1da177e4
LT
677}
678
919ee677
DM
679static int numa_enabled = 1;
680static int numa_debug;
681
682static int __init early_numa(char *p)
1da177e4 683{
919ee677
DM
684 if (!p)
685 return 0;
686
687 if (strstr(p, "off"))
688 numa_enabled = 0;
d1112018 689
919ee677
DM
690 if (strstr(p, "debug"))
691 numa_debug = 1;
d1112018 692
919ee677 693 return 0;
d1112018 694}
919ee677
DM
695early_param("numa", early_numa);
696
697#define numadbg(f, a...) \
698do { if (numa_debug) \
699 printk(KERN_INFO f, ## a); \
700} while (0)
d1112018 701
4e82c9a6
DM
702static void __init find_ramdisk(unsigned long phys_base)
703{
704#ifdef CONFIG_BLK_DEV_INITRD
705 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
706 unsigned long ramdisk_image;
707
708 /* Older versions of the bootloader only supported a
709 * 32-bit physical address for the ramdisk image
710 * location, stored at sparc_ramdisk_image. Newer
711 * SILO versions set sparc_ramdisk_image to zero and
712 * provide a full 64-bit physical address at
713 * sparc_ramdisk_image64.
714 */
715 ramdisk_image = sparc_ramdisk_image;
716 if (!ramdisk_image)
717 ramdisk_image = sparc_ramdisk_image64;
718
719 /* Another bootloader quirk. The bootloader normalizes
720 * the physical address to KERNBASE, so we have to
721 * factor that back out and add in the lowest valid
722 * physical page address to get the true physical address.
723 */
724 ramdisk_image -= KERNBASE;
725 ramdisk_image += phys_base;
726
919ee677
DM
727 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
728 ramdisk_image, sparc_ramdisk_size);
729
4e82c9a6
DM
730 initrd_start = ramdisk_image;
731 initrd_end = ramdisk_image + sparc_ramdisk_size;
3b2a7e23 732
95f72d1e 733 memblock_reserve(initrd_start, sparc_ramdisk_size);
d45100f7
DM
734
735 initrd_start += PAGE_OFFSET;
736 initrd_end += PAGE_OFFSET;
4e82c9a6
DM
737 }
738#endif
739}
740
919ee677
DM
741struct node_mem_mask {
742 unsigned long mask;
743 unsigned long val;
919ee677
DM
744};
745static struct node_mem_mask node_masks[MAX_NUMNODES];
746static int num_node_masks;
747
748int numa_cpu_lookup_table[NR_CPUS];
749cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
750
751#ifdef CONFIG_NEED_MULTIPLE_NODES
919ee677
DM
752
753struct mdesc_mblock {
754 u64 base;
755 u64 size;
756 u64 offset; /* RA-to-PA */
757};
758static struct mdesc_mblock *mblocks;
759static int num_mblocks;
760
761static unsigned long ra_to_pa(unsigned long addr)
762{
763 int i;
764
765 for (i = 0; i < num_mblocks; i++) {
766 struct mdesc_mblock *m = &mblocks[i];
767
768 if (addr >= m->base &&
769 addr < (m->base + m->size)) {
770 addr += m->offset;
771 break;
772 }
773 }
774 return addr;
775}
776
777static int find_node(unsigned long addr)
778{
779 int i;
780
781 addr = ra_to_pa(addr);
782 for (i = 0; i < num_node_masks; i++) {
783 struct node_mem_mask *p = &node_masks[i];
784
785 if ((addr & p->mask) == p->val)
786 return i;
787 }
788 return -1;
789}
790
f9b18db3 791static u64 memblock_nid_range(u64 start, u64 end, int *nid)
919ee677
DM
792{
793 *nid = find_node(start);
794 start += PAGE_SIZE;
795 while (start < end) {
796 int n = find_node(start);
797
798 if (n != *nid)
799 break;
800 start += PAGE_SIZE;
801 }
802
c918dcce
DM
803 if (start > end)
804 start = end;
805
919ee677
DM
806 return start;
807}
808#else
f9b18db3 809static u64 memblock_nid_range(u64 start, u64 end, int *nid)
919ee677
DM
810{
811 *nid = 0;
812 return end;
813}
814#endif
815
816/* This must be invoked after performing all of the necessary
2a4814df 817 * memblock_set_node() calls for 'nid'. We need to be able to get
919ee677 818 * correct data from get_pfn_range_for_nid().
f1cfdb55 819 */
919ee677
DM
820static void __init allocate_node_data(int nid)
821{
625d693e 822 unsigned long paddr, start_pfn, end_pfn;
919ee677
DM
823 struct pglist_data *p;
824
825#ifdef CONFIG_NEED_MULTIPLE_NODES
9d1e2492 826 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
919ee677
DM
827 if (!paddr) {
828 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
829 prom_halt();
830 }
831 NODE_DATA(nid) = __va(paddr);
832 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
833
625d693e 834 NODE_DATA(nid)->node_id = nid;
919ee677
DM
835#endif
836
837 p = NODE_DATA(nid);
838
839 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
840 p->node_start_pfn = start_pfn;
841 p->node_spanned_pages = end_pfn - start_pfn;
919ee677
DM
842}
843
844static void init_node_masks_nonnuma(void)
d1112018 845{
1da177e4
LT
846 int i;
847
919ee677 848 numadbg("Initializing tables for non-numa.\n");
6fc5bae7 849
919ee677
DM
850 node_masks[0].mask = node_masks[0].val = 0;
851 num_node_masks = 1;
d1112018 852
919ee677
DM
853 for (i = 0; i < NR_CPUS; i++)
854 numa_cpu_lookup_table[i] = 0;
1da177e4 855
fb1fece5 856 cpumask_setall(&numa_cpumask_lookup_table[0]);
919ee677
DM
857}
858
859#ifdef CONFIG_NEED_MULTIPLE_NODES
860struct pglist_data *node_data[MAX_NUMNODES];
861
862EXPORT_SYMBOL(numa_cpu_lookup_table);
863EXPORT_SYMBOL(numa_cpumask_lookup_table);
864EXPORT_SYMBOL(node_data);
865
866struct mdesc_mlgroup {
867 u64 node;
868 u64 latency;
869 u64 match;
870 u64 mask;
871};
872static struct mdesc_mlgroup *mlgroups;
873static int num_mlgroups;
874
875static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
876 u32 cfg_handle)
877{
878 u64 arc;
879
880 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
881 u64 target = mdesc_arc_target(md, arc);
882 const u64 *val;
883
884 val = mdesc_get_property(md, target,
885 "cfg-handle", NULL);
886 if (val && *val == cfg_handle)
887 return 0;
888 }
889 return -ENODEV;
890}
891
892static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
893 u32 cfg_handle)
894{
895 u64 arc, candidate, best_latency = ~(u64)0;
896
897 candidate = MDESC_NODE_NULL;
898 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
899 u64 target = mdesc_arc_target(md, arc);
900 const char *name = mdesc_node_name(md, target);
901 const u64 *val;
902
903 if (strcmp(name, "pio-latency-group"))
904 continue;
905
906 val = mdesc_get_property(md, target, "latency", NULL);
907 if (!val)
908 continue;
909
910 if (*val < best_latency) {
911 candidate = target;
912 best_latency = *val;
913 }
914 }
915
916 if (candidate == MDESC_NODE_NULL)
917 return -ENODEV;
918
919 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
920}
921
922int of_node_to_nid(struct device_node *dp)
923{
924 const struct linux_prom64_registers *regs;
925 struct mdesc_handle *md;
926 u32 cfg_handle;
927 int count, nid;
928 u64 grp;
929
072bd413
DM
930 /* This is the right thing to do on currently supported
931 * SUN4U NUMA platforms as well, as the PCI controller does
932 * not sit behind any particular memory controller.
933 */
919ee677
DM
934 if (!mlgroups)
935 return -1;
936
937 regs = of_get_property(dp, "reg", NULL);
938 if (!regs)
939 return -1;
940
941 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
942
943 md = mdesc_grab();
944
945 count = 0;
946 nid = -1;
947 mdesc_for_each_node_by_name(md, grp, "group") {
948 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
949 nid = count;
950 break;
951 }
952 count++;
953 }
954
955 mdesc_release(md);
956
957 return nid;
958}
959
01c45381 960static void __init add_node_ranges(void)
919ee677 961{
08b84798 962 struct memblock_region *reg;
919ee677 963
08b84798
BH
964 for_each_memblock(memory, reg) {
965 unsigned long size = reg->size;
919ee677
DM
966 unsigned long start, end;
967
08b84798 968 start = reg->base;
919ee677
DM
969 end = start + size;
970 while (start < end) {
971 unsigned long this_end;
972 int nid;
973
35a1f0bd 974 this_end = memblock_nid_range(start, end, &nid);
919ee677 975
2a4814df 976 numadbg("Setting memblock NUMA node nid[%d] "
919ee677
DM
977 "start[%lx] end[%lx]\n",
978 nid, start, this_end);
979
2a4814df 980 memblock_set_node(start, this_end - start, nid);
919ee677
DM
981 start = this_end;
982 }
983 }
984}
985
986static int __init grab_mlgroups(struct mdesc_handle *md)
987{
988 unsigned long paddr;
989 int count = 0;
990 u64 node;
991
992 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
993 count++;
994 if (!count)
995 return -ENOENT;
996
95f72d1e 997 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
919ee677
DM
998 SMP_CACHE_BYTES);
999 if (!paddr)
1000 return -ENOMEM;
1001
1002 mlgroups = __va(paddr);
1003 num_mlgroups = count;
1004
1005 count = 0;
1006 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1007 struct mdesc_mlgroup *m = &mlgroups[count++];
1008 const u64 *val;
1009
1010 m->node = node;
1011
1012 val = mdesc_get_property(md, node, "latency", NULL);
1013 m->latency = *val;
1014 val = mdesc_get_property(md, node, "address-match", NULL);
1015 m->match = *val;
1016 val = mdesc_get_property(md, node, "address-mask", NULL);
1017 m->mask = *val;
1018
90181136
SR
1019 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1020 "match[%llx] mask[%llx]\n",
919ee677
DM
1021 count - 1, m->node, m->latency, m->match, m->mask);
1022 }
1023
1024 return 0;
1025}
1026
1027static int __init grab_mblocks(struct mdesc_handle *md)
1028{
1029 unsigned long paddr;
1030 int count = 0;
1031 u64 node;
1032
1033 mdesc_for_each_node_by_name(md, node, "mblock")
1034 count++;
1035 if (!count)
1036 return -ENOENT;
1037
95f72d1e 1038 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
919ee677
DM
1039 SMP_CACHE_BYTES);
1040 if (!paddr)
1041 return -ENOMEM;
1042
1043 mblocks = __va(paddr);
1044 num_mblocks = count;
1045
1046 count = 0;
1047 mdesc_for_each_node_by_name(md, node, "mblock") {
1048 struct mdesc_mblock *m = &mblocks[count++];
1049 const u64 *val;
1050
1051 val = mdesc_get_property(md, node, "base", NULL);
1052 m->base = *val;
1053 val = mdesc_get_property(md, node, "size", NULL);
1054 m->size = *val;
1055 val = mdesc_get_property(md, node,
1056 "address-congruence-offset", NULL);
1057 m->offset = *val;
1058
90181136 1059 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
919ee677
DM
1060 count - 1, m->base, m->size, m->offset);
1061 }
1062
1063 return 0;
1064}
1065
1066static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1067 u64 grp, cpumask_t *mask)
1068{
1069 u64 arc;
1070
fb1fece5 1071 cpumask_clear(mask);
919ee677
DM
1072
1073 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1074 u64 target = mdesc_arc_target(md, arc);
1075 const char *name = mdesc_node_name(md, target);
1076 const u64 *id;
1077
1078 if (strcmp(name, "cpu"))
1079 continue;
1080 id = mdesc_get_property(md, target, "id", NULL);
e305cb8f 1081 if (*id < nr_cpu_ids)
fb1fece5 1082 cpumask_set_cpu(*id, mask);
919ee677
DM
1083 }
1084}
1085
1086static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1087{
1088 int i;
1089
1090 for (i = 0; i < num_mlgroups; i++) {
1091 struct mdesc_mlgroup *m = &mlgroups[i];
1092 if (m->node == node)
1093 return m;
1094 }
1095 return NULL;
1096}
1097
1098static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1099 int index)
1100{
1101 struct mdesc_mlgroup *candidate = NULL;
1102 u64 arc, best_latency = ~(u64)0;
1103 struct node_mem_mask *n;
1104
1105 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1106 u64 target = mdesc_arc_target(md, arc);
1107 struct mdesc_mlgroup *m = find_mlgroup(target);
1108 if (!m)
1109 continue;
1110 if (m->latency < best_latency) {
1111 candidate = m;
1112 best_latency = m->latency;
1113 }
1114 }
1115 if (!candidate)
1116 return -ENOENT;
1117
1118 if (num_node_masks != index) {
1119 printk(KERN_ERR "Inconsistent NUMA state, "
1120 "index[%d] != num_node_masks[%d]\n",
1121 index, num_node_masks);
1122 return -EINVAL;
1123 }
1124
1125 n = &node_masks[num_node_masks++];
1126
1127 n->mask = candidate->mask;
1128 n->val = candidate->match;
1da177e4 1129
90181136 1130 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
919ee677 1131 index, n->mask, n->val, candidate->latency);
1da177e4 1132
919ee677
DM
1133 return 0;
1134}
1135
1136static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1137 int index)
1138{
1139 cpumask_t mask;
1140 int cpu;
1141
1142 numa_parse_mdesc_group_cpus(md, grp, &mask);
1143
fb1fece5 1144 for_each_cpu(cpu, &mask)
919ee677 1145 numa_cpu_lookup_table[cpu] = index;
fb1fece5 1146 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
919ee677
DM
1147
1148 if (numa_debug) {
1149 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
fb1fece5 1150 for_each_cpu(cpu, &mask)
919ee677
DM
1151 printk("%d ", cpu);
1152 printk("]\n");
1153 }
1154
1155 return numa_attach_mlgroup(md, grp, index);
1156}
1157
1158static int __init numa_parse_mdesc(void)
1159{
1160 struct mdesc_handle *md = mdesc_grab();
1161 int i, err, count;
1162 u64 node;
1163
1164 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1165 if (node == MDESC_NODE_NULL) {
1166 mdesc_release(md);
1167 return -ENOENT;
1168 }
1169
1170 err = grab_mblocks(md);
1171 if (err < 0)
1172 goto out;
1173
1174 err = grab_mlgroups(md);
1175 if (err < 0)
1176 goto out;
1177
1178 count = 0;
1179 mdesc_for_each_node_by_name(md, node, "group") {
1180 err = numa_parse_mdesc_group(md, node, count);
1181 if (err < 0)
1182 break;
1183 count++;
1184 }
1185
1186 add_node_ranges();
1187
1188 for (i = 0; i < num_node_masks; i++) {
1189 allocate_node_data(i);
1190 node_set_online(i);
1191 }
1192
1193 err = 0;
1194out:
1195 mdesc_release(md);
1196 return err;
1197}
1198
072bd413
DM
1199static int __init numa_parse_jbus(void)
1200{
1201 unsigned long cpu, index;
1202
1203 /* NUMA node id is encoded in bits 36 and higher, and there is
1204 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1205 */
1206 index = 0;
1207 for_each_present_cpu(cpu) {
1208 numa_cpu_lookup_table[cpu] = index;
fb1fece5 1209 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
072bd413
DM
1210 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1211 node_masks[index].val = cpu << 36UL;
1212
1213 index++;
1214 }
1215 num_node_masks = index;
1216
1217 add_node_ranges();
1218
1219 for (index = 0; index < num_node_masks; index++) {
1220 allocate_node_data(index);
1221 node_set_online(index);
1222 }
1223
1224 return 0;
1225}
1226
919ee677
DM
1227static int __init numa_parse_sun4u(void)
1228{
072bd413
DM
1229 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1230 unsigned long ver;
1231
1232 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1233 if ((ver >> 32UL) == __JALAPENO_ID ||
1234 (ver >> 32UL) == __SERRANO_ID)
1235 return numa_parse_jbus();
1236 }
919ee677
DM
1237 return -1;
1238}
1239
1240static int __init bootmem_init_numa(void)
1241{
1242 int err = -1;
1243
1244 numadbg("bootmem_init_numa()\n");
1245
1246 if (numa_enabled) {
1247 if (tlb_type == hypervisor)
1248 err = numa_parse_mdesc();
1249 else
1250 err = numa_parse_sun4u();
1251 }
1252 return err;
1253}
1254
1255#else
1da177e4 1256
919ee677
DM
1257static int bootmem_init_numa(void)
1258{
1259 return -1;
1260}
1261
1262#endif
1263
1264static void __init bootmem_init_nonnuma(void)
1265{
95f72d1e
YL
1266 unsigned long top_of_ram = memblock_end_of_DRAM();
1267 unsigned long total_ram = memblock_phys_mem_size();
919ee677
DM
1268
1269 numadbg("bootmem_init_nonnuma()\n");
1270
1271 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1272 top_of_ram, total_ram);
1273 printk(KERN_INFO "Memory hole size: %ldMB\n",
1274 (top_of_ram - total_ram) >> 20);
1275
1276 init_node_masks_nonnuma();
2a4814df 1277 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
919ee677 1278 allocate_node_data(0);
919ee677
DM
1279 node_set_online(0);
1280}
1281
919ee677
DM
1282static unsigned long __init bootmem_init(unsigned long phys_base)
1283{
1284 unsigned long end_pfn;
919ee677 1285
95f72d1e 1286 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
919ee677
DM
1287 max_pfn = max_low_pfn = end_pfn;
1288 min_low_pfn = (phys_base >> PAGE_SHIFT);
1289
1290 if (bootmem_init_numa() < 0)
1291 bootmem_init_nonnuma();
1292
625d693e
DM
1293 /* Dump memblock with node info. */
1294 memblock_dump_all();
919ee677 1295
625d693e 1296 /* XXX cpu notifier XXX */
d1112018 1297
625d693e 1298 sparse_memory_present_with_active_regions(MAX_NUMNODES);
d1112018
DM
1299 sparse_init();
1300
1da177e4
LT
1301 return end_pfn;
1302}
1303
9cc3a1ac
DM
1304static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1305static int pall_ents __initdata;
1306
56425306 1307#ifdef CONFIG_DEBUG_PAGEALLOC
896aef43
SR
1308static unsigned long __ref kernel_map_range(unsigned long pstart,
1309 unsigned long pend, pgprot_t prot)
56425306
DM
1310{
1311 unsigned long vstart = PAGE_OFFSET + pstart;
1312 unsigned long vend = PAGE_OFFSET + pend;
1313 unsigned long alloc_bytes = 0UL;
1314
1315 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
13edad7a 1316 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
56425306
DM
1317 vstart, vend);
1318 prom_halt();
1319 }
1320
1321 while (vstart < vend) {
1322 unsigned long this_end, paddr = __pa(vstart);
1323 pgd_t *pgd = pgd_offset_k(vstart);
1324 pud_t *pud;
1325 pmd_t *pmd;
1326 pte_t *pte;
1327
1328 pud = pud_offset(pgd, vstart);
1329 if (pud_none(*pud)) {
1330 pmd_t *new;
1331
1332 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1333 alloc_bytes += PAGE_SIZE;
1334 pud_populate(&init_mm, pud, new);
1335 }
1336
1337 pmd = pmd_offset(pud, vstart);
1338 if (!pmd_present(*pmd)) {
1339 pte_t *new;
1340
1341 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1342 alloc_bytes += PAGE_SIZE;
1343 pmd_populate_kernel(&init_mm, pmd, new);
1344 }
1345
1346 pte = pte_offset_kernel(pmd, vstart);
1347 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1348 if (this_end > vend)
1349 this_end = vend;
1350
1351 while (vstart < this_end) {
1352 pte_val(*pte) = (paddr | pgprot_val(prot));
1353
1354 vstart += PAGE_SIZE;
1355 paddr += PAGE_SIZE;
1356 pte++;
1357 }
1358 }
1359
1360 return alloc_bytes;
1361}
1362
56425306 1363extern unsigned int kvmap_linear_patch[1];
9cc3a1ac
DM
1364#endif /* CONFIG_DEBUG_PAGEALLOC */
1365
1366static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1367{
1368 const unsigned long shift_256MB = 28;
1369 const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1370 const unsigned long size_256MB = (1UL << shift_256MB);
1371
1372 while (start < end) {
1373 long remains;
1374
f7c00338
DM
1375 remains = end - start;
1376 if (remains < size_256MB)
1377 break;
1378
9cc3a1ac
DM
1379 if (start & mask_256MB) {
1380 start = (start + size_256MB) & ~mask_256MB;
1381 continue;
1382 }
1383
9cc3a1ac
DM
1384 while (remains >= size_256MB) {
1385 unsigned long index = start >> shift_256MB;
1386
1387 __set_bit(index, kpte_linear_bitmap);
1388
1389 start += size_256MB;
1390 remains -= size_256MB;
1391 }
1392 }
1393}
56425306 1394
8f361453 1395static void __init init_kpte_bitmap(void)
56425306 1396{
9cc3a1ac 1397 unsigned long i;
13edad7a
DM
1398
1399 for (i = 0; i < pall_ents; i++) {
56425306
DM
1400 unsigned long phys_start, phys_end;
1401
13edad7a
DM
1402 phys_start = pall[i].phys_addr;
1403 phys_end = phys_start + pall[i].reg_size;
9cc3a1ac
DM
1404
1405 mark_kpte_bitmap(phys_start, phys_end);
8f361453
DM
1406 }
1407}
9cc3a1ac 1408
8f361453
DM
1409static void __init kernel_physical_mapping_init(void)
1410{
9cc3a1ac 1411#ifdef CONFIG_DEBUG_PAGEALLOC
8f361453
DM
1412 unsigned long i, mem_alloced = 0UL;
1413
1414 for (i = 0; i < pall_ents; i++) {
1415 unsigned long phys_start, phys_end;
1416
1417 phys_start = pall[i].phys_addr;
1418 phys_end = phys_start + pall[i].reg_size;
1419
56425306
DM
1420 mem_alloced += kernel_map_range(phys_start, phys_end,
1421 PAGE_KERNEL);
56425306
DM
1422 }
1423
1424 printk("Allocated %ld bytes for kernel page tables.\n",
1425 mem_alloced);
1426
1427 kvmap_linear_patch[0] = 0x01000000; /* nop */
1428 flushi(&kvmap_linear_patch[0]);
1429
1430 __flush_tlb_all();
9cc3a1ac 1431#endif
56425306
DM
1432}
1433
9cc3a1ac 1434#ifdef CONFIG_DEBUG_PAGEALLOC
56425306
DM
1435void kernel_map_pages(struct page *page, int numpages, int enable)
1436{
1437 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1438 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1439
1440 kernel_map_range(phys_start, phys_end,
1441 (enable ? PAGE_KERNEL : __pgprot(0)));
1442
74bf4312
DM
1443 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1444 PAGE_OFFSET + phys_end);
1445
56425306
DM
1446 /* we should perform an IPI and flush all tlbs,
1447 * but that can deadlock->flush only current cpu.
1448 */
1449 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1450 PAGE_OFFSET + phys_end);
1451}
1452#endif
1453
10147570
DM
1454unsigned long __init find_ecache_flush_span(unsigned long size)
1455{
0836a0eb
DM
1456 int i;
1457
13edad7a
DM
1458 for (i = 0; i < pavail_ents; i++) {
1459 if (pavail[i].reg_size >= size)
1460 return pavail[i].phys_addr;
0836a0eb
DM
1461 }
1462
13edad7a 1463 return ~0UL;
0836a0eb
DM
1464}
1465
517af332
DM
1466static void __init tsb_phys_patch(void)
1467{
d257d5da 1468 struct tsb_ldquad_phys_patch_entry *pquad;
517af332
DM
1469 struct tsb_phys_patch_entry *p;
1470
d257d5da
DM
1471 pquad = &__tsb_ldquad_phys_patch;
1472 while (pquad < &__tsb_ldquad_phys_patch_end) {
1473 unsigned long addr = pquad->addr;
1474
1475 if (tlb_type == hypervisor)
1476 *(unsigned int *) addr = pquad->sun4v_insn;
1477 else
1478 *(unsigned int *) addr = pquad->sun4u_insn;
1479 wmb();
1480 __asm__ __volatile__("flush %0"
1481 : /* no outputs */
1482 : "r" (addr));
1483
1484 pquad++;
1485 }
1486
517af332
DM
1487 p = &__tsb_phys_patch;
1488 while (p < &__tsb_phys_patch_end) {
1489 unsigned long addr = p->addr;
1490
1491 *(unsigned int *) addr = p->insn;
1492 wmb();
1493 __asm__ __volatile__("flush %0"
1494 : /* no outputs */
1495 : "r" (addr));
1496
1497 p++;
1498 }
1499}
1500
490384e7 1501/* Don't mark as init, we give this to the Hypervisor. */
d1acb421
DM
1502#ifndef CONFIG_DEBUG_PAGEALLOC
1503#define NUM_KTSB_DESCR 2
1504#else
1505#define NUM_KTSB_DESCR 1
1506#endif
1507static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
490384e7
DM
1508extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1509
9076d0e7
DM
1510static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1511{
1512 pa >>= KTSB_PHYS_SHIFT;
1513
1514 while (start < end) {
1515 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1516
1517 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1518 __asm__ __volatile__("flush %0" : : "r" (ia));
1519
1520 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1521 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
1522
1523 start++;
1524 }
1525}
1526
1527static void ktsb_phys_patch(void)
1528{
1529 extern unsigned int __swapper_tsb_phys_patch;
1530 extern unsigned int __swapper_tsb_phys_patch_end;
9076d0e7
DM
1531 unsigned long ktsb_pa;
1532
1533 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1534 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1535 &__swapper_tsb_phys_patch_end, ktsb_pa);
1536#ifndef CONFIG_DEBUG_PAGEALLOC
0785a8e8
DM
1537 {
1538 extern unsigned int __swapper_4m_tsb_phys_patch;
1539 extern unsigned int __swapper_4m_tsb_phys_patch_end;
9076d0e7
DM
1540 ktsb_pa = (kern_base +
1541 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1542 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1543 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
0785a8e8 1544 }
9076d0e7
DM
1545#endif
1546}
1547
490384e7
DM
1548static void __init sun4v_ktsb_init(void)
1549{
1550 unsigned long ktsb_pa;
1551
d7744a09 1552 /* First KTSB for PAGE_SIZE mappings. */
490384e7
DM
1553 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1554
1555 switch (PAGE_SIZE) {
1556 case 8 * 1024:
1557 default:
1558 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1559 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1560 break;
1561
1562 case 64 * 1024:
1563 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1564 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1565 break;
1566
1567 case 512 * 1024:
1568 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1569 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1570 break;
1571
1572 case 4 * 1024 * 1024:
1573 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1574 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1575 break;
6cb79b3f 1576 }
490384e7 1577
3f19a84e 1578 ktsb_descr[0].assoc = 1;
490384e7
DM
1579 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1580 ktsb_descr[0].ctx_idx = 0;
1581 ktsb_descr[0].tsb_base = ktsb_pa;
1582 ktsb_descr[0].resv = 0;
1583
d1acb421 1584#ifndef CONFIG_DEBUG_PAGEALLOC
d7744a09
DM
1585 /* Second KTSB for 4MB/256MB mappings. */
1586 ktsb_pa = (kern_base +
1587 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1588
1589 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1590 ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1591 HV_PGSZ_MASK_256MB);
1592 ktsb_descr[1].assoc = 1;
1593 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1594 ktsb_descr[1].ctx_idx = 0;
1595 ktsb_descr[1].tsb_base = ktsb_pa;
1596 ktsb_descr[1].resv = 0;
d1acb421 1597#endif
490384e7
DM
1598}
1599
1600void __cpuinit sun4v_ktsb_register(void)
1601{
7db35f31 1602 unsigned long pa, ret;
490384e7
DM
1603
1604 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1605
7db35f31
DM
1606 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1607 if (ret != 0) {
1608 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1609 "errors with %lx\n", pa, ret);
1610 prom_halt();
1611 }
490384e7
DM
1612}
1613
1da177e4
LT
1614/* paging_init() sets up the page tables */
1615
1da177e4 1616static unsigned long last_valid_pfn;
56425306 1617pgd_t swapper_pg_dir[2048];
1da177e4 1618
c4bce90e
DM
1619static void sun4u_pgprot_init(void);
1620static void sun4v_pgprot_init(void);
1621
1da177e4
LT
1622void __init paging_init(void)
1623{
919ee677 1624 unsigned long end_pfn, shift, phys_base;
0836a0eb
DM
1625 unsigned long real_end, i;
1626
22adb358
DM
1627 /* These build time checkes make sure that the dcache_dirty_cpu()
1628 * page->flags usage will work.
1629 *
1630 * When a page gets marked as dcache-dirty, we store the
1631 * cpu number starting at bit 32 in the page->flags. Also,
1632 * functions like clear_dcache_dirty_cpu use the cpu mask
1633 * in 13-bit signed-immediate instruction fields.
1634 */
9223b419
CL
1635
1636 /*
1637 * Page flags must not reach into upper 32 bits that are used
1638 * for the cpu number
1639 */
1640 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1641
1642 /*
1643 * The bit fields placed in the high range must not reach below
1644 * the 32 bit boundary. Otherwise we cannot place the cpu field
1645 * at the 32 bit boundary.
1646 */
22adb358 1647 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
9223b419
CL
1648 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1649
22adb358
DM
1650 BUILD_BUG_ON(NR_CPUS > 4096);
1651
481295f9
DM
1652 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1653 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1654
d7744a09 1655 /* Invalidate both kernel TSBs. */
8b234274 1656 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
d1acb421 1657#ifndef CONFIG_DEBUG_PAGEALLOC
d7744a09 1658 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
d1acb421 1659#endif
8b234274 1660
c4bce90e
DM
1661 if (tlb_type == hypervisor)
1662 sun4v_pgprot_init();
1663 else
1664 sun4u_pgprot_init();
1665
d257d5da 1666 if (tlb_type == cheetah_plus ||
9076d0e7 1667 tlb_type == hypervisor) {
517af332 1668 tsb_phys_patch();
9076d0e7
DM
1669 ktsb_phys_patch();
1670 }
517af332 1671
490384e7 1672 if (tlb_type == hypervisor) {
d257d5da 1673 sun4v_patch_tlb_handlers();
490384e7
DM
1674 sun4v_ktsb_init();
1675 }
d257d5da 1676
a94a172d
DM
1677 /* Find available physical memory...
1678 *
1679 * Read it twice in order to work around a bug in openfirmware.
1680 * The call to grab this table itself can cause openfirmware to
1681 * allocate memory, which in turn can take away some space from
1682 * the list of available memory. Reading it twice makes sure
1683 * we really do get the final value.
1684 */
1685 read_obp_translations();
1686 read_obp_memory("reg", &pall[0], &pall_ents);
1687 read_obp_memory("available", &pavail[0], &pavail_ents);
13edad7a 1688 read_obp_memory("available", &pavail[0], &pavail_ents);
0836a0eb
DM
1689
1690 phys_base = 0xffffffffffffffffUL;
3b2a7e23 1691 for (i = 0; i < pavail_ents; i++) {
13edad7a 1692 phys_base = min(phys_base, pavail[i].phys_addr);
95f72d1e 1693 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
3b2a7e23
DM
1694 }
1695
95f72d1e 1696 memblock_reserve(kern_base, kern_size);
0836a0eb 1697
4e82c9a6
DM
1698 find_ramdisk(phys_base);
1699
95f72d1e 1700 memblock_enforce_memory_limit(cmdline_memory_size);
25b0c659 1701
1aadc056 1702 memblock_allow_resize();
95f72d1e 1703 memblock_dump_all();
3b2a7e23 1704
1da177e4
LT
1705 set_bit(0, mmu_context_bmap);
1706
2bdb3cb2
DM
1707 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1708
1da177e4 1709 real_end = (unsigned long)_end;
64658743
DM
1710 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1711 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1712 num_kernel_image_mappings);
2bdb3cb2
DM
1713
1714 /* Set kernel pgd to upper alias so physical page computations
1da177e4
LT
1715 * work.
1716 */
1717 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1718
56425306 1719 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1da177e4
LT
1720
1721 /* Now can init the kernel/bad page tables. */
1722 pud_set(pud_offset(&swapper_pg_dir[0], 0),
56425306 1723 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1da177e4 1724
c9c10830 1725 inherit_prom_mappings();
5085b4a5 1726
8f361453
DM
1727 init_kpte_bitmap();
1728
a8b900d8
DM
1729 /* Ok, we can use our TLB miss and window trap handlers safely. */
1730 setup_tba();
1da177e4 1731
c9c10830 1732 __flush_tlb_all();
9ad98c5b 1733
490384e7
DM
1734 if (tlb_type == hypervisor)
1735 sun4v_ktsb_register();
1736
ad072004 1737 prom_build_devicetree();
b696fdc2 1738 of_populate_present_mask();
b99c6ebe
DM
1739#ifndef CONFIG_SMP
1740 of_fill_in_cpu_data();
1741#endif
ad072004 1742
890db403 1743 if (tlb_type == hypervisor) {
4a283339 1744 sun4v_mdesc_init();
6ac5c610 1745 mdesc_populate_present_mask(cpu_all_mask);
b99c6ebe
DM
1746#ifndef CONFIG_SMP
1747 mdesc_fill_in_cpu_data(cpu_all_mask);
1748#endif
890db403 1749 }
4a283339 1750
4f70f7a9
DM
1751 /* Once the OF device tree and MDESC have been setup, we know
1752 * the list of possible cpus. Therefore we can allocate the
1753 * IRQ stacks.
1754 */
1755 for_each_possible_cpu(i) {
1756 /* XXX Use node local allocations... XXX */
95f72d1e
YL
1757 softirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1758 hardirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
4f70f7a9
DM
1759 }
1760
2bdb3cb2 1761 /* Setup bootmem... */
919ee677 1762 last_valid_pfn = end_pfn = bootmem_init(phys_base);
d1112018 1763
919ee677 1764#ifndef CONFIG_NEED_MULTIPLE_NODES
17b0e199 1765 max_mapnr = last_valid_pfn;
919ee677 1766#endif
56425306 1767 kernel_physical_mapping_init();
56425306 1768
1da177e4 1769 {
919ee677 1770 unsigned long max_zone_pfns[MAX_NR_ZONES];
1da177e4 1771
919ee677 1772 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1da177e4 1773
919ee677 1774 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1da177e4 1775
919ee677 1776 free_area_init_nodes(max_zone_pfns);
1da177e4
LT
1777 }
1778
3c62a2d3 1779 printk("Booting Linux...\n");
1da177e4
LT
1780}
1781
9a2ed5cc 1782int __devinit page_in_phys_avail(unsigned long paddr)
919ee677
DM
1783{
1784 int i;
1785
1786 paddr &= PAGE_MASK;
1787
1788 for (i = 0; i < pavail_ents; i++) {
1789 unsigned long start, end;
1790
1791 start = pavail[i].phys_addr;
1792 end = start + pavail[i].reg_size;
1793
1794 if (paddr >= start && paddr < end)
1795 return 1;
1796 }
1797 if (paddr >= kern_base && paddr < (kern_base + kern_size))
1798 return 1;
1799#ifdef CONFIG_BLK_DEV_INITRD
1800 if (paddr >= __pa(initrd_start) &&
1801 paddr < __pa(PAGE_ALIGN(initrd_end)))
1802 return 1;
1803#endif
1804
1805 return 0;
1806}
1807
1808static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1809static int pavail_rescan_ents __initdata;
1810
1811/* Certain OBP calls, such as fetching "available" properties, can
1812 * claim physical memory. So, along with initializing the valid
1813 * address bitmap, what we do here is refetch the physical available
1814 * memory list again, and make sure it provides at least as much
1815 * memory as 'pavail' does.
1816 */
d8ed1d43 1817static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1da177e4 1818{
1da177e4
LT
1819 int i;
1820
13edad7a 1821 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1da177e4 1822
13edad7a 1823 for (i = 0; i < pavail_ents; i++) {
1da177e4
LT
1824 unsigned long old_start, old_end;
1825
13edad7a 1826 old_start = pavail[i].phys_addr;
919ee677 1827 old_end = old_start + pavail[i].reg_size;
1da177e4
LT
1828 while (old_start < old_end) {
1829 int n;
1830
c2a5a46b 1831 for (n = 0; n < pavail_rescan_ents; n++) {
1da177e4
LT
1832 unsigned long new_start, new_end;
1833
13edad7a
DM
1834 new_start = pavail_rescan[n].phys_addr;
1835 new_end = new_start +
1836 pavail_rescan[n].reg_size;
1da177e4
LT
1837
1838 if (new_start <= old_start &&
1839 new_end >= (old_start + PAGE_SIZE)) {
d8ed1d43 1840 set_bit(old_start >> 22, bitmap);
1da177e4
LT
1841 goto do_next_page;
1842 }
1843 }
919ee677
DM
1844
1845 prom_printf("mem_init: Lost memory in pavail\n");
1846 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1847 pavail[i].phys_addr,
1848 pavail[i].reg_size);
1849 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1850 pavail_rescan[i].phys_addr,
1851 pavail_rescan[i].reg_size);
1852 prom_printf("mem_init: Cannot continue, aborting.\n");
1853 prom_halt();
1da177e4
LT
1854
1855 do_next_page:
1856 old_start += PAGE_SIZE;
1857 }
1858 }
1859}
1860
d8ed1d43
DM
1861static void __init patch_tlb_miss_handler_bitmap(void)
1862{
1863 extern unsigned int valid_addr_bitmap_insn[];
1864 extern unsigned int valid_addr_bitmap_patch[];
1865
1866 valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1867 mb();
1868 valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1869 flushi(&valid_addr_bitmap_insn[0]);
1870}
1871
1da177e4
LT
1872void __init mem_init(void)
1873{
1874 unsigned long codepages, datapages, initpages;
1875 unsigned long addr, last;
1da177e4
LT
1876
1877 addr = PAGE_OFFSET + kern_base;
1878 last = PAGE_ALIGN(kern_size) + addr;
1879 while (addr < last) {
1880 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1881 addr += PAGE_SIZE;
1882 }
1883
d8ed1d43
DM
1884 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1885 patch_tlb_miss_handler_bitmap();
1da177e4 1886
1da177e4
LT
1887 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1888
919ee677 1889#ifdef CONFIG_NEED_MULTIPLE_NODES
d8ed1d43
DM
1890 {
1891 int i;
1892 for_each_online_node(i) {
1893 if (NODE_DATA(i)->node_spanned_pages != 0) {
1894 totalram_pages +=
1895 free_all_bootmem_node(NODE_DATA(i));
1896 }
919ee677 1897 }
625d693e 1898 totalram_pages += free_low_memory_core_early(MAX_NUMNODES);
919ee677
DM
1899 }
1900#else
1901 totalram_pages = free_all_bootmem();
1902#endif
1903
f1cfdb55
DM
1904 /* We subtract one to account for the mem_map_zero page
1905 * allocated below.
1906 */
919ee677
DM
1907 totalram_pages -= 1;
1908 num_physpages = totalram_pages;
1da177e4
LT
1909
1910 /*
1911 * Set up the zero page, mark it reserved, so that page count
1912 * is not manipulated when freeing the page from user ptes.
1913 */
1914 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1915 if (mem_map_zero == NULL) {
1916 prom_printf("paging_init: Cannot alloc zero page.\n");
1917 prom_halt();
1918 }
1919 SetPageReserved(mem_map_zero);
1920
1921 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1922 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1923 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1924 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1925 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1926 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1927
96177299 1928 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1da177e4
LT
1929 nr_free_pages() << (PAGE_SHIFT-10),
1930 codepages << (PAGE_SHIFT-10),
1931 datapages << (PAGE_SHIFT-10),
1932 initpages << (PAGE_SHIFT-10),
1933 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1934
1935 if (tlb_type == cheetah || tlb_type == cheetah_plus)
1936 cheetah_ecache_flush_init();
1937}
1938
898cf0ec 1939void free_initmem(void)
1da177e4
LT
1940{
1941 unsigned long addr, initend;
f2b60794
DM
1942 int do_free = 1;
1943
1944 /* If the physical memory maps were trimmed by kernel command
1945 * line options, don't even try freeing this initmem stuff up.
1946 * The kernel image could have been in the trimmed out region
1947 * and if so the freeing below will free invalid page structs.
1948 */
1949 if (cmdline_memory_size)
1950 do_free = 0;
1da177e4
LT
1951
1952 /*
1953 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1954 */
1955 addr = PAGE_ALIGN((unsigned long)(__init_begin));
1956 initend = (unsigned long)(__init_end) & PAGE_MASK;
1957 for (; addr < initend; addr += PAGE_SIZE) {
1958 unsigned long page;
1959 struct page *p;
1960
1961 page = (addr +
1962 ((unsigned long) __va(kern_base)) -
1963 ((unsigned long) KERNBASE));
c9cf5528 1964 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1da177e4 1965
f2b60794
DM
1966 if (do_free) {
1967 p = virt_to_page(page);
1968
1969 ClearPageReserved(p);
1970 init_page_count(p);
1971 __free_page(p);
1972 num_physpages++;
1973 totalram_pages++;
1974 }
1da177e4
LT
1975 }
1976}
1977
1978#ifdef CONFIG_BLK_DEV_INITRD
1979void free_initrd_mem(unsigned long start, unsigned long end)
1980{
1981 if (start < end)
1982 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1983 for (; start < end; start += PAGE_SIZE) {
1984 struct page *p = virt_to_page(start);
1985
1986 ClearPageReserved(p);
7835e98b 1987 init_page_count(p);
1da177e4
LT
1988 __free_page(p);
1989 num_physpages++;
1990 totalram_pages++;
1991 }
1992}
1993#endif
c4bce90e 1994
c4bce90e
DM
1995#define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
1996#define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
1997#define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1998#define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1999#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2000#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2001
2002pgprot_t PAGE_KERNEL __read_mostly;
2003EXPORT_SYMBOL(PAGE_KERNEL);
2004
2005pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2006pgprot_t PAGE_COPY __read_mostly;
0f15952a
DM
2007
2008pgprot_t PAGE_SHARED __read_mostly;
2009EXPORT_SYMBOL(PAGE_SHARED);
2010
c4bce90e
DM
2011unsigned long pg_iobits __read_mostly;
2012
2013unsigned long _PAGE_IE __read_mostly;
987c74fc 2014EXPORT_SYMBOL(_PAGE_IE);
b2bef442 2015
c4bce90e 2016unsigned long _PAGE_E __read_mostly;
b2bef442
DM
2017EXPORT_SYMBOL(_PAGE_E);
2018
c4bce90e 2019unsigned long _PAGE_CACHE __read_mostly;
b2bef442 2020EXPORT_SYMBOL(_PAGE_CACHE);
c4bce90e 2021
46644c24 2022#ifdef CONFIG_SPARSEMEM_VMEMMAP
46644c24
DM
2023unsigned long vmemmap_table[VMEMMAP_SIZE];
2024
2025int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2026{
2027 unsigned long vstart = (unsigned long) start;
2028 unsigned long vend = (unsigned long) (start + nr);
2029 unsigned long phys_start = (vstart - VMEMMAP_BASE);
2030 unsigned long phys_end = (vend - VMEMMAP_BASE);
2031 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2032 unsigned long end = VMEMMAP_ALIGN(phys_end);
2033 unsigned long pte_base;
2034
2035 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2036 _PAGE_CP_4U | _PAGE_CV_4U |
2037 _PAGE_P_4U | _PAGE_W_4U);
2038 if (tlb_type == hypervisor)
2039 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2040 _PAGE_CP_4V | _PAGE_CV_4V |
2041 _PAGE_P_4V | _PAGE_W_4V);
2042
2043 for (; addr < end; addr += VMEMMAP_CHUNK) {
2044 unsigned long *vmem_pp =
2045 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2046 void *block;
2047
2048 if (!(*vmem_pp & _PAGE_VALID)) {
2049 block = vmemmap_alloc_block(1UL << 22, node);
2050 if (!block)
2051 return -ENOMEM;
2052
2053 *vmem_pp = pte_base | __pa(block);
2054
2055 printk(KERN_INFO "[%p-%p] page_structs=%lu "
2056 "node=%d entry=%lu/%lu\n", start, block, nr,
2057 node,
2058 addr >> VMEMMAP_CHUNK_SHIFT,
33cd9dfa 2059 VMEMMAP_SIZE);
46644c24
DM
2060 }
2061 }
2062 return 0;
2063}
2064#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2065
c4bce90e
DM
2066static void prot_init_common(unsigned long page_none,
2067 unsigned long page_shared,
2068 unsigned long page_copy,
2069 unsigned long page_readonly,
2070 unsigned long page_exec_bit)
2071{
2072 PAGE_COPY = __pgprot(page_copy);
0f15952a 2073 PAGE_SHARED = __pgprot(page_shared);
c4bce90e
DM
2074
2075 protection_map[0x0] = __pgprot(page_none);
2076 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2077 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2078 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2079 protection_map[0x4] = __pgprot(page_readonly);
2080 protection_map[0x5] = __pgprot(page_readonly);
2081 protection_map[0x6] = __pgprot(page_copy);
2082 protection_map[0x7] = __pgprot(page_copy);
2083 protection_map[0x8] = __pgprot(page_none);
2084 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2085 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2086 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2087 protection_map[0xc] = __pgprot(page_readonly);
2088 protection_map[0xd] = __pgprot(page_readonly);
2089 protection_map[0xe] = __pgprot(page_shared);
2090 protection_map[0xf] = __pgprot(page_shared);
2091}
2092
2093static void __init sun4u_pgprot_init(void)
2094{
2095 unsigned long page_none, page_shared, page_copy, page_readonly;
2096 unsigned long page_exec_bit;
2097
2098 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2099 _PAGE_CACHE_4U | _PAGE_P_4U |
2100 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2101 _PAGE_EXEC_4U);
2102 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2103 _PAGE_CACHE_4U | _PAGE_P_4U |
2104 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2105 _PAGE_EXEC_4U | _PAGE_L_4U);
c4bce90e
DM
2106
2107 _PAGE_IE = _PAGE_IE_4U;
2108 _PAGE_E = _PAGE_E_4U;
2109 _PAGE_CACHE = _PAGE_CACHE_4U;
2110
2111 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2112 __ACCESS_BITS_4U | _PAGE_E_4U);
2113
d1acb421
DM
2114#ifdef CONFIG_DEBUG_PAGEALLOC
2115 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
af1ee569 2116 0xfffff80000000000UL;
d1acb421 2117#else
9cc3a1ac 2118 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
af1ee569 2119 0xfffff80000000000UL;
d1acb421 2120#endif
9cc3a1ac
DM
2121 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2122 _PAGE_P_4U | _PAGE_W_4U);
2123
2124 /* XXX Should use 256MB on Panther. XXX */
2125 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
c4bce90e
DM
2126
2127 _PAGE_SZBITS = _PAGE_SZBITS_4U;
2128 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2129 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2130 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2131
2132
2133 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2134 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2135 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2136 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2137 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2138 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2139 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2140
2141 page_exec_bit = _PAGE_EXEC_4U;
2142
2143 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2144 page_exec_bit);
2145}
2146
2147static void __init sun4v_pgprot_init(void)
2148{
2149 unsigned long page_none, page_shared, page_copy, page_readonly;
2150 unsigned long page_exec_bit;
2151
2152 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2153 _PAGE_CACHE_4V | _PAGE_P_4V |
2154 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2155 _PAGE_EXEC_4V);
2156 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
c4bce90e
DM
2157
2158 _PAGE_IE = _PAGE_IE_4V;
2159 _PAGE_E = _PAGE_E_4V;
2160 _PAGE_CACHE = _PAGE_CACHE_4V;
2161
d1acb421
DM
2162#ifdef CONFIG_DEBUG_PAGEALLOC
2163 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
af1ee569 2164 0xfffff80000000000UL;
d1acb421 2165#else
9cc3a1ac 2166 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
af1ee569 2167 0xfffff80000000000UL;
d1acb421 2168#endif
9cc3a1ac
DM
2169 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2170 _PAGE_P_4V | _PAGE_W_4V);
2171
d1acb421
DM
2172#ifdef CONFIG_DEBUG_PAGEALLOC
2173 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
af1ee569 2174 0xfffff80000000000UL;
d1acb421 2175#else
9cc3a1ac 2176 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
af1ee569 2177 0xfffff80000000000UL;
d1acb421 2178#endif
9cc3a1ac
DM
2179 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2180 _PAGE_P_4V | _PAGE_W_4V);
c4bce90e
DM
2181
2182 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2183 __ACCESS_BITS_4V | _PAGE_E_4V);
2184
2185 _PAGE_SZBITS = _PAGE_SZBITS_4V;
2186 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2187 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2188 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2189 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2190
2191 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2192 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2193 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2194 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2195 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2196 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2197 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2198
2199 page_exec_bit = _PAGE_EXEC_4V;
2200
2201 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2202 page_exec_bit);
2203}
2204
2205unsigned long pte_sz_bits(unsigned long sz)
2206{
2207 if (tlb_type == hypervisor) {
2208 switch (sz) {
2209 case 8 * 1024:
2210 default:
2211 return _PAGE_SZ8K_4V;
2212 case 64 * 1024:
2213 return _PAGE_SZ64K_4V;
2214 case 512 * 1024:
2215 return _PAGE_SZ512K_4V;
2216 case 4 * 1024 * 1024:
2217 return _PAGE_SZ4MB_4V;
6cb79b3f 2218 }
c4bce90e
DM
2219 } else {
2220 switch (sz) {
2221 case 8 * 1024:
2222 default:
2223 return _PAGE_SZ8K_4U;
2224 case 64 * 1024:
2225 return _PAGE_SZ64K_4U;
2226 case 512 * 1024:
2227 return _PAGE_SZ512K_4U;
2228 case 4 * 1024 * 1024:
2229 return _PAGE_SZ4MB_4U;
6cb79b3f 2230 }
c4bce90e
DM
2231 }
2232}
2233
2234pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2235{
2236 pte_t pte;
cf627156
DM
2237
2238 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
c4bce90e
DM
2239 pte_val(pte) |= (((unsigned long)space) << 32);
2240 pte_val(pte) |= pte_sz_bits(page_size);
c4bce90e 2241
cf627156 2242 return pte;
c4bce90e
DM
2243}
2244
2245static unsigned long kern_large_tte(unsigned long paddr)
2246{
2247 unsigned long val;
2248
2249 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2250 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2251 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2252 if (tlb_type == hypervisor)
2253 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2254 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2255 _PAGE_EXEC_4V | _PAGE_W_4V);
2256
2257 return val | paddr;
2258}
2259
c4bce90e
DM
2260/* If not locked, zap it. */
2261void __flush_tlb_all(void)
2262{
2263 unsigned long pstate;
2264 int i;
2265
2266 __asm__ __volatile__("flushw\n\t"
2267 "rdpr %%pstate, %0\n\t"
2268 "wrpr %0, %1, %%pstate"
2269 : "=r" (pstate)
2270 : "i" (PSTATE_IE));
8f361453
DM
2271 if (tlb_type == hypervisor) {
2272 sun4v_mmu_demap_all();
2273 } else if (tlb_type == spitfire) {
c4bce90e
DM
2274 for (i = 0; i < 64; i++) {
2275 /* Spitfire Errata #32 workaround */
2276 /* NOTE: Always runs on spitfire, so no
2277 * cheetah+ page size encodings.
2278 */
2279 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2280 "flush %%g6"
2281 : /* No outputs */
2282 : "r" (0),
2283 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2284
2285 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2286 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2287 "membar #Sync"
2288 : /* no outputs */
2289 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2290 spitfire_put_dtlb_data(i, 0x0UL);
2291 }
2292
2293 /* Spitfire Errata #32 workaround */
2294 /* NOTE: Always runs on spitfire, so no
2295 * cheetah+ page size encodings.
2296 */
2297 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2298 "flush %%g6"
2299 : /* No outputs */
2300 : "r" (0),
2301 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2302
2303 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2304 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2305 "membar #Sync"
2306 : /* no outputs */
2307 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2308 spitfire_put_itlb_data(i, 0x0UL);
2309 }
2310 }
2311 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2312 cheetah_flush_dtlb_all();
2313 cheetah_flush_itlb_all();
2314 }
2315 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2316 : : "r" (pstate));
2317}