Merge branch 'fix/asoc' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / sh / kernel / kgdb.c
CommitLineData
ab6e570b
PM
1/*
2 * SuperH KGDB support
3 *
4 * Copyright (C) 2008 Paul Mundt
5 *
6 * Single stepping taken from the old stub by Henry Bell and Jeremy Siegel.
7 *
8 * This file is subject to the terms and conditions of the GNU General Public
9 * License. See the file "COPYING" in the main directory of this archive
10 * for more details.
11 */
12#include <linux/kgdb.h>
13#include <linux/kdebug.h>
14#include <linux/irq.h>
15#include <linux/io.h>
16#include <asm/cacheflush.h>
17
18char in_nmi = 0; /* Set during NMI to prevent re-entry */
19
20/* Macros for single step instruction identification */
21#define OPCODE_BT(op) (((op) & 0xff00) == 0x8900)
22#define OPCODE_BF(op) (((op) & 0xff00) == 0x8b00)
23#define OPCODE_BTF_DISP(op) (((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \
24 (((op) & 0x7f ) << 1))
25#define OPCODE_BFS(op) (((op) & 0xff00) == 0x8f00)
26#define OPCODE_BTS(op) (((op) & 0xff00) == 0x8d00)
27#define OPCODE_BRA(op) (((op) & 0xf000) == 0xa000)
28#define OPCODE_BRA_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
29 (((op) & 0x7ff) << 1))
30#define OPCODE_BRAF(op) (((op) & 0xf0ff) == 0x0023)
31#define OPCODE_BRAF_REG(op) (((op) & 0x0f00) >> 8)
32#define OPCODE_BSR(op) (((op) & 0xf000) == 0xb000)
33#define OPCODE_BSR_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
34 (((op) & 0x7ff) << 1))
35#define OPCODE_BSRF(op) (((op) & 0xf0ff) == 0x0003)
36#define OPCODE_BSRF_REG(op) (((op) >> 8) & 0xf)
37#define OPCODE_JMP(op) (((op) & 0xf0ff) == 0x402b)
38#define OPCODE_JMP_REG(op) (((op) >> 8) & 0xf)
39#define OPCODE_JSR(op) (((op) & 0xf0ff) == 0x400b)
40#define OPCODE_JSR_REG(op) (((op) >> 8) & 0xf)
41#define OPCODE_RTS(op) ((op) == 0xb)
42#define OPCODE_RTE(op) ((op) == 0x2b)
43
44#define SR_T_BIT_MASK 0x1
45#define STEP_OPCODE 0xc33d
46
47/* Calculate the new address for after a step */
48static short *get_step_address(struct pt_regs *linux_regs)
49{
50 opcode_t op = __raw_readw(linux_regs->pc);
51 long addr;
52
53 /* BT */
54 if (OPCODE_BT(op)) {
55 if (linux_regs->sr & SR_T_BIT_MASK)
56 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
57 else
58 addr = linux_regs->pc + 2;
59 }
60
61 /* BTS */
62 else if (OPCODE_BTS(op)) {
63 if (linux_regs->sr & SR_T_BIT_MASK)
64 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
65 else
66 addr = linux_regs->pc + 4; /* Not in delay slot */
67 }
68
69 /* BF */
70 else if (OPCODE_BF(op)) {
71 if (!(linux_regs->sr & SR_T_BIT_MASK))
72 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
73 else
74 addr = linux_regs->pc + 2;
75 }
76
77 /* BFS */
78 else if (OPCODE_BFS(op)) {
79 if (!(linux_regs->sr & SR_T_BIT_MASK))
80 addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
81 else
82 addr = linux_regs->pc + 4; /* Not in delay slot */
83 }
84
85 /* BRA */
86 else if (OPCODE_BRA(op))
87 addr = linux_regs->pc + 4 + OPCODE_BRA_DISP(op);
88
89 /* BRAF */
90 else if (OPCODE_BRAF(op))
91 addr = linux_regs->pc + 4
92 + linux_regs->regs[OPCODE_BRAF_REG(op)];
93
94 /* BSR */
95 else if (OPCODE_BSR(op))
96 addr = linux_regs->pc + 4 + OPCODE_BSR_DISP(op);
97
98 /* BSRF */
99 else if (OPCODE_BSRF(op))
100 addr = linux_regs->pc + 4
101 + linux_regs->regs[OPCODE_BSRF_REG(op)];
102
103 /* JMP */
104 else if (OPCODE_JMP(op))
105 addr = linux_regs->regs[OPCODE_JMP_REG(op)];
106
107 /* JSR */
108 else if (OPCODE_JSR(op))
109 addr = linux_regs->regs[OPCODE_JSR_REG(op)];
110
111 /* RTS */
112 else if (OPCODE_RTS(op))
113 addr = linux_regs->pr;
114
115 /* RTE */
116 else if (OPCODE_RTE(op))
117 addr = linux_regs->regs[15];
118
119 /* Other */
120 else
121 addr = linux_regs->pc + instruction_size(op);
122
123 flush_icache_range(addr, addr + instruction_size(op));
124 return (short *)addr;
125}
126
127/*
128 * Replace the instruction immediately after the current instruction
129 * (i.e. next in the expected flow of control) with a trap instruction,
130 * so that returning will cause only a single instruction to be executed.
131 * Note that this model is slightly broken for instructions with delay
132 * slots (e.g. B[TF]S, BSR, BRA etc), where both the branch and the
133 * instruction in the delay slot will be executed.
134 */
135
136static unsigned long stepped_address;
137static opcode_t stepped_opcode;
138
139static void do_single_step(struct pt_regs *linux_regs)
140{
141 /* Determine where the target instruction will send us to */
142 unsigned short *addr = get_step_address(linux_regs);
143
144 stepped_address = (int)addr;
145
146 /* Replace it */
147 stepped_opcode = __raw_readw((long)addr);
148 *addr = STEP_OPCODE;
149
150 /* Flush and return */
151 flush_icache_range((long)addr, (long)addr +
152 instruction_size(stepped_opcode));
153}
154
155/* Undo a single step */
156static void undo_single_step(struct pt_regs *linux_regs)
157{
158 /* If we have stepped, put back the old instruction */
159 /* Use stepped_address in case we stopped elsewhere */
160 if (stepped_opcode != 0) {
161 __raw_writew(stepped_opcode, stepped_address);
162 flush_icache_range(stepped_address, stepped_address + 2);
163 }
164
165 stepped_opcode = 0;
166}
167
168void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
169{
170 int i;
171
172 for (i = 0; i < 16; i++)
173 gdb_regs[GDB_R0 + i] = regs->regs[i];
174
175 gdb_regs[GDB_PC] = regs->pc;
176 gdb_regs[GDB_PR] = regs->pr;
177 gdb_regs[GDB_SR] = regs->sr;
178 gdb_regs[GDB_GBR] = regs->gbr;
179 gdb_regs[GDB_MACH] = regs->mach;
180 gdb_regs[GDB_MACL] = regs->macl;
181
182 __asm__ __volatile__ ("stc vbr, %0" : "=r" (gdb_regs[GDB_VBR]));
183}
184
185void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
186{
187 int i;
188
189 for (i = 0; i < 16; i++)
190 regs->regs[GDB_R0 + i] = gdb_regs[GDB_R0 + i];
191
192 regs->pc = gdb_regs[GDB_PC];
193 regs->pr = gdb_regs[GDB_PR];
194 regs->sr = gdb_regs[GDB_SR];
195 regs->gbr = gdb_regs[GDB_GBR];
196 regs->mach = gdb_regs[GDB_MACH];
197 regs->macl = gdb_regs[GDB_MACL];
198
199 __asm__ __volatile__ ("ldc %0, vbr" : : "r" (gdb_regs[GDB_VBR]));
200}
201
202void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
203{
204 gdb_regs[GDB_R15] = p->thread.sp;
205 gdb_regs[GDB_PC] = p->thread.pc;
206}
207
208int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
209 char *remcomInBuffer, char *remcomOutBuffer,
210 struct pt_regs *linux_regs)
211{
212 unsigned long addr;
213 char *ptr;
214
215 /* Undo any stepping we may have done */
216 undo_single_step(linux_regs);
217
218 switch (remcomInBuffer[0]) {
219 case 'c':
220 case 's':
221 /* try to read optional parameter, pc unchanged if no parm */
222 ptr = &remcomInBuffer[1];
223 if (kgdb_hex2long(&ptr, &addr))
224 linux_regs->pc = addr;
225 case 'D':
226 case 'k':
227 atomic_set(&kgdb_cpu_doing_single_step, -1);
228
229 if (remcomInBuffer[0] == 's') {
230 do_single_step(linux_regs);
231 kgdb_single_step = 1;
232
233 atomic_set(&kgdb_cpu_doing_single_step,
234 raw_smp_processor_id());
235 }
236
237 return 0;
238 }
239
240 /* this means that we do not want to exit from the handler: */
241 return -1;
242}
243
244/*
245 * The primary entry points for the kgdb debug trap table entries.
246 */
247BUILD_TRAP_HANDLER(singlestep)
248{
249 unsigned long flags;
250 TRAP_HANDLER_DECL;
251
252 local_irq_save(flags);
253 regs->pc -= instruction_size(__raw_readw(regs->pc - 4));
254 kgdb_handle_exception(vec >> 2, SIGTRAP, 0, regs);
255 local_irq_restore(flags);
256}
257
258
259BUILD_TRAP_HANDLER(breakpoint)
260{
261 unsigned long flags;
262 TRAP_HANDLER_DECL;
263
264 local_irq_save(flags);
265 kgdb_handle_exception(vec >> 2, SIGTRAP, 0, regs);
266 local_irq_restore(flags);
267}
268
269int kgdb_arch_init(void)
270{
271 return 0;
272}
273
274void kgdb_arch_exit(void)
275{
276}
277
278struct kgdb_arch arch_kgdb_ops = {
279 /* Breakpoint instruction: trapa #0x3c */
280#ifdef CONFIG_CPU_LITTLE_ENDIAN
281 .gdb_bpt_instr = { 0x3c, 0xc3 },
282#else
283 .gdb_bpt_instr = { 0xc3, 0x3c },
284#endif
285};