[PATCH] increment pos before looking for the next cap in __pci_find_next_ht_cap
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / s390 / mm / vmem.c
CommitLineData
f4eb07c1
HC
1/*
2 * arch/s390/mm/vmem.c
3 *
4 * Copyright IBM Corp. 2006
5 * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
6 */
7
8#include <linux/bootmem.h>
9#include <linux/pfn.h>
10#include <linux/mm.h>
11#include <linux/module.h>
12#include <linux/list.h>
13#include <asm/pgalloc.h>
14#include <asm/pgtable.h>
15#include <asm/setup.h>
16#include <asm/tlbflush.h>
17
18unsigned long vmalloc_end;
19EXPORT_SYMBOL(vmalloc_end);
20
21static struct page *vmem_map;
22static DEFINE_MUTEX(vmem_mutex);
23
24struct memory_segment {
25 struct list_head list;
26 unsigned long start;
27 unsigned long size;
28};
29
30static LIST_HEAD(mem_segs);
31
32void memmap_init(unsigned long size, int nid, unsigned long zone,
33 unsigned long start_pfn)
34{
35 struct page *start, *end;
36 struct page *map_start, *map_end;
37 int i;
38
39 start = pfn_to_page(start_pfn);
40 end = start + size;
41
42 for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
43 unsigned long cstart, cend;
44
45 cstart = PFN_DOWN(memory_chunk[i].addr);
46 cend = cstart + PFN_DOWN(memory_chunk[i].size);
47
48 map_start = mem_map + cstart;
49 map_end = mem_map + cend;
50
51 if (map_start < start)
52 map_start = start;
53 if (map_end > end)
54 map_end = end;
55
56 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1))
57 / sizeof(struct page);
58 map_end += ((PFN_ALIGN((unsigned long) map_end)
59 - (unsigned long) map_end)
60 / sizeof(struct page));
61
62 if (map_start < map_end)
63 memmap_init_zone((unsigned long)(map_end - map_start),
64 nid, zone, page_to_pfn(map_start));
65 }
66}
67
68static inline void *vmem_alloc_pages(unsigned int order)
69{
70 if (slab_is_available())
71 return (void *)__get_free_pages(GFP_KERNEL, order);
72 return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
73}
74
75static inline pmd_t *vmem_pmd_alloc(void)
76{
77 pmd_t *pmd;
78 int i;
79
80 pmd = vmem_alloc_pages(PMD_ALLOC_ORDER);
81 if (!pmd)
82 return NULL;
83 for (i = 0; i < PTRS_PER_PMD; i++)
84 pmd_clear(pmd + i);
85 return pmd;
86}
87
88static inline pte_t *vmem_pte_alloc(void)
89{
90 pte_t *pte;
91 pte_t empty_pte;
92 int i;
93
94 pte = vmem_alloc_pages(PTE_ALLOC_ORDER);
95 if (!pte)
96 return NULL;
97 pte_val(empty_pte) = _PAGE_TYPE_EMPTY;
98 for (i = 0; i < PTRS_PER_PTE; i++)
99 set_pte(pte + i, empty_pte);
100 return pte;
101}
102
103/*
104 * Add a physical memory range to the 1:1 mapping.
105 */
106static int vmem_add_range(unsigned long start, unsigned long size)
107{
108 unsigned long address;
109 pgd_t *pg_dir;
110 pmd_t *pm_dir;
111 pte_t *pt_dir;
112 pte_t pte;
113 int ret = -ENOMEM;
114
115 for (address = start; address < start + size; address += PAGE_SIZE) {
116 pg_dir = pgd_offset_k(address);
117 if (pgd_none(*pg_dir)) {
118 pm_dir = vmem_pmd_alloc();
119 if (!pm_dir)
120 goto out;
121 pgd_populate(&init_mm, pg_dir, pm_dir);
122 }
123
124 pm_dir = pmd_offset(pg_dir, address);
125 if (pmd_none(*pm_dir)) {
126 pt_dir = vmem_pte_alloc();
127 if (!pt_dir)
128 goto out;
129 pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
130 }
131
132 pt_dir = pte_offset_kernel(pm_dir, address);
133 pte = pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL);
134 set_pte(pt_dir, pte);
135 }
136 ret = 0;
137out:
138 flush_tlb_kernel_range(start, start + size);
139 return ret;
140}
141
142/*
143 * Remove a physical memory range from the 1:1 mapping.
144 * Currently only invalidates page table entries.
145 */
146static void vmem_remove_range(unsigned long start, unsigned long size)
147{
148 unsigned long address;
149 pgd_t *pg_dir;
150 pmd_t *pm_dir;
151 pte_t *pt_dir;
152 pte_t pte;
153
154 pte_val(pte) = _PAGE_TYPE_EMPTY;
155 for (address = start; address < start + size; address += PAGE_SIZE) {
156 pg_dir = pgd_offset_k(address);
157 if (pgd_none(*pg_dir))
158 continue;
159 pm_dir = pmd_offset(pg_dir, address);
160 if (pmd_none(*pm_dir))
161 continue;
162 pt_dir = pte_offset_kernel(pm_dir, address);
163 set_pte(pt_dir, pte);
164 }
165 flush_tlb_kernel_range(start, start + size);
166}
167
168/*
169 * Add a backed mem_map array to the virtual mem_map array.
170 */
171static int vmem_add_mem_map(unsigned long start, unsigned long size)
172{
173 unsigned long address, start_addr, end_addr;
174 struct page *map_start, *map_end;
175 pgd_t *pg_dir;
176 pmd_t *pm_dir;
177 pte_t *pt_dir;
178 pte_t pte;
179 int ret = -ENOMEM;
180
181 map_start = vmem_map + PFN_DOWN(start);
182 map_end = vmem_map + PFN_DOWN(start + size);
183
184 start_addr = (unsigned long) map_start & PAGE_MASK;
185 end_addr = PFN_ALIGN((unsigned long) map_end);
186
187 for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
188 pg_dir = pgd_offset_k(address);
189 if (pgd_none(*pg_dir)) {
190 pm_dir = vmem_pmd_alloc();
191 if (!pm_dir)
192 goto out;
193 pgd_populate(&init_mm, pg_dir, pm_dir);
194 }
195
196 pm_dir = pmd_offset(pg_dir, address);
197 if (pmd_none(*pm_dir)) {
198 pt_dir = vmem_pte_alloc();
199 if (!pt_dir)
200 goto out;
201 pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
202 }
203
204 pt_dir = pte_offset_kernel(pm_dir, address);
205 if (pte_none(*pt_dir)) {
206 unsigned long new_page;
207
208 new_page =__pa(vmem_alloc_pages(0));
209 if (!new_page)
210 goto out;
211 pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
212 set_pte(pt_dir, pte);
213 }
214 }
215 ret = 0;
216out:
217 flush_tlb_kernel_range(start_addr, end_addr);
218 return ret;
219}
220
221static int vmem_add_mem(unsigned long start, unsigned long size)
222{
223 int ret;
224
225 ret = vmem_add_range(start, size);
226 if (ret)
227 return ret;
228 return vmem_add_mem_map(start, size);
229}
230
231/*
232 * Add memory segment to the segment list if it doesn't overlap with
233 * an already present segment.
234 */
235static int insert_memory_segment(struct memory_segment *seg)
236{
237 struct memory_segment *tmp;
238
239 if (PFN_DOWN(seg->start + seg->size) > max_pfn ||
240 seg->start + seg->size < seg->start)
241 return -ERANGE;
242
243 list_for_each_entry(tmp, &mem_segs, list) {
244 if (seg->start >= tmp->start + tmp->size)
245 continue;
246 if (seg->start + seg->size <= tmp->start)
247 continue;
248 return -ENOSPC;
249 }
250 list_add(&seg->list, &mem_segs);
251 return 0;
252}
253
254/*
255 * Remove memory segment from the segment list.
256 */
257static void remove_memory_segment(struct memory_segment *seg)
258{
259 list_del(&seg->list);
260}
261
262static void __remove_shared_memory(struct memory_segment *seg)
263{
264 remove_memory_segment(seg);
265 vmem_remove_range(seg->start, seg->size);
266}
267
268int remove_shared_memory(unsigned long start, unsigned long size)
269{
270 struct memory_segment *seg;
271 int ret;
272
273 mutex_lock(&vmem_mutex);
274
275 ret = -ENOENT;
276 list_for_each_entry(seg, &mem_segs, list) {
277 if (seg->start == start && seg->size == size)
278 break;
279 }
280
281 if (seg->start != start || seg->size != size)
282 goto out;
283
284 ret = 0;
285 __remove_shared_memory(seg);
286 kfree(seg);
287out:
288 mutex_unlock(&vmem_mutex);
289 return ret;
290}
291
292int add_shared_memory(unsigned long start, unsigned long size)
293{
294 struct memory_segment *seg;
295 struct page *page;
296 unsigned long pfn, num_pfn, end_pfn;
297 int ret;
298
299 mutex_lock(&vmem_mutex);
300 ret = -ENOMEM;
301 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
302 if (!seg)
303 goto out;
304 seg->start = start;
305 seg->size = size;
306
307 ret = insert_memory_segment(seg);
308 if (ret)
309 goto out_free;
310
311 ret = vmem_add_mem(start, size);
312 if (ret)
313 goto out_remove;
314
315 pfn = PFN_DOWN(start);
316 num_pfn = PFN_DOWN(size);
317 end_pfn = pfn + num_pfn;
318
319 page = pfn_to_page(pfn);
320 memset(page, 0, num_pfn * sizeof(struct page));
321
322 for (; pfn < end_pfn; pfn++) {
323 page = pfn_to_page(pfn);
324 init_page_count(page);
325 reset_page_mapcount(page);
326 SetPageReserved(page);
327 INIT_LIST_HEAD(&page->lru);
328 }
329 goto out;
330
331out_remove:
332 __remove_shared_memory(seg);
333out_free:
334 kfree(seg);
335out:
336 mutex_unlock(&vmem_mutex);
337 return ret;
338}
339
340/*
341 * map whole physical memory to virtual memory (identity mapping)
342 */
343void __init vmem_map_init(void)
344{
345 unsigned long map_size;
346 int i;
347
348 map_size = ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * sizeof(struct page);
349 vmalloc_end = PFN_ALIGN(VMALLOC_END_INIT) - PFN_ALIGN(map_size);
350 vmem_map = (struct page *) vmalloc_end;
351 NODE_DATA(0)->node_mem_map = vmem_map;
352
353 for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++)
354 vmem_add_mem(memory_chunk[i].addr, memory_chunk[i].size);
355}
356
357/*
358 * Convert memory chunk array to a memory segment list so there is a single
359 * list that contains both r/w memory and shared memory segments.
360 */
361static int __init vmem_convert_memory_chunk(void)
362{
363 struct memory_segment *seg;
364 int i;
365
366 mutex_lock(&vmem_mutex);
367 for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
368 if (!memory_chunk[i].size)
369 continue;
370 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
371 if (!seg)
372 panic("Out of memory...\n");
373 seg->start = memory_chunk[i].addr;
374 seg->size = memory_chunk[i].size;
375 insert_memory_segment(seg);
376 }
377 mutex_unlock(&vmem_mutex);
378 return 0;
379}
380
381core_initcall(vmem_convert_memory_chunk);