cputime: Generic on-demand virtual cputime accounting
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / time.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
f5339277 20 * measurement at boot time.
1da177e4
LT
21 * - for astronomical applications: add a new function to get
22 * non ambiguous timestamps even around leap seconds. This needs
23 * a new timestamp format and a good name.
24 *
25 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
26 * "A Kernel Model for Precision Timekeeping" by Dave Mills
27 *
28 * This program is free software; you can redistribute it and/or
29 * modify it under the terms of the GNU General Public License
30 * as published by the Free Software Foundation; either version
31 * 2 of the License, or (at your option) any later version.
32 */
33
1da177e4 34#include <linux/errno.h>
4b16f8e2 35#include <linux/export.h>
1da177e4
LT
36#include <linux/sched.h>
37#include <linux/kernel.h>
38#include <linux/param.h>
39#include <linux/string.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/timex.h>
43#include <linux/kernel_stat.h>
1da177e4
LT
44#include <linux/time.h>
45#include <linux/init.h>
46#include <linux/profile.h>
47#include <linux/cpu.h>
48#include <linux/security.h>
f2783c15
PM
49#include <linux/percpu.h>
50#include <linux/rtc.h>
092b8f34 51#include <linux/jiffies.h>
c6622f63 52#include <linux/posix-timers.h>
7d12e780 53#include <linux/irq.h>
177996e6 54#include <linux/delay.h>
e360adbe 55#include <linux/irq_work.h>
6795b85c 56#include <asm/trace.h>
1da177e4 57
1da177e4
LT
58#include <asm/io.h>
59#include <asm/processor.h>
60#include <asm/nvram.h>
61#include <asm/cache.h>
62#include <asm/machdep.h>
1da177e4
LT
63#include <asm/uaccess.h>
64#include <asm/time.h>
1da177e4 65#include <asm/prom.h>
f2783c15
PM
66#include <asm/irq.h>
67#include <asm/div64.h>
2249ca9d 68#include <asm/smp.h>
a7f290da 69#include <asm/vdso_datapage.h>
1ababe11 70#include <asm/firmware.h>
06b8e878 71#include <asm/cputime.h>
1da177e4 72
4a4cfe38
TB
73/* powerpc clocksource/clockevent code */
74
d831d0b8 75#include <linux/clockchips.h>
189374ae 76#include <linux/timekeeper_internal.h>
4a4cfe38 77
8e19608e 78static cycle_t rtc_read(struct clocksource *);
4a4cfe38
TB
79static struct clocksource clocksource_rtc = {
80 .name = "rtc",
81 .rating = 400,
82 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
83 .mask = CLOCKSOURCE_MASK(64),
4a4cfe38
TB
84 .read = rtc_read,
85};
86
8e19608e 87static cycle_t timebase_read(struct clocksource *);
4a4cfe38
TB
88static struct clocksource clocksource_timebase = {
89 .name = "timebase",
90 .rating = 400,
91 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
92 .mask = CLOCKSOURCE_MASK(64),
4a4cfe38
TB
93 .read = timebase_read,
94};
95
d831d0b8
TB
96#define DECREMENTER_MAX 0x7fffffff
97
98static int decrementer_set_next_event(unsigned long evt,
99 struct clock_event_device *dev);
100static void decrementer_set_mode(enum clock_event_mode mode,
101 struct clock_event_device *dev);
102
6e35994d 103struct clock_event_device decrementer_clockevent = {
621692cb
AB
104 .name = "decrementer",
105 .rating = 200,
106 .irq = 0,
107 .set_next_event = decrementer_set_next_event,
108 .set_mode = decrementer_set_mode,
109 .features = CLOCK_EVT_FEAT_ONESHOT,
d831d0b8 110};
6e35994d 111EXPORT_SYMBOL(decrementer_clockevent);
d831d0b8 112
7df10275
AB
113DEFINE_PER_CPU(u64, decrementers_next_tb);
114static DEFINE_PER_CPU(struct clock_event_device, decrementers);
d831d0b8 115
1da177e4
LT
116#define XSEC_PER_SEC (1024*1024)
117
f2783c15
PM
118#ifdef CONFIG_PPC64
119#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
120#else
121/* compute ((xsec << 12) * max) >> 32 */
122#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
123#endif
124
1da177e4
LT
125unsigned long tb_ticks_per_jiffy;
126unsigned long tb_ticks_per_usec = 100; /* sane default */
127EXPORT_SYMBOL(tb_ticks_per_usec);
128unsigned long tb_ticks_per_sec;
2cf82c02 129EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
092b8f34 130
1da177e4 131DEFINE_SPINLOCK(rtc_lock);
6ae3db11 132EXPORT_SYMBOL_GPL(rtc_lock);
1da177e4 133
fc9069fe
TB
134static u64 tb_to_ns_scale __read_mostly;
135static unsigned tb_to_ns_shift __read_mostly;
364a1246 136static u64 boot_tb __read_mostly;
1da177e4 137
1da177e4 138extern struct timezone sys_tz;
f2783c15 139static long timezone_offset;
1da177e4 140
10f7e7c1 141unsigned long ppc_proc_freq;
55ec2fca 142EXPORT_SYMBOL_GPL(ppc_proc_freq);
10f7e7c1 143unsigned long ppc_tb_freq;
55ec2fca 144EXPORT_SYMBOL_GPL(ppc_tb_freq);
96c44507 145
abf917cd 146#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
c6622f63
PM
147/*
148 * Factors for converting from cputime_t (timebase ticks) to
9f5072d4 149 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
c6622f63
PM
150 * These are all stored as 0.64 fixed-point binary fractions.
151 */
152u64 __cputime_jiffies_factor;
2cf82c02 153EXPORT_SYMBOL(__cputime_jiffies_factor);
9f5072d4
AS
154u64 __cputime_usec_factor;
155EXPORT_SYMBOL(__cputime_usec_factor);
c6622f63 156u64 __cputime_sec_factor;
2cf82c02 157EXPORT_SYMBOL(__cputime_sec_factor);
c6622f63 158u64 __cputime_clockt_factor;
2cf82c02 159EXPORT_SYMBOL(__cputime_clockt_factor);
06b8e878
MN
160DEFINE_PER_CPU(unsigned long, cputime_last_delta);
161DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
c6622f63 162
a42548a1
SG
163cputime_t cputime_one_jiffy;
164
872e439a
PM
165void (*dtl_consumer)(struct dtl_entry *, u64);
166
c6622f63
PM
167static void calc_cputime_factors(void)
168{
169 struct div_result res;
170
171 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
172 __cputime_jiffies_factor = res.result_low;
9f5072d4
AS
173 div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
174 __cputime_usec_factor = res.result_low;
c6622f63
PM
175 div128_by_32(1, 0, tb_ticks_per_sec, &res);
176 __cputime_sec_factor = res.result_low;
177 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
178 __cputime_clockt_factor = res.result_low;
179}
180
181/*
cf9efce0
PM
182 * Read the SPURR on systems that have it, otherwise the PURR,
183 * or if that doesn't exist return the timebase value passed in.
c6622f63 184 */
cf9efce0 185static u64 read_spurr(u64 tb)
c6622f63 186{
cf9efce0
PM
187 if (cpu_has_feature(CPU_FTR_SPURR))
188 return mfspr(SPRN_SPURR);
c6622f63
PM
189 if (cpu_has_feature(CPU_FTR_PURR))
190 return mfspr(SPRN_PURR);
cf9efce0 191 return tb;
c6622f63
PM
192}
193
cf9efce0
PM
194#ifdef CONFIG_PPC_SPLPAR
195
4603ac18 196/*
cf9efce0
PM
197 * Scan the dispatch trace log and count up the stolen time.
198 * Should be called with interrupts disabled.
4603ac18 199 */
cf9efce0 200static u64 scan_dispatch_log(u64 stop_tb)
4603ac18 201{
872e439a 202 u64 i = local_paca->dtl_ridx;
cf9efce0
PM
203 struct dtl_entry *dtl = local_paca->dtl_curr;
204 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
205 struct lppaca *vpa = local_paca->lppaca_ptr;
206 u64 tb_delta;
207 u64 stolen = 0;
208 u64 dtb;
209
84ffae55
AB
210 if (!dtl)
211 return 0;
212
cf9efce0
PM
213 if (i == vpa->dtl_idx)
214 return 0;
215 while (i < vpa->dtl_idx) {
872e439a
PM
216 if (dtl_consumer)
217 dtl_consumer(dtl, i);
cf9efce0
PM
218 dtb = dtl->timebase;
219 tb_delta = dtl->enqueue_to_dispatch_time +
220 dtl->ready_to_enqueue_time;
221 barrier();
222 if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
223 /* buffer has overflowed */
224 i = vpa->dtl_idx - N_DISPATCH_LOG;
225 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
226 continue;
227 }
228 if (dtb > stop_tb)
229 break;
230 stolen += tb_delta;
231 ++i;
232 ++dtl;
233 if (dtl == dtl_end)
234 dtl = local_paca->dispatch_log;
235 }
236 local_paca->dtl_ridx = i;
237 local_paca->dtl_curr = dtl;
238 return stolen;
4603ac18
MN
239}
240
cf9efce0
PM
241/*
242 * Accumulate stolen time by scanning the dispatch trace log.
243 * Called on entry from user mode.
244 */
245void accumulate_stolen_time(void)
246{
247 u64 sst, ust;
248
b18ae08d 249 u8 save_soft_enabled = local_paca->soft_enabled;
b18ae08d
TH
250
251 /* We are called early in the exception entry, before
252 * soft/hard_enabled are sync'ed to the expected state
253 * for the exception. We are hard disabled but the PACA
254 * needs to reflect that so various debug stuff doesn't
255 * complain
256 */
257 local_paca->soft_enabled = 0;
b18ae08d
TH
258
259 sst = scan_dispatch_log(local_paca->starttime_user);
260 ust = scan_dispatch_log(local_paca->starttime);
261 local_paca->system_time -= sst;
262 local_paca->user_time -= ust;
263 local_paca->stolen_time += ust + sst;
264
265 local_paca->soft_enabled = save_soft_enabled;
cf9efce0
PM
266}
267
268static inline u64 calculate_stolen_time(u64 stop_tb)
269{
270 u64 stolen = 0;
271
272 if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
273 stolen = scan_dispatch_log(stop_tb);
274 get_paca()->system_time -= stolen;
275 }
276
277 stolen += get_paca()->stolen_time;
278 get_paca()->stolen_time = 0;
279 return stolen;
4603ac18
MN
280}
281
cf9efce0
PM
282#else /* CONFIG_PPC_SPLPAR */
283static inline u64 calculate_stolen_time(u64 stop_tb)
284{
285 return 0;
286}
287
288#endif /* CONFIG_PPC_SPLPAR */
289
c6622f63
PM
290/*
291 * Account time for a transition between system, hard irq
292 * or soft irq state.
293 */
a7e1a9e3
FW
294static u64 vtime_delta(struct task_struct *tsk,
295 u64 *sys_scaled, u64 *stolen)
c6622f63 296{
a7e1a9e3
FW
297 u64 now, nowscaled, deltascaled;
298 u64 udelta, delta, user_scaled;
c6622f63 299
1b2852b1
FW
300 WARN_ON_ONCE(!irqs_disabled());
301
cf9efce0 302 now = mftb();
4603ac18 303 nowscaled = read_spurr(now);
cf9efce0
PM
304 get_paca()->system_time += now - get_paca()->starttime;
305 get_paca()->starttime = now;
4603ac18
MN
306 deltascaled = nowscaled - get_paca()->startspurr;
307 get_paca()->startspurr = nowscaled;
cf9efce0 308
a7e1a9e3 309 *stolen = calculate_stolen_time(now);
cf9efce0
PM
310
311 delta = get_paca()->system_time;
312 get_paca()->system_time = 0;
313 udelta = get_paca()->user_time - get_paca()->utime_sspurr;
314 get_paca()->utime_sspurr = get_paca()->user_time;
315
316 /*
317 * Because we don't read the SPURR on every kernel entry/exit,
318 * deltascaled includes both user and system SPURR ticks.
319 * Apportion these ticks to system SPURR ticks and user
320 * SPURR ticks in the same ratio as the system time (delta)
321 * and user time (udelta) values obtained from the timebase
322 * over the same interval. The system ticks get accounted here;
323 * the user ticks get saved up in paca->user_time_scaled to be
324 * used by account_process_tick.
325 */
a7e1a9e3 326 *sys_scaled = delta;
cf9efce0
PM
327 user_scaled = udelta;
328 if (deltascaled != delta + udelta) {
329 if (udelta) {
a7e1a9e3
FW
330 *sys_scaled = deltascaled * delta / (delta + udelta);
331 user_scaled = deltascaled - *sys_scaled;
cf9efce0 332 } else {
a7e1a9e3 333 *sys_scaled = deltascaled;
cf9efce0
PM
334 }
335 }
336 get_paca()->user_time_scaled += user_scaled;
337
a7e1a9e3
FW
338 return delta;
339}
340
fd25b4c2 341void vtime_account_system(struct task_struct *tsk)
a7e1a9e3
FW
342{
343 u64 delta, sys_scaled, stolen;
344
345 delta = vtime_delta(tsk, &sys_scaled, &stolen);
346 account_system_time(tsk, 0, delta, sys_scaled);
347 if (stolen)
348 account_steal_time(stolen);
349}
350
fd25b4c2 351void vtime_account_idle(struct task_struct *tsk)
a7e1a9e3
FW
352{
353 u64 delta, sys_scaled, stolen;
354
355 delta = vtime_delta(tsk, &sys_scaled, &stolen);
356 account_idle_time(delta + stolen);
c6622f63
PM
357}
358
359/*
bcebdf84
FW
360 * Transfer the user time accumulated in the paca
361 * by the exception entry and exit code to the generic
362 * process user time records.
c6622f63 363 * Must be called with interrupts disabled.
bcebdf84
FW
364 * Assumes that vtime_account_system/idle() has been called
365 * recently (i.e. since the last entry from usermode) so that
cf9efce0 366 * get_paca()->user_time_scaled is up to date.
c6622f63 367 */
bcebdf84 368void vtime_account_user(struct task_struct *tsk)
c6622f63 369{
4603ac18 370 cputime_t utime, utimescaled;
c6622f63
PM
371
372 utime = get_paca()->user_time;
cf9efce0 373 utimescaled = get_paca()->user_time_scaled;
c6622f63 374 get_paca()->user_time = 0;
cf9efce0
PM
375 get_paca()->user_time_scaled = 0;
376 get_paca()->utime_sspurr = 0;
457533a7 377 account_user_time(tsk, utime, utimescaled);
c6622f63
PM
378}
379
abf917cd 380#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
c6622f63 381#define calc_cputime_factors()
c6622f63
PM
382#endif
383
6defa38b
PM
384void __delay(unsigned long loops)
385{
386 unsigned long start;
387 int diff;
388
389 if (__USE_RTC()) {
390 start = get_rtcl();
391 do {
392 /* the RTCL register wraps at 1000000000 */
393 diff = get_rtcl() - start;
394 if (diff < 0)
395 diff += 1000000000;
396 } while (diff < loops);
397 } else {
398 start = get_tbl();
399 while (get_tbl() - start < loops)
400 HMT_low();
401 HMT_medium();
402 }
403}
404EXPORT_SYMBOL(__delay);
405
406void udelay(unsigned long usecs)
407{
408 __delay(tb_ticks_per_usec * usecs);
409}
410EXPORT_SYMBOL(udelay);
411
1da177e4
LT
412#ifdef CONFIG_SMP
413unsigned long profile_pc(struct pt_regs *regs)
414{
415 unsigned long pc = instruction_pointer(regs);
416
417 if (in_lock_functions(pc))
418 return regs->link;
419
420 return pc;
421}
422EXPORT_SYMBOL(profile_pc);
423#endif
424
e360adbe 425#ifdef CONFIG_IRQ_WORK
105988c0 426
0fe1ac48
PM
427/*
428 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
429 */
430#ifdef CONFIG_PPC64
e360adbe 431static inline unsigned long test_irq_work_pending(void)
105988c0 432{
0fe1ac48
PM
433 unsigned long x;
434
435 asm volatile("lbz %0,%1(13)"
436 : "=r" (x)
e360adbe 437 : "i" (offsetof(struct paca_struct, irq_work_pending)));
0fe1ac48
PM
438 return x;
439}
440
e360adbe 441static inline void set_irq_work_pending_flag(void)
0fe1ac48
PM
442{
443 asm volatile("stb %0,%1(13)" : :
444 "r" (1),
e360adbe 445 "i" (offsetof(struct paca_struct, irq_work_pending)));
0fe1ac48
PM
446}
447
e360adbe 448static inline void clear_irq_work_pending(void)
0fe1ac48
PM
449{
450 asm volatile("stb %0,%1(13)" : :
451 "r" (0),
e360adbe 452 "i" (offsetof(struct paca_struct, irq_work_pending)));
105988c0
PM
453}
454
0fe1ac48
PM
455#else /* 32-bit */
456
e360adbe 457DEFINE_PER_CPU(u8, irq_work_pending);
0fe1ac48 458
e360adbe
PZ
459#define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
460#define test_irq_work_pending() __get_cpu_var(irq_work_pending)
461#define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
105988c0 462
0fe1ac48
PM
463#endif /* 32 vs 64 bit */
464
4f8b50bb 465void arch_irq_work_raise(void)
0fe1ac48
PM
466{
467 preempt_disable();
e360adbe 468 set_irq_work_pending_flag();
0fe1ac48
PM
469 set_dec(1);
470 preempt_enable();
471}
472
e360adbe 473#else /* CONFIG_IRQ_WORK */
105988c0 474
e360adbe
PZ
475#define test_irq_work_pending() 0
476#define clear_irq_work_pending()
105988c0 477
e360adbe 478#endif /* CONFIG_IRQ_WORK */
105988c0 479
1da177e4
LT
480/*
481 * timer_interrupt - gets called when the decrementer overflows,
482 * with interrupts disabled.
483 */
c7aeffc4 484void timer_interrupt(struct pt_regs * regs)
1da177e4 485{
7d12e780 486 struct pt_regs *old_regs;
7df10275
AB
487 u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
488 struct clock_event_device *evt = &__get_cpu_var(decrementers);
860aed25 489 u64 now;
d831d0b8 490
963e5d3b
BH
491 /* Ensure a positive value is written to the decrementer, or else
492 * some CPUs will continue to take decrementer exceptions.
493 */
494 set_dec(DECREMENTER_MAX);
495
496 /* Some implementations of hotplug will get timer interrupts while
497 * offline, just ignore these
498 */
499 if (!cpu_online(smp_processor_id()))
500 return;
501
7230c564
BH
502 /* Conditionally hard-enable interrupts now that the DEC has been
503 * bumped to its maximum value
504 */
505 may_hard_irq_enable();
506
89713ed1
AB
507 __get_cpu_var(irq_stat).timer_irqs++;
508
b0d278b7 509#if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
f2783c15
PM
510 if (atomic_read(&ppc_n_lost_interrupts) != 0)
511 do_IRQ(regs);
512#endif
1da177e4 513
7d12e780 514 old_regs = set_irq_regs(regs);
1da177e4
LT
515 irq_enter();
516
e72bbbab
LZ
517 trace_timer_interrupt_entry(regs);
518
e360adbe
PZ
519 if (test_irq_work_pending()) {
520 clear_irq_work_pending();
521 irq_work_run();
0fe1ac48
PM
522 }
523
860aed25
PM
524 now = get_tb_or_rtc();
525 if (now >= *next_tb) {
526 *next_tb = ~(u64)0;
527 if (evt->event_handler)
528 evt->event_handler(evt);
529 } else {
530 now = *next_tb - now;
531 if (now <= DECREMENTER_MAX)
532 set_dec((int)now);
533 }
1da177e4 534
f2783c15 535#ifdef CONFIG_PPC64
8d15a3e5 536 /* collect purr register values often, for accurate calculations */
1ababe11 537 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1da177e4
LT
538 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
539 cu->current_tb = mfspr(SPRN_PURR);
540 }
f2783c15 541#endif
1da177e4 542
e72bbbab
LZ
543 trace_timer_interrupt_exit(regs);
544
1da177e4 545 irq_exit();
7d12e780 546 set_irq_regs(old_regs);
1da177e4
LT
547}
548
dabe859e
PM
549/*
550 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
551 * left pending on exit from a KVM guest. We don't need to do anything
552 * to clear them, as they are edge-triggered.
553 */
554void hdec_interrupt(struct pt_regs *regs)
555{
556}
557
7ac5dde9 558#ifdef CONFIG_SUSPEND
d75d68cf 559static void generic_suspend_disable_irqs(void)
7ac5dde9 560{
7ac5dde9
SW
561 /* Disable the decrementer, so that it doesn't interfere
562 * with suspending.
563 */
564
621692cb 565 set_dec(DECREMENTER_MAX);
7ac5dde9 566 local_irq_disable();
621692cb 567 set_dec(DECREMENTER_MAX);
7ac5dde9
SW
568}
569
d75d68cf 570static void generic_suspend_enable_irqs(void)
7ac5dde9 571{
7ac5dde9 572 local_irq_enable();
7ac5dde9
SW
573}
574
575/* Overrides the weak version in kernel/power/main.c */
576void arch_suspend_disable_irqs(void)
577{
578 if (ppc_md.suspend_disable_irqs)
579 ppc_md.suspend_disable_irqs();
580 generic_suspend_disable_irqs();
581}
582
583/* Overrides the weak version in kernel/power/main.c */
584void arch_suspend_enable_irqs(void)
585{
586 generic_suspend_enable_irqs();
587 if (ppc_md.suspend_enable_irqs)
588 ppc_md.suspend_enable_irqs();
589}
590#endif
591
1da177e4
LT
592/*
593 * Scheduler clock - returns current time in nanosec units.
594 *
595 * Note: mulhdu(a, b) (multiply high double unsigned) returns
596 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
597 * are 64-bit unsigned numbers.
598 */
599unsigned long long sched_clock(void)
600{
96c44507
PM
601 if (__USE_RTC())
602 return get_rtc();
fc9069fe 603 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
1da177e4
LT
604}
605
0bb474a4 606static int __init get_freq(char *name, int cells, unsigned long *val)
10f7e7c1
AB
607{
608 struct device_node *cpu;
a7f67bdf 609 const unsigned int *fp;
0bb474a4 610 int found = 0;
10f7e7c1 611
0bb474a4 612 /* The cpu node should have timebase and clock frequency properties */
10f7e7c1
AB
613 cpu = of_find_node_by_type(NULL, "cpu");
614
d8a8188d 615 if (cpu) {
e2eb6392 616 fp = of_get_property(cpu, name, NULL);
d8a8188d 617 if (fp) {
0bb474a4 618 found = 1;
a4dc7ff0 619 *val = of_read_ulong(fp, cells);
10f7e7c1 620 }
0bb474a4
AB
621
622 of_node_put(cpu);
10f7e7c1 623 }
0bb474a4
AB
624
625 return found;
626}
627
77c0a700
BH
628/* should become __cpuinit when secondary_cpu_time_init also is */
629void start_cpu_decrementer(void)
630{
631#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
632 /* Clear any pending timer interrupts */
633 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
634
635 /* Enable decrementer interrupt */
636 mtspr(SPRN_TCR, TCR_DIE);
637#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
638}
639
0bb474a4
AB
640void __init generic_calibrate_decr(void)
641{
642 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
643
644 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
645 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
646
10f7e7c1
AB
647 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
648 "(not found)\n");
0bb474a4 649 }
10f7e7c1 650
0bb474a4
AB
651 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
652
653 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
654 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
655
656 printk(KERN_ERR "WARNING: Estimating processor frequency "
657 "(not found)\n");
10f7e7c1 658 }
10f7e7c1 659}
10f7e7c1 660
aa3be5f3 661int update_persistent_clock(struct timespec now)
f2783c15
PM
662{
663 struct rtc_time tm;
664
aa3be5f3
TB
665 if (!ppc_md.set_rtc_time)
666 return 0;
667
668 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
669 tm.tm_year -= 1900;
670 tm.tm_mon -= 1;
671
672 return ppc_md.set_rtc_time(&tm);
673}
674
978d7eb3 675static void __read_persistent_clock(struct timespec *ts)
aa3be5f3
TB
676{
677 struct rtc_time tm;
678 static int first = 1;
679
d90246cd 680 ts->tv_nsec = 0;
aa3be5f3
TB
681 /* XXX this is a litle fragile but will work okay in the short term */
682 if (first) {
683 first = 0;
684 if (ppc_md.time_init)
685 timezone_offset = ppc_md.time_init();
686
687 /* get_boot_time() isn't guaranteed to be safe to call late */
d90246cd
MS
688 if (ppc_md.get_boot_time) {
689 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
690 return;
691 }
692 }
693 if (!ppc_md.get_rtc_time) {
694 ts->tv_sec = 0;
695 return;
aa3be5f3 696 }
f2783c15 697 ppc_md.get_rtc_time(&tm);
978d7eb3 698
d4f587c6
MS
699 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
700 tm.tm_hour, tm.tm_min, tm.tm_sec);
f2783c15
PM
701}
702
978d7eb3
BH
703void read_persistent_clock(struct timespec *ts)
704{
705 __read_persistent_clock(ts);
706
707 /* Sanitize it in case real time clock is set below EPOCH */
708 if (ts->tv_sec < 0) {
709 ts->tv_sec = 0;
710 ts->tv_nsec = 0;
711 }
712
713}
714
4a4cfe38 715/* clocksource code */
8e19608e 716static cycle_t rtc_read(struct clocksource *cs)
4a4cfe38
TB
717{
718 return (cycle_t)get_rtc();
719}
720
8e19608e 721static cycle_t timebase_read(struct clocksource *cs)
4a4cfe38
TB
722{
723 return (cycle_t)get_tb();
724}
725
70639421 726void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
7615856e 727 struct clocksource *clock, u32 mult)
4a4cfe38 728{
b0797b60 729 u64 new_tb_to_xs, new_stamp_xsec;
47916be4 730 u32 frac_sec;
4a4cfe38
TB
731
732 if (clock != &clocksource_timebase)
733 return;
734
735 /* Make userspace gettimeofday spin until we're done. */
736 ++vdso_data->tb_update_count;
737 smp_mb();
738
11b8633a
AB
739 /* 19342813113834067 ~= 2^(20+64) / 1e9 */
740 new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
06d518e3 741 new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
b0797b60 742 do_div(new_stamp_xsec, 1000000000);
06d518e3 743 new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
b0797b60 744
47916be4
TG
745 BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
746 /* this is tv_nsec / 1e9 as a 0.32 fraction */
747 frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
748
b0797b60
JS
749 /*
750 * tb_update_count is used to allow the userspace gettimeofday code
751 * to assure itself that it sees a consistent view of the tb_to_xs and
752 * stamp_xsec variables. It reads the tb_update_count, then reads
753 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
754 * the two values of tb_update_count match and are even then the
755 * tb_to_xs and stamp_xsec values are consistent. If not, then it
756 * loops back and reads them again until this criteria is met.
757 * We expect the caller to have done the first increment of
758 * vdso_data->tb_update_count already.
759 */
760 vdso_data->tb_orig_stamp = clock->cycle_last;
761 vdso_data->stamp_xsec = new_stamp_xsec;
762 vdso_data->tb_to_xs = new_tb_to_xs;
7615856e
JS
763 vdso_data->wtom_clock_sec = wtm->tv_sec;
764 vdso_data->wtom_clock_nsec = wtm->tv_nsec;
06d518e3 765 vdso_data->stamp_xtime = *wall_time;
0e469db8 766 vdso_data->stamp_sec_fraction = frac_sec;
b0797b60
JS
767 smp_wmb();
768 ++(vdso_data->tb_update_count);
4a4cfe38
TB
769}
770
771void update_vsyscall_tz(void)
772{
4a4cfe38
TB
773 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
774 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
4a4cfe38
TB
775}
776
1c21a293 777static void __init clocksource_init(void)
4a4cfe38
TB
778{
779 struct clocksource *clock;
780
781 if (__USE_RTC())
782 clock = &clocksource_rtc;
783 else
784 clock = &clocksource_timebase;
785
11b8633a 786 if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
4a4cfe38
TB
787 printk(KERN_ERR "clocksource: %s is already registered\n",
788 clock->name);
789 return;
790 }
791
792 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
793 clock->name, clock->mult, clock->shift);
794}
795
d831d0b8
TB
796static int decrementer_set_next_event(unsigned long evt,
797 struct clock_event_device *dev)
798{
7df10275 799 __get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
d831d0b8
TB
800 set_dec(evt);
801 return 0;
802}
803
804static void decrementer_set_mode(enum clock_event_mode mode,
805 struct clock_event_device *dev)
806{
807 if (mode != CLOCK_EVT_MODE_ONESHOT)
808 decrementer_set_next_event(DECREMENTER_MAX, dev);
809}
810
811static void register_decrementer_clockevent(int cpu)
812{
7df10275 813 struct clock_event_device *dec = &per_cpu(decrementers, cpu);
d831d0b8
TB
814
815 *dec = decrementer_clockevent;
320ab2b0 816 dec->cpumask = cpumask_of(cpu);
d831d0b8 817
b919ee82
AB
818 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
819 dec->name, dec->mult, dec->shift, cpu);
d831d0b8
TB
820
821 clockevents_register_device(dec);
822}
823
c481887f 824static void __init init_decrementer_clockevent(void)
d831d0b8
TB
825{
826 int cpu = smp_processor_id();
827
d8afc6fd
AB
828 clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
829
d831d0b8
TB
830 decrementer_clockevent.max_delta_ns =
831 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
43875cc0
PM
832 decrementer_clockevent.min_delta_ns =
833 clockevent_delta2ns(2, &decrementer_clockevent);
d831d0b8
TB
834
835 register_decrementer_clockevent(cpu);
836}
837
838void secondary_cpu_time_init(void)
839{
77c0a700
BH
840 /* Start the decrementer on CPUs that have manual control
841 * such as BookE
842 */
843 start_cpu_decrementer();
844
d831d0b8
TB
845 /* FIME: Should make unrelatred change to move snapshot_timebase
846 * call here ! */
847 register_decrementer_clockevent(smp_processor_id());
848}
849
f2783c15 850/* This function is only called on the boot processor */
1da177e4
LT
851void __init time_init(void)
852{
1da177e4 853 struct div_result res;
d75d68cf 854 u64 scale;
f2783c15
PM
855 unsigned shift;
856
96c44507
PM
857 if (__USE_RTC()) {
858 /* 601 processor: dec counts down by 128 every 128ns */
859 ppc_tb_freq = 1000000000;
96c44507
PM
860 } else {
861 /* Normal PowerPC with timebase register */
862 ppc_md.calibrate_decr();
224ad80a 863 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
96c44507 864 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
224ad80a 865 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
96c44507 866 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
96c44507 867 }
374e99d4
PM
868
869 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
092b8f34 870 tb_ticks_per_sec = ppc_tb_freq;
374e99d4 871 tb_ticks_per_usec = ppc_tb_freq / 1000000;
c6622f63 872 calc_cputime_factors();
a42548a1 873 setup_cputime_one_jiffy();
092b8f34 874
1da177e4
LT
875 /*
876 * Compute scale factor for sched_clock.
877 * The calibrate_decr() function has set tb_ticks_per_sec,
878 * which is the timebase frequency.
879 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
880 * the 128-bit result as a 64.64 fixed-point number.
881 * We then shift that number right until it is less than 1.0,
882 * giving us the scale factor and shift count to use in
883 * sched_clock().
884 */
885 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
886 scale = res.result_low;
887 for (shift = 0; res.result_high != 0; ++shift) {
888 scale = (scale >> 1) | (res.result_high << 63);
889 res.result_high >>= 1;
890 }
891 tb_to_ns_scale = scale;
892 tb_to_ns_shift = shift;
fc9069fe 893 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
c27da339 894 boot_tb = get_tb_or_rtc();
1da177e4 895
092b8f34 896 /* If platform provided a timezone (pmac), we correct the time */
621692cb 897 if (timezone_offset) {
092b8f34
PM
898 sys_tz.tz_minuteswest = -timezone_offset / 60;
899 sys_tz.tz_dsttime = 0;
621692cb 900 }
092b8f34 901
a7f290da
BH
902 vdso_data->tb_update_count = 0;
903 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1da177e4 904
77c0a700
BH
905 /* Start the decrementer on CPUs that have manual control
906 * such as BookE
907 */
908 start_cpu_decrementer();
909
f5339277
SR
910 /* Register the clocksource */
911 clocksource_init();
4a4cfe38 912
d831d0b8 913 init_decrementer_clockevent();
1da177e4
LT
914}
915
1da177e4 916
1da177e4
LT
917#define FEBRUARY 2
918#define STARTOFTIME 1970
919#define SECDAY 86400L
920#define SECYR (SECDAY * 365)
f2783c15
PM
921#define leapyear(year) ((year) % 4 == 0 && \
922 ((year) % 100 != 0 || (year) % 400 == 0))
1da177e4
LT
923#define days_in_year(a) (leapyear(a) ? 366 : 365)
924#define days_in_month(a) (month_days[(a) - 1])
925
926static int month_days[12] = {
927 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
928};
929
930/*
931 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
932 */
933void GregorianDay(struct rtc_time * tm)
934{
935 int leapsToDate;
936 int lastYear;
937 int day;
938 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
939
f2783c15 940 lastYear = tm->tm_year - 1;
1da177e4
LT
941
942 /*
943 * Number of leap corrections to apply up to end of last year
944 */
f2783c15 945 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1da177e4
LT
946
947 /*
948 * This year is a leap year if it is divisible by 4 except when it is
949 * divisible by 100 unless it is divisible by 400
950 *
f2783c15 951 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1da177e4 952 */
f2783c15 953 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1da177e4
LT
954
955 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
956 tm->tm_mday;
957
f2783c15 958 tm->tm_wday = day % 7;
1da177e4
LT
959}
960
961void to_tm(int tim, struct rtc_time * tm)
962{
963 register int i;
964 register long hms, day;
965
966 day = tim / SECDAY;
967 hms = tim % SECDAY;
968
969 /* Hours, minutes, seconds are easy */
970 tm->tm_hour = hms / 3600;
971 tm->tm_min = (hms % 3600) / 60;
972 tm->tm_sec = (hms % 3600) % 60;
973
974 /* Number of years in days */
975 for (i = STARTOFTIME; day >= days_in_year(i); i++)
976 day -= days_in_year(i);
977 tm->tm_year = i;
978
979 /* Number of months in days left */
980 if (leapyear(tm->tm_year))
981 days_in_month(FEBRUARY) = 29;
982 for (i = 1; day >= days_in_month(i); i++)
983 day -= days_in_month(i);
984 days_in_month(FEBRUARY) = 28;
985 tm->tm_mon = i;
986
987 /* Days are what is left over (+1) from all that. */
988 tm->tm_mday = day + 1;
989
990 /*
991 * Determine the day of week
992 */
993 GregorianDay(tm);
994}
995
1da177e4
LT
996/*
997 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
998 * result.
999 */
f2783c15
PM
1000void div128_by_32(u64 dividend_high, u64 dividend_low,
1001 unsigned divisor, struct div_result *dr)
1da177e4 1002{
f2783c15
PM
1003 unsigned long a, b, c, d;
1004 unsigned long w, x, y, z;
1005 u64 ra, rb, rc;
1da177e4
LT
1006
1007 a = dividend_high >> 32;
1008 b = dividend_high & 0xffffffff;
1009 c = dividend_low >> 32;
1010 d = dividend_low & 0xffffffff;
1011
f2783c15
PM
1012 w = a / divisor;
1013 ra = ((u64)(a - (w * divisor)) << 32) + b;
1014
f2783c15
PM
1015 rb = ((u64) do_div(ra, divisor) << 32) + c;
1016 x = ra;
1da177e4 1017
f2783c15
PM
1018 rc = ((u64) do_div(rb, divisor) << 32) + d;
1019 y = rb;
1020
1021 do_div(rc, divisor);
1022 z = rc;
1da177e4 1023
f2783c15
PM
1024 dr->result_high = ((u64)w << 32) + x;
1025 dr->result_low = ((u64)y << 32) + z;
1da177e4
LT
1026
1027}
bcd68a70 1028
177996e6
BH
1029/* We don't need to calibrate delay, we use the CPU timebase for that */
1030void calibrate_delay(void)
1031{
1032 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1033 * as the number of __delay(1) in a jiffy, so make it so
1034 */
1035 loops_per_jiffy = tb_ticks_per_jiffy;
1036}
1037
bcd68a70
GU
1038static int __init rtc_init(void)
1039{
1040 struct platform_device *pdev;
1041
1042 if (!ppc_md.get_rtc_time)
1043 return -ENODEV;
1044
1045 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1046 if (IS_ERR(pdev))
1047 return PTR_ERR(pdev);
1048
1049 return 0;
1050}
1051
1052module_init(rtc_init);