IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / time.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
1da177e4
LT
35#include <linux/errno.h>
36#include <linux/module.h>
37#include <linux/sched.h>
38#include <linux/kernel.h>
39#include <linux/param.h>
40#include <linux/string.h>
41#include <linux/mm.h>
42#include <linux/interrupt.h>
43#include <linux/timex.h>
44#include <linux/kernel_stat.h>
1da177e4
LT
45#include <linux/time.h>
46#include <linux/init.h>
47#include <linux/profile.h>
48#include <linux/cpu.h>
49#include <linux/security.h>
f2783c15
PM
50#include <linux/percpu.h>
51#include <linux/rtc.h>
092b8f34 52#include <linux/jiffies.h>
c6622f63 53#include <linux/posix-timers.h>
7d12e780 54#include <linux/irq.h>
1da177e4 55
1da177e4
LT
56#include <asm/io.h>
57#include <asm/processor.h>
58#include <asm/nvram.h>
59#include <asm/cache.h>
60#include <asm/machdep.h>
1da177e4
LT
61#include <asm/uaccess.h>
62#include <asm/time.h>
1da177e4 63#include <asm/prom.h>
f2783c15
PM
64#include <asm/irq.h>
65#include <asm/div64.h>
2249ca9d 66#include <asm/smp.h>
a7f290da 67#include <asm/vdso_datapage.h>
f2783c15 68#ifdef CONFIG_PPC64
1ababe11 69#include <asm/firmware.h>
f2783c15
PM
70#endif
71#ifdef CONFIG_PPC_ISERIES
8875ccfb 72#include <asm/iseries/it_lp_queue.h>
8021b8a7 73#include <asm/iseries/hv_call_xm.h>
f2783c15 74#endif
732ee21f 75#include <asm/smp.h>
1da177e4 76
1da177e4
LT
77/* keep track of when we need to update the rtc */
78time_t last_rtc_update;
1da177e4
LT
79#ifdef CONFIG_PPC_ISERIES
80unsigned long iSeries_recal_titan = 0;
81unsigned long iSeries_recal_tb = 0;
82static unsigned long first_settimeofday = 1;
83#endif
84
f2783c15
PM
85/* The decrementer counts down by 128 every 128ns on a 601. */
86#define DECREMENTER_COUNT_601 (1000000000 / HZ)
87
1da177e4
LT
88#define XSEC_PER_SEC (1024*1024)
89
f2783c15
PM
90#ifdef CONFIG_PPC64
91#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
92#else
93/* compute ((xsec << 12) * max) >> 32 */
94#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
95#endif
96
1da177e4
LT
97unsigned long tb_ticks_per_jiffy;
98unsigned long tb_ticks_per_usec = 100; /* sane default */
99EXPORT_SYMBOL(tb_ticks_per_usec);
100unsigned long tb_ticks_per_sec;
2cf82c02 101EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
f2783c15
PM
102u64 tb_to_xs;
103unsigned tb_to_us;
092b8f34 104
19923c19 105#define TICKLEN_SCALE TICK_LENGTH_SHIFT
092b8f34
PM
106u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
107u64 ticklen_to_xs; /* 0.64 fraction */
108
109/* If last_tick_len corresponds to about 1/HZ seconds, then
110 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
111#define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
112
1da177e4 113DEFINE_SPINLOCK(rtc_lock);
6ae3db11 114EXPORT_SYMBOL_GPL(rtc_lock);
1da177e4 115
f2783c15
PM
116u64 tb_to_ns_scale;
117unsigned tb_to_ns_shift;
1da177e4
LT
118
119struct gettimeofday_struct do_gtod;
120
1da177e4 121extern struct timezone sys_tz;
f2783c15 122static long timezone_offset;
1da177e4 123
10f7e7c1
AB
124unsigned long ppc_proc_freq;
125unsigned long ppc_tb_freq;
126
eb36c288
PM
127static u64 tb_last_jiffy __cacheline_aligned_in_smp;
128static DEFINE_PER_CPU(u64, last_jiffy);
96c44507 129
c6622f63
PM
130#ifdef CONFIG_VIRT_CPU_ACCOUNTING
131/*
132 * Factors for converting from cputime_t (timebase ticks) to
133 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
134 * These are all stored as 0.64 fixed-point binary fractions.
135 */
136u64 __cputime_jiffies_factor;
2cf82c02 137EXPORT_SYMBOL(__cputime_jiffies_factor);
c6622f63 138u64 __cputime_msec_factor;
2cf82c02 139EXPORT_SYMBOL(__cputime_msec_factor);
c6622f63 140u64 __cputime_sec_factor;
2cf82c02 141EXPORT_SYMBOL(__cputime_sec_factor);
c6622f63 142u64 __cputime_clockt_factor;
2cf82c02 143EXPORT_SYMBOL(__cputime_clockt_factor);
c6622f63
PM
144
145static void calc_cputime_factors(void)
146{
147 struct div_result res;
148
149 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
150 __cputime_jiffies_factor = res.result_low;
151 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
152 __cputime_msec_factor = res.result_low;
153 div128_by_32(1, 0, tb_ticks_per_sec, &res);
154 __cputime_sec_factor = res.result_low;
155 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
156 __cputime_clockt_factor = res.result_low;
157}
158
159/*
160 * Read the PURR on systems that have it, otherwise the timebase.
161 */
162static u64 read_purr(void)
163{
164 if (cpu_has_feature(CPU_FTR_PURR))
165 return mfspr(SPRN_PURR);
166 return mftb();
167}
168
169/*
170 * Account time for a transition between system, hard irq
171 * or soft irq state.
172 */
173void account_system_vtime(struct task_struct *tsk)
174{
175 u64 now, delta;
176 unsigned long flags;
177
178 local_irq_save(flags);
179 now = read_purr();
180 delta = now - get_paca()->startpurr;
181 get_paca()->startpurr = now;
182 if (!in_interrupt()) {
183 delta += get_paca()->system_time;
184 get_paca()->system_time = 0;
185 }
186 account_system_time(tsk, 0, delta);
187 local_irq_restore(flags);
188}
189
190/*
191 * Transfer the user and system times accumulated in the paca
192 * by the exception entry and exit code to the generic process
193 * user and system time records.
194 * Must be called with interrupts disabled.
195 */
196void account_process_vtime(struct task_struct *tsk)
197{
198 cputime_t utime;
199
200 utime = get_paca()->user_time;
201 get_paca()->user_time = 0;
202 account_user_time(tsk, utime);
203}
204
205static void account_process_time(struct pt_regs *regs)
206{
207 int cpu = smp_processor_id();
208
209 account_process_vtime(current);
210 run_local_timers();
211 if (rcu_pending(cpu))
212 rcu_check_callbacks(cpu, user_mode(regs));
213 scheduler_tick();
214 run_posix_cpu_timers(current);
215}
216
217#ifdef CONFIG_PPC_SPLPAR
218/*
219 * Stuff for accounting stolen time.
220 */
221struct cpu_purr_data {
222 int initialized; /* thread is running */
223 u64 tb0; /* timebase at origin time */
224 u64 purr0; /* PURR at origin time */
225 u64 tb; /* last TB value read */
226 u64 purr; /* last PURR value read */
227 u64 stolen; /* stolen time so far */
228 spinlock_t lock;
229};
230
231static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
232
233static void snapshot_tb_and_purr(void *data)
234{
235 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
236
237 p->tb0 = mftb();
238 p->purr0 = mfspr(SPRN_PURR);
239 p->tb = p->tb0;
240 p->purr = 0;
241 wmb();
242 p->initialized = 1;
243}
244
245/*
246 * Called during boot when all cpus have come up.
247 */
248void snapshot_timebases(void)
249{
250 int cpu;
251
252 if (!cpu_has_feature(CPU_FTR_PURR))
253 return;
0e551954 254 for_each_possible_cpu(cpu)
c6622f63
PM
255 spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock);
256 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
257}
258
259void calculate_steal_time(void)
260{
261 u64 tb, purr, t0;
262 s64 stolen;
263 struct cpu_purr_data *p0, *pme, *phim;
264 int cpu;
265
266 if (!cpu_has_feature(CPU_FTR_PURR))
267 return;
268 cpu = smp_processor_id();
269 pme = &per_cpu(cpu_purr_data, cpu);
270 if (!pme->initialized)
271 return; /* this can happen in early boot */
272 p0 = &per_cpu(cpu_purr_data, cpu & ~1);
273 phim = &per_cpu(cpu_purr_data, cpu ^ 1);
274 spin_lock(&p0->lock);
275 tb = mftb();
276 purr = mfspr(SPRN_PURR) - pme->purr0;
277 if (!phim->initialized || !cpu_online(cpu ^ 1)) {
278 stolen = (tb - pme->tb) - (purr - pme->purr);
279 } else {
280 t0 = pme->tb0;
281 if (phim->tb0 < t0)
282 t0 = phim->tb0;
283 stolen = phim->tb - t0 - phim->purr - purr - p0->stolen;
284 }
285 if (stolen > 0) {
286 account_steal_time(current, stolen);
287 p0->stolen += stolen;
288 }
289 pme->tb = tb;
290 pme->purr = purr;
291 spin_unlock(&p0->lock);
292}
293
294/*
295 * Must be called before the cpu is added to the online map when
296 * a cpu is being brought up at runtime.
297 */
298static void snapshot_purr(void)
299{
300 int cpu;
301 u64 purr;
302 struct cpu_purr_data *p0, *pme, *phim;
303 unsigned long flags;
304
305 if (!cpu_has_feature(CPU_FTR_PURR))
306 return;
307 cpu = smp_processor_id();
308 pme = &per_cpu(cpu_purr_data, cpu);
309 p0 = &per_cpu(cpu_purr_data, cpu & ~1);
310 phim = &per_cpu(cpu_purr_data, cpu ^ 1);
311 spin_lock_irqsave(&p0->lock, flags);
312 pme->tb = pme->tb0 = mftb();
313 purr = mfspr(SPRN_PURR);
314 if (!phim->initialized) {
315 pme->purr = 0;
316 pme->purr0 = purr;
317 } else {
318 /* set p->purr and p->purr0 for no change in p0->stolen */
319 pme->purr = phim->tb - phim->tb0 - phim->purr - p0->stolen;
320 pme->purr0 = purr - pme->purr;
321 }
322 pme->initialized = 1;
323 spin_unlock_irqrestore(&p0->lock, flags);
324}
325
326#endif /* CONFIG_PPC_SPLPAR */
327
328#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
329#define calc_cputime_factors()
330#define account_process_time(regs) update_process_times(user_mode(regs))
331#define calculate_steal_time() do { } while (0)
332#endif
333
334#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
335#define snapshot_purr() do { } while (0)
336#endif
337
338/*
339 * Called when a cpu comes up after the system has finished booting,
340 * i.e. as a result of a hotplug cpu action.
341 */
342void snapshot_timebase(void)
343{
344 __get_cpu_var(last_jiffy) = get_tb();
345 snapshot_purr();
346}
347
6defa38b
PM
348void __delay(unsigned long loops)
349{
350 unsigned long start;
351 int diff;
352
353 if (__USE_RTC()) {
354 start = get_rtcl();
355 do {
356 /* the RTCL register wraps at 1000000000 */
357 diff = get_rtcl() - start;
358 if (diff < 0)
359 diff += 1000000000;
360 } while (diff < loops);
361 } else {
362 start = get_tbl();
363 while (get_tbl() - start < loops)
364 HMT_low();
365 HMT_medium();
366 }
367}
368EXPORT_SYMBOL(__delay);
369
370void udelay(unsigned long usecs)
371{
372 __delay(tb_ticks_per_usec * usecs);
373}
374EXPORT_SYMBOL(udelay);
375
1da177e4
LT
376static __inline__ void timer_check_rtc(void)
377{
378 /*
379 * update the rtc when needed, this should be performed on the
380 * right fraction of a second. Half or full second ?
381 * Full second works on mk48t59 clocks, others need testing.
382 * Note that this update is basically only used through
383 * the adjtimex system calls. Setting the HW clock in
384 * any other way is a /dev/rtc and userland business.
385 * This is still wrong by -0.5/+1.5 jiffies because of the
386 * timer interrupt resolution and possible delay, but here we
387 * hit a quantization limit which can only be solved by higher
388 * resolution timers and decoupling time management from timer
389 * interrupts. This is also wrong on the clocks
390 * which require being written at the half second boundary.
391 * We should have an rtc call that only sets the minutes and
392 * seconds like on Intel to avoid problems with non UTC clocks.
393 */
d2e61512 394 if (ppc_md.set_rtc_time && ntp_synced() &&
f2783c15 395 xtime.tv_sec - last_rtc_update >= 659 &&
092b8f34 396 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
f2783c15
PM
397 struct rtc_time tm;
398 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
399 tm.tm_year -= 1900;
400 tm.tm_mon -= 1;
401 if (ppc_md.set_rtc_time(&tm) == 0)
402 last_rtc_update = xtime.tv_sec + 1;
403 else
404 /* Try again one minute later */
405 last_rtc_update += 60;
1da177e4
LT
406 }
407}
408
409/*
410 * This version of gettimeofday has microsecond resolution.
411 */
5db9fa95 412static inline void __do_gettimeofday(struct timeval *tv)
1da177e4 413{
f2783c15
PM
414 unsigned long sec, usec;
415 u64 tb_ticks, xsec;
416 struct gettimeofday_vars *temp_varp;
417 u64 temp_tb_to_xs, temp_stamp_xsec;
1da177e4
LT
418
419 /*
420 * These calculations are faster (gets rid of divides)
421 * if done in units of 1/2^20 rather than microseconds.
422 * The conversion to microseconds at the end is done
423 * without a divide (and in fact, without a multiply)
424 */
425 temp_varp = do_gtod.varp;
5db9fa95
NL
426
427 /* Sampling the time base must be done after loading
428 * do_gtod.varp in order to avoid racing with update_gtod.
429 */
430 data_barrier(temp_varp);
431 tb_ticks = get_tb() - temp_varp->tb_orig_stamp;
1da177e4
LT
432 temp_tb_to_xs = temp_varp->tb_to_xs;
433 temp_stamp_xsec = temp_varp->stamp_xsec;
f2783c15 434 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
1da177e4 435 sec = xsec / XSEC_PER_SEC;
f2783c15
PM
436 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
437 usec = SCALE_XSEC(usec, 1000000);
1da177e4
LT
438
439 tv->tv_sec = sec;
440 tv->tv_usec = usec;
441}
442
443void do_gettimeofday(struct timeval *tv)
444{
96c44507
PM
445 if (__USE_RTC()) {
446 /* do this the old way */
447 unsigned long flags, seq;
092b8f34 448 unsigned int sec, nsec, usec;
96c44507
PM
449
450 do {
451 seq = read_seqbegin_irqsave(&xtime_lock, flags);
452 sec = xtime.tv_sec;
eb36c288 453 nsec = xtime.tv_nsec + tb_ticks_since(tb_last_jiffy);
96c44507 454 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
092b8f34 455 usec = nsec / 1000;
96c44507
PM
456 while (usec >= 1000000) {
457 usec -= 1000000;
458 ++sec;
459 }
460 tv->tv_sec = sec;
461 tv->tv_usec = usec;
462 return;
463 }
5db9fa95 464 __do_gettimeofday(tv);
1da177e4
LT
465}
466
467EXPORT_SYMBOL(do_gettimeofday);
468
1da177e4 469/*
f2783c15
PM
470 * There are two copies of tb_to_xs and stamp_xsec so that no
471 * lock is needed to access and use these values in
472 * do_gettimeofday. We alternate the copies and as long as a
473 * reasonable time elapses between changes, there will never
474 * be inconsistent values. ntpd has a minimum of one minute
475 * between updates.
1da177e4 476 */
f2783c15 477static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
5d14a18d 478 u64 new_tb_to_xs)
1da177e4 479{
1da177e4 480 unsigned temp_idx;
f2783c15 481 struct gettimeofday_vars *temp_varp;
1da177e4
LT
482
483 temp_idx = (do_gtod.var_idx == 0);
484 temp_varp = &do_gtod.vars[temp_idx];
485
f2783c15
PM
486 temp_varp->tb_to_xs = new_tb_to_xs;
487 temp_varp->tb_orig_stamp = new_tb_stamp;
1da177e4 488 temp_varp->stamp_xsec = new_stamp_xsec;
0d8d4d42 489 smp_mb();
1da177e4
LT
490 do_gtod.varp = temp_varp;
491 do_gtod.var_idx = temp_idx;
492
f2783c15
PM
493 /*
494 * tb_update_count is used to allow the userspace gettimeofday code
495 * to assure itself that it sees a consistent view of the tb_to_xs and
496 * stamp_xsec variables. It reads the tb_update_count, then reads
497 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
498 * the two values of tb_update_count match and are even then the
499 * tb_to_xs and stamp_xsec values are consistent. If not, then it
500 * loops back and reads them again until this criteria is met.
0a45d449
PM
501 * We expect the caller to have done the first increment of
502 * vdso_data->tb_update_count already.
f2783c15 503 */
a7f290da
BH
504 vdso_data->tb_orig_stamp = new_tb_stamp;
505 vdso_data->stamp_xsec = new_stamp_xsec;
506 vdso_data->tb_to_xs = new_tb_to_xs;
507 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
508 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
0d8d4d42 509 smp_wmb();
a7f290da 510 ++(vdso_data->tb_update_count);
f2783c15
PM
511}
512
513/*
514 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
515 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
516 * difference tb - tb_orig_stamp small enough to always fit inside a
517 * 32 bits number. This is a requirement of our fast 32 bits userland
518 * implementation in the vdso. If we "miss" a call to this function
519 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
520 * with a too big difference, then the vdso will fallback to calling
521 * the syscall
522 */
523static __inline__ void timer_recalc_offset(u64 cur_tb)
524{
525 unsigned long offset;
526 u64 new_stamp_xsec;
092b8f34 527 u64 tlen, t2x;
0a45d449
PM
528 u64 tb, xsec_old, xsec_new;
529 struct gettimeofday_vars *varp;
f2783c15 530
96c44507
PM
531 if (__USE_RTC())
532 return;
19923c19 533 tlen = current_tick_length();
f2783c15 534 offset = cur_tb - do_gtod.varp->tb_orig_stamp;
0a45d449
PM
535 if (tlen == last_tick_len && offset < 0x80000000u)
536 return;
092b8f34
PM
537 if (tlen != last_tick_len) {
538 t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
539 last_tick_len = tlen;
540 } else
541 t2x = do_gtod.varp->tb_to_xs;
542 new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
543 do_div(new_stamp_xsec, 1000000000);
544 new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
0a45d449
PM
545
546 ++vdso_data->tb_update_count;
547 smp_mb();
548
549 /*
550 * Make sure time doesn't go backwards for userspace gettimeofday.
551 */
552 tb = get_tb();
553 varp = do_gtod.varp;
554 xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
555 + varp->stamp_xsec;
556 xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
557 if (xsec_new < xsec_old)
558 new_stamp_xsec += xsec_old - xsec_new;
559
092b8f34 560 update_gtod(cur_tb, new_stamp_xsec, t2x);
1da177e4
LT
561}
562
563#ifdef CONFIG_SMP
564unsigned long profile_pc(struct pt_regs *regs)
565{
566 unsigned long pc = instruction_pointer(regs);
567
568 if (in_lock_functions(pc))
569 return regs->link;
570
571 return pc;
572}
573EXPORT_SYMBOL(profile_pc);
574#endif
575
576#ifdef CONFIG_PPC_ISERIES
577
578/*
579 * This function recalibrates the timebase based on the 49-bit time-of-day
580 * value in the Titan chip. The Titan is much more accurate than the value
581 * returned by the service processor for the timebase frequency.
582 */
583
584static void iSeries_tb_recal(void)
585{
586 struct div_result divres;
587 unsigned long titan, tb;
588 tb = get_tb();
589 titan = HvCallXm_loadTod();
590 if ( iSeries_recal_titan ) {
591 unsigned long tb_ticks = tb - iSeries_recal_tb;
592 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
593 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
594 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
595 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
596 char sign = '+';
597 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
598 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
599
600 if ( tick_diff < 0 ) {
601 tick_diff = -tick_diff;
602 sign = '-';
603 }
604 if ( tick_diff ) {
605 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
606 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
607 new_tb_ticks_per_jiffy, sign, tick_diff );
608 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
609 tb_ticks_per_sec = new_tb_ticks_per_sec;
c6622f63 610 calc_cputime_factors();
1da177e4
LT
611 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
612 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
613 tb_to_xs = divres.result_low;
614 do_gtod.varp->tb_to_xs = tb_to_xs;
a7f290da
BH
615 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
616 vdso_data->tb_to_xs = tb_to_xs;
1da177e4
LT
617 }
618 else {
619 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
620 " new tb_ticks_per_jiffy = %lu\n"
621 " old tb_ticks_per_jiffy = %lu\n",
622 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
623 }
624 }
625 }
626 iSeries_recal_titan = titan;
627 iSeries_recal_tb = tb;
628}
629#endif
630
631/*
632 * For iSeries shared processors, we have to let the hypervisor
633 * set the hardware decrementer. We set a virtual decrementer
634 * in the lppaca and call the hypervisor if the virtual
635 * decrementer is less than the current value in the hardware
636 * decrementer. (almost always the new decrementer value will
637 * be greater than the current hardware decementer so the hypervisor
638 * call will not be needed)
639 */
640
1da177e4
LT
641/*
642 * timer_interrupt - gets called when the decrementer overflows,
643 * with interrupts disabled.
644 */
c7aeffc4 645void timer_interrupt(struct pt_regs * regs)
1da177e4 646{
7d12e780 647 struct pt_regs *old_regs;
1da177e4 648 int next_dec;
f2783c15
PM
649 int cpu = smp_processor_id();
650 unsigned long ticks;
5db9fa95 651 u64 tb_next_jiffy;
f2783c15
PM
652
653#ifdef CONFIG_PPC32
654 if (atomic_read(&ppc_n_lost_interrupts) != 0)
655 do_IRQ(regs);
656#endif
1da177e4 657
7d12e780 658 old_regs = set_irq_regs(regs);
1da177e4
LT
659 irq_enter();
660
7d12e780 661 profile_tick(CPU_PROFILING);
c6622f63 662 calculate_steal_time();
1da177e4 663
f2783c15 664#ifdef CONFIG_PPC_ISERIES
3356bb9f 665 get_lppaca()->int_dword.fields.decr_int = 0;
f2783c15
PM
666#endif
667
668 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
669 >= tb_ticks_per_jiffy) {
670 /* Update last_jiffy */
671 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
672 /* Handle RTCL overflow on 601 */
673 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
674 per_cpu(last_jiffy, cpu) -= 1000000000;
1da177e4 675
1da177e4
LT
676 /*
677 * We cannot disable the decrementer, so in the period
678 * between this cpu's being marked offline in cpu_online_map
679 * and calling stop-self, it is taking timer interrupts.
680 * Avoid calling into the scheduler rebalancing code if this
681 * is the case.
682 */
683 if (!cpu_is_offline(cpu))
c6622f63 684 account_process_time(regs);
f2783c15 685
1da177e4
LT
686 /*
687 * No need to check whether cpu is offline here; boot_cpuid
688 * should have been fixed up by now.
689 */
f2783c15
PM
690 if (cpu != boot_cpuid)
691 continue;
692
693 write_seqlock(&xtime_lock);
5db9fa95
NL
694 tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
695 if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
696 tb_last_jiffy = tb_next_jiffy;
3171a030 697 do_timer(1);
5db9fa95
NL
698 timer_recalc_offset(tb_last_jiffy);
699 timer_check_rtc();
700 }
f2783c15 701 write_sequnlock(&xtime_lock);
1da177e4
LT
702 }
703
f2783c15 704 next_dec = tb_ticks_per_jiffy - ticks;
1da177e4
LT
705 set_dec(next_dec);
706
707#ifdef CONFIG_PPC_ISERIES
937b31b1 708 if (hvlpevent_is_pending())
74889802 709 process_hvlpevents(regs);
1da177e4
LT
710#endif
711
f2783c15 712#ifdef CONFIG_PPC64
8d15a3e5 713 /* collect purr register values often, for accurate calculations */
1ababe11 714 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1da177e4
LT
715 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
716 cu->current_tb = mfspr(SPRN_PURR);
717 }
f2783c15 718#endif
1da177e4
LT
719
720 irq_exit();
7d12e780 721 set_irq_regs(old_regs);
1da177e4
LT
722}
723
f2783c15
PM
724void wakeup_decrementer(void)
725{
092b8f34 726 unsigned long ticks;
f2783c15 727
f2783c15 728 /*
092b8f34
PM
729 * The timebase gets saved on sleep and restored on wakeup,
730 * so all we need to do is to reset the decrementer.
f2783c15 731 */
092b8f34
PM
732 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
733 if (ticks < tb_ticks_per_jiffy)
734 ticks = tb_ticks_per_jiffy - ticks;
735 else
736 ticks = 1;
737 set_dec(ticks);
f2783c15
PM
738}
739
a5b518ed 740#ifdef CONFIG_SMP
f2783c15
PM
741void __init smp_space_timers(unsigned int max_cpus)
742{
743 int i;
c6622f63 744 unsigned long half = tb_ticks_per_jiffy / 2;
f2783c15 745 unsigned long offset = tb_ticks_per_jiffy / max_cpus;
eb36c288 746 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
f2783c15 747
cbe62e2b
PM
748 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
749 previous_tb -= tb_ticks_per_jiffy;
c6622f63
PM
750 /*
751 * The stolen time calculation for POWER5 shared-processor LPAR
752 * systems works better if the two threads' timebase interrupts
753 * are staggered by half a jiffy with respect to each other.
754 */
0e551954 755 for_each_possible_cpu(i) {
c6622f63
PM
756 if (i == boot_cpuid)
757 continue;
758 if (i == (boot_cpuid ^ 1))
759 per_cpu(last_jiffy, i) =
760 per_cpu(last_jiffy, boot_cpuid) - half;
761 else if (i & 1)
762 per_cpu(last_jiffy, i) =
763 per_cpu(last_jiffy, i ^ 1) + half;
764 else {
f2783c15
PM
765 previous_tb += offset;
766 per_cpu(last_jiffy, i) = previous_tb;
767 }
768 }
769}
770#endif
771
1da177e4
LT
772/*
773 * Scheduler clock - returns current time in nanosec units.
774 *
775 * Note: mulhdu(a, b) (multiply high double unsigned) returns
776 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
777 * are 64-bit unsigned numbers.
778 */
779unsigned long long sched_clock(void)
780{
96c44507
PM
781 if (__USE_RTC())
782 return get_rtc();
1da177e4
LT
783 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
784}
785
786int do_settimeofday(struct timespec *tv)
787{
788 time_t wtm_sec, new_sec = tv->tv_sec;
789 long wtm_nsec, new_nsec = tv->tv_nsec;
790 unsigned long flags;
092b8f34
PM
791 u64 new_xsec;
792 unsigned long tb_delta;
1da177e4
LT
793
794 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
795 return -EINVAL;
796
797 write_seqlock_irqsave(&xtime_lock, flags);
f2783c15
PM
798
799 /*
800 * Updating the RTC is not the job of this code. If the time is
801 * stepped under NTP, the RTC will be updated after STA_UNSYNC
802 * is cleared. Tools like clock/hwclock either copy the RTC
1da177e4
LT
803 * to the system time, in which case there is no point in writing
804 * to the RTC again, or write to the RTC but then they don't call
805 * settimeofday to perform this operation.
806 */
807#ifdef CONFIG_PPC_ISERIES
f2783c15 808 if (first_settimeofday) {
1da177e4
LT
809 iSeries_tb_recal();
810 first_settimeofday = 0;
811 }
812#endif
092b8f34 813
0a45d449
PM
814 /* Make userspace gettimeofday spin until we're done. */
815 ++vdso_data->tb_update_count;
816 smp_mb();
817
092b8f34
PM
818 /*
819 * Subtract off the number of nanoseconds since the
820 * beginning of the last tick.
092b8f34 821 */
eb36c288 822 tb_delta = tb_ticks_since(tb_last_jiffy);
092b8f34
PM
823 tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
824 new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
1da177e4
LT
825
826 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
827 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
828
829 set_normalized_timespec(&xtime, new_sec, new_nsec);
830 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
831
832 /* In case of a large backwards jump in time with NTP, we want the
833 * clock to be updated as soon as the PLL is again in lock.
834 */
835 last_rtc_update = new_sec - 658;
836
b149ee22 837 ntp_clear();
1da177e4 838
092b8f34
PM
839 new_xsec = xtime.tv_nsec;
840 if (new_xsec != 0) {
841 new_xsec *= XSEC_PER_SEC;
5f6b5b97
PM
842 do_div(new_xsec, NSEC_PER_SEC);
843 }
092b8f34 844 new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
96c44507 845 update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
1da177e4 846
a7f290da
BH
847 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
848 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
1da177e4
LT
849
850 write_sequnlock_irqrestore(&xtime_lock, flags);
851 clock_was_set();
852 return 0;
853}
854
855EXPORT_SYMBOL(do_settimeofday);
856
0bb474a4 857static int __init get_freq(char *name, int cells, unsigned long *val)
10f7e7c1
AB
858{
859 struct device_node *cpu;
a7f67bdf 860 const unsigned int *fp;
0bb474a4 861 int found = 0;
10f7e7c1 862
0bb474a4 863 /* The cpu node should have timebase and clock frequency properties */
10f7e7c1
AB
864 cpu = of_find_node_by_type(NULL, "cpu");
865
d8a8188d 866 if (cpu) {
a7f67bdf 867 fp = get_property(cpu, name, NULL);
d8a8188d 868 if (fp) {
0bb474a4 869 found = 1;
a4dc7ff0 870 *val = of_read_ulong(fp, cells);
10f7e7c1 871 }
0bb474a4
AB
872
873 of_node_put(cpu);
10f7e7c1 874 }
0bb474a4
AB
875
876 return found;
877}
878
879void __init generic_calibrate_decr(void)
880{
881 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
882
883 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
884 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
885
10f7e7c1
AB
886 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
887 "(not found)\n");
0bb474a4 888 }
10f7e7c1 889
0bb474a4
AB
890 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
891
892 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
893 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
894
895 printk(KERN_ERR "WARNING: Estimating processor frequency "
896 "(not found)\n");
10f7e7c1 897 }
0bb474a4 898
0fd6f717
KG
899#ifdef CONFIG_BOOKE
900 /* Set the time base to zero */
901 mtspr(SPRN_TBWL, 0);
902 mtspr(SPRN_TBWU, 0);
903
904 /* Clear any pending timer interrupts */
905 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
906
907 /* Enable decrementer interrupt */
908 mtspr(SPRN_TCR, TCR_DIE);
909#endif
10f7e7c1 910}
10f7e7c1 911
f2783c15
PM
912unsigned long get_boot_time(void)
913{
914 struct rtc_time tm;
915
916 if (ppc_md.get_boot_time)
917 return ppc_md.get_boot_time();
918 if (!ppc_md.get_rtc_time)
919 return 0;
920 ppc_md.get_rtc_time(&tm);
921 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
922 tm.tm_hour, tm.tm_min, tm.tm_sec);
923}
924
925/* This function is only called on the boot processor */
1da177e4
LT
926void __init time_init(void)
927{
1da177e4 928 unsigned long flags;
f2783c15 929 unsigned long tm = 0;
1da177e4 930 struct div_result res;
092b8f34 931 u64 scale, x;
f2783c15
PM
932 unsigned shift;
933
934 if (ppc_md.time_init != NULL)
935 timezone_offset = ppc_md.time_init();
1da177e4 936
96c44507
PM
937 if (__USE_RTC()) {
938 /* 601 processor: dec counts down by 128 every 128ns */
939 ppc_tb_freq = 1000000000;
eb36c288 940 tb_last_jiffy = get_rtcl();
96c44507
PM
941 } else {
942 /* Normal PowerPC with timebase register */
943 ppc_md.calibrate_decr();
224ad80a 944 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
96c44507 945 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
224ad80a 946 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
96c44507 947 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
eb36c288 948 tb_last_jiffy = get_tb();
96c44507 949 }
374e99d4
PM
950
951 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
092b8f34 952 tb_ticks_per_sec = ppc_tb_freq;
374e99d4
PM
953 tb_ticks_per_usec = ppc_tb_freq / 1000000;
954 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
c6622f63 955 calc_cputime_factors();
092b8f34
PM
956
957 /*
958 * Calculate the length of each tick in ns. It will not be
959 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
960 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
961 * rounded up.
962 */
963 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
964 do_div(x, ppc_tb_freq);
965 tick_nsec = x;
966 last_tick_len = x << TICKLEN_SCALE;
967
968 /*
969 * Compute ticklen_to_xs, which is a factor which gets multiplied
970 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
971 * It is computed as:
972 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
973 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
0a45d449
PM
974 * which turns out to be N = 51 - SHIFT_HZ.
975 * This gives the result as a 0.64 fixed-point fraction.
976 * That value is reduced by an offset amounting to 1 xsec per
977 * 2^31 timebase ticks to avoid problems with time going backwards
978 * by 1 xsec when we do timer_recalc_offset due to losing the
979 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
980 * since there are 2^20 xsec in a second.
092b8f34 981 */
0a45d449
PM
982 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
983 tb_ticks_per_jiffy << SHIFT_HZ, &res);
092b8f34
PM
984 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
985 ticklen_to_xs = res.result_low;
986
987 /* Compute tb_to_xs from tick_nsec */
988 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
374e99d4 989
1da177e4
LT
990 /*
991 * Compute scale factor for sched_clock.
992 * The calibrate_decr() function has set tb_ticks_per_sec,
993 * which is the timebase frequency.
994 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
995 * the 128-bit result as a 64.64 fixed-point number.
996 * We then shift that number right until it is less than 1.0,
997 * giving us the scale factor and shift count to use in
998 * sched_clock().
999 */
1000 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1001 scale = res.result_low;
1002 for (shift = 0; res.result_high != 0; ++shift) {
1003 scale = (scale >> 1) | (res.result_high << 63);
1004 res.result_high >>= 1;
1005 }
1006 tb_to_ns_scale = scale;
1007 tb_to_ns_shift = shift;
1008
4bd174fe 1009 tm = get_boot_time();
1da177e4
LT
1010
1011 write_seqlock_irqsave(&xtime_lock, flags);
092b8f34
PM
1012
1013 /* If platform provided a timezone (pmac), we correct the time */
1014 if (timezone_offset) {
1015 sys_tz.tz_minuteswest = -timezone_offset / 60;
1016 sys_tz.tz_dsttime = 0;
1017 tm -= timezone_offset;
1018 }
1019
f2783c15
PM
1020 xtime.tv_sec = tm;
1021 xtime.tv_nsec = 0;
1da177e4
LT
1022 do_gtod.varp = &do_gtod.vars[0];
1023 do_gtod.var_idx = 0;
96c44507 1024 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
eb36c288 1025 __get_cpu_var(last_jiffy) = tb_last_jiffy;
f2783c15 1026 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1da177e4
LT
1027 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
1028 do_gtod.varp->tb_to_xs = tb_to_xs;
1029 do_gtod.tb_to_us = tb_to_us;
a7f290da
BH
1030
1031 vdso_data->tb_orig_stamp = tb_last_jiffy;
1032 vdso_data->tb_update_count = 0;
1033 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
092b8f34 1034 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
a7f290da 1035 vdso_data->tb_to_xs = tb_to_xs;
1da177e4
LT
1036
1037 time_freq = 0;
1038
1da177e4
LT
1039 last_rtc_update = xtime.tv_sec;
1040 set_normalized_timespec(&wall_to_monotonic,
1041 -xtime.tv_sec, -xtime.tv_nsec);
1042 write_sequnlock_irqrestore(&xtime_lock, flags);
1043
1044 /* Not exact, but the timer interrupt takes care of this */
1045 set_dec(tb_ticks_per_jiffy);
1046}
1047
7a69af63
KP
1048#ifdef CONFIG_RTC_CLASS
1049static int set_rtc_class_time(struct rtc_time *tm)
1050{
1051 int err;
1052 struct class_device *class_dev =
1053 rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE);
1054
1055 if (class_dev == NULL)
1056 return -ENODEV;
1057
1058 err = rtc_set_time(class_dev, tm);
1059
1060 rtc_class_close(class_dev);
1061
1062 return 0;
1063}
1064
1065static void get_rtc_class_time(struct rtc_time *tm)
1066{
1067 int err;
1068 struct class_device *class_dev =
1069 rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE);
1070
1071 if (class_dev == NULL)
1072 return;
1073
1074 err = rtc_read_time(class_dev, tm);
1075
1076 rtc_class_close(class_dev);
1077
1078 return;
1079}
1080
1081int __init rtc_class_hookup(void)
1082{
1083 ppc_md.get_rtc_time = get_rtc_class_time;
1084 ppc_md.set_rtc_time = set_rtc_class_time;
1085
1086 return 0;
1087}
1088#endif /* CONFIG_RTC_CLASS */
1089
1da177e4 1090
1da177e4
LT
1091#define FEBRUARY 2
1092#define STARTOFTIME 1970
1093#define SECDAY 86400L
1094#define SECYR (SECDAY * 365)
f2783c15
PM
1095#define leapyear(year) ((year) % 4 == 0 && \
1096 ((year) % 100 != 0 || (year) % 400 == 0))
1da177e4
LT
1097#define days_in_year(a) (leapyear(a) ? 366 : 365)
1098#define days_in_month(a) (month_days[(a) - 1])
1099
1100static int month_days[12] = {
1101 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1102};
1103
1104/*
1105 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1106 */
1107void GregorianDay(struct rtc_time * tm)
1108{
1109 int leapsToDate;
1110 int lastYear;
1111 int day;
1112 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1113
f2783c15 1114 lastYear = tm->tm_year - 1;
1da177e4
LT
1115
1116 /*
1117 * Number of leap corrections to apply up to end of last year
1118 */
f2783c15 1119 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1da177e4
LT
1120
1121 /*
1122 * This year is a leap year if it is divisible by 4 except when it is
1123 * divisible by 100 unless it is divisible by 400
1124 *
f2783c15 1125 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1da177e4 1126 */
f2783c15 1127 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1da177e4
LT
1128
1129 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1130 tm->tm_mday;
1131
f2783c15 1132 tm->tm_wday = day % 7;
1da177e4
LT
1133}
1134
1135void to_tm(int tim, struct rtc_time * tm)
1136{
1137 register int i;
1138 register long hms, day;
1139
1140 day = tim / SECDAY;
1141 hms = tim % SECDAY;
1142
1143 /* Hours, minutes, seconds are easy */
1144 tm->tm_hour = hms / 3600;
1145 tm->tm_min = (hms % 3600) / 60;
1146 tm->tm_sec = (hms % 3600) % 60;
1147
1148 /* Number of years in days */
1149 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1150 day -= days_in_year(i);
1151 tm->tm_year = i;
1152
1153 /* Number of months in days left */
1154 if (leapyear(tm->tm_year))
1155 days_in_month(FEBRUARY) = 29;
1156 for (i = 1; day >= days_in_month(i); i++)
1157 day -= days_in_month(i);
1158 days_in_month(FEBRUARY) = 28;
1159 tm->tm_mon = i;
1160
1161 /* Days are what is left over (+1) from all that. */
1162 tm->tm_mday = day + 1;
1163
1164 /*
1165 * Determine the day of week
1166 */
1167 GregorianDay(tm);
1168}
1169
1170/* Auxiliary function to compute scaling factors */
1171/* Actually the choice of a timebase running at 1/4 the of the bus
1172 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1173 * It makes this computation very precise (27-28 bits typically) which
1174 * is optimistic considering the stability of most processor clock
1175 * oscillators and the precision with which the timebase frequency
1176 * is measured but does not harm.
1177 */
f2783c15
PM
1178unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1179{
1da177e4
LT
1180 unsigned mlt=0, tmp, err;
1181 /* No concern for performance, it's done once: use a stupid
1182 * but safe and compact method to find the multiplier.
1183 */
1184
1185 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
f2783c15
PM
1186 if (mulhwu(inscale, mlt|tmp) < outscale)
1187 mlt |= tmp;
1da177e4
LT
1188 }
1189
1190 /* We might still be off by 1 for the best approximation.
1191 * A side effect of this is that if outscale is too large
1192 * the returned value will be zero.
1193 * Many corner cases have been checked and seem to work,
1194 * some might have been forgotten in the test however.
1195 */
1196
f2783c15
PM
1197 err = inscale * (mlt+1);
1198 if (err <= inscale/2)
1199 mlt++;
1da177e4 1200 return mlt;
f2783c15 1201}
1da177e4
LT
1202
1203/*
1204 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1205 * result.
1206 */
f2783c15
PM
1207void div128_by_32(u64 dividend_high, u64 dividend_low,
1208 unsigned divisor, struct div_result *dr)
1da177e4 1209{
f2783c15
PM
1210 unsigned long a, b, c, d;
1211 unsigned long w, x, y, z;
1212 u64 ra, rb, rc;
1da177e4
LT
1213
1214 a = dividend_high >> 32;
1215 b = dividend_high & 0xffffffff;
1216 c = dividend_low >> 32;
1217 d = dividend_low & 0xffffffff;
1218
f2783c15
PM
1219 w = a / divisor;
1220 ra = ((u64)(a - (w * divisor)) << 32) + b;
1221
f2783c15
PM
1222 rb = ((u64) do_div(ra, divisor) << 32) + c;
1223 x = ra;
1da177e4 1224
f2783c15
PM
1225 rc = ((u64) do_div(rb, divisor) << 32) + d;
1226 y = rb;
1227
1228 do_div(rc, divisor);
1229 z = rc;
1da177e4 1230
f2783c15
PM
1231 dr->result_high = ((u64)w << 32) + x;
1232 dr->result_low = ((u64)y << 32) + z;
1da177e4
LT
1233
1234}