[POWERPC] Timer interrupt: use a struct for two per_cpu varables
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / time.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
1da177e4
LT
35#include <linux/errno.h>
36#include <linux/module.h>
37#include <linux/sched.h>
38#include <linux/kernel.h>
39#include <linux/param.h>
40#include <linux/string.h>
41#include <linux/mm.h>
42#include <linux/interrupt.h>
43#include <linux/timex.h>
44#include <linux/kernel_stat.h>
1da177e4
LT
45#include <linux/time.h>
46#include <linux/init.h>
47#include <linux/profile.h>
48#include <linux/cpu.h>
49#include <linux/security.h>
f2783c15
PM
50#include <linux/percpu.h>
51#include <linux/rtc.h>
092b8f34 52#include <linux/jiffies.h>
c6622f63 53#include <linux/posix-timers.h>
7d12e780 54#include <linux/irq.h>
1da177e4 55
1da177e4
LT
56#include <asm/io.h>
57#include <asm/processor.h>
58#include <asm/nvram.h>
59#include <asm/cache.h>
60#include <asm/machdep.h>
1da177e4
LT
61#include <asm/uaccess.h>
62#include <asm/time.h>
1da177e4 63#include <asm/prom.h>
f2783c15
PM
64#include <asm/irq.h>
65#include <asm/div64.h>
2249ca9d 66#include <asm/smp.h>
a7f290da 67#include <asm/vdso_datapage.h>
1ababe11 68#include <asm/firmware.h>
f2783c15 69#ifdef CONFIG_PPC_ISERIES
8875ccfb 70#include <asm/iseries/it_lp_queue.h>
8021b8a7 71#include <asm/iseries/hv_call_xm.h>
f2783c15 72#endif
1da177e4 73
4a4cfe38
TB
74/* powerpc clocksource/clockevent code */
75
d831d0b8 76#include <linux/clockchips.h>
4a4cfe38
TB
77#include <linux/clocksource.h>
78
79static cycle_t rtc_read(void);
80static struct clocksource clocksource_rtc = {
81 .name = "rtc",
82 .rating = 400,
83 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
84 .mask = CLOCKSOURCE_MASK(64),
85 .shift = 22,
86 .mult = 0, /* To be filled in */
87 .read = rtc_read,
88};
89
90static cycle_t timebase_read(void);
91static struct clocksource clocksource_timebase = {
92 .name = "timebase",
93 .rating = 400,
94 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
95 .mask = CLOCKSOURCE_MASK(64),
96 .shift = 22,
97 .mult = 0, /* To be filled in */
98 .read = timebase_read,
99};
100
d831d0b8
TB
101#define DECREMENTER_MAX 0x7fffffff
102
103static int decrementer_set_next_event(unsigned long evt,
104 struct clock_event_device *dev);
105static void decrementer_set_mode(enum clock_event_mode mode,
106 struct clock_event_device *dev);
107
108static struct clock_event_device decrementer_clockevent = {
109 .name = "decrementer",
110 .rating = 200,
cdec12ae 111 .shift = 16,
d831d0b8
TB
112 .mult = 0, /* To be filled in */
113 .irq = 0,
114 .set_next_event = decrementer_set_next_event,
115 .set_mode = decrementer_set_mode,
116 .features = CLOCK_EVT_FEAT_ONESHOT,
117};
118
6e6b44e8
MM
119struct decrementer_clock {
120 struct clock_event_device event;
121 u64 next_tb;
122};
123
124static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
d831d0b8 125
1da177e4 126#ifdef CONFIG_PPC_ISERIES
71712b45
TB
127static unsigned long __initdata iSeries_recal_titan;
128static signed long __initdata iSeries_recal_tb;
4a4cfe38
TB
129
130/* Forward declaration is only needed for iSereis compiles */
131void __init clocksource_init(void);
1da177e4
LT
132#endif
133
134#define XSEC_PER_SEC (1024*1024)
135
f2783c15
PM
136#ifdef CONFIG_PPC64
137#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
138#else
139/* compute ((xsec << 12) * max) >> 32 */
140#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
141#endif
142
1da177e4
LT
143unsigned long tb_ticks_per_jiffy;
144unsigned long tb_ticks_per_usec = 100; /* sane default */
145EXPORT_SYMBOL(tb_ticks_per_usec);
146unsigned long tb_ticks_per_sec;
2cf82c02 147EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
f2783c15
PM
148u64 tb_to_xs;
149unsigned tb_to_us;
092b8f34 150
19923c19 151#define TICKLEN_SCALE TICK_LENGTH_SHIFT
092b8f34
PM
152u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
153u64 ticklen_to_xs; /* 0.64 fraction */
154
155/* If last_tick_len corresponds to about 1/HZ seconds, then
156 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
157#define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
158
1da177e4 159DEFINE_SPINLOCK(rtc_lock);
6ae3db11 160EXPORT_SYMBOL_GPL(rtc_lock);
1da177e4 161
fc9069fe
TB
162static u64 tb_to_ns_scale __read_mostly;
163static unsigned tb_to_ns_shift __read_mostly;
164static unsigned long boot_tb __read_mostly;
1da177e4
LT
165
166struct gettimeofday_struct do_gtod;
167
1da177e4 168extern struct timezone sys_tz;
f2783c15 169static long timezone_offset;
1da177e4 170
10f7e7c1 171unsigned long ppc_proc_freq;
1474855d 172EXPORT_SYMBOL(ppc_proc_freq);
10f7e7c1
AB
173unsigned long ppc_tb_freq;
174
eb36c288
PM
175static u64 tb_last_jiffy __cacheline_aligned_in_smp;
176static DEFINE_PER_CPU(u64, last_jiffy);
96c44507 177
c6622f63
PM
178#ifdef CONFIG_VIRT_CPU_ACCOUNTING
179/*
180 * Factors for converting from cputime_t (timebase ticks) to
181 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
182 * These are all stored as 0.64 fixed-point binary fractions.
183 */
184u64 __cputime_jiffies_factor;
2cf82c02 185EXPORT_SYMBOL(__cputime_jiffies_factor);
c6622f63 186u64 __cputime_msec_factor;
2cf82c02 187EXPORT_SYMBOL(__cputime_msec_factor);
c6622f63 188u64 __cputime_sec_factor;
2cf82c02 189EXPORT_SYMBOL(__cputime_sec_factor);
c6622f63 190u64 __cputime_clockt_factor;
2cf82c02 191EXPORT_SYMBOL(__cputime_clockt_factor);
c6622f63
PM
192
193static void calc_cputime_factors(void)
194{
195 struct div_result res;
196
197 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
198 __cputime_jiffies_factor = res.result_low;
199 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
200 __cputime_msec_factor = res.result_low;
201 div128_by_32(1, 0, tb_ticks_per_sec, &res);
202 __cputime_sec_factor = res.result_low;
203 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
204 __cputime_clockt_factor = res.result_low;
205}
206
207/*
208 * Read the PURR on systems that have it, otherwise the timebase.
209 */
210static u64 read_purr(void)
211{
212 if (cpu_has_feature(CPU_FTR_PURR))
213 return mfspr(SPRN_PURR);
214 return mftb();
215}
216
4603ac18
MN
217/*
218 * Read the SPURR on systems that have it, otherwise the purr
219 */
220static u64 read_spurr(u64 purr)
221{
222 if (cpu_has_feature(CPU_FTR_SPURR))
223 return mfspr(SPRN_SPURR);
224 return purr;
225}
226
c6622f63
PM
227/*
228 * Account time for a transition between system, hard irq
229 * or soft irq state.
230 */
231void account_system_vtime(struct task_struct *tsk)
232{
4603ac18 233 u64 now, nowscaled, delta, deltascaled;
c6622f63
PM
234 unsigned long flags;
235
236 local_irq_save(flags);
237 now = read_purr();
238 delta = now - get_paca()->startpurr;
239 get_paca()->startpurr = now;
4603ac18
MN
240 nowscaled = read_spurr(now);
241 deltascaled = nowscaled - get_paca()->startspurr;
242 get_paca()->startspurr = nowscaled;
c6622f63 243 if (!in_interrupt()) {
4603ac18
MN
244 /* deltascaled includes both user and system time.
245 * Hence scale it based on the purr ratio to estimate
246 * the system time */
2b46b567
MN
247 if (get_paca()->user_time)
248 deltascaled = deltascaled * get_paca()->system_time /
249 (get_paca()->system_time + get_paca()->user_time);
c6622f63
PM
250 delta += get_paca()->system_time;
251 get_paca()->system_time = 0;
252 }
253 account_system_time(tsk, 0, delta);
4603ac18
MN
254 get_paca()->purrdelta = delta;
255 account_system_time_scaled(tsk, deltascaled);
256 get_paca()->spurrdelta = deltascaled;
c6622f63
PM
257 local_irq_restore(flags);
258}
259
260/*
261 * Transfer the user and system times accumulated in the paca
262 * by the exception entry and exit code to the generic process
263 * user and system time records.
264 * Must be called with interrupts disabled.
265 */
fa13a5a1 266void account_process_tick(struct task_struct *tsk, int user_tick)
c6622f63 267{
4603ac18 268 cputime_t utime, utimescaled;
c6622f63
PM
269
270 utime = get_paca()->user_time;
271 get_paca()->user_time = 0;
272 account_user_time(tsk, utime);
4603ac18
MN
273
274 /* Estimate the scaled utime by scaling the real utime based
275 * on the last spurr to purr ratio */
276 utimescaled = utime * get_paca()->spurrdelta / get_paca()->purrdelta;
277 get_paca()->spurrdelta = get_paca()->purrdelta = 0;
278 account_user_time_scaled(tsk, utimescaled);
c6622f63
PM
279}
280
c6622f63
PM
281/*
282 * Stuff for accounting stolen time.
283 */
284struct cpu_purr_data {
285 int initialized; /* thread is running */
c6622f63
PM
286 u64 tb; /* last TB value read */
287 u64 purr; /* last PURR value read */
4603ac18 288 u64 spurr; /* last SPURR value read */
c6622f63
PM
289};
290
df211c8a
NL
291/*
292 * Each entry in the cpu_purr_data array is manipulated only by its
293 * "owner" cpu -- usually in the timer interrupt but also occasionally
294 * in process context for cpu online. As long as cpus do not touch
295 * each others' cpu_purr_data, disabling local interrupts is
296 * sufficient to serialize accesses.
297 */
c6622f63
PM
298static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
299
300static void snapshot_tb_and_purr(void *data)
301{
df211c8a 302 unsigned long flags;
c6622f63
PM
303 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
304
df211c8a 305 local_irq_save(flags);
c27da339 306 p->tb = get_tb_or_rtc();
cbcdb93d 307 p->purr = mfspr(SPRN_PURR);
c6622f63
PM
308 wmb();
309 p->initialized = 1;
df211c8a 310 local_irq_restore(flags);
c6622f63
PM
311}
312
313/*
314 * Called during boot when all cpus have come up.
315 */
316void snapshot_timebases(void)
317{
c6622f63
PM
318 if (!cpu_has_feature(CPU_FTR_PURR))
319 return;
c6622f63
PM
320 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
321}
322
df211c8a
NL
323/*
324 * Must be called with interrupts disabled.
325 */
c6622f63
PM
326void calculate_steal_time(void)
327{
cbcdb93d 328 u64 tb, purr;
c6622f63 329 s64 stolen;
cbcdb93d 330 struct cpu_purr_data *pme;
c6622f63
PM
331
332 if (!cpu_has_feature(CPU_FTR_PURR))
333 return;
8b5621f1 334 pme = &__get_cpu_var(cpu_purr_data);
c6622f63
PM
335 if (!pme->initialized)
336 return; /* this can happen in early boot */
c6622f63 337 tb = mftb();
cbcdb93d
SR
338 purr = mfspr(SPRN_PURR);
339 stolen = (tb - pme->tb) - (purr - pme->purr);
340 if (stolen > 0)
c6622f63 341 account_steal_time(current, stolen);
c6622f63
PM
342 pme->tb = tb;
343 pme->purr = purr;
c6622f63
PM
344}
345
4cefebb1 346#ifdef CONFIG_PPC_SPLPAR
c6622f63
PM
347/*
348 * Must be called before the cpu is added to the online map when
349 * a cpu is being brought up at runtime.
350 */
351static void snapshot_purr(void)
352{
cbcdb93d 353 struct cpu_purr_data *pme;
c6622f63
PM
354 unsigned long flags;
355
356 if (!cpu_has_feature(CPU_FTR_PURR))
357 return;
df211c8a 358 local_irq_save(flags);
8b5621f1 359 pme = &__get_cpu_var(cpu_purr_data);
cbcdb93d
SR
360 pme->tb = mftb();
361 pme->purr = mfspr(SPRN_PURR);
c6622f63 362 pme->initialized = 1;
df211c8a 363 local_irq_restore(flags);
c6622f63
PM
364}
365
366#endif /* CONFIG_PPC_SPLPAR */
367
368#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
369#define calc_cputime_factors()
c6622f63
PM
370#define calculate_steal_time() do { } while (0)
371#endif
372
373#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
374#define snapshot_purr() do { } while (0)
375#endif
376
377/*
378 * Called when a cpu comes up after the system has finished booting,
379 * i.e. as a result of a hotplug cpu action.
380 */
381void snapshot_timebase(void)
382{
c27da339 383 __get_cpu_var(last_jiffy) = get_tb_or_rtc();
c6622f63
PM
384 snapshot_purr();
385}
386
6defa38b
PM
387void __delay(unsigned long loops)
388{
389 unsigned long start;
390 int diff;
391
392 if (__USE_RTC()) {
393 start = get_rtcl();
394 do {
395 /* the RTCL register wraps at 1000000000 */
396 diff = get_rtcl() - start;
397 if (diff < 0)
398 diff += 1000000000;
399 } while (diff < loops);
400 } else {
401 start = get_tbl();
402 while (get_tbl() - start < loops)
403 HMT_low();
404 HMT_medium();
405 }
406}
407EXPORT_SYMBOL(__delay);
408
409void udelay(unsigned long usecs)
410{
411 __delay(tb_ticks_per_usec * usecs);
412}
413EXPORT_SYMBOL(udelay);
414
1da177e4 415
1da177e4 416/*
f2783c15
PM
417 * There are two copies of tb_to_xs and stamp_xsec so that no
418 * lock is needed to access and use these values in
419 * do_gettimeofday. We alternate the copies and as long as a
420 * reasonable time elapses between changes, there will never
421 * be inconsistent values. ntpd has a minimum of one minute
422 * between updates.
1da177e4 423 */
f2783c15 424static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
5d14a18d 425 u64 new_tb_to_xs)
1da177e4 426{
1da177e4 427 unsigned temp_idx;
f2783c15 428 struct gettimeofday_vars *temp_varp;
1da177e4
LT
429
430 temp_idx = (do_gtod.var_idx == 0);
431 temp_varp = &do_gtod.vars[temp_idx];
432
f2783c15
PM
433 temp_varp->tb_to_xs = new_tb_to_xs;
434 temp_varp->tb_orig_stamp = new_tb_stamp;
1da177e4 435 temp_varp->stamp_xsec = new_stamp_xsec;
0d8d4d42 436 smp_mb();
1da177e4
LT
437 do_gtod.varp = temp_varp;
438 do_gtod.var_idx = temp_idx;
439
f2783c15
PM
440 /*
441 * tb_update_count is used to allow the userspace gettimeofday code
442 * to assure itself that it sees a consistent view of the tb_to_xs and
443 * stamp_xsec variables. It reads the tb_update_count, then reads
444 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
445 * the two values of tb_update_count match and are even then the
446 * tb_to_xs and stamp_xsec values are consistent. If not, then it
447 * loops back and reads them again until this criteria is met.
0a45d449
PM
448 * We expect the caller to have done the first increment of
449 * vdso_data->tb_update_count already.
f2783c15 450 */
a7f290da
BH
451 vdso_data->tb_orig_stamp = new_tb_stamp;
452 vdso_data->stamp_xsec = new_stamp_xsec;
453 vdso_data->tb_to_xs = new_tb_to_xs;
454 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
455 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
0d8d4d42 456 smp_wmb();
a7f290da 457 ++(vdso_data->tb_update_count);
f2783c15
PM
458}
459
1da177e4
LT
460#ifdef CONFIG_SMP
461unsigned long profile_pc(struct pt_regs *regs)
462{
463 unsigned long pc = instruction_pointer(regs);
464
465 if (in_lock_functions(pc))
466 return regs->link;
467
468 return pc;
469}
470EXPORT_SYMBOL(profile_pc);
471#endif
472
473#ifdef CONFIG_PPC_ISERIES
474
475/*
476 * This function recalibrates the timebase based on the 49-bit time-of-day
477 * value in the Titan chip. The Titan is much more accurate than the value
478 * returned by the service processor for the timebase frequency.
479 */
480
71712b45 481static int __init iSeries_tb_recal(void)
1da177e4
LT
482{
483 struct div_result divres;
484 unsigned long titan, tb;
71712b45
TB
485
486 /* Make sure we only run on iSeries */
487 if (!firmware_has_feature(FW_FEATURE_ISERIES))
488 return -ENODEV;
489
1da177e4
LT
490 tb = get_tb();
491 titan = HvCallXm_loadTod();
492 if ( iSeries_recal_titan ) {
493 unsigned long tb_ticks = tb - iSeries_recal_tb;
494 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
495 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
496 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
497 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
498 char sign = '+';
499 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
500 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
501
502 if ( tick_diff < 0 ) {
503 tick_diff = -tick_diff;
504 sign = '-';
505 }
506 if ( tick_diff ) {
507 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
508 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
509 new_tb_ticks_per_jiffy, sign, tick_diff );
510 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
511 tb_ticks_per_sec = new_tb_ticks_per_sec;
c6622f63 512 calc_cputime_factors();
1da177e4
LT
513 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
514 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
515 tb_to_xs = divres.result_low;
516 do_gtod.varp->tb_to_xs = tb_to_xs;
a7f290da
BH
517 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
518 vdso_data->tb_to_xs = tb_to_xs;
1da177e4
LT
519 }
520 else {
521 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
522 " new tb_ticks_per_jiffy = %lu\n"
523 " old tb_ticks_per_jiffy = %lu\n",
524 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
525 }
526 }
527 }
528 iSeries_recal_titan = titan;
529 iSeries_recal_tb = tb;
71712b45 530
4a4cfe38
TB
531 /* Called here as now we know accurate values for the timebase */
532 clocksource_init();
71712b45 533 return 0;
1da177e4 534}
71712b45
TB
535late_initcall(iSeries_tb_recal);
536
537/* Called from platform early init */
538void __init iSeries_time_init_early(void)
539{
540 iSeries_recal_tb = get_tb();
541 iSeries_recal_titan = HvCallXm_loadTod();
542}
543#endif /* CONFIG_PPC_ISERIES */
1da177e4
LT
544
545/*
546 * For iSeries shared processors, we have to let the hypervisor
547 * set the hardware decrementer. We set a virtual decrementer
548 * in the lppaca and call the hypervisor if the virtual
549 * decrementer is less than the current value in the hardware
550 * decrementer. (almost always the new decrementer value will
551 * be greater than the current hardware decementer so the hypervisor
552 * call will not be needed)
553 */
554
1da177e4
LT
555/*
556 * timer_interrupt - gets called when the decrementer overflows,
557 * with interrupts disabled.
558 */
c7aeffc4 559void timer_interrupt(struct pt_regs * regs)
1da177e4 560{
7d12e780 561 struct pt_regs *old_regs;
6e6b44e8
MM
562 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
563 struct clock_event_device *evt = &decrementer->event;
d968014b 564 u64 now;
d831d0b8
TB
565
566 /* Ensure a positive value is written to the decrementer, or else
567 * some CPUs will continuue to take decrementer exceptions */
568 set_dec(DECREMENTER_MAX);
f2783c15
PM
569
570#ifdef CONFIG_PPC32
571 if (atomic_read(&ppc_n_lost_interrupts) != 0)
572 do_IRQ(regs);
573#endif
1da177e4 574
d968014b 575 now = get_tb_or_rtc();
6e6b44e8 576 if (now < decrementer->next_tb) {
d968014b 577 /* not time for this event yet */
6e6b44e8 578 now = decrementer->next_tb - now;
d968014b 579 if (now <= DECREMENTER_MAX)
43875cc0 580 set_dec((int)now);
d968014b
PM
581 return;
582 }
7d12e780 583 old_regs = set_irq_regs(regs);
1da177e4
LT
584 irq_enter();
585
c6622f63 586 calculate_steal_time();
1da177e4 587
f2783c15 588#ifdef CONFIG_PPC_ISERIES
501b6d29
SR
589 if (firmware_has_feature(FW_FEATURE_ISERIES))
590 get_lppaca()->int_dword.fields.decr_int = 0;
f2783c15
PM
591#endif
592
d831d0b8
TB
593 if (evt->event_handler)
594 evt->event_handler(evt);
1da177e4
LT
595
596#ifdef CONFIG_PPC_ISERIES
501b6d29 597 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
35a84c2f 598 process_hvlpevents();
1da177e4
LT
599#endif
600
f2783c15 601#ifdef CONFIG_PPC64
8d15a3e5 602 /* collect purr register values often, for accurate calculations */
1ababe11 603 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1da177e4
LT
604 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
605 cu->current_tb = mfspr(SPRN_PURR);
606 }
f2783c15 607#endif
1da177e4
LT
608
609 irq_exit();
7d12e780 610 set_irq_regs(old_regs);
1da177e4
LT
611}
612
f2783c15
PM
613void wakeup_decrementer(void)
614{
092b8f34 615 unsigned long ticks;
f2783c15 616
f2783c15 617 /*
092b8f34
PM
618 * The timebase gets saved on sleep and restored on wakeup,
619 * so all we need to do is to reset the decrementer.
f2783c15 620 */
092b8f34
PM
621 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
622 if (ticks < tb_ticks_per_jiffy)
623 ticks = tb_ticks_per_jiffy - ticks;
624 else
625 ticks = 1;
626 set_dec(ticks);
f2783c15
PM
627}
628
a5b518ed 629#ifdef CONFIG_SMP
f2783c15
PM
630void __init smp_space_timers(unsigned int max_cpus)
631{
632 int i;
eb36c288 633 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
f2783c15 634
cbe62e2b
PM
635 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
636 previous_tb -= tb_ticks_per_jiffy;
e147ec8f 637
0e551954 638 for_each_possible_cpu(i) {
c6622f63
PM
639 if (i == boot_cpuid)
640 continue;
e147ec8f 641 per_cpu(last_jiffy, i) = previous_tb;
f2783c15
PM
642 }
643}
644#endif
645
1da177e4
LT
646/*
647 * Scheduler clock - returns current time in nanosec units.
648 *
649 * Note: mulhdu(a, b) (multiply high double unsigned) returns
650 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
651 * are 64-bit unsigned numbers.
652 */
653unsigned long long sched_clock(void)
654{
96c44507
PM
655 if (__USE_RTC())
656 return get_rtc();
fc9069fe 657 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
1da177e4
LT
658}
659
0bb474a4 660static int __init get_freq(char *name, int cells, unsigned long *val)
10f7e7c1
AB
661{
662 struct device_node *cpu;
a7f67bdf 663 const unsigned int *fp;
0bb474a4 664 int found = 0;
10f7e7c1 665
0bb474a4 666 /* The cpu node should have timebase and clock frequency properties */
10f7e7c1
AB
667 cpu = of_find_node_by_type(NULL, "cpu");
668
d8a8188d 669 if (cpu) {
e2eb6392 670 fp = of_get_property(cpu, name, NULL);
d8a8188d 671 if (fp) {
0bb474a4 672 found = 1;
a4dc7ff0 673 *val = of_read_ulong(fp, cells);
10f7e7c1 674 }
0bb474a4
AB
675
676 of_node_put(cpu);
10f7e7c1 677 }
0bb474a4
AB
678
679 return found;
680}
681
682void __init generic_calibrate_decr(void)
683{
684 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
685
686 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
687 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
688
10f7e7c1
AB
689 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
690 "(not found)\n");
0bb474a4 691 }
10f7e7c1 692
0bb474a4
AB
693 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
694
695 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
696 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
697
698 printk(KERN_ERR "WARNING: Estimating processor frequency "
699 "(not found)\n");
10f7e7c1 700 }
0bb474a4 701
aab69292 702#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
0fd6f717
KG
703 /* Set the time base to zero */
704 mtspr(SPRN_TBWL, 0);
705 mtspr(SPRN_TBWU, 0);
706
707 /* Clear any pending timer interrupts */
708 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
709
710 /* Enable decrementer interrupt */
711 mtspr(SPRN_TCR, TCR_DIE);
712#endif
10f7e7c1 713}
10f7e7c1 714
aa3be5f3 715int update_persistent_clock(struct timespec now)
f2783c15
PM
716{
717 struct rtc_time tm;
718
aa3be5f3
TB
719 if (!ppc_md.set_rtc_time)
720 return 0;
721
722 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
723 tm.tm_year -= 1900;
724 tm.tm_mon -= 1;
725
726 return ppc_md.set_rtc_time(&tm);
727}
728
729unsigned long read_persistent_clock(void)
730{
731 struct rtc_time tm;
732 static int first = 1;
733
734 /* XXX this is a litle fragile but will work okay in the short term */
735 if (first) {
736 first = 0;
737 if (ppc_md.time_init)
738 timezone_offset = ppc_md.time_init();
739
740 /* get_boot_time() isn't guaranteed to be safe to call late */
741 if (ppc_md.get_boot_time)
742 return ppc_md.get_boot_time() -timezone_offset;
743 }
f2783c15
PM
744 if (!ppc_md.get_rtc_time)
745 return 0;
746 ppc_md.get_rtc_time(&tm);
747 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
748 tm.tm_hour, tm.tm_min, tm.tm_sec);
749}
750
4a4cfe38
TB
751/* clocksource code */
752static cycle_t rtc_read(void)
753{
754 return (cycle_t)get_rtc();
755}
756
757static cycle_t timebase_read(void)
758{
759 return (cycle_t)get_tb();
760}
761
762void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
763{
764 u64 t2x, stamp_xsec;
765
766 if (clock != &clocksource_timebase)
767 return;
768
769 /* Make userspace gettimeofday spin until we're done. */
770 ++vdso_data->tb_update_count;
771 smp_mb();
772
773 /* XXX this assumes clock->shift == 22 */
774 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
775 t2x = (u64) clock->mult * 4611686018ULL;
776 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
777 do_div(stamp_xsec, 1000000000);
778 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
779 update_gtod(clock->cycle_last, stamp_xsec, t2x);
780}
781
782void update_vsyscall_tz(void)
783{
784 /* Make userspace gettimeofday spin until we're done. */
785 ++vdso_data->tb_update_count;
786 smp_mb();
787 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
788 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
789 smp_mb();
790 ++vdso_data->tb_update_count;
791}
792
793void __init clocksource_init(void)
794{
795 struct clocksource *clock;
796
797 if (__USE_RTC())
798 clock = &clocksource_rtc;
799 else
800 clock = &clocksource_timebase;
801
802 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
803
804 if (clocksource_register(clock)) {
805 printk(KERN_ERR "clocksource: %s is already registered\n",
806 clock->name);
807 return;
808 }
809
810 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
811 clock->name, clock->mult, clock->shift);
812}
813
d831d0b8
TB
814static int decrementer_set_next_event(unsigned long evt,
815 struct clock_event_device *dev)
816{
6e6b44e8 817 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
d831d0b8
TB
818 set_dec(evt);
819 return 0;
820}
821
822static void decrementer_set_mode(enum clock_event_mode mode,
823 struct clock_event_device *dev)
824{
825 if (mode != CLOCK_EVT_MODE_ONESHOT)
826 decrementer_set_next_event(DECREMENTER_MAX, dev);
827}
828
829static void register_decrementer_clockevent(int cpu)
830{
6e6b44e8 831 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
d831d0b8
TB
832
833 *dec = decrementer_clockevent;
834 dec->cpumask = cpumask_of_cpu(cpu);
835
0302f12e 836 printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
d831d0b8
TB
837 dec->name, dec->mult, dec->shift, cpu);
838
839 clockevents_register_device(dec);
840}
841
c481887f 842static void __init init_decrementer_clockevent(void)
d831d0b8
TB
843{
844 int cpu = smp_processor_id();
845
846 decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
847 decrementer_clockevent.shift);
848 decrementer_clockevent.max_delta_ns =
849 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
43875cc0
PM
850 decrementer_clockevent.min_delta_ns =
851 clockevent_delta2ns(2, &decrementer_clockevent);
d831d0b8
TB
852
853 register_decrementer_clockevent(cpu);
854}
855
856void secondary_cpu_time_init(void)
857{
858 /* FIME: Should make unrelatred change to move snapshot_timebase
859 * call here ! */
860 register_decrementer_clockevent(smp_processor_id());
861}
862
f2783c15 863/* This function is only called on the boot processor */
1da177e4
LT
864void __init time_init(void)
865{
1da177e4 866 unsigned long flags;
1da177e4 867 struct div_result res;
092b8f34 868 u64 scale, x;
f2783c15
PM
869 unsigned shift;
870
96c44507
PM
871 if (__USE_RTC()) {
872 /* 601 processor: dec counts down by 128 every 128ns */
873 ppc_tb_freq = 1000000000;
eb36c288 874 tb_last_jiffy = get_rtcl();
96c44507
PM
875 } else {
876 /* Normal PowerPC with timebase register */
877 ppc_md.calibrate_decr();
224ad80a 878 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
96c44507 879 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
224ad80a 880 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
96c44507 881 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
eb36c288 882 tb_last_jiffy = get_tb();
96c44507 883 }
374e99d4
PM
884
885 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
092b8f34 886 tb_ticks_per_sec = ppc_tb_freq;
374e99d4
PM
887 tb_ticks_per_usec = ppc_tb_freq / 1000000;
888 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
c6622f63 889 calc_cputime_factors();
092b8f34
PM
890
891 /*
892 * Calculate the length of each tick in ns. It will not be
893 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
894 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
895 * rounded up.
896 */
897 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
898 do_div(x, ppc_tb_freq);
899 tick_nsec = x;
900 last_tick_len = x << TICKLEN_SCALE;
901
902 /*
903 * Compute ticklen_to_xs, which is a factor which gets multiplied
904 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
905 * It is computed as:
906 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
907 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
0a45d449
PM
908 * which turns out to be N = 51 - SHIFT_HZ.
909 * This gives the result as a 0.64 fixed-point fraction.
910 * That value is reduced by an offset amounting to 1 xsec per
911 * 2^31 timebase ticks to avoid problems with time going backwards
912 * by 1 xsec when we do timer_recalc_offset due to losing the
913 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
914 * since there are 2^20 xsec in a second.
092b8f34 915 */
0a45d449
PM
916 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
917 tb_ticks_per_jiffy << SHIFT_HZ, &res);
092b8f34
PM
918 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
919 ticklen_to_xs = res.result_low;
920
921 /* Compute tb_to_xs from tick_nsec */
922 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
374e99d4 923
1da177e4
LT
924 /*
925 * Compute scale factor for sched_clock.
926 * The calibrate_decr() function has set tb_ticks_per_sec,
927 * which is the timebase frequency.
928 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
929 * the 128-bit result as a 64.64 fixed-point number.
930 * We then shift that number right until it is less than 1.0,
931 * giving us the scale factor and shift count to use in
932 * sched_clock().
933 */
934 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
935 scale = res.result_low;
936 for (shift = 0; res.result_high != 0; ++shift) {
937 scale = (scale >> 1) | (res.result_high << 63);
938 res.result_high >>= 1;
939 }
940 tb_to_ns_scale = scale;
941 tb_to_ns_shift = shift;
fc9069fe 942 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
c27da339 943 boot_tb = get_tb_or_rtc();
1da177e4 944
1da177e4 945 write_seqlock_irqsave(&xtime_lock, flags);
092b8f34
PM
946
947 /* If platform provided a timezone (pmac), we correct the time */
948 if (timezone_offset) {
949 sys_tz.tz_minuteswest = -timezone_offset / 60;
950 sys_tz.tz_dsttime = 0;
092b8f34
PM
951 }
952
1da177e4
LT
953 do_gtod.varp = &do_gtod.vars[0];
954 do_gtod.var_idx = 0;
96c44507 955 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
eb36c288 956 __get_cpu_var(last_jiffy) = tb_last_jiffy;
f2783c15 957 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1da177e4
LT
958 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
959 do_gtod.varp->tb_to_xs = tb_to_xs;
960 do_gtod.tb_to_us = tb_to_us;
a7f290da
BH
961
962 vdso_data->tb_orig_stamp = tb_last_jiffy;
963 vdso_data->tb_update_count = 0;
964 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
092b8f34 965 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
a7f290da 966 vdso_data->tb_to_xs = tb_to_xs;
1da177e4
LT
967
968 time_freq = 0;
969
1da177e4
LT
970 write_sequnlock_irqrestore(&xtime_lock, flags);
971
4a4cfe38
TB
972 /* Register the clocksource, if we're not running on iSeries */
973 if (!firmware_has_feature(FW_FEATURE_ISERIES))
974 clocksource_init();
975
d831d0b8 976 init_decrementer_clockevent();
1da177e4
LT
977}
978
1da177e4 979
1da177e4
LT
980#define FEBRUARY 2
981#define STARTOFTIME 1970
982#define SECDAY 86400L
983#define SECYR (SECDAY * 365)
f2783c15
PM
984#define leapyear(year) ((year) % 4 == 0 && \
985 ((year) % 100 != 0 || (year) % 400 == 0))
1da177e4
LT
986#define days_in_year(a) (leapyear(a) ? 366 : 365)
987#define days_in_month(a) (month_days[(a) - 1])
988
989static int month_days[12] = {
990 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
991};
992
993/*
994 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
995 */
996void GregorianDay(struct rtc_time * tm)
997{
998 int leapsToDate;
999 int lastYear;
1000 int day;
1001 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1002
f2783c15 1003 lastYear = tm->tm_year - 1;
1da177e4
LT
1004
1005 /*
1006 * Number of leap corrections to apply up to end of last year
1007 */
f2783c15 1008 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1da177e4
LT
1009
1010 /*
1011 * This year is a leap year if it is divisible by 4 except when it is
1012 * divisible by 100 unless it is divisible by 400
1013 *
f2783c15 1014 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1da177e4 1015 */
f2783c15 1016 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1da177e4
LT
1017
1018 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1019 tm->tm_mday;
1020
f2783c15 1021 tm->tm_wday = day % 7;
1da177e4
LT
1022}
1023
1024void to_tm(int tim, struct rtc_time * tm)
1025{
1026 register int i;
1027 register long hms, day;
1028
1029 day = tim / SECDAY;
1030 hms = tim % SECDAY;
1031
1032 /* Hours, minutes, seconds are easy */
1033 tm->tm_hour = hms / 3600;
1034 tm->tm_min = (hms % 3600) / 60;
1035 tm->tm_sec = (hms % 3600) % 60;
1036
1037 /* Number of years in days */
1038 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1039 day -= days_in_year(i);
1040 tm->tm_year = i;
1041
1042 /* Number of months in days left */
1043 if (leapyear(tm->tm_year))
1044 days_in_month(FEBRUARY) = 29;
1045 for (i = 1; day >= days_in_month(i); i++)
1046 day -= days_in_month(i);
1047 days_in_month(FEBRUARY) = 28;
1048 tm->tm_mon = i;
1049
1050 /* Days are what is left over (+1) from all that. */
1051 tm->tm_mday = day + 1;
1052
1053 /*
1054 * Determine the day of week
1055 */
1056 GregorianDay(tm);
1057}
1058
1059/* Auxiliary function to compute scaling factors */
1060/* Actually the choice of a timebase running at 1/4 the of the bus
1061 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1062 * It makes this computation very precise (27-28 bits typically) which
1063 * is optimistic considering the stability of most processor clock
1064 * oscillators and the precision with which the timebase frequency
1065 * is measured but does not harm.
1066 */
f2783c15
PM
1067unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1068{
1da177e4
LT
1069 unsigned mlt=0, tmp, err;
1070 /* No concern for performance, it's done once: use a stupid
1071 * but safe and compact method to find the multiplier.
1072 */
1073
1074 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
f2783c15
PM
1075 if (mulhwu(inscale, mlt|tmp) < outscale)
1076 mlt |= tmp;
1da177e4
LT
1077 }
1078
1079 /* We might still be off by 1 for the best approximation.
1080 * A side effect of this is that if outscale is too large
1081 * the returned value will be zero.
1082 * Many corner cases have been checked and seem to work,
1083 * some might have been forgotten in the test however.
1084 */
1085
f2783c15
PM
1086 err = inscale * (mlt+1);
1087 if (err <= inscale/2)
1088 mlt++;
1da177e4 1089 return mlt;
f2783c15 1090}
1da177e4
LT
1091
1092/*
1093 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1094 * result.
1095 */
f2783c15
PM
1096void div128_by_32(u64 dividend_high, u64 dividend_low,
1097 unsigned divisor, struct div_result *dr)
1da177e4 1098{
f2783c15
PM
1099 unsigned long a, b, c, d;
1100 unsigned long w, x, y, z;
1101 u64 ra, rb, rc;
1da177e4
LT
1102
1103 a = dividend_high >> 32;
1104 b = dividend_high & 0xffffffff;
1105 c = dividend_low >> 32;
1106 d = dividend_low & 0xffffffff;
1107
f2783c15
PM
1108 w = a / divisor;
1109 ra = ((u64)(a - (w * divisor)) << 32) + b;
1110
f2783c15
PM
1111 rb = ((u64) do_div(ra, divisor) << 32) + c;
1112 x = ra;
1da177e4 1113
f2783c15
PM
1114 rc = ((u64) do_div(rb, divisor) << 32) + d;
1115 y = rb;
1116
1117 do_div(rc, divisor);
1118 z = rc;
1da177e4 1119
f2783c15
PM
1120 dr->result_high = ((u64)w << 32) + x;
1121 dr->result_low = ((u64)y << 32) + z;
1da177e4
LT
1122
1123}