perf: Register PMU implementations
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / time.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
1da177e4
LT
35#include <linux/errno.h>
36#include <linux/module.h>
37#include <linux/sched.h>
38#include <linux/kernel.h>
39#include <linux/param.h>
40#include <linux/string.h>
41#include <linux/mm.h>
42#include <linux/interrupt.h>
43#include <linux/timex.h>
44#include <linux/kernel_stat.h>
1da177e4
LT
45#include <linux/time.h>
46#include <linux/init.h>
47#include <linux/profile.h>
48#include <linux/cpu.h>
49#include <linux/security.h>
f2783c15
PM
50#include <linux/percpu.h>
51#include <linux/rtc.h>
092b8f34 52#include <linux/jiffies.h>
c6622f63 53#include <linux/posix-timers.h>
7d12e780 54#include <linux/irq.h>
177996e6 55#include <linux/delay.h>
cdd6c482 56#include <linux/perf_event.h>
6795b85c 57#include <asm/trace.h>
1da177e4 58
1da177e4
LT
59#include <asm/io.h>
60#include <asm/processor.h>
61#include <asm/nvram.h>
62#include <asm/cache.h>
63#include <asm/machdep.h>
1da177e4
LT
64#include <asm/uaccess.h>
65#include <asm/time.h>
1da177e4 66#include <asm/prom.h>
f2783c15
PM
67#include <asm/irq.h>
68#include <asm/div64.h>
2249ca9d 69#include <asm/smp.h>
a7f290da 70#include <asm/vdso_datapage.h>
1ababe11 71#include <asm/firmware.h>
06b8e878 72#include <asm/cputime.h>
f2783c15 73#ifdef CONFIG_PPC_ISERIES
8875ccfb 74#include <asm/iseries/it_lp_queue.h>
8021b8a7 75#include <asm/iseries/hv_call_xm.h>
f2783c15 76#endif
1da177e4 77
4a4cfe38
TB
78/* powerpc clocksource/clockevent code */
79
d831d0b8 80#include <linux/clockchips.h>
4a4cfe38
TB
81#include <linux/clocksource.h>
82
8e19608e 83static cycle_t rtc_read(struct clocksource *);
4a4cfe38
TB
84static struct clocksource clocksource_rtc = {
85 .name = "rtc",
86 .rating = 400,
87 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
88 .mask = CLOCKSOURCE_MASK(64),
89 .shift = 22,
90 .mult = 0, /* To be filled in */
91 .read = rtc_read,
92};
93
8e19608e 94static cycle_t timebase_read(struct clocksource *);
4a4cfe38
TB
95static struct clocksource clocksource_timebase = {
96 .name = "timebase",
97 .rating = 400,
98 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
99 .mask = CLOCKSOURCE_MASK(64),
100 .shift = 22,
101 .mult = 0, /* To be filled in */
102 .read = timebase_read,
103};
104
d831d0b8
TB
105#define DECREMENTER_MAX 0x7fffffff
106
107static int decrementer_set_next_event(unsigned long evt,
108 struct clock_event_device *dev);
109static void decrementer_set_mode(enum clock_event_mode mode,
110 struct clock_event_device *dev);
111
112static struct clock_event_device decrementer_clockevent = {
113 .name = "decrementer",
114 .rating = 200,
8d165db1 115 .shift = 0, /* To be filled in */
d831d0b8
TB
116 .mult = 0, /* To be filled in */
117 .irq = 0,
118 .set_next_event = decrementer_set_next_event,
119 .set_mode = decrementer_set_mode,
120 .features = CLOCK_EVT_FEAT_ONESHOT,
121};
122
6e6b44e8
MM
123struct decrementer_clock {
124 struct clock_event_device event;
125 u64 next_tb;
126};
127
128static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
d831d0b8 129
1da177e4 130#ifdef CONFIG_PPC_ISERIES
71712b45
TB
131static unsigned long __initdata iSeries_recal_titan;
132static signed long __initdata iSeries_recal_tb;
4a4cfe38
TB
133
134/* Forward declaration is only needed for iSereis compiles */
1c21a293 135static void __init clocksource_init(void);
1da177e4
LT
136#endif
137
138#define XSEC_PER_SEC (1024*1024)
139
f2783c15
PM
140#ifdef CONFIG_PPC64
141#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
142#else
143/* compute ((xsec << 12) * max) >> 32 */
144#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
145#endif
146
1da177e4
LT
147unsigned long tb_ticks_per_jiffy;
148unsigned long tb_ticks_per_usec = 100; /* sane default */
149EXPORT_SYMBOL(tb_ticks_per_usec);
150unsigned long tb_ticks_per_sec;
2cf82c02 151EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
092b8f34 152
1da177e4 153DEFINE_SPINLOCK(rtc_lock);
6ae3db11 154EXPORT_SYMBOL_GPL(rtc_lock);
1da177e4 155
fc9069fe
TB
156static u64 tb_to_ns_scale __read_mostly;
157static unsigned tb_to_ns_shift __read_mostly;
158static unsigned long boot_tb __read_mostly;
1da177e4 159
1da177e4 160extern struct timezone sys_tz;
f2783c15 161static long timezone_offset;
1da177e4 162
10f7e7c1 163unsigned long ppc_proc_freq;
1474855d 164EXPORT_SYMBOL(ppc_proc_freq);
10f7e7c1
AB
165unsigned long ppc_tb_freq;
166
eb36c288 167static DEFINE_PER_CPU(u64, last_jiffy);
96c44507 168
c6622f63
PM
169#ifdef CONFIG_VIRT_CPU_ACCOUNTING
170/*
171 * Factors for converting from cputime_t (timebase ticks) to
172 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
173 * These are all stored as 0.64 fixed-point binary fractions.
174 */
175u64 __cputime_jiffies_factor;
2cf82c02 176EXPORT_SYMBOL(__cputime_jiffies_factor);
c6622f63 177u64 __cputime_msec_factor;
2cf82c02 178EXPORT_SYMBOL(__cputime_msec_factor);
c6622f63 179u64 __cputime_sec_factor;
2cf82c02 180EXPORT_SYMBOL(__cputime_sec_factor);
c6622f63 181u64 __cputime_clockt_factor;
2cf82c02 182EXPORT_SYMBOL(__cputime_clockt_factor);
06b8e878
MN
183DEFINE_PER_CPU(unsigned long, cputime_last_delta);
184DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
c6622f63 185
a42548a1
SG
186cputime_t cputime_one_jiffy;
187
c6622f63
PM
188static void calc_cputime_factors(void)
189{
190 struct div_result res;
191
192 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
193 __cputime_jiffies_factor = res.result_low;
194 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
195 __cputime_msec_factor = res.result_low;
196 div128_by_32(1, 0, tb_ticks_per_sec, &res);
197 __cputime_sec_factor = res.result_low;
198 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
199 __cputime_clockt_factor = res.result_low;
200}
201
202/*
203 * Read the PURR on systems that have it, otherwise the timebase.
204 */
205static u64 read_purr(void)
206{
207 if (cpu_has_feature(CPU_FTR_PURR))
208 return mfspr(SPRN_PURR);
209 return mftb();
210}
211
4603ac18
MN
212/*
213 * Read the SPURR on systems that have it, otherwise the purr
214 */
215static u64 read_spurr(u64 purr)
216{
53024fe2
MM
217 /*
218 * cpus without PURR won't have a SPURR
219 * We already know the former when we use this, so tell gcc
220 */
221 if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
4603ac18
MN
222 return mfspr(SPRN_SPURR);
223 return purr;
224}
225
c6622f63
PM
226/*
227 * Account time for a transition between system, hard irq
228 * or soft irq state.
229 */
230void account_system_vtime(struct task_struct *tsk)
231{
53024fe2 232 u64 now, nowscaled, delta, deltascaled, sys_time;
c6622f63
PM
233 unsigned long flags;
234
235 local_irq_save(flags);
236 now = read_purr();
4603ac18 237 nowscaled = read_spurr(now);
53024fe2 238 delta = now - get_paca()->startpurr;
4603ac18 239 deltascaled = nowscaled - get_paca()->startspurr;
53024fe2 240 get_paca()->startpurr = now;
4603ac18 241 get_paca()->startspurr = nowscaled;
c6622f63 242 if (!in_interrupt()) {
4603ac18
MN
243 /* deltascaled includes both user and system time.
244 * Hence scale it based on the purr ratio to estimate
245 * the system time */
53024fe2 246 sys_time = get_paca()->system_time;
2b46b567 247 if (get_paca()->user_time)
53024fe2
MM
248 deltascaled = deltascaled * sys_time /
249 (sys_time + get_paca()->user_time);
250 delta += sys_time;
c6622f63
PM
251 get_paca()->system_time = 0;
252 }
79741dd3
MS
253 if (in_irq() || idle_task(smp_processor_id()) != tsk)
254 account_system_time(tsk, 0, delta, deltascaled);
255 else
256 account_idle_time(delta);
61c03ddb
AB
257 __get_cpu_var(cputime_last_delta) = delta;
258 __get_cpu_var(cputime_scaled_last_delta) = deltascaled;
c6622f63
PM
259 local_irq_restore(flags);
260}
4ab79aa8 261EXPORT_SYMBOL_GPL(account_system_vtime);
c6622f63
PM
262
263/*
264 * Transfer the user and system times accumulated in the paca
265 * by the exception entry and exit code to the generic process
266 * user and system time records.
267 * Must be called with interrupts disabled.
268 */
fa13a5a1 269void account_process_tick(struct task_struct *tsk, int user_tick)
c6622f63 270{
4603ac18 271 cputime_t utime, utimescaled;
c6622f63
PM
272
273 utime = get_paca()->user_time;
274 get_paca()->user_time = 0;
06b8e878 275 utimescaled = cputime_to_scaled(utime);
457533a7 276 account_user_time(tsk, utime, utimescaled);
c6622f63
PM
277}
278
c6622f63
PM
279/*
280 * Stuff for accounting stolen time.
281 */
282struct cpu_purr_data {
283 int initialized; /* thread is running */
c6622f63
PM
284 u64 tb; /* last TB value read */
285 u64 purr; /* last PURR value read */
4603ac18 286 u64 spurr; /* last SPURR value read */
c6622f63
PM
287};
288
df211c8a
NL
289/*
290 * Each entry in the cpu_purr_data array is manipulated only by its
291 * "owner" cpu -- usually in the timer interrupt but also occasionally
292 * in process context for cpu online. As long as cpus do not touch
293 * each others' cpu_purr_data, disabling local interrupts is
294 * sufficient to serialize accesses.
295 */
c6622f63
PM
296static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
297
298static void snapshot_tb_and_purr(void *data)
299{
df211c8a 300 unsigned long flags;
c6622f63
PM
301 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
302
df211c8a 303 local_irq_save(flags);
c27da339 304 p->tb = get_tb_or_rtc();
cbcdb93d 305 p->purr = mfspr(SPRN_PURR);
c6622f63
PM
306 wmb();
307 p->initialized = 1;
df211c8a 308 local_irq_restore(flags);
c6622f63
PM
309}
310
311/*
312 * Called during boot when all cpus have come up.
313 */
314void snapshot_timebases(void)
315{
c6622f63
PM
316 if (!cpu_has_feature(CPU_FTR_PURR))
317 return;
15c8b6c1 318 on_each_cpu(snapshot_tb_and_purr, NULL, 1);
c6622f63
PM
319}
320
df211c8a
NL
321/*
322 * Must be called with interrupts disabled.
323 */
c6622f63
PM
324void calculate_steal_time(void)
325{
cbcdb93d 326 u64 tb, purr;
c6622f63 327 s64 stolen;
cbcdb93d 328 struct cpu_purr_data *pme;
c6622f63 329
8b5621f1 330 pme = &__get_cpu_var(cpu_purr_data);
c6622f63 331 if (!pme->initialized)
db3801a8 332 return; /* !CPU_FTR_PURR or early in early boot */
c6622f63 333 tb = mftb();
cbcdb93d
SR
334 purr = mfspr(SPRN_PURR);
335 stolen = (tb - pme->tb) - (purr - pme->purr);
79741dd3
MS
336 if (stolen > 0) {
337 if (idle_task(smp_processor_id()) != current)
338 account_steal_time(stolen);
339 else
340 account_idle_time(stolen);
341 }
c6622f63
PM
342 pme->tb = tb;
343 pme->purr = purr;
c6622f63
PM
344}
345
4cefebb1 346#ifdef CONFIG_PPC_SPLPAR
c6622f63
PM
347/*
348 * Must be called before the cpu is added to the online map when
349 * a cpu is being brought up at runtime.
350 */
351static void snapshot_purr(void)
352{
cbcdb93d 353 struct cpu_purr_data *pme;
c6622f63
PM
354 unsigned long flags;
355
356 if (!cpu_has_feature(CPU_FTR_PURR))
357 return;
df211c8a 358 local_irq_save(flags);
8b5621f1 359 pme = &__get_cpu_var(cpu_purr_data);
cbcdb93d
SR
360 pme->tb = mftb();
361 pme->purr = mfspr(SPRN_PURR);
c6622f63 362 pme->initialized = 1;
df211c8a 363 local_irq_restore(flags);
c6622f63
PM
364}
365
366#endif /* CONFIG_PPC_SPLPAR */
367
368#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
369#define calc_cputime_factors()
c6622f63
PM
370#define calculate_steal_time() do { } while (0)
371#endif
372
373#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
374#define snapshot_purr() do { } while (0)
375#endif
376
377/*
378 * Called when a cpu comes up after the system has finished booting,
379 * i.e. as a result of a hotplug cpu action.
380 */
381void snapshot_timebase(void)
382{
c27da339 383 __get_cpu_var(last_jiffy) = get_tb_or_rtc();
c6622f63
PM
384 snapshot_purr();
385}
386
6defa38b
PM
387void __delay(unsigned long loops)
388{
389 unsigned long start;
390 int diff;
391
392 if (__USE_RTC()) {
393 start = get_rtcl();
394 do {
395 /* the RTCL register wraps at 1000000000 */
396 diff = get_rtcl() - start;
397 if (diff < 0)
398 diff += 1000000000;
399 } while (diff < loops);
400 } else {
401 start = get_tbl();
402 while (get_tbl() - start < loops)
403 HMT_low();
404 HMT_medium();
405 }
406}
407EXPORT_SYMBOL(__delay);
408
409void udelay(unsigned long usecs)
410{
411 __delay(tb_ticks_per_usec * usecs);
412}
413EXPORT_SYMBOL(udelay);
414
1da177e4
LT
415#ifdef CONFIG_SMP
416unsigned long profile_pc(struct pt_regs *regs)
417{
418 unsigned long pc = instruction_pointer(regs);
419
420 if (in_lock_functions(pc))
421 return regs->link;
422
423 return pc;
424}
425EXPORT_SYMBOL(profile_pc);
426#endif
427
428#ifdef CONFIG_PPC_ISERIES
429
430/*
431 * This function recalibrates the timebase based on the 49-bit time-of-day
432 * value in the Titan chip. The Titan is much more accurate than the value
433 * returned by the service processor for the timebase frequency.
434 */
435
71712b45 436static int __init iSeries_tb_recal(void)
1da177e4 437{
1da177e4 438 unsigned long titan, tb;
71712b45
TB
439
440 /* Make sure we only run on iSeries */
441 if (!firmware_has_feature(FW_FEATURE_ISERIES))
442 return -ENODEV;
443
1da177e4
LT
444 tb = get_tb();
445 titan = HvCallXm_loadTod();
446 if ( iSeries_recal_titan ) {
447 unsigned long tb_ticks = tb - iSeries_recal_tb;
448 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
449 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
14ea58ad
JL
450 unsigned long new_tb_ticks_per_jiffy =
451 DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
1da177e4
LT
452 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
453 char sign = '+';
454 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
455 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
456
457 if ( tick_diff < 0 ) {
458 tick_diff = -tick_diff;
459 sign = '-';
460 }
461 if ( tick_diff ) {
462 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
463 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
464 new_tb_ticks_per_jiffy, sign, tick_diff );
465 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
466 tb_ticks_per_sec = new_tb_ticks_per_sec;
c6622f63 467 calc_cputime_factors();
a7f290da 468 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
a42548a1 469 setup_cputime_one_jiffy();
1da177e4
LT
470 }
471 else {
472 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
473 " new tb_ticks_per_jiffy = %lu\n"
474 " old tb_ticks_per_jiffy = %lu\n",
475 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
476 }
477 }
478 }
479 iSeries_recal_titan = titan;
480 iSeries_recal_tb = tb;
71712b45 481
4a4cfe38
TB
482 /* Called here as now we know accurate values for the timebase */
483 clocksource_init();
71712b45 484 return 0;
1da177e4 485}
71712b45
TB
486late_initcall(iSeries_tb_recal);
487
488/* Called from platform early init */
489void __init iSeries_time_init_early(void)
490{
491 iSeries_recal_tb = get_tb();
492 iSeries_recal_titan = HvCallXm_loadTod();
493}
494#endif /* CONFIG_PPC_ISERIES */
1da177e4 495
0fe1ac48 496#ifdef CONFIG_PERF_EVENTS
105988c0 497
0fe1ac48
PM
498/*
499 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
500 */
501#ifdef CONFIG_PPC64
502static inline unsigned long test_perf_event_pending(void)
105988c0 503{
0fe1ac48
PM
504 unsigned long x;
505
506 asm volatile("lbz %0,%1(13)"
507 : "=r" (x)
508 : "i" (offsetof(struct paca_struct, perf_event_pending)));
509 return x;
510}
511
512static inline void set_perf_event_pending_flag(void)
513{
514 asm volatile("stb %0,%1(13)" : :
515 "r" (1),
516 "i" (offsetof(struct paca_struct, perf_event_pending)));
517}
518
519static inline void clear_perf_event_pending(void)
520{
521 asm volatile("stb %0,%1(13)" : :
522 "r" (0),
523 "i" (offsetof(struct paca_struct, perf_event_pending)));
105988c0
PM
524}
525
0fe1ac48
PM
526#else /* 32-bit */
527
528DEFINE_PER_CPU(u8, perf_event_pending);
529
530#define set_perf_event_pending_flag() __get_cpu_var(perf_event_pending) = 1
cdd6c482
IM
531#define test_perf_event_pending() __get_cpu_var(perf_event_pending)
532#define clear_perf_event_pending() __get_cpu_var(perf_event_pending) = 0
105988c0 533
0fe1ac48
PM
534#endif /* 32 vs 64 bit */
535
536void set_perf_event_pending(void)
537{
538 preempt_disable();
539 set_perf_event_pending_flag();
540 set_dec(1);
541 preempt_enable();
542}
543
544#else /* CONFIG_PERF_EVENTS */
105988c0 545
cdd6c482
IM
546#define test_perf_event_pending() 0
547#define clear_perf_event_pending()
105988c0 548
0fe1ac48 549#endif /* CONFIG_PERF_EVENTS */
105988c0 550
1da177e4
LT
551/*
552 * For iSeries shared processors, we have to let the hypervisor
553 * set the hardware decrementer. We set a virtual decrementer
554 * in the lppaca and call the hypervisor if the virtual
555 * decrementer is less than the current value in the hardware
556 * decrementer. (almost always the new decrementer value will
557 * be greater than the current hardware decementer so the hypervisor
558 * call will not be needed)
559 */
560
1da177e4
LT
561/*
562 * timer_interrupt - gets called when the decrementer overflows,
563 * with interrupts disabled.
564 */
c7aeffc4 565void timer_interrupt(struct pt_regs * regs)
1da177e4 566{
7d12e780 567 struct pt_regs *old_regs;
6e6b44e8
MM
568 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
569 struct clock_event_device *evt = &decrementer->event;
d968014b 570 u64 now;
d831d0b8 571
6795b85c
AB
572 trace_timer_interrupt_entry(regs);
573
89713ed1
AB
574 __get_cpu_var(irq_stat).timer_irqs++;
575
d831d0b8
TB
576 /* Ensure a positive value is written to the decrementer, or else
577 * some CPUs will continuue to take decrementer exceptions */
578 set_dec(DECREMENTER_MAX);
f2783c15
PM
579
580#ifdef CONFIG_PPC32
581 if (atomic_read(&ppc_n_lost_interrupts) != 0)
582 do_IRQ(regs);
583#endif
1da177e4 584
d968014b 585 now = get_tb_or_rtc();
6e6b44e8 586 if (now < decrementer->next_tb) {
d968014b 587 /* not time for this event yet */
6e6b44e8 588 now = decrementer->next_tb - now;
d968014b 589 if (now <= DECREMENTER_MAX)
43875cc0 590 set_dec((int)now);
6795b85c 591 trace_timer_interrupt_exit(regs);
d968014b
PM
592 return;
593 }
7d12e780 594 old_regs = set_irq_regs(regs);
1da177e4
LT
595 irq_enter();
596
c6622f63 597 calculate_steal_time();
1da177e4 598
0fe1ac48
PM
599 if (test_perf_event_pending()) {
600 clear_perf_event_pending();
601 perf_event_do_pending();
602 }
603
f2783c15 604#ifdef CONFIG_PPC_ISERIES
501b6d29
SR
605 if (firmware_has_feature(FW_FEATURE_ISERIES))
606 get_lppaca()->int_dword.fields.decr_int = 0;
f2783c15
PM
607#endif
608
d831d0b8
TB
609 if (evt->event_handler)
610 evt->event_handler(evt);
1da177e4
LT
611
612#ifdef CONFIG_PPC_ISERIES
501b6d29 613 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
35a84c2f 614 process_hvlpevents();
1da177e4
LT
615#endif
616
f2783c15 617#ifdef CONFIG_PPC64
8d15a3e5 618 /* collect purr register values often, for accurate calculations */
1ababe11 619 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1da177e4
LT
620 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
621 cu->current_tb = mfspr(SPRN_PURR);
622 }
f2783c15 623#endif
1da177e4
LT
624
625 irq_exit();
7d12e780 626 set_irq_regs(old_regs);
6795b85c
AB
627
628 trace_timer_interrupt_exit(regs);
1da177e4
LT
629}
630
7ac5dde9 631#ifdef CONFIG_SUSPEND
d75d68cf 632static void generic_suspend_disable_irqs(void)
7ac5dde9 633{
7ac5dde9
SW
634 /* Disable the decrementer, so that it doesn't interfere
635 * with suspending.
636 */
637
638 set_dec(0x7fffffff);
639 local_irq_disable();
640 set_dec(0x7fffffff);
641}
642
d75d68cf 643static void generic_suspend_enable_irqs(void)
7ac5dde9 644{
7ac5dde9 645 local_irq_enable();
7ac5dde9
SW
646}
647
648/* Overrides the weak version in kernel/power/main.c */
649void arch_suspend_disable_irqs(void)
650{
651 if (ppc_md.suspend_disable_irqs)
652 ppc_md.suspend_disable_irqs();
653 generic_suspend_disable_irqs();
654}
655
656/* Overrides the weak version in kernel/power/main.c */
657void arch_suspend_enable_irqs(void)
658{
659 generic_suspend_enable_irqs();
660 if (ppc_md.suspend_enable_irqs)
661 ppc_md.suspend_enable_irqs();
662}
663#endif
664
1da177e4
LT
665/*
666 * Scheduler clock - returns current time in nanosec units.
667 *
668 * Note: mulhdu(a, b) (multiply high double unsigned) returns
669 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
670 * are 64-bit unsigned numbers.
671 */
672unsigned long long sched_clock(void)
673{
96c44507
PM
674 if (__USE_RTC())
675 return get_rtc();
fc9069fe 676 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
1da177e4
LT
677}
678
0bb474a4 679static int __init get_freq(char *name, int cells, unsigned long *val)
10f7e7c1
AB
680{
681 struct device_node *cpu;
a7f67bdf 682 const unsigned int *fp;
0bb474a4 683 int found = 0;
10f7e7c1 684
0bb474a4 685 /* The cpu node should have timebase and clock frequency properties */
10f7e7c1
AB
686 cpu = of_find_node_by_type(NULL, "cpu");
687
d8a8188d 688 if (cpu) {
e2eb6392 689 fp = of_get_property(cpu, name, NULL);
d8a8188d 690 if (fp) {
0bb474a4 691 found = 1;
a4dc7ff0 692 *val = of_read_ulong(fp, cells);
10f7e7c1 693 }
0bb474a4
AB
694
695 of_node_put(cpu);
10f7e7c1 696 }
0bb474a4
AB
697
698 return found;
699}
700
77c0a700
BH
701/* should become __cpuinit when secondary_cpu_time_init also is */
702void start_cpu_decrementer(void)
703{
704#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
705 /* Clear any pending timer interrupts */
706 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
707
708 /* Enable decrementer interrupt */
709 mtspr(SPRN_TCR, TCR_DIE);
710#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
711}
712
0bb474a4
AB
713void __init generic_calibrate_decr(void)
714{
715 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
716
717 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
718 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
719
10f7e7c1
AB
720 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
721 "(not found)\n");
0bb474a4 722 }
10f7e7c1 723
0bb474a4
AB
724 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
725
726 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
727 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
728
729 printk(KERN_ERR "WARNING: Estimating processor frequency "
730 "(not found)\n");
10f7e7c1 731 }
10f7e7c1 732}
10f7e7c1 733
aa3be5f3 734int update_persistent_clock(struct timespec now)
f2783c15
PM
735{
736 struct rtc_time tm;
737
aa3be5f3
TB
738 if (!ppc_md.set_rtc_time)
739 return 0;
740
741 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
742 tm.tm_year -= 1900;
743 tm.tm_mon -= 1;
744
745 return ppc_md.set_rtc_time(&tm);
746}
747
978d7eb3 748static void __read_persistent_clock(struct timespec *ts)
aa3be5f3
TB
749{
750 struct rtc_time tm;
751 static int first = 1;
752
d90246cd 753 ts->tv_nsec = 0;
aa3be5f3
TB
754 /* XXX this is a litle fragile but will work okay in the short term */
755 if (first) {
756 first = 0;
757 if (ppc_md.time_init)
758 timezone_offset = ppc_md.time_init();
759
760 /* get_boot_time() isn't guaranteed to be safe to call late */
d90246cd
MS
761 if (ppc_md.get_boot_time) {
762 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
763 return;
764 }
765 }
766 if (!ppc_md.get_rtc_time) {
767 ts->tv_sec = 0;
768 return;
aa3be5f3 769 }
f2783c15 770 ppc_md.get_rtc_time(&tm);
978d7eb3 771
d4f587c6
MS
772 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
773 tm.tm_hour, tm.tm_min, tm.tm_sec);
f2783c15
PM
774}
775
978d7eb3
BH
776void read_persistent_clock(struct timespec *ts)
777{
778 __read_persistent_clock(ts);
779
780 /* Sanitize it in case real time clock is set below EPOCH */
781 if (ts->tv_sec < 0) {
782 ts->tv_sec = 0;
783 ts->tv_nsec = 0;
784 }
785
786}
787
4a4cfe38 788/* clocksource code */
8e19608e 789static cycle_t rtc_read(struct clocksource *cs)
4a4cfe38
TB
790{
791 return (cycle_t)get_rtc();
792}
793
8e19608e 794static cycle_t timebase_read(struct clocksource *cs)
4a4cfe38
TB
795{
796 return (cycle_t)get_tb();
797}
798
7615856e
JS
799void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
800 struct clocksource *clock, u32 mult)
4a4cfe38 801{
b0797b60 802 u64 new_tb_to_xs, new_stamp_xsec;
47916be4 803 u32 frac_sec;
4a4cfe38
TB
804
805 if (clock != &clocksource_timebase)
806 return;
807
808 /* Make userspace gettimeofday spin until we're done. */
809 ++vdso_data->tb_update_count;
810 smp_mb();
811
812 /* XXX this assumes clock->shift == 22 */
813 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
b0797b60 814 new_tb_to_xs = (u64) mult * 4611686018ULL;
06d518e3 815 new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
b0797b60 816 do_div(new_stamp_xsec, 1000000000);
06d518e3 817 new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
b0797b60 818
47916be4
TG
819 BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
820 /* this is tv_nsec / 1e9 as a 0.32 fraction */
821 frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
822
b0797b60
JS
823 /*
824 * tb_update_count is used to allow the userspace gettimeofday code
825 * to assure itself that it sees a consistent view of the tb_to_xs and
826 * stamp_xsec variables. It reads the tb_update_count, then reads
827 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
828 * the two values of tb_update_count match and are even then the
829 * tb_to_xs and stamp_xsec values are consistent. If not, then it
830 * loops back and reads them again until this criteria is met.
831 * We expect the caller to have done the first increment of
832 * vdso_data->tb_update_count already.
833 */
834 vdso_data->tb_orig_stamp = clock->cycle_last;
835 vdso_data->stamp_xsec = new_stamp_xsec;
836 vdso_data->tb_to_xs = new_tb_to_xs;
7615856e
JS
837 vdso_data->wtom_clock_sec = wtm->tv_sec;
838 vdso_data->wtom_clock_nsec = wtm->tv_nsec;
06d518e3 839 vdso_data->stamp_xtime = *wall_time;
0e469db8 840 vdso_data->stamp_sec_fraction = frac_sec;
b0797b60
JS
841 smp_wmb();
842 ++(vdso_data->tb_update_count);
4a4cfe38
TB
843}
844
845void update_vsyscall_tz(void)
846{
847 /* Make userspace gettimeofday spin until we're done. */
848 ++vdso_data->tb_update_count;
849 smp_mb();
850 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
851 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
852 smp_mb();
853 ++vdso_data->tb_update_count;
854}
855
1c21a293 856static void __init clocksource_init(void)
4a4cfe38
TB
857{
858 struct clocksource *clock;
859
860 if (__USE_RTC())
861 clock = &clocksource_rtc;
862 else
863 clock = &clocksource_timebase;
864
865 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
866
867 if (clocksource_register(clock)) {
868 printk(KERN_ERR "clocksource: %s is already registered\n",
869 clock->name);
870 return;
871 }
872
873 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
874 clock->name, clock->mult, clock->shift);
875}
876
d831d0b8
TB
877static int decrementer_set_next_event(unsigned long evt,
878 struct clock_event_device *dev)
879{
6e6b44e8 880 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
d831d0b8
TB
881 set_dec(evt);
882 return 0;
883}
884
885static void decrementer_set_mode(enum clock_event_mode mode,
886 struct clock_event_device *dev)
887{
888 if (mode != CLOCK_EVT_MODE_ONESHOT)
889 decrementer_set_next_event(DECREMENTER_MAX, dev);
890}
891
3e7b4843
SR
892static inline uint64_t div_sc64(unsigned long ticks, unsigned long nsec,
893 int shift)
894{
895 uint64_t tmp = ((uint64_t)ticks) << shift;
896
897 do_div(tmp, nsec);
898 return tmp;
899}
900
8d165db1
AB
901static void __init setup_clockevent_multiplier(unsigned long hz)
902{
903 u64 mult, shift = 32;
904
905 while (1) {
3e7b4843 906 mult = div_sc64(hz, NSEC_PER_SEC, shift);
8d165db1
AB
907 if (mult && (mult >> 32UL) == 0UL)
908 break;
909
910 shift--;
911 }
912
913 decrementer_clockevent.shift = shift;
914 decrementer_clockevent.mult = mult;
915}
916
d831d0b8
TB
917static void register_decrementer_clockevent(int cpu)
918{
6e6b44e8 919 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
d831d0b8
TB
920
921 *dec = decrementer_clockevent;
320ab2b0 922 dec->cpumask = cpumask_of(cpu);
d831d0b8 923
b919ee82
AB
924 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
925 dec->name, dec->mult, dec->shift, cpu);
d831d0b8
TB
926
927 clockevents_register_device(dec);
928}
929
c481887f 930static void __init init_decrementer_clockevent(void)
d831d0b8
TB
931{
932 int cpu = smp_processor_id();
933
8d165db1 934 setup_clockevent_multiplier(ppc_tb_freq);
d831d0b8
TB
935 decrementer_clockevent.max_delta_ns =
936 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
43875cc0
PM
937 decrementer_clockevent.min_delta_ns =
938 clockevent_delta2ns(2, &decrementer_clockevent);
d831d0b8
TB
939
940 register_decrementer_clockevent(cpu);
941}
942
943void secondary_cpu_time_init(void)
944{
77c0a700
BH
945 /* Start the decrementer on CPUs that have manual control
946 * such as BookE
947 */
948 start_cpu_decrementer();
949
d831d0b8
TB
950 /* FIME: Should make unrelatred change to move snapshot_timebase
951 * call here ! */
952 register_decrementer_clockevent(smp_processor_id());
953}
954
f2783c15 955/* This function is only called on the boot processor */
1da177e4
LT
956void __init time_init(void)
957{
1da177e4 958 struct div_result res;
d75d68cf 959 u64 scale;
f2783c15
PM
960 unsigned shift;
961
96c44507
PM
962 if (__USE_RTC()) {
963 /* 601 processor: dec counts down by 128 every 128ns */
964 ppc_tb_freq = 1000000000;
96c44507
PM
965 } else {
966 /* Normal PowerPC with timebase register */
967 ppc_md.calibrate_decr();
224ad80a 968 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
96c44507 969 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
224ad80a 970 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
96c44507 971 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
96c44507 972 }
374e99d4
PM
973
974 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
092b8f34 975 tb_ticks_per_sec = ppc_tb_freq;
374e99d4 976 tb_ticks_per_usec = ppc_tb_freq / 1000000;
c6622f63 977 calc_cputime_factors();
a42548a1 978 setup_cputime_one_jiffy();
092b8f34 979
1da177e4
LT
980 /*
981 * Compute scale factor for sched_clock.
982 * The calibrate_decr() function has set tb_ticks_per_sec,
983 * which is the timebase frequency.
984 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
985 * the 128-bit result as a 64.64 fixed-point number.
986 * We then shift that number right until it is less than 1.0,
987 * giving us the scale factor and shift count to use in
988 * sched_clock().
989 */
990 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
991 scale = res.result_low;
992 for (shift = 0; res.result_high != 0; ++shift) {
993 scale = (scale >> 1) | (res.result_high << 63);
994 res.result_high >>= 1;
995 }
996 tb_to_ns_scale = scale;
997 tb_to_ns_shift = shift;
fc9069fe 998 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
c27da339 999 boot_tb = get_tb_or_rtc();
1da177e4 1000
092b8f34
PM
1001 /* If platform provided a timezone (pmac), we correct the time */
1002 if (timezone_offset) {
1003 sys_tz.tz_minuteswest = -timezone_offset / 60;
1004 sys_tz.tz_dsttime = 0;
092b8f34
PM
1005 }
1006
a7f290da
BH
1007 vdso_data->tb_update_count = 0;
1008 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1da177e4 1009
77c0a700
BH
1010 /* Start the decrementer on CPUs that have manual control
1011 * such as BookE
1012 */
1013 start_cpu_decrementer();
1014
4a4cfe38
TB
1015 /* Register the clocksource, if we're not running on iSeries */
1016 if (!firmware_has_feature(FW_FEATURE_ISERIES))
1017 clocksource_init();
1018
d831d0b8 1019 init_decrementer_clockevent();
1da177e4
LT
1020}
1021
1da177e4 1022
1da177e4
LT
1023#define FEBRUARY 2
1024#define STARTOFTIME 1970
1025#define SECDAY 86400L
1026#define SECYR (SECDAY * 365)
f2783c15
PM
1027#define leapyear(year) ((year) % 4 == 0 && \
1028 ((year) % 100 != 0 || (year) % 400 == 0))
1da177e4
LT
1029#define days_in_year(a) (leapyear(a) ? 366 : 365)
1030#define days_in_month(a) (month_days[(a) - 1])
1031
1032static int month_days[12] = {
1033 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1034};
1035
1036/*
1037 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1038 */
1039void GregorianDay(struct rtc_time * tm)
1040{
1041 int leapsToDate;
1042 int lastYear;
1043 int day;
1044 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1045
f2783c15 1046 lastYear = tm->tm_year - 1;
1da177e4
LT
1047
1048 /*
1049 * Number of leap corrections to apply up to end of last year
1050 */
f2783c15 1051 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1da177e4
LT
1052
1053 /*
1054 * This year is a leap year if it is divisible by 4 except when it is
1055 * divisible by 100 unless it is divisible by 400
1056 *
f2783c15 1057 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1da177e4 1058 */
f2783c15 1059 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1da177e4
LT
1060
1061 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1062 tm->tm_mday;
1063
f2783c15 1064 tm->tm_wday = day % 7;
1da177e4
LT
1065}
1066
1067void to_tm(int tim, struct rtc_time * tm)
1068{
1069 register int i;
1070 register long hms, day;
1071
1072 day = tim / SECDAY;
1073 hms = tim % SECDAY;
1074
1075 /* Hours, minutes, seconds are easy */
1076 tm->tm_hour = hms / 3600;
1077 tm->tm_min = (hms % 3600) / 60;
1078 tm->tm_sec = (hms % 3600) % 60;
1079
1080 /* Number of years in days */
1081 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1082 day -= days_in_year(i);
1083 tm->tm_year = i;
1084
1085 /* Number of months in days left */
1086 if (leapyear(tm->tm_year))
1087 days_in_month(FEBRUARY) = 29;
1088 for (i = 1; day >= days_in_month(i); i++)
1089 day -= days_in_month(i);
1090 days_in_month(FEBRUARY) = 28;
1091 tm->tm_mon = i;
1092
1093 /* Days are what is left over (+1) from all that. */
1094 tm->tm_mday = day + 1;
1095
1096 /*
1097 * Determine the day of week
1098 */
1099 GregorianDay(tm);
1100}
1101
1da177e4
LT
1102/*
1103 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1104 * result.
1105 */
f2783c15
PM
1106void div128_by_32(u64 dividend_high, u64 dividend_low,
1107 unsigned divisor, struct div_result *dr)
1da177e4 1108{
f2783c15
PM
1109 unsigned long a, b, c, d;
1110 unsigned long w, x, y, z;
1111 u64 ra, rb, rc;
1da177e4
LT
1112
1113 a = dividend_high >> 32;
1114 b = dividend_high & 0xffffffff;
1115 c = dividend_low >> 32;
1116 d = dividend_low & 0xffffffff;
1117
f2783c15
PM
1118 w = a / divisor;
1119 ra = ((u64)(a - (w * divisor)) << 32) + b;
1120
f2783c15
PM
1121 rb = ((u64) do_div(ra, divisor) << 32) + c;
1122 x = ra;
1da177e4 1123
f2783c15
PM
1124 rc = ((u64) do_div(rb, divisor) << 32) + d;
1125 y = rb;
1126
1127 do_div(rc, divisor);
1128 z = rc;
1da177e4 1129
f2783c15
PM
1130 dr->result_high = ((u64)w << 32) + x;
1131 dr->result_low = ((u64)y << 32) + z;
1da177e4
LT
1132
1133}
bcd68a70 1134
177996e6
BH
1135/* We don't need to calibrate delay, we use the CPU timebase for that */
1136void calibrate_delay(void)
1137{
1138 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1139 * as the number of __delay(1) in a jiffy, so make it so
1140 */
1141 loops_per_jiffy = tb_ticks_per_jiffy;
1142}
1143
bcd68a70
GU
1144static int __init rtc_init(void)
1145{
1146 struct platform_device *pdev;
1147
1148 if (!ppc_md.get_rtc_time)
1149 return -ENODEV;
1150
1151 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1152 if (IS_ERR(pdev))
1153 return PTR_ERR(pdev);
1154
1155 return 0;
1156}
1157
1158module_init(rtc_init);