powerpc: Fix time code for 601 processors
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / prom.c
CommitLineData
9b6b563c
PM
1/*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16#undef DEBUG
17
18#include <stdarg.h>
19#include <linux/config.h>
20#include <linux/kernel.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/threads.h>
24#include <linux/spinlock.h>
25#include <linux/types.h>
26#include <linux/pci.h>
27#include <linux/stringify.h>
28#include <linux/delay.h>
29#include <linux/initrd.h>
30#include <linux/bitops.h>
31#include <linux/module.h>
32
33#include <asm/prom.h>
34#include <asm/rtas.h>
35#include <asm/lmb.h>
36#include <asm/page.h>
37#include <asm/processor.h>
38#include <asm/irq.h>
39#include <asm/io.h>
40#include <asm/smp.h>
41#include <asm/system.h>
42#include <asm/mmu.h>
43#include <asm/pgtable.h>
44#include <asm/pci.h>
45#include <asm/iommu.h>
46#include <asm/btext.h>
47#include <asm/sections.h>
48#include <asm/machdep.h>
49#include <asm/pSeries_reconfig.h>
40ef8cbc
PM
50#include <asm/pci-bridge.h>
51#ifdef CONFIG_PPC64
52#include <asm/systemcfg.h>
53#endif
9b6b563c
PM
54
55#ifdef DEBUG
56#define DBG(fmt...) printk(KERN_ERR fmt)
57#else
58#define DBG(fmt...)
59#endif
60
61struct pci_reg_property {
62 struct pci_address addr;
63 u32 size_hi;
64 u32 size_lo;
65};
66
67struct isa_reg_property {
68 u32 space;
69 u32 address;
70 u32 size;
71};
72
73
74typedef int interpret_func(struct device_node *, unsigned long *,
75 int, int, int);
76
77extern struct rtas_t rtas;
78extern struct lmb lmb;
79extern unsigned long klimit;
80
81static unsigned long memory_limit;
82
83static int __initdata dt_root_addr_cells;
84static int __initdata dt_root_size_cells;
85
86#ifdef CONFIG_PPC64
87static int __initdata iommu_is_off;
88int __initdata iommu_force_on;
89extern unsigned long tce_alloc_start, tce_alloc_end;
90#endif
91
92typedef u32 cell_t;
93
94#if 0
95static struct boot_param_header *initial_boot_params __initdata;
96#else
97struct boot_param_header *initial_boot_params;
98#endif
99
100static struct device_node *allnodes = NULL;
101
102/* use when traversing tree through the allnext, child, sibling,
103 * or parent members of struct device_node.
104 */
105static DEFINE_RWLOCK(devtree_lock);
106
107/* export that to outside world */
108struct device_node *of_chosen;
109
110struct device_node *dflt_interrupt_controller;
111int num_interrupt_controllers;
112
113u32 rtas_data;
114u32 rtas_entry;
115
116/*
117 * Wrapper for allocating memory for various data that needs to be
118 * attached to device nodes as they are processed at boot or when
119 * added to the device tree later (e.g. DLPAR). At boot there is
120 * already a region reserved so we just increment *mem_start by size;
121 * otherwise we call kmalloc.
122 */
123static void * prom_alloc(unsigned long size, unsigned long *mem_start)
124{
125 unsigned long tmp;
126
127 if (!mem_start)
128 return kmalloc(size, GFP_KERNEL);
129
130 tmp = *mem_start;
131 *mem_start += size;
132 return (void *)tmp;
133}
134
135/*
136 * Find the device_node with a given phandle.
137 */
138static struct device_node * find_phandle(phandle ph)
139{
140 struct device_node *np;
141
142 for (np = allnodes; np != 0; np = np->allnext)
143 if (np->linux_phandle == ph)
144 return np;
145 return NULL;
146}
147
148/*
149 * Find the interrupt parent of a node.
150 */
151static struct device_node * __devinit intr_parent(struct device_node *p)
152{
153 phandle *parp;
154
155 parp = (phandle *) get_property(p, "interrupt-parent", NULL);
156 if (parp == NULL)
157 return p->parent;
158 p = find_phandle(*parp);
159 if (p != NULL)
160 return p;
161 /*
162 * On a powermac booted with BootX, we don't get to know the
163 * phandles for any nodes, so find_phandle will return NULL.
164 * Fortunately these machines only have one interrupt controller
165 * so there isn't in fact any ambiguity. -- paulus
166 */
167 if (num_interrupt_controllers == 1)
168 p = dflt_interrupt_controller;
169 return p;
170}
171
172/*
173 * Find out the size of each entry of the interrupts property
174 * for a node.
175 */
176int __devinit prom_n_intr_cells(struct device_node *np)
177{
178 struct device_node *p;
179 unsigned int *icp;
180
181 for (p = np; (p = intr_parent(p)) != NULL; ) {
182 icp = (unsigned int *)
183 get_property(p, "#interrupt-cells", NULL);
184 if (icp != NULL)
185 return *icp;
186 if (get_property(p, "interrupt-controller", NULL) != NULL
187 || get_property(p, "interrupt-map", NULL) != NULL) {
188 printk("oops, node %s doesn't have #interrupt-cells\n",
189 p->full_name);
190 return 1;
191 }
192 }
193#ifdef DEBUG_IRQ
194 printk("prom_n_intr_cells failed for %s\n", np->full_name);
195#endif
196 return 1;
197}
198
199/*
200 * Map an interrupt from a device up to the platform interrupt
201 * descriptor.
202 */
203static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
204 struct device_node *np, unsigned int *ints,
205 int nintrc)
206{
207 struct device_node *p, *ipar;
208 unsigned int *imap, *imask, *ip;
209 int i, imaplen, match;
210 int newintrc = 0, newaddrc = 0;
211 unsigned int *reg;
212 int naddrc;
213
214 reg = (unsigned int *) get_property(np, "reg", NULL);
215 naddrc = prom_n_addr_cells(np);
216 p = intr_parent(np);
217 while (p != NULL) {
218 if (get_property(p, "interrupt-controller", NULL) != NULL)
219 /* this node is an interrupt controller, stop here */
220 break;
221 imap = (unsigned int *)
222 get_property(p, "interrupt-map", &imaplen);
223 if (imap == NULL) {
224 p = intr_parent(p);
225 continue;
226 }
227 imask = (unsigned int *)
228 get_property(p, "interrupt-map-mask", NULL);
229 if (imask == NULL) {
230 printk("oops, %s has interrupt-map but no mask\n",
231 p->full_name);
232 return 0;
233 }
234 imaplen /= sizeof(unsigned int);
235 match = 0;
236 ipar = NULL;
237 while (imaplen > 0 && !match) {
238 /* check the child-interrupt field */
239 match = 1;
240 for (i = 0; i < naddrc && match; ++i)
241 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
242 for (; i < naddrc + nintrc && match; ++i)
243 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
244 imap += naddrc + nintrc;
245 imaplen -= naddrc + nintrc;
246 /* grab the interrupt parent */
247 ipar = find_phandle((phandle) *imap++);
248 --imaplen;
249 if (ipar == NULL && num_interrupt_controllers == 1)
250 /* cope with BootX not giving us phandles */
251 ipar = dflt_interrupt_controller;
252 if (ipar == NULL) {
253 printk("oops, no int parent %x in map of %s\n",
254 imap[-1], p->full_name);
255 return 0;
256 }
257 /* find the parent's # addr and intr cells */
258 ip = (unsigned int *)
259 get_property(ipar, "#interrupt-cells", NULL);
260 if (ip == NULL) {
261 printk("oops, no #interrupt-cells on %s\n",
262 ipar->full_name);
263 return 0;
264 }
265 newintrc = *ip;
266 ip = (unsigned int *)
267 get_property(ipar, "#address-cells", NULL);
268 newaddrc = (ip == NULL)? 0: *ip;
269 imap += newaddrc + newintrc;
270 imaplen -= newaddrc + newintrc;
271 }
272 if (imaplen < 0) {
273 printk("oops, error decoding int-map on %s, len=%d\n",
274 p->full_name, imaplen);
275 return 0;
276 }
277 if (!match) {
278#ifdef DEBUG_IRQ
279 printk("oops, no match in %s int-map for %s\n",
280 p->full_name, np->full_name);
281#endif
282 return 0;
283 }
284 p = ipar;
285 naddrc = newaddrc;
286 nintrc = newintrc;
287 ints = imap - nintrc;
288 reg = ints - naddrc;
289 }
290 if (p == NULL) {
291#ifdef DEBUG_IRQ
292 printk("hmmm, int tree for %s doesn't have ctrler\n",
293 np->full_name);
294#endif
295 return 0;
296 }
297 *irq = ints;
298 *ictrler = p;
299 return nintrc;
300}
301
302static int __devinit finish_node_interrupts(struct device_node *np,
303 unsigned long *mem_start,
304 int measure_only)
305{
306 unsigned int *ints;
307 int intlen, intrcells, intrcount;
308 int i, j, n;
309 unsigned int *irq, virq;
310 struct device_node *ic;
311
312 ints = (unsigned int *) get_property(np, "interrupts", &intlen);
313 if (ints == NULL)
314 return 0;
315 intrcells = prom_n_intr_cells(np);
316 intlen /= intrcells * sizeof(unsigned int);
317
318 np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
319 if (!np->intrs)
320 return -ENOMEM;
321
322 if (measure_only)
323 return 0;
324
325 intrcount = 0;
326 for (i = 0; i < intlen; ++i, ints += intrcells) {
327 n = map_interrupt(&irq, &ic, np, ints, intrcells);
328 if (n <= 0)
329 continue;
330
331 /* don't map IRQ numbers under a cascaded 8259 controller */
332 if (ic && device_is_compatible(ic, "chrp,iic")) {
333 np->intrs[intrcount].line = irq[0];
334 } else {
335#ifdef CONFIG_PPC64
336 virq = virt_irq_create_mapping(irq[0]);
337 if (virq == NO_IRQ) {
338 printk(KERN_CRIT "Could not allocate interrupt"
339 " number for %s\n", np->full_name);
340 continue;
341 }
342 virq = irq_offset_up(virq);
343#else
344 virq = irq[0];
345#endif
346 np->intrs[intrcount].line = virq;
347 }
348
349#ifdef CONFIG_PPC64
350 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
351 if (systemcfg->platform == PLATFORM_POWERMAC && ic && ic->parent) {
352 char *name = get_property(ic->parent, "name", NULL);
353 if (name && !strcmp(name, "u3"))
354 np->intrs[intrcount].line += 128;
355 else if (!(name && !strcmp(name, "mac-io")))
356 /* ignore other cascaded controllers, such as
357 the k2-sata-root */
358 break;
359 }
360#endif
361 np->intrs[intrcount].sense = 1;
362 if (n > 1)
363 np->intrs[intrcount].sense = irq[1];
364 if (n > 2) {
365 printk("hmmm, got %d intr cells for %s:", n,
366 np->full_name);
367 for (j = 0; j < n; ++j)
368 printk(" %d", irq[j]);
369 printk("\n");
370 }
371 ++intrcount;
372 }
373 np->n_intrs = intrcount;
374
375 return 0;
376}
377
378static int __devinit interpret_pci_props(struct device_node *np,
379 unsigned long *mem_start,
380 int naddrc, int nsizec,
381 int measure_only)
382{
383 struct address_range *adr;
384 struct pci_reg_property *pci_addrs;
385 int i, l, n_addrs;
386
387 pci_addrs = (struct pci_reg_property *)
388 get_property(np, "assigned-addresses", &l);
389 if (!pci_addrs)
390 return 0;
391
392 n_addrs = l / sizeof(*pci_addrs);
393
394 adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
395 if (!adr)
396 return -ENOMEM;
397
398 if (measure_only)
399 return 0;
400
401 np->addrs = adr;
402 np->n_addrs = n_addrs;
403
404 for (i = 0; i < n_addrs; i++) {
405 adr[i].space = pci_addrs[i].addr.a_hi;
406 adr[i].address = pci_addrs[i].addr.a_lo |
407 ((u64)pci_addrs[i].addr.a_mid << 32);
408 adr[i].size = pci_addrs[i].size_lo;
409 }
410
411 return 0;
412}
413
414static int __init interpret_dbdma_props(struct device_node *np,
415 unsigned long *mem_start,
416 int naddrc, int nsizec,
417 int measure_only)
418{
419 struct reg_property32 *rp;
420 struct address_range *adr;
421 unsigned long base_address;
422 int i, l;
423 struct device_node *db;
424
425 base_address = 0;
426 if (!measure_only) {
427 for (db = np->parent; db != NULL; db = db->parent) {
428 if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
429 base_address = db->addrs[0].address;
430 break;
431 }
432 }
433 }
434
435 rp = (struct reg_property32 *) get_property(np, "reg", &l);
436 if (rp != 0 && l >= sizeof(struct reg_property32)) {
437 i = 0;
438 adr = (struct address_range *) (*mem_start);
439 while ((l -= sizeof(struct reg_property32)) >= 0) {
440 if (!measure_only) {
441 adr[i].space = 2;
442 adr[i].address = rp[i].address + base_address;
443 adr[i].size = rp[i].size;
444 }
445 ++i;
446 }
447 np->addrs = adr;
448 np->n_addrs = i;
449 (*mem_start) += i * sizeof(struct address_range);
450 }
451
452 return 0;
453}
454
455static int __init interpret_macio_props(struct device_node *np,
456 unsigned long *mem_start,
457 int naddrc, int nsizec,
458 int measure_only)
459{
460 struct reg_property32 *rp;
461 struct address_range *adr;
462 unsigned long base_address;
463 int i, l;
464 struct device_node *db;
465
466 base_address = 0;
467 if (!measure_only) {
468 for (db = np->parent; db != NULL; db = db->parent) {
469 if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
470 base_address = db->addrs[0].address;
471 break;
472 }
473 }
474 }
475
476 rp = (struct reg_property32 *) get_property(np, "reg", &l);
477 if (rp != 0 && l >= sizeof(struct reg_property32)) {
478 i = 0;
479 adr = (struct address_range *) (*mem_start);
480 while ((l -= sizeof(struct reg_property32)) >= 0) {
481 if (!measure_only) {
482 adr[i].space = 2;
483 adr[i].address = rp[i].address + base_address;
484 adr[i].size = rp[i].size;
485 }
486 ++i;
487 }
488 np->addrs = adr;
489 np->n_addrs = i;
490 (*mem_start) += i * sizeof(struct address_range);
491 }
492
493 return 0;
494}
495
496static int __init interpret_isa_props(struct device_node *np,
497 unsigned long *mem_start,
498 int naddrc, int nsizec,
499 int measure_only)
500{
501 struct isa_reg_property *rp;
502 struct address_range *adr;
503 int i, l;
504
505 rp = (struct isa_reg_property *) get_property(np, "reg", &l);
506 if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
507 i = 0;
508 adr = (struct address_range *) (*mem_start);
509 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
510 if (!measure_only) {
511 adr[i].space = rp[i].space;
512 adr[i].address = rp[i].address;
513 adr[i].size = rp[i].size;
514 }
515 ++i;
516 }
517 np->addrs = adr;
518 np->n_addrs = i;
519 (*mem_start) += i * sizeof(struct address_range);
520 }
521
522 return 0;
523}
524
525static int __init interpret_root_props(struct device_node *np,
526 unsigned long *mem_start,
527 int naddrc, int nsizec,
528 int measure_only)
529{
530 struct address_range *adr;
531 int i, l;
532 unsigned int *rp;
533 int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
534
535 rp = (unsigned int *) get_property(np, "reg", &l);
536 if (rp != 0 && l >= rpsize) {
537 i = 0;
538 adr = (struct address_range *) (*mem_start);
539 while ((l -= rpsize) >= 0) {
540 if (!measure_only) {
541 adr[i].space = 0;
542 adr[i].address = rp[naddrc - 1];
543 adr[i].size = rp[naddrc + nsizec - 1];
544 }
545 ++i;
546 rp += naddrc + nsizec;
547 }
548 np->addrs = adr;
549 np->n_addrs = i;
550 (*mem_start) += i * sizeof(struct address_range);
551 }
552
553 return 0;
554}
555
556static int __devinit finish_node(struct device_node *np,
557 unsigned long *mem_start,
558 interpret_func *ifunc,
559 int naddrc, int nsizec,
560 int measure_only)
561{
562 struct device_node *child;
563 int *ip, rc = 0;
564
565 /* get the device addresses and interrupts */
566 if (ifunc != NULL)
567 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
568 if (rc)
569 goto out;
570
571 rc = finish_node_interrupts(np, mem_start, measure_only);
572 if (rc)
573 goto out;
574
575 /* Look for #address-cells and #size-cells properties. */
576 ip = (int *) get_property(np, "#address-cells", NULL);
577 if (ip != NULL)
578 naddrc = *ip;
579 ip = (int *) get_property(np, "#size-cells", NULL);
580 if (ip != NULL)
581 nsizec = *ip;
582
583 if (!strcmp(np->name, "device-tree") || np->parent == NULL)
584 ifunc = interpret_root_props;
585 else if (np->type == 0)
586 ifunc = NULL;
587 else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
588 ifunc = interpret_pci_props;
589 else if (!strcmp(np->type, "dbdma"))
590 ifunc = interpret_dbdma_props;
591 else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
592 ifunc = interpret_macio_props;
593 else if (!strcmp(np->type, "isa"))
594 ifunc = interpret_isa_props;
595 else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
596 ifunc = interpret_root_props;
597 else if (!((ifunc == interpret_dbdma_props
598 || ifunc == interpret_macio_props)
599 && (!strcmp(np->type, "escc")
600 || !strcmp(np->type, "media-bay"))))
601 ifunc = NULL;
602
603 for (child = np->child; child != NULL; child = child->sibling) {
604 rc = finish_node(child, mem_start, ifunc,
605 naddrc, nsizec, measure_only);
606 if (rc)
607 goto out;
608 }
609out:
610 return rc;
611}
612
613static void __init scan_interrupt_controllers(void)
614{
615 struct device_node *np;
616 int n = 0;
617 char *name, *ic;
618 int iclen;
619
620 for (np = allnodes; np != NULL; np = np->allnext) {
621 ic = get_property(np, "interrupt-controller", &iclen);
622 name = get_property(np, "name", NULL);
623 /* checking iclen makes sure we don't get a false
624 match on /chosen.interrupt_controller */
625 if ((name != NULL
626 && strcmp(name, "interrupt-controller") == 0)
627 || (ic != NULL && iclen == 0
628 && strcmp(name, "AppleKiwi"))) {
629 if (n == 0)
630 dflt_interrupt_controller = np;
631 ++n;
632 }
633 }
634 num_interrupt_controllers = n;
635}
636
637/**
638 * finish_device_tree is called once things are running normally
639 * (i.e. with text and data mapped to the address they were linked at).
640 * It traverses the device tree and fills in some of the additional,
641 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
642 * mapping is also initialized at this point.
643 */
644void __init finish_device_tree(void)
645{
646 unsigned long start, end, size = 0;
647
648 DBG(" -> finish_device_tree\n");
649
650#ifdef CONFIG_PPC64
651 /* Initialize virtual IRQ map */
652 virt_irq_init();
653#endif
654 scan_interrupt_controllers();
655
656 /*
657 * Finish device-tree (pre-parsing some properties etc...)
658 * We do this in 2 passes. One with "measure_only" set, which
659 * will only measure the amount of memory needed, then we can
660 * allocate that memory, and call finish_node again. However,
661 * we must be careful as most routines will fail nowadays when
662 * prom_alloc() returns 0, so we must make sure our first pass
663 * doesn't start at 0. We pre-initialize size to 16 for that
664 * reason and then remove those additional 16 bytes
665 */
666 size = 16;
667 finish_node(allnodes, &size, NULL, 0, 0, 1);
668 size -= 16;
669 end = start = (unsigned long) __va(lmb_alloc(size, 128));
670 finish_node(allnodes, &end, NULL, 0, 0, 0);
671 BUG_ON(end != start + size);
672
673 DBG(" <- finish_device_tree\n");
674}
675
676static inline char *find_flat_dt_string(u32 offset)
677{
678 return ((char *)initial_boot_params) +
679 initial_boot_params->off_dt_strings + offset;
680}
681
682/**
683 * This function is used to scan the flattened device-tree, it is
684 * used to extract the memory informations at boot before we can
685 * unflatten the tree
686 */
687static int __init scan_flat_dt(int (*it)(unsigned long node,
688 const char *uname, int depth,
689 void *data),
690 void *data)
691{
692 unsigned long p = ((unsigned long)initial_boot_params) +
693 initial_boot_params->off_dt_struct;
694 int rc = 0;
695 int depth = -1;
696
697 do {
698 u32 tag = *((u32 *)p);
699 char *pathp;
700
701 p += 4;
702 if (tag == OF_DT_END_NODE) {
703 depth --;
704 continue;
705 }
706 if (tag == OF_DT_NOP)
707 continue;
708 if (tag == OF_DT_END)
709 break;
710 if (tag == OF_DT_PROP) {
711 u32 sz = *((u32 *)p);
712 p += 8;
713 if (initial_boot_params->version < 0x10)
714 p = _ALIGN(p, sz >= 8 ? 8 : 4);
715 p += sz;
716 p = _ALIGN(p, 4);
717 continue;
718 }
719 if (tag != OF_DT_BEGIN_NODE) {
720 printk(KERN_WARNING "Invalid tag %x scanning flattened"
721 " device tree !\n", tag);
722 return -EINVAL;
723 }
724 depth++;
725 pathp = (char *)p;
726 p = _ALIGN(p + strlen(pathp) + 1, 4);
727 if ((*pathp) == '/') {
728 char *lp, *np;
729 for (lp = NULL, np = pathp; *np; np++)
730 if ((*np) == '/')
731 lp = np+1;
732 if (lp != NULL)
733 pathp = lp;
734 }
735 rc = it(p, pathp, depth, data);
736 if (rc != 0)
737 break;
738 } while(1);
739
740 return rc;
741}
742
743/**
744 * This function can be used within scan_flattened_dt callback to get
745 * access to properties
746 */
747static void* __init get_flat_dt_prop(unsigned long node, const char *name,
748 unsigned long *size)
749{
750 unsigned long p = node;
751
752 do {
753 u32 tag = *((u32 *)p);
754 u32 sz, noff;
755 const char *nstr;
756
757 p += 4;
758 if (tag == OF_DT_NOP)
759 continue;
760 if (tag != OF_DT_PROP)
761 return NULL;
762
763 sz = *((u32 *)p);
764 noff = *((u32 *)(p + 4));
765 p += 8;
766 if (initial_boot_params->version < 0x10)
767 p = _ALIGN(p, sz >= 8 ? 8 : 4);
768
769 nstr = find_flat_dt_string(noff);
770 if (nstr == NULL) {
771 printk(KERN_WARNING "Can't find property index"
772 " name !\n");
773 return NULL;
774 }
775 if (strcmp(name, nstr) == 0) {
776 if (size)
777 *size = sz;
778 return (void *)p;
779 }
780 p += sz;
781 p = _ALIGN(p, 4);
782 } while(1);
783}
784
785static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
786 unsigned long align)
787{
788 void *res;
789
790 *mem = _ALIGN(*mem, align);
791 res = (void *)*mem;
792 *mem += size;
793
794 return res;
795}
796
797static unsigned long __init unflatten_dt_node(unsigned long mem,
798 unsigned long *p,
799 struct device_node *dad,
800 struct device_node ***allnextpp,
801 unsigned long fpsize)
802{
803 struct device_node *np;
804 struct property *pp, **prev_pp = NULL;
805 char *pathp;
806 u32 tag;
807 unsigned int l, allocl;
808 int has_name = 0;
809 int new_format = 0;
810
811 tag = *((u32 *)(*p));
812 if (tag != OF_DT_BEGIN_NODE) {
813 printk("Weird tag at start of node: %x\n", tag);
814 return mem;
815 }
816 *p += 4;
817 pathp = (char *)*p;
818 l = allocl = strlen(pathp) + 1;
819 *p = _ALIGN(*p + l, 4);
820
821 /* version 0x10 has a more compact unit name here instead of the full
822 * path. we accumulate the full path size using "fpsize", we'll rebuild
823 * it later. We detect this because the first character of the name is
824 * not '/'.
825 */
826 if ((*pathp) != '/') {
827 new_format = 1;
828 if (fpsize == 0) {
829 /* root node: special case. fpsize accounts for path
830 * plus terminating zero. root node only has '/', so
831 * fpsize should be 2, but we want to avoid the first
832 * level nodes to have two '/' so we use fpsize 1 here
833 */
834 fpsize = 1;
835 allocl = 2;
836 } else {
837 /* account for '/' and path size minus terminal 0
838 * already in 'l'
839 */
840 fpsize += l;
841 allocl = fpsize;
842 }
843 }
844
845
846 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
847 __alignof__(struct device_node));
848 if (allnextpp) {
849 memset(np, 0, sizeof(*np));
850 np->full_name = ((char*)np) + sizeof(struct device_node);
851 if (new_format) {
852 char *p = np->full_name;
853 /* rebuild full path for new format */
854 if (dad && dad->parent) {
855 strcpy(p, dad->full_name);
856#ifdef DEBUG
857 if ((strlen(p) + l + 1) != allocl) {
858 DBG("%s: p: %d, l: %d, a: %d\n",
859 pathp, strlen(p), l, allocl);
860 }
861#endif
862 p += strlen(p);
863 }
864 *(p++) = '/';
865 memcpy(p, pathp, l);
866 } else
867 memcpy(np->full_name, pathp, l);
868 prev_pp = &np->properties;
869 **allnextpp = np;
870 *allnextpp = &np->allnext;
871 if (dad != NULL) {
872 np->parent = dad;
873 /* we temporarily use the next field as `last_child'*/
874 if (dad->next == 0)
875 dad->child = np;
876 else
877 dad->next->sibling = np;
878 dad->next = np;
879 }
880 kref_init(&np->kref);
881 }
882 while(1) {
883 u32 sz, noff;
884 char *pname;
885
886 tag = *((u32 *)(*p));
887 if (tag == OF_DT_NOP) {
888 *p += 4;
889 continue;
890 }
891 if (tag != OF_DT_PROP)
892 break;
893 *p += 4;
894 sz = *((u32 *)(*p));
895 noff = *((u32 *)((*p) + 4));
896 *p += 8;
897 if (initial_boot_params->version < 0x10)
898 *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
899
900 pname = find_flat_dt_string(noff);
901 if (pname == NULL) {
902 printk("Can't find property name in list !\n");
903 break;
904 }
905 if (strcmp(pname, "name") == 0)
906 has_name = 1;
907 l = strlen(pname) + 1;
908 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
909 __alignof__(struct property));
910 if (allnextpp) {
911 if (strcmp(pname, "linux,phandle") == 0) {
912 np->node = *((u32 *)*p);
913 if (np->linux_phandle == 0)
914 np->linux_phandle = np->node;
915 }
916 if (strcmp(pname, "ibm,phandle") == 0)
917 np->linux_phandle = *((u32 *)*p);
918 pp->name = pname;
919 pp->length = sz;
920 pp->value = (void *)*p;
921 *prev_pp = pp;
922 prev_pp = &pp->next;
923 }
924 *p = _ALIGN((*p) + sz, 4);
925 }
926 /* with version 0x10 we may not have the name property, recreate
927 * it here from the unit name if absent
928 */
929 if (!has_name) {
930 char *p = pathp, *ps = pathp, *pa = NULL;
931 int sz;
932
933 while (*p) {
934 if ((*p) == '@')
935 pa = p;
936 if ((*p) == '/')
937 ps = p + 1;
938 p++;
939 }
940 if (pa < ps)
941 pa = p;
942 sz = (pa - ps) + 1;
943 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
944 __alignof__(struct property));
945 if (allnextpp) {
946 pp->name = "name";
947 pp->length = sz;
948 pp->value = (unsigned char *)(pp + 1);
949 *prev_pp = pp;
950 prev_pp = &pp->next;
951 memcpy(pp->value, ps, sz - 1);
952 ((char *)pp->value)[sz - 1] = 0;
953 DBG("fixed up name for %s -> %s\n", pathp, pp->value);
954 }
955 }
956 if (allnextpp) {
957 *prev_pp = NULL;
958 np->name = get_property(np, "name", NULL);
959 np->type = get_property(np, "device_type", NULL);
960
961 if (!np->name)
962 np->name = "<NULL>";
963 if (!np->type)
964 np->type = "<NULL>";
965 }
966 while (tag == OF_DT_BEGIN_NODE) {
967 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
968 tag = *((u32 *)(*p));
969 }
970 if (tag != OF_DT_END_NODE) {
971 printk("Weird tag at end of node: %x\n", tag);
972 return mem;
973 }
974 *p += 4;
975 return mem;
976}
977
978
979/**
980 * unflattens the device-tree passed by the firmware, creating the
981 * tree of struct device_node. It also fills the "name" and "type"
982 * pointers of the nodes so the normal device-tree walking functions
983 * can be used (this used to be done by finish_device_tree)
984 */
985void __init unflatten_device_tree(void)
986{
987 unsigned long start, mem, size;
988 struct device_node **allnextp = &allnodes;
989 char *p = NULL;
990 int l = 0;
991
992 DBG(" -> unflatten_device_tree()\n");
993
994 /* First pass, scan for size */
995 start = ((unsigned long)initial_boot_params) +
996 initial_boot_params->off_dt_struct;
997 size = unflatten_dt_node(0, &start, NULL, NULL, 0);
998 size = (size | 3) + 1;
999
1000 DBG(" size is %lx, allocating...\n", size);
1001
1002 /* Allocate memory for the expanded device tree */
1003 mem = lmb_alloc(size + 4, __alignof__(struct device_node));
1004 if (!mem) {
1005 DBG("Couldn't allocate memory with lmb_alloc()!\n");
1006 panic("Couldn't allocate memory with lmb_alloc()!\n");
1007 }
1008 mem = (unsigned long) __va(mem);
1009
1010 ((u32 *)mem)[size / 4] = 0xdeadbeef;
1011
1012 DBG(" unflattening %lx...\n", mem);
1013
1014 /* Second pass, do actual unflattening */
1015 start = ((unsigned long)initial_boot_params) +
1016 initial_boot_params->off_dt_struct;
1017 unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
1018 if (*((u32 *)start) != OF_DT_END)
1019 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
1020 if (((u32 *)mem)[size / 4] != 0xdeadbeef)
1021 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
1022 ((u32 *)mem)[size / 4] );
1023 *allnextp = NULL;
1024
1025 /* Get pointer to OF "/chosen" node for use everywhere */
1026 of_chosen = of_find_node_by_path("/chosen");
1027
1028 /* Retreive command line */
1029 if (of_chosen != NULL) {
1030 p = (char *)get_property(of_chosen, "bootargs", &l);
1031 if (p != NULL && l > 0)
1032 strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
1033 }
1034#ifdef CONFIG_CMDLINE
1035 if (l == 0 || (l == 1 && (*p) == 0))
1036 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1037#endif /* CONFIG_CMDLINE */
1038
1039 DBG("Command line is: %s\n", cmd_line);
1040
1041 DBG(" <- unflatten_device_tree()\n");
1042}
1043
1044
1045static int __init early_init_dt_scan_cpus(unsigned long node,
1046 const char *uname, int depth, void *data)
1047{
1048 char *type = get_flat_dt_prop(node, "device_type", NULL);
1049 u32 *prop;
1050 unsigned long size = 0;
1051
1052 /* We are scanning "cpu" nodes only */
1053 if (type == NULL || strcmp(type, "cpu") != 0)
1054 return 0;
1055
1056#ifdef CONFIG_PPC_PSERIES
1057 /* On LPAR, look for the first ibm,pft-size property for the hash table size
1058 */
1059 if (systemcfg->platform == PLATFORM_PSERIES_LPAR && ppc64_pft_size == 0) {
1060 u32 *pft_size;
1061 pft_size = get_flat_dt_prop(node, "ibm,pft-size", NULL);
1062 if (pft_size != NULL) {
1063 /* pft_size[0] is the NUMA CEC cookie */
1064 ppc64_pft_size = pft_size[1];
1065 }
1066 }
1067#endif
1068
1069#ifdef CONFIG_PPC64
1070 if (initial_boot_params && initial_boot_params->version >= 2) {
1071 /* version 2 of the kexec param format adds the phys cpuid
1072 * of booted proc.
1073 */
1074 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
1075 boot_cpuid = 0;
1076 } else {
1077 /* Check if it's the boot-cpu, set it's hw index in paca now */
1078 if (get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) {
40ef8cbc 1079 prop = get_flat_dt_prop(node, "reg", NULL);
9b6b563c
PM
1080 set_hard_smp_processor_id(0, prop == NULL ? 0 : *prop);
1081 boot_cpuid_phys = get_hard_smp_processor_id(0);
1082 }
1083 }
1084#endif
1085
1086#ifdef CONFIG_ALTIVEC
1087 /* Check if we have a VMX and eventually update CPU features */
1088 prop = (u32 *)get_flat_dt_prop(node, "ibm,vmx", &size);
1089 if (prop && (*prop) > 0) {
1090 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1091 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1092 }
1093
1094 /* Same goes for Apple's "altivec" property */
1095 prop = (u32 *)get_flat_dt_prop(node, "altivec", NULL);
1096 if (prop) {
1097 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1098 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1099 }
1100#endif /* CONFIG_ALTIVEC */
1101
1102#ifdef CONFIG_PPC_PSERIES
1103 /*
1104 * Check for an SMT capable CPU and set the CPU feature. We do
1105 * this by looking at the size of the ibm,ppc-interrupt-server#s
1106 * property
1107 */
1108 prop = (u32 *)get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
1109 &size);
1110 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1111 if (prop && ((size / sizeof(u32)) > 1))
1112 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1113#endif
1114
1115 return 0;
1116}
1117
1118static int __init early_init_dt_scan_chosen(unsigned long node,
1119 const char *uname, int depth, void *data)
1120{
1121 u32 *prop;
1122 unsigned long *lprop;
1123
1124 DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1125
1126 if (depth != 1 || strcmp(uname, "chosen") != 0)
1127 return 0;
1128
1129 /* get platform type */
1130 prop = (u32 *)get_flat_dt_prop(node, "linux,platform", NULL);
1131 if (prop == NULL)
1132 return 0;
1133#ifdef CONFIG_PPC64
1134 systemcfg->platform = *prop;
1135#else
1136 _machine = *prop;
1137#endif
1138
1139#ifdef CONFIG_PPC64
1140 /* check if iommu is forced on or off */
1141 if (get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
1142 iommu_is_off = 1;
1143 if (get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
1144 iommu_force_on = 1;
1145#endif
1146
1147 lprop = get_flat_dt_prop(node, "linux,memory-limit", NULL);
1148 if (lprop)
1149 memory_limit = *lprop;
1150
1151#ifdef CONFIG_PPC64
1152 lprop = get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
1153 if (lprop)
1154 tce_alloc_start = *lprop;
1155 lprop = get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
1156 if (lprop)
1157 tce_alloc_end = *lprop;
1158#endif
1159
1160#ifdef CONFIG_PPC_RTAS
1161 /* To help early debugging via the front panel, we retreive a minimal
1162 * set of RTAS infos now if available
1163 */
1164 {
1165 u64 *basep, *entryp;
1166
1167 basep = get_flat_dt_prop(node, "linux,rtas-base", NULL);
1168 entryp = get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1169 prop = get_flat_dt_prop(node, "linux,rtas-size", NULL);
1170 if (basep && entryp && prop) {
1171 rtas.base = *basep;
1172 rtas.entry = *entryp;
1173 rtas.size = *prop;
1174 }
1175 }
1176#endif /* CONFIG_PPC_RTAS */
1177
1178 /* break now */
1179 return 1;
1180}
1181
1182static int __init early_init_dt_scan_root(unsigned long node,
1183 const char *uname, int depth, void *data)
1184{
1185 u32 *prop;
1186
1187 if (depth != 0)
1188 return 0;
1189
1190 prop = get_flat_dt_prop(node, "#size-cells", NULL);
1191 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1192 DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1193
1194 prop = get_flat_dt_prop(node, "#address-cells", NULL);
1195 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1196 DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1197
1198 /* break now */
1199 return 1;
1200}
1201
1202static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1203{
1204 cell_t *p = *cellp;
1205 unsigned long r;
1206
1207 /* Ignore more than 2 cells */
1208 while (s > sizeof(unsigned long) / 4) {
1209 p++;
1210 s--;
1211 }
1212 r = *p++;
1213#ifdef CONFIG_PPC64
1214 if (s > 1) {
1215 r <<= 32;
1216 r |= *(p++);
1217 s--;
1218 }
1219#endif
1220
1221 *cellp = p;
1222 return r;
1223}
1224
1225
1226static int __init early_init_dt_scan_memory(unsigned long node,
1227 const char *uname, int depth, void *data)
1228{
1229 char *type = get_flat_dt_prop(node, "device_type", NULL);
1230 cell_t *reg, *endp;
1231 unsigned long l;
1232
1233 /* We are scanning "memory" nodes only */
1234 if (type == NULL || strcmp(type, "memory") != 0)
1235 return 0;
1236
1237 reg = (cell_t *)get_flat_dt_prop(node, "reg", &l);
1238 if (reg == NULL)
1239 return 0;
1240
1241 endp = reg + (l / sizeof(cell_t));
1242
1243 DBG("memory scan node %s ..., reg size %ld, data: %x %x %x %x, ...\n",
1244 uname, l, reg[0], reg[1], reg[2], reg[3]);
1245
1246 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1247 unsigned long base, size;
1248
1249 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1250 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1251
1252 if (size == 0)
1253 continue;
1254 DBG(" - %lx , %lx\n", base, size);
1255#ifdef CONFIG_PPC64
1256 if (iommu_is_off) {
1257 if (base >= 0x80000000ul)
1258 continue;
1259 if ((base + size) > 0x80000000ul)
1260 size = 0x80000000ul - base;
1261 }
1262#endif
1263 lmb_add(base, size);
1264 }
1265 return 0;
1266}
1267
1268static void __init early_reserve_mem(void)
1269{
1270 unsigned long base, size;
1271 unsigned long *reserve_map;
1272
1273 reserve_map = (unsigned long *)(((unsigned long)initial_boot_params) +
1274 initial_boot_params->off_mem_rsvmap);
1275 while (1) {
1276 base = *(reserve_map++);
1277 size = *(reserve_map++);
1278 if (size == 0)
1279 break;
1280 DBG("reserving: %lx -> %lx\n", base, size);
1281 lmb_reserve(base, size);
1282 }
1283
1284#if 0
1285 DBG("memory reserved, lmbs :\n");
1286 lmb_dump_all();
1287#endif
1288}
1289
1290void __init early_init_devtree(void *params)
1291{
1292 DBG(" -> early_init_devtree()\n");
1293
1294 /* Setup flat device-tree pointer */
1295 initial_boot_params = params;
1296
1297 /* Retrieve various informations from the /chosen node of the
1298 * device-tree, including the platform type, initrd location and
1299 * size, TCE reserve, and more ...
1300 */
1301 scan_flat_dt(early_init_dt_scan_chosen, NULL);
1302
1303 /* Scan memory nodes and rebuild LMBs */
1304 lmb_init();
1305 scan_flat_dt(early_init_dt_scan_root, NULL);
1306 scan_flat_dt(early_init_dt_scan_memory, NULL);
1307 lmb_enforce_memory_limit(memory_limit);
1308 lmb_analyze();
1309#ifdef CONFIG_PPC64
1310 systemcfg->physicalMemorySize = lmb_phys_mem_size();
1311#endif
1312 lmb_reserve(0, __pa(klimit));
1313
1314 DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1315
1316 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1317 early_reserve_mem();
1318
1319 DBG("Scanning CPUs ...\n");
1320
1321 /* Retreive hash table size from flattened tree plus other
1322 * CPU related informations (altivec support, boot CPU ID, ...)
1323 */
1324 scan_flat_dt(early_init_dt_scan_cpus, NULL);
1325
9b6b563c
PM
1326 DBG(" <- early_init_devtree()\n");
1327}
1328
1329#undef printk
1330
1331int
1332prom_n_addr_cells(struct device_node* np)
1333{
1334 int* ip;
1335 do {
1336 if (np->parent)
1337 np = np->parent;
1338 ip = (int *) get_property(np, "#address-cells", NULL);
1339 if (ip != NULL)
1340 return *ip;
1341 } while (np->parent);
1342 /* No #address-cells property for the root node, default to 1 */
1343 return 1;
1344}
1345
1346int
1347prom_n_size_cells(struct device_node* np)
1348{
1349 int* ip;
1350 do {
1351 if (np->parent)
1352 np = np->parent;
1353 ip = (int *) get_property(np, "#size-cells", NULL);
1354 if (ip != NULL)
1355 return *ip;
1356 } while (np->parent);
1357 /* No #size-cells property for the root node, default to 1 */
1358 return 1;
1359}
1360
1361/**
1362 * Work out the sense (active-low level / active-high edge)
1363 * of each interrupt from the device tree.
1364 */
1365void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1366{
1367 struct device_node *np;
1368 int i, j;
1369
1370 /* default to level-triggered */
1371 memset(senses, 1, max - off);
1372
1373 for (np = allnodes; np != 0; np = np->allnext) {
1374 for (j = 0; j < np->n_intrs; j++) {
1375 i = np->intrs[j].line;
1376 if (i >= off && i < max)
1377 senses[i-off] = np->intrs[j].sense ?
1378 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE :
1379 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE;
1380 }
1381 }
1382}
1383
1384/**
1385 * Construct and return a list of the device_nodes with a given name.
1386 */
1387struct device_node *find_devices(const char *name)
1388{
1389 struct device_node *head, **prevp, *np;
1390
1391 prevp = &head;
1392 for (np = allnodes; np != 0; np = np->allnext) {
1393 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1394 *prevp = np;
1395 prevp = &np->next;
1396 }
1397 }
1398 *prevp = NULL;
1399 return head;
1400}
1401EXPORT_SYMBOL(find_devices);
1402
1403/**
1404 * Construct and return a list of the device_nodes with a given type.
1405 */
1406struct device_node *find_type_devices(const char *type)
1407{
1408 struct device_node *head, **prevp, *np;
1409
1410 prevp = &head;
1411 for (np = allnodes; np != 0; np = np->allnext) {
1412 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1413 *prevp = np;
1414 prevp = &np->next;
1415 }
1416 }
1417 *prevp = NULL;
1418 return head;
1419}
1420EXPORT_SYMBOL(find_type_devices);
1421
1422/**
1423 * Returns all nodes linked together
1424 */
1425struct device_node *find_all_nodes(void)
1426{
1427 struct device_node *head, **prevp, *np;
1428
1429 prevp = &head;
1430 for (np = allnodes; np != 0; np = np->allnext) {
1431 *prevp = np;
1432 prevp = &np->next;
1433 }
1434 *prevp = NULL;
1435 return head;
1436}
1437EXPORT_SYMBOL(find_all_nodes);
1438
1439/** Checks if the given "compat" string matches one of the strings in
1440 * the device's "compatible" property
1441 */
1442int device_is_compatible(struct device_node *device, const char *compat)
1443{
1444 const char* cp;
1445 int cplen, l;
1446
1447 cp = (char *) get_property(device, "compatible", &cplen);
1448 if (cp == NULL)
1449 return 0;
1450 while (cplen > 0) {
1451 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1452 return 1;
1453 l = strlen(cp) + 1;
1454 cp += l;
1455 cplen -= l;
1456 }
1457
1458 return 0;
1459}
1460EXPORT_SYMBOL(device_is_compatible);
1461
1462
1463/**
1464 * Indicates whether the root node has a given value in its
1465 * compatible property.
1466 */
1467int machine_is_compatible(const char *compat)
1468{
1469 struct device_node *root;
1470 int rc = 0;
1471
1472 root = of_find_node_by_path("/");
1473 if (root) {
1474 rc = device_is_compatible(root, compat);
1475 of_node_put(root);
1476 }
1477 return rc;
1478}
1479EXPORT_SYMBOL(machine_is_compatible);
1480
1481/**
1482 * Construct and return a list of the device_nodes with a given type
1483 * and compatible property.
1484 */
1485struct device_node *find_compatible_devices(const char *type,
1486 const char *compat)
1487{
1488 struct device_node *head, **prevp, *np;
1489
1490 prevp = &head;
1491 for (np = allnodes; np != 0; np = np->allnext) {
1492 if (type != NULL
1493 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1494 continue;
1495 if (device_is_compatible(np, compat)) {
1496 *prevp = np;
1497 prevp = &np->next;
1498 }
1499 }
1500 *prevp = NULL;
1501 return head;
1502}
1503EXPORT_SYMBOL(find_compatible_devices);
1504
1505/**
1506 * Find the device_node with a given full_name.
1507 */
1508struct device_node *find_path_device(const char *path)
1509{
1510 struct device_node *np;
1511
1512 for (np = allnodes; np != 0; np = np->allnext)
1513 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1514 return np;
1515 return NULL;
1516}
1517EXPORT_SYMBOL(find_path_device);
1518
1519/*******
1520 *
1521 * New implementation of the OF "find" APIs, return a refcounted
1522 * object, call of_node_put() when done. The device tree and list
1523 * are protected by a rw_lock.
1524 *
1525 * Note that property management will need some locking as well,
1526 * this isn't dealt with yet.
1527 *
1528 *******/
1529
1530/**
1531 * of_find_node_by_name - Find a node by its "name" property
1532 * @from: The node to start searching from or NULL, the node
1533 * you pass will not be searched, only the next one
1534 * will; typically, you pass what the previous call
1535 * returned. of_node_put() will be called on it
1536 * @name: The name string to match against
1537 *
1538 * Returns a node pointer with refcount incremented, use
1539 * of_node_put() on it when done.
1540 */
1541struct device_node *of_find_node_by_name(struct device_node *from,
1542 const char *name)
1543{
1544 struct device_node *np;
1545
1546 read_lock(&devtree_lock);
1547 np = from ? from->allnext : allnodes;
1548 for (; np != 0; np = np->allnext)
1549 if (np->name != 0 && strcasecmp(np->name, name) == 0
1550 && of_node_get(np))
1551 break;
1552 if (from)
1553 of_node_put(from);
1554 read_unlock(&devtree_lock);
1555 return np;
1556}
1557EXPORT_SYMBOL(of_find_node_by_name);
1558
1559/**
1560 * of_find_node_by_type - Find a node by its "device_type" property
1561 * @from: The node to start searching from or NULL, the node
1562 * you pass will not be searched, only the next one
1563 * will; typically, you pass what the previous call
1564 * returned. of_node_put() will be called on it
1565 * @name: The type string to match against
1566 *
1567 * Returns a node pointer with refcount incremented, use
1568 * of_node_put() on it when done.
1569 */
1570struct device_node *of_find_node_by_type(struct device_node *from,
1571 const char *type)
1572{
1573 struct device_node *np;
1574
1575 read_lock(&devtree_lock);
1576 np = from ? from->allnext : allnodes;
1577 for (; np != 0; np = np->allnext)
1578 if (np->type != 0 && strcasecmp(np->type, type) == 0
1579 && of_node_get(np))
1580 break;
1581 if (from)
1582 of_node_put(from);
1583 read_unlock(&devtree_lock);
1584 return np;
1585}
1586EXPORT_SYMBOL(of_find_node_by_type);
1587
1588/**
1589 * of_find_compatible_node - Find a node based on type and one of the
1590 * tokens in its "compatible" property
1591 * @from: The node to start searching from or NULL, the node
1592 * you pass will not be searched, only the next one
1593 * will; typically, you pass what the previous call
1594 * returned. of_node_put() will be called on it
1595 * @type: The type string to match "device_type" or NULL to ignore
1596 * @compatible: The string to match to one of the tokens in the device
1597 * "compatible" list.
1598 *
1599 * Returns a node pointer with refcount incremented, use
1600 * of_node_put() on it when done.
1601 */
1602struct device_node *of_find_compatible_node(struct device_node *from,
1603 const char *type, const char *compatible)
1604{
1605 struct device_node *np;
1606
1607 read_lock(&devtree_lock);
1608 np = from ? from->allnext : allnodes;
1609 for (; np != 0; np = np->allnext) {
1610 if (type != NULL
1611 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1612 continue;
1613 if (device_is_compatible(np, compatible) && of_node_get(np))
1614 break;
1615 }
1616 if (from)
1617 of_node_put(from);
1618 read_unlock(&devtree_lock);
1619 return np;
1620}
1621EXPORT_SYMBOL(of_find_compatible_node);
1622
1623/**
1624 * of_find_node_by_path - Find a node matching a full OF path
1625 * @path: The full path to match
1626 *
1627 * Returns a node pointer with refcount incremented, use
1628 * of_node_put() on it when done.
1629 */
1630struct device_node *of_find_node_by_path(const char *path)
1631{
1632 struct device_node *np = allnodes;
1633
1634 read_lock(&devtree_lock);
1635 for (; np != 0; np = np->allnext) {
1636 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1637 && of_node_get(np))
1638 break;
1639 }
1640 read_unlock(&devtree_lock);
1641 return np;
1642}
1643EXPORT_SYMBOL(of_find_node_by_path);
1644
1645/**
1646 * of_find_node_by_phandle - Find a node given a phandle
1647 * @handle: phandle of the node to find
1648 *
1649 * Returns a node pointer with refcount incremented, use
1650 * of_node_put() on it when done.
1651 */
1652struct device_node *of_find_node_by_phandle(phandle handle)
1653{
1654 struct device_node *np;
1655
1656 read_lock(&devtree_lock);
1657 for (np = allnodes; np != 0; np = np->allnext)
1658 if (np->linux_phandle == handle)
1659 break;
1660 if (np)
1661 of_node_get(np);
1662 read_unlock(&devtree_lock);
1663 return np;
1664}
1665EXPORT_SYMBOL(of_find_node_by_phandle);
1666
1667/**
1668 * of_find_all_nodes - Get next node in global list
1669 * @prev: Previous node or NULL to start iteration
1670 * of_node_put() will be called on it
1671 *
1672 * Returns a node pointer with refcount incremented, use
1673 * of_node_put() on it when done.
1674 */
1675struct device_node *of_find_all_nodes(struct device_node *prev)
1676{
1677 struct device_node *np;
1678
1679 read_lock(&devtree_lock);
1680 np = prev ? prev->allnext : allnodes;
1681 for (; np != 0; np = np->allnext)
1682 if (of_node_get(np))
1683 break;
1684 if (prev)
1685 of_node_put(prev);
1686 read_unlock(&devtree_lock);
1687 return np;
1688}
1689EXPORT_SYMBOL(of_find_all_nodes);
1690
1691/**
1692 * of_get_parent - Get a node's parent if any
1693 * @node: Node to get parent
1694 *
1695 * Returns a node pointer with refcount incremented, use
1696 * of_node_put() on it when done.
1697 */
1698struct device_node *of_get_parent(const struct device_node *node)
1699{
1700 struct device_node *np;
1701
1702 if (!node)
1703 return NULL;
1704
1705 read_lock(&devtree_lock);
1706 np = of_node_get(node->parent);
1707 read_unlock(&devtree_lock);
1708 return np;
1709}
1710EXPORT_SYMBOL(of_get_parent);
1711
1712/**
1713 * of_get_next_child - Iterate a node childs
1714 * @node: parent node
1715 * @prev: previous child of the parent node, or NULL to get first
1716 *
1717 * Returns a node pointer with refcount incremented, use
1718 * of_node_put() on it when done.
1719 */
1720struct device_node *of_get_next_child(const struct device_node *node,
1721 struct device_node *prev)
1722{
1723 struct device_node *next;
1724
1725 read_lock(&devtree_lock);
1726 next = prev ? prev->sibling : node->child;
1727 for (; next != 0; next = next->sibling)
1728 if (of_node_get(next))
1729 break;
1730 if (prev)
1731 of_node_put(prev);
1732 read_unlock(&devtree_lock);
1733 return next;
1734}
1735EXPORT_SYMBOL(of_get_next_child);
1736
1737/**
1738 * of_node_get - Increment refcount of a node
1739 * @node: Node to inc refcount, NULL is supported to
1740 * simplify writing of callers
1741 *
1742 * Returns node.
1743 */
1744struct device_node *of_node_get(struct device_node *node)
1745{
1746 if (node)
1747 kref_get(&node->kref);
1748 return node;
1749}
1750EXPORT_SYMBOL(of_node_get);
1751
1752static inline struct device_node * kref_to_device_node(struct kref *kref)
1753{
1754 return container_of(kref, struct device_node, kref);
1755}
1756
1757/**
1758 * of_node_release - release a dynamically allocated node
1759 * @kref: kref element of the node to be released
1760 *
1761 * In of_node_put() this function is passed to kref_put()
1762 * as the destructor.
1763 */
1764static void of_node_release(struct kref *kref)
1765{
1766 struct device_node *node = kref_to_device_node(kref);
1767 struct property *prop = node->properties;
1768
1769 if (!OF_IS_DYNAMIC(node))
1770 return;
1771 while (prop) {
1772 struct property *next = prop->next;
1773 kfree(prop->name);
1774 kfree(prop->value);
1775 kfree(prop);
1776 prop = next;
1777 }
1778 kfree(node->intrs);
1779 kfree(node->addrs);
1780 kfree(node->full_name);
1781 kfree(node->data);
1782 kfree(node);
1783}
1784
1785/**
1786 * of_node_put - Decrement refcount of a node
1787 * @node: Node to dec refcount, NULL is supported to
1788 * simplify writing of callers
1789 *
1790 */
1791void of_node_put(struct device_node *node)
1792{
1793 if (node)
1794 kref_put(&node->kref, of_node_release);
1795}
1796EXPORT_SYMBOL(of_node_put);
1797
1798/*
1799 * Plug a device node into the tree and global list.
1800 */
1801void of_attach_node(struct device_node *np)
1802{
1803 write_lock(&devtree_lock);
1804 np->sibling = np->parent->child;
1805 np->allnext = allnodes;
1806 np->parent->child = np;
1807 allnodes = np;
1808 write_unlock(&devtree_lock);
1809}
1810
1811/*
1812 * "Unplug" a node from the device tree. The caller must hold
1813 * a reference to the node. The memory associated with the node
1814 * is not freed until its refcount goes to zero.
1815 */
1816void of_detach_node(const struct device_node *np)
1817{
1818 struct device_node *parent;
1819
1820 write_lock(&devtree_lock);
1821
1822 parent = np->parent;
1823
1824 if (allnodes == np)
1825 allnodes = np->allnext;
1826 else {
1827 struct device_node *prev;
1828 for (prev = allnodes;
1829 prev->allnext != np;
1830 prev = prev->allnext)
1831 ;
1832 prev->allnext = np->allnext;
1833 }
1834
1835 if (parent->child == np)
1836 parent->child = np->sibling;
1837 else {
1838 struct device_node *prevsib;
1839 for (prevsib = np->parent->child;
1840 prevsib->sibling != np;
1841 prevsib = prevsib->sibling)
1842 ;
1843 prevsib->sibling = np->sibling;
1844 }
1845
1846 write_unlock(&devtree_lock);
1847}
1848
1849#ifdef CONFIG_PPC_PSERIES
1850/*
1851 * Fix up the uninitialized fields in a new device node:
1852 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1853 *
1854 * A lot of boot-time code is duplicated here, because functions such
1855 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1856 * slab allocator.
1857 *
1858 * This should probably be split up into smaller chunks.
1859 */
1860
1861static int of_finish_dynamic_node(struct device_node *node,
1862 unsigned long *unused1, int unused2,
1863 int unused3, int unused4)
1864{
1865 struct device_node *parent = of_get_parent(node);
1866 int err = 0;
1867 phandle *ibm_phandle;
1868
1869 node->name = get_property(node, "name", NULL);
1870 node->type = get_property(node, "device_type", NULL);
1871
1872 if (!parent) {
1873 err = -ENODEV;
1874 goto out;
1875 }
1876
1877 /* We don't support that function on PowerMac, at least
1878 * not yet
1879 */
1880 if (systemcfg->platform == PLATFORM_POWERMAC)
1881 return -ENODEV;
1882
1883 /* fix up new node's linux_phandle field */
1884 if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1885 node->linux_phandle = *ibm_phandle;
1886
1887out:
1888 of_node_put(parent);
1889 return err;
1890}
1891
1892static int prom_reconfig_notifier(struct notifier_block *nb,
1893 unsigned long action, void *node)
1894{
1895 int err;
1896
1897 switch (action) {
1898 case PSERIES_RECONFIG_ADD:
1899 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1900 if (err < 0) {
1901 printk(KERN_ERR "finish_node returned %d\n", err);
1902 err = NOTIFY_BAD;
1903 }
1904 break;
1905 default:
1906 err = NOTIFY_DONE;
1907 break;
1908 }
1909 return err;
1910}
1911
1912static struct notifier_block prom_reconfig_nb = {
1913 .notifier_call = prom_reconfig_notifier,
1914 .priority = 10, /* This one needs to run first */
1915};
1916
1917static int __init prom_reconfig_setup(void)
1918{
1919 return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1920}
1921__initcall(prom_reconfig_setup);
1922#endif
1923
1924/*
1925 * Find a property with a given name for a given node
1926 * and return the value.
1927 */
1928unsigned char *get_property(struct device_node *np, const char *name,
1929 int *lenp)
1930{
1931 struct property *pp;
1932
1933 for (pp = np->properties; pp != 0; pp = pp->next)
1934 if (strcmp(pp->name, name) == 0) {
1935 if (lenp != 0)
1936 *lenp = pp->length;
1937 return pp->value;
1938 }
1939 return NULL;
1940}
1941EXPORT_SYMBOL(get_property);
1942
1943/*
1944 * Add a property to a node
1945 */
1946void prom_add_property(struct device_node* np, struct property* prop)
1947{
1948 struct property **next = &np->properties;
1949
1950 prop->next = NULL;
1951 while (*next)
1952 next = &(*next)->next;
1953 *next = prop;
1954}
1955
1956/* I quickly hacked that one, check against spec ! */
1957static inline unsigned long
1958bus_space_to_resource_flags(unsigned int bus_space)
1959{
1960 u8 space = (bus_space >> 24) & 0xf;
1961 if (space == 0)
1962 space = 0x02;
1963 if (space == 0x02)
1964 return IORESOURCE_MEM;
1965 else if (space == 0x01)
1966 return IORESOURCE_IO;
1967 else {
1968 printk(KERN_WARNING "prom.c: bus_space_to_resource_flags(), space: %x\n",
1969 bus_space);
1970 return 0;
1971 }
1972}
1973
1974static struct resource *find_parent_pci_resource(struct pci_dev* pdev,
1975 struct address_range *range)
1976{
1977 unsigned long mask;
1978 int i;
1979
1980 /* Check this one */
1981 mask = bus_space_to_resource_flags(range->space);
1982 for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
1983 if ((pdev->resource[i].flags & mask) == mask &&
1984 pdev->resource[i].start <= range->address &&
1985 pdev->resource[i].end > range->address) {
1986 if ((range->address + range->size - 1) > pdev->resource[i].end) {
1987 /* Add better message */
1988 printk(KERN_WARNING "PCI/OF resource overlap !\n");
1989 return NULL;
1990 }
1991 break;
1992 }
1993 }
1994 if (i == DEVICE_COUNT_RESOURCE)
1995 return NULL;
1996 return &pdev->resource[i];
1997}
1998
1999/*
2000 * Request an OF device resource. Currently handles child of PCI devices,
2001 * or other nodes attached to the root node. Ultimately, put some
2002 * link to resources in the OF node.
2003 */
2004struct resource *request_OF_resource(struct device_node* node, int index,
2005 const char* name_postfix)
2006{
2007 struct pci_dev* pcidev;
2008 u8 pci_bus, pci_devfn;
2009 unsigned long iomask;
2010 struct device_node* nd;
2011 struct resource* parent;
2012 struct resource *res = NULL;
2013 int nlen, plen;
2014
2015 if (index >= node->n_addrs)
2016 goto fail;
2017
2018 /* Sanity check on bus space */
2019 iomask = bus_space_to_resource_flags(node->addrs[index].space);
2020 if (iomask & IORESOURCE_MEM)
2021 parent = &iomem_resource;
2022 else if (iomask & IORESOURCE_IO)
2023 parent = &ioport_resource;
2024 else
2025 goto fail;
2026
2027 /* Find a PCI parent if any */
2028 nd = node;
2029 pcidev = NULL;
2030 while (nd) {
2031 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2032 pcidev = pci_find_slot(pci_bus, pci_devfn);
2033 if (pcidev) break;
2034 nd = nd->parent;
2035 }
2036 if (pcidev)
2037 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2038 if (!parent) {
2039 printk(KERN_WARNING "request_OF_resource(%s), parent not found\n",
2040 node->name);
2041 goto fail;
2042 }
2043
2044 res = __request_region(parent, node->addrs[index].address,
2045 node->addrs[index].size, NULL);
2046 if (!res)
2047 goto fail;
2048 nlen = strlen(node->name);
2049 plen = name_postfix ? strlen(name_postfix) : 0;
2050 res->name = (const char *)kmalloc(nlen+plen+1, GFP_KERNEL);
2051 if (res->name) {
2052 strcpy((char *)res->name, node->name);
2053 if (plen)
2054 strcpy((char *)res->name+nlen, name_postfix);
2055 }
2056 return res;
2057fail:
2058 return NULL;
2059}
2060EXPORT_SYMBOL(request_OF_resource);
2061
2062int release_OF_resource(struct device_node *node, int index)
2063{
2064 struct pci_dev* pcidev;
2065 u8 pci_bus, pci_devfn;
2066 unsigned long iomask, start, end;
2067 struct device_node* nd;
2068 struct resource* parent;
2069 struct resource *res = NULL;
2070
2071 if (index >= node->n_addrs)
2072 return -EINVAL;
2073
2074 /* Sanity check on bus space */
2075 iomask = bus_space_to_resource_flags(node->addrs[index].space);
2076 if (iomask & IORESOURCE_MEM)
2077 parent = &iomem_resource;
2078 else if (iomask & IORESOURCE_IO)
2079 parent = &ioport_resource;
2080 else
2081 return -EINVAL;
2082
2083 /* Find a PCI parent if any */
2084 nd = node;
2085 pcidev = NULL;
2086 while(nd) {
2087 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2088 pcidev = pci_find_slot(pci_bus, pci_devfn);
2089 if (pcidev) break;
2090 nd = nd->parent;
2091 }
2092 if (pcidev)
2093 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2094 if (!parent) {
2095 printk(KERN_WARNING "release_OF_resource(%s), parent not found\n",
2096 node->name);
2097 return -ENODEV;
2098 }
2099
2100 /* Find us in the parent and its childs */
2101 res = parent->child;
2102 start = node->addrs[index].address;
2103 end = start + node->addrs[index].size - 1;
2104 while (res) {
2105 if (res->start == start && res->end == end &&
2106 (res->flags & IORESOURCE_BUSY))
2107 break;
2108 if (res->start <= start && res->end >= end)
2109 res = res->child;
2110 else
2111 res = res->sibling;
2112 }
2113 if (!res)
2114 return -ENODEV;
2115
2116 if (res->name) {
2117 kfree(res->name);
2118 res->name = NULL;
2119 }
2120 release_resource(res);
2121 kfree(res);
2122
2123 return 0;
2124}
2125EXPORT_SYMBOL(release_OF_resource);