irq_work: Make self-IPIs optable
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / mips / cavium-octeon / octeon-memcpy.S
CommitLineData
5b3b1688
DD
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Unified implementation of memcpy, memmove and the __copy_user backend.
7 *
8 * Copyright (C) 1998, 99, 2000, 01, 2002 Ralf Baechle (ralf@gnu.org)
9 * Copyright (C) 1999, 2000, 01, 2002 Silicon Graphics, Inc.
10 * Copyright (C) 2002 Broadcom, Inc.
11 * memcpy/copy_user author: Mark Vandevoorde
12 *
13 * Mnemonic names for arguments to memcpy/__copy_user
14 */
15
16#include <asm/asm.h>
17#include <asm/asm-offsets.h>
18#include <asm/regdef.h>
19
20#define dst a0
21#define src a1
22#define len a2
23
24/*
25 * Spec
26 *
27 * memcpy copies len bytes from src to dst and sets v0 to dst.
28 * It assumes that
29 * - src and dst don't overlap
30 * - src is readable
31 * - dst is writable
32 * memcpy uses the standard calling convention
33 *
34 * __copy_user copies up to len bytes from src to dst and sets a2 (len) to
35 * the number of uncopied bytes due to an exception caused by a read or write.
36 * __copy_user assumes that src and dst don't overlap, and that the call is
37 * implementing one of the following:
38 * copy_to_user
39 * - src is readable (no exceptions when reading src)
40 * copy_from_user
41 * - dst is writable (no exceptions when writing dst)
42 * __copy_user uses a non-standard calling convention; see
43 * arch/mips/include/asm/uaccess.h
44 *
45 * When an exception happens on a load, the handler must
46 # ensure that all of the destination buffer is overwritten to prevent
47 * leaking information to user mode programs.
48 */
49
50/*
51 * Implementation
52 */
53
54/*
55 * The exception handler for loads requires that:
56 * 1- AT contain the address of the byte just past the end of the source
57 * of the copy,
58 * 2- src_entry <= src < AT, and
59 * 3- (dst - src) == (dst_entry - src_entry),
60 * The _entry suffix denotes values when __copy_user was called.
61 *
62 * (1) is set up up by uaccess.h and maintained by not writing AT in copy_user
63 * (2) is met by incrementing src by the number of bytes copied
64 * (3) is met by not doing loads between a pair of increments of dst and src
65 *
66 * The exception handlers for stores adjust len (if necessary) and return.
67 * These handlers do not need to overwrite any data.
68 *
69 * For __rmemcpy and memmove an exception is always a kernel bug, therefore
70 * they're not protected.
71 */
72
73#define EXC(inst_reg,addr,handler) \
749: inst_reg, addr; \
75 .section __ex_table,"a"; \
76 PTR 9b, handler; \
77 .previous
78
79/*
80 * Only on the 64-bit kernel we can made use of 64-bit registers.
81 */
82#ifdef CONFIG_64BIT
83#define USE_DOUBLE
84#endif
85
86#ifdef USE_DOUBLE
87
88#define LOAD ld
89#define LOADL ldl
90#define LOADR ldr
91#define STOREL sdl
92#define STORER sdr
93#define STORE sd
94#define ADD daddu
95#define SUB dsubu
96#define SRL dsrl
97#define SRA dsra
98#define SLL dsll
99#define SLLV dsllv
100#define SRLV dsrlv
101#define NBYTES 8
102#define LOG_NBYTES 3
103
104/*
105 * As we are sharing code base with the mips32 tree (which use the o32 ABI
106 * register definitions). We need to redefine the register definitions from
107 * the n64 ABI register naming to the o32 ABI register naming.
108 */
109#undef t0
110#undef t1
111#undef t2
112#undef t3
113#define t0 $8
114#define t1 $9
115#define t2 $10
116#define t3 $11
117#define t4 $12
118#define t5 $13
119#define t6 $14
120#define t7 $15
121
122#else
123
124#define LOAD lw
125#define LOADL lwl
126#define LOADR lwr
127#define STOREL swl
128#define STORER swr
129#define STORE sw
130#define ADD addu
131#define SUB subu
132#define SRL srl
133#define SLL sll
134#define SRA sra
135#define SLLV sllv
136#define SRLV srlv
137#define NBYTES 4
138#define LOG_NBYTES 2
139
140#endif /* USE_DOUBLE */
141
142#ifdef CONFIG_CPU_LITTLE_ENDIAN
143#define LDFIRST LOADR
144#define LDREST LOADL
145#define STFIRST STORER
146#define STREST STOREL
147#define SHIFT_DISCARD SLLV
148#else
149#define LDFIRST LOADL
150#define LDREST LOADR
151#define STFIRST STOREL
152#define STREST STORER
153#define SHIFT_DISCARD SRLV
154#endif
155
156#define FIRST(unit) ((unit)*NBYTES)
157#define REST(unit) (FIRST(unit)+NBYTES-1)
158#define UNIT(unit) FIRST(unit)
159
160#define ADDRMASK (NBYTES-1)
161
162 .text
163 .set noreorder
164 .set noat
165
914f8480
DD
166/*
167 * t7 is used as a flag to note inatomic mode.
168 */
169LEAF(__copy_user_inatomic)
170 b __copy_user_common
171 li t7, 1
172 END(__copy_user_inatomic)
173
5b3b1688
DD
174/*
175 * A combined memcpy/__copy_user
176 * __copy_user sets len to 0 for success; else to an upper bound of
177 * the number of uncopied bytes.
178 * memcpy sets v0 to dst.
179 */
180 .align 5
181LEAF(memcpy) /* a0=dst a1=src a2=len */
182 move v0, dst /* return value */
183__memcpy:
184FEXPORT(__copy_user)
914f8480
DD
185 li t7, 0 /* not inatomic */
186__copy_user_common:
5b3b1688
DD
187 /*
188 * Note: dst & src may be unaligned, len may be 0
189 * Temps
190 */
191 #
192 # Octeon doesn't care if the destination is unaligned. The hardware
193 # can fix it faster than we can special case the assembly.
194 #
195 pref 0, 0(src)
196 sltu t0, len, NBYTES # Check if < 1 word
197 bnez t0, copy_bytes_checklen
198 and t0, src, ADDRMASK # Check if src unaligned
199 bnez t0, src_unaligned
200 sltu t0, len, 4*NBYTES # Check if < 4 words
201 bnez t0, less_than_4units
202 sltu t0, len, 8*NBYTES # Check if < 8 words
203 bnez t0, less_than_8units
204 sltu t0, len, 16*NBYTES # Check if < 16 words
205 bnez t0, cleanup_both_aligned
206 sltu t0, len, 128+1 # Check if len < 129
207 bnez t0, 1f # Skip prefetch if len is too short
208 sltu t0, len, 256+1 # Check if len < 257
209 bnez t0, 1f # Skip prefetch if len is too short
210 pref 0, 128(src) # We must not prefetch invalid addresses
211 #
212 # This is where we loop if there is more than 128 bytes left
2132: pref 0, 256(src) # We must not prefetch invalid addresses
214 #
215 # This is where we loop if we can't prefetch anymore
2161:
217EXC( LOAD t0, UNIT(0)(src), l_exc)
218EXC( LOAD t1, UNIT(1)(src), l_exc_copy)
219EXC( LOAD t2, UNIT(2)(src), l_exc_copy)
220EXC( LOAD t3, UNIT(3)(src), l_exc_copy)
221 SUB len, len, 16*NBYTES
222EXC( STORE t0, UNIT(0)(dst), s_exc_p16u)
223EXC( STORE t1, UNIT(1)(dst), s_exc_p15u)
224EXC( STORE t2, UNIT(2)(dst), s_exc_p14u)
225EXC( STORE t3, UNIT(3)(dst), s_exc_p13u)
226EXC( LOAD t0, UNIT(4)(src), l_exc_copy)
227EXC( LOAD t1, UNIT(5)(src), l_exc_copy)
228EXC( LOAD t2, UNIT(6)(src), l_exc_copy)
229EXC( LOAD t3, UNIT(7)(src), l_exc_copy)
230EXC( STORE t0, UNIT(4)(dst), s_exc_p12u)
231EXC( STORE t1, UNIT(5)(dst), s_exc_p11u)
232EXC( STORE t2, UNIT(6)(dst), s_exc_p10u)
233 ADD src, src, 16*NBYTES
234EXC( STORE t3, UNIT(7)(dst), s_exc_p9u)
235 ADD dst, dst, 16*NBYTES
236EXC( LOAD t0, UNIT(-8)(src), l_exc_copy)
237EXC( LOAD t1, UNIT(-7)(src), l_exc_copy)
238EXC( LOAD t2, UNIT(-6)(src), l_exc_copy)
239EXC( LOAD t3, UNIT(-5)(src), l_exc_copy)
240EXC( STORE t0, UNIT(-8)(dst), s_exc_p8u)
241EXC( STORE t1, UNIT(-7)(dst), s_exc_p7u)
242EXC( STORE t2, UNIT(-6)(dst), s_exc_p6u)
243EXC( STORE t3, UNIT(-5)(dst), s_exc_p5u)
244EXC( LOAD t0, UNIT(-4)(src), l_exc_copy)
245EXC( LOAD t1, UNIT(-3)(src), l_exc_copy)
246EXC( LOAD t2, UNIT(-2)(src), l_exc_copy)
247EXC( LOAD t3, UNIT(-1)(src), l_exc_copy)
248EXC( STORE t0, UNIT(-4)(dst), s_exc_p4u)
249EXC( STORE t1, UNIT(-3)(dst), s_exc_p3u)
250EXC( STORE t2, UNIT(-2)(dst), s_exc_p2u)
251EXC( STORE t3, UNIT(-1)(dst), s_exc_p1u)
252 sltu t0, len, 256+1 # See if we can prefetch more
253 beqz t0, 2b
254 sltu t0, len, 128 # See if we can loop more time
255 beqz t0, 1b
256 nop
257 #
258 # Jump here if there are less than 16*NBYTES left.
259 #
260cleanup_both_aligned:
261 beqz len, done
262 sltu t0, len, 8*NBYTES
263 bnez t0, less_than_8units
264 nop
265EXC( LOAD t0, UNIT(0)(src), l_exc)
266EXC( LOAD t1, UNIT(1)(src), l_exc_copy)
267EXC( LOAD t2, UNIT(2)(src), l_exc_copy)
268EXC( LOAD t3, UNIT(3)(src), l_exc_copy)
269 SUB len, len, 8*NBYTES
270EXC( STORE t0, UNIT(0)(dst), s_exc_p8u)
271EXC( STORE t1, UNIT(1)(dst), s_exc_p7u)
272EXC( STORE t2, UNIT(2)(dst), s_exc_p6u)
273EXC( STORE t3, UNIT(3)(dst), s_exc_p5u)
274EXC( LOAD t0, UNIT(4)(src), l_exc_copy)
275EXC( LOAD t1, UNIT(5)(src), l_exc_copy)
276EXC( LOAD t2, UNIT(6)(src), l_exc_copy)
277EXC( LOAD t3, UNIT(7)(src), l_exc_copy)
278EXC( STORE t0, UNIT(4)(dst), s_exc_p4u)
279EXC( STORE t1, UNIT(5)(dst), s_exc_p3u)
280EXC( STORE t2, UNIT(6)(dst), s_exc_p2u)
281EXC( STORE t3, UNIT(7)(dst), s_exc_p1u)
282 ADD src, src, 8*NBYTES
283 beqz len, done
284 ADD dst, dst, 8*NBYTES
285 #
286 # Jump here if there are less than 8*NBYTES left.
287 #
288less_than_8units:
289 sltu t0, len, 4*NBYTES
290 bnez t0, less_than_4units
291 nop
292EXC( LOAD t0, UNIT(0)(src), l_exc)
293EXC( LOAD t1, UNIT(1)(src), l_exc_copy)
294EXC( LOAD t2, UNIT(2)(src), l_exc_copy)
295EXC( LOAD t3, UNIT(3)(src), l_exc_copy)
296 SUB len, len, 4*NBYTES
297EXC( STORE t0, UNIT(0)(dst), s_exc_p4u)
298EXC( STORE t1, UNIT(1)(dst), s_exc_p3u)
299EXC( STORE t2, UNIT(2)(dst), s_exc_p2u)
300EXC( STORE t3, UNIT(3)(dst), s_exc_p1u)
301 ADD src, src, 4*NBYTES
302 beqz len, done
303 ADD dst, dst, 4*NBYTES
304 #
305 # Jump here if there are less than 4*NBYTES left. This means
306 # we may need to copy up to 3 NBYTES words.
307 #
308less_than_4units:
309 sltu t0, len, 1*NBYTES
310 bnez t0, copy_bytes_checklen
311 nop
312 #
313 # 1) Copy NBYTES, then check length again
314 #
315EXC( LOAD t0, 0(src), l_exc)
316 SUB len, len, NBYTES
317 sltu t1, len, 8
318EXC( STORE t0, 0(dst), s_exc_p1u)
319 ADD src, src, NBYTES
320 bnez t1, copy_bytes_checklen
321 ADD dst, dst, NBYTES
322 #
323 # 2) Copy NBYTES, then check length again
324 #
325EXC( LOAD t0, 0(src), l_exc)
326 SUB len, len, NBYTES
327 sltu t1, len, 8
328EXC( STORE t0, 0(dst), s_exc_p1u)
329 ADD src, src, NBYTES
330 bnez t1, copy_bytes_checklen
331 ADD dst, dst, NBYTES
332 #
333 # 3) Copy NBYTES, then check length again
334 #
335EXC( LOAD t0, 0(src), l_exc)
336 SUB len, len, NBYTES
337 ADD src, src, NBYTES
338 ADD dst, dst, NBYTES
339 b copy_bytes_checklen
340EXC( STORE t0, -8(dst), s_exc_p1u)
341
342src_unaligned:
343#define rem t8
344 SRL t0, len, LOG_NBYTES+2 # +2 for 4 units/iter
345 beqz t0, cleanup_src_unaligned
346 and rem, len, (4*NBYTES-1) # rem = len % 4*NBYTES
3471:
348/*
349 * Avoid consecutive LD*'s to the same register since some mips
350 * implementations can't issue them in the same cycle.
351 * It's OK to load FIRST(N+1) before REST(N) because the two addresses
352 * are to the same unit (unless src is aligned, but it's not).
353 */
354EXC( LDFIRST t0, FIRST(0)(src), l_exc)
355EXC( LDFIRST t1, FIRST(1)(src), l_exc_copy)
356 SUB len, len, 4*NBYTES
357EXC( LDREST t0, REST(0)(src), l_exc_copy)
358EXC( LDREST t1, REST(1)(src), l_exc_copy)
359EXC( LDFIRST t2, FIRST(2)(src), l_exc_copy)
360EXC( LDFIRST t3, FIRST(3)(src), l_exc_copy)
361EXC( LDREST t2, REST(2)(src), l_exc_copy)
362EXC( LDREST t3, REST(3)(src), l_exc_copy)
363 ADD src, src, 4*NBYTES
364EXC( STORE t0, UNIT(0)(dst), s_exc_p4u)
365EXC( STORE t1, UNIT(1)(dst), s_exc_p3u)
366EXC( STORE t2, UNIT(2)(dst), s_exc_p2u)
367EXC( STORE t3, UNIT(3)(dst), s_exc_p1u)
368 bne len, rem, 1b
369 ADD dst, dst, 4*NBYTES
370
371cleanup_src_unaligned:
372 beqz len, done
373 and rem, len, NBYTES-1 # rem = len % NBYTES
374 beq rem, len, copy_bytes
375 nop
3761:
377EXC( LDFIRST t0, FIRST(0)(src), l_exc)
378EXC( LDREST t0, REST(0)(src), l_exc_copy)
379 SUB len, len, NBYTES
380EXC( STORE t0, 0(dst), s_exc_p1u)
381 ADD src, src, NBYTES
382 bne len, rem, 1b
383 ADD dst, dst, NBYTES
384
385copy_bytes_checklen:
386 beqz len, done
387 nop
388copy_bytes:
389 /* 0 < len < NBYTES */
390#define COPY_BYTE(N) \
391EXC( lb t0, N(src), l_exc); \
392 SUB len, len, 1; \
393 beqz len, done; \
394EXC( sb t0, N(dst), s_exc_p1)
395
396 COPY_BYTE(0)
397 COPY_BYTE(1)
398#ifdef USE_DOUBLE
399 COPY_BYTE(2)
400 COPY_BYTE(3)
401 COPY_BYTE(4)
402 COPY_BYTE(5)
403#endif
404EXC( lb t0, NBYTES-2(src), l_exc)
405 SUB len, len, 1
406 jr ra
407EXC( sb t0, NBYTES-2(dst), s_exc_p1)
408done:
409 jr ra
410 nop
411 END(memcpy)
412
413l_exc_copy:
414 /*
415 * Copy bytes from src until faulting load address (or until a
416 * lb faults)
417 *
418 * When reached by a faulting LDFIRST/LDREST, THREAD_BUADDR($28)
419 * may be more than a byte beyond the last address.
420 * Hence, the lb below may get an exception.
421 *
422 * Assumes src < THREAD_BUADDR($28)
423 */
424 LOAD t0, TI_TASK($28)
5b3b1688
DD
425 LOAD t0, THREAD_BUADDR(t0)
4261:
427EXC( lb t1, 0(src), l_exc)
428 ADD src, src, 1
429 sb t1, 0(dst) # can't fault -- we're copy_from_user
430 bne src, t0, 1b
431 ADD dst, dst, 1
432l_exc:
433 LOAD t0, TI_TASK($28)
5b3b1688 434 LOAD t0, THREAD_BUADDR(t0) # t0 is just past last good address
5b3b1688 435 SUB len, AT, t0 # len number of uncopied bytes
914f8480 436 bnez t7, 2f /* Skip the zeroing out part if inatomic */
5b3b1688
DD
437 /*
438 * Here's where we rely on src and dst being incremented in tandem,
439 * See (3) above.
440 * dst += (fault addr - src) to put dst at first byte to clear
441 */
442 ADD dst, t0 # compute start address in a1
443 SUB dst, src
444 /*
445 * Clear len bytes starting at dst. Can't call __bzero because it
446 * might modify len. An inefficient loop for these rare times...
447 */
448 beqz len, done
449 SUB src, len, 1
4501: sb zero, 0(dst)
451 ADD dst, dst, 1
452 bnez src, 1b
453 SUB src, src, 1
914f8480 4542: jr ra
5b3b1688
DD
455 nop
456
457
458#define SEXC(n) \
459s_exc_p ## n ## u: \
460 jr ra; \
461 ADD len, len, n*NBYTES
462
463SEXC(16)
464SEXC(15)
465SEXC(14)
466SEXC(13)
467SEXC(12)
468SEXC(11)
469SEXC(10)
470SEXC(9)
471SEXC(8)
472SEXC(7)
473SEXC(6)
474SEXC(5)
475SEXC(4)
476SEXC(3)
477SEXC(2)
478SEXC(1)
479
480s_exc_p1:
481 jr ra
482 ADD len, len, 1
483s_exc:
484 jr ra
485 nop
486
487 .align 5
488LEAF(memmove)
489 ADD t0, a0, a2
490 ADD t1, a1, a2
491 sltu t0, a1, t0 # dst + len <= src -> memcpy
492 sltu t1, a0, t1 # dst >= src + len -> memcpy
493 and t0, t1
494 beqz t0, __memcpy
495 move v0, a0 /* return value */
496 beqz a2, r_out
497 END(memmove)
498
499 /* fall through to __rmemcpy */
500LEAF(__rmemcpy) /* a0=dst a1=src a2=len */
501 sltu t0, a1, a0
502 beqz t0, r_end_bytes_up # src >= dst
503 nop
504 ADD a0, a2 # dst = dst + len
505 ADD a1, a2 # src = src + len
506
507r_end_bytes:
508 lb t0, -1(a1)
509 SUB a2, a2, 0x1
510 sb t0, -1(a0)
511 SUB a1, a1, 0x1
512 bnez a2, r_end_bytes
513 SUB a0, a0, 0x1
514
515r_out:
516 jr ra
517 move a2, zero
518
519r_end_bytes_up:
520 lb t0, (a1)
521 SUB a2, a2, 0x1
522 sb t0, (a0)
523 ADD a1, a1, 0x1
524 bnez a2, r_end_bytes_up
525 ADD a0, a0, 0x1
526
527 jr ra
528 move a2, zero
529 END(__rmemcpy)