Use helpers to obtain task pid in printks
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / ia64 / kernel / unaligned.c
CommitLineData
1da177e4
LT
1/*
2 * Architecture-specific unaligned trap handling.
3 *
4 * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 *
8 * 2002/12/09 Fix rotating register handling (off-by-1 error, missing fr-rotation). Fix
9 * get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame
10 * stacked register returns an undefined value; it does NOT trigger a
11 * "rsvd register fault").
12 * 2001/10/11 Fix unaligned access to rotating registers in s/w pipelined loops.
13 * 2001/08/13 Correct size of extended floats (float_fsz) from 16 to 10 bytes.
14 * 2001/01/17 Add support emulation of unaligned kernel accesses.
15 */
16#include <linux/kernel.h>
17#include <linux/sched.h>
1da177e4
LT
18#include <linux/tty.h>
19
20#include <asm/intrinsics.h>
21#include <asm/processor.h>
22#include <asm/rse.h>
23#include <asm/uaccess.h>
24#include <asm/unaligned.h>
25
e963701a 26extern void die_if_kernel(char *str, struct pt_regs *regs, long err);
1da177e4
LT
27
28#undef DEBUG_UNALIGNED_TRAP
29
30#ifdef DEBUG_UNALIGNED_TRAP
31# define DPRINT(a...) do { printk("%s %u: ", __FUNCTION__, __LINE__); printk (a); } while (0)
32# define DDUMP(str,vp,len) dump(str, vp, len)
33
34static void
35dump (const char *str, void *vp, size_t len)
36{
37 unsigned char *cp = vp;
38 int i;
39
40 printk("%s", str);
41 for (i = 0; i < len; ++i)
42 printk (" %02x", *cp++);
43 printk("\n");
44}
45#else
46# define DPRINT(a...)
47# define DDUMP(str,vp,len)
48#endif
49
50#define IA64_FIRST_STACKED_GR 32
51#define IA64_FIRST_ROTATING_FR 32
52#define SIGN_EXT9 0xffffffffffffff00ul
53
d2b176ed
JS
54/*
55 * sysctl settable hook which tells the kernel whether to honor the
56 * IA64_THREAD_UAC_NOPRINT prctl. Because this is user settable, we want
57 * to allow the super user to enable/disable this for security reasons
58 * (i.e. don't allow attacker to fill up logs with unaligned accesses).
59 */
60int no_unaligned_warning;
61static int noprint_warning;
62
1da177e4
LT
63/*
64 * For M-unit:
65 *
66 * opcode | m | x6 |
67 * --------|------|---------|
68 * [40-37] | [36] | [35:30] |
69 * --------|------|---------|
70 * 4 | 1 | 6 | = 11 bits
71 * --------------------------
72 * However bits [31:30] are not directly useful to distinguish between
73 * load/store so we can use [35:32] instead, which gives the following
74 * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer
75 * checking the m-bit until later in the load/store emulation.
76 */
77#define IA64_OPCODE_MASK 0x1ef
78#define IA64_OPCODE_SHIFT 32
79
80/*
81 * Table C-28 Integer Load/Store
82 *
83 * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
84 *
85 * ld8.fill, st8.fill MUST be aligned because the RNATs are based on
86 * the address (bits [8:3]), so we must failed.
87 */
88#define LD_OP 0x080
89#define LDS_OP 0x081
90#define LDA_OP 0x082
91#define LDSA_OP 0x083
92#define LDBIAS_OP 0x084
93#define LDACQ_OP 0x085
94/* 0x086, 0x087 are not relevant */
95#define LDCCLR_OP 0x088
96#define LDCNC_OP 0x089
97#define LDCCLRACQ_OP 0x08a
98#define ST_OP 0x08c
99#define STREL_OP 0x08d
100/* 0x08e,0x8f are not relevant */
101
102/*
103 * Table C-29 Integer Load +Reg
104 *
105 * we use the ld->m (bit [36:36]) field to determine whether or not we have
106 * a load/store of this form.
107 */
108
109/*
110 * Table C-30 Integer Load/Store +Imm
111 *
112 * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
113 *
114 * ld8.fill, st8.fill must be aligned because the Nat register are based on
115 * the address, so we must fail and the program must be fixed.
116 */
117#define LD_IMM_OP 0x0a0
118#define LDS_IMM_OP 0x0a1
119#define LDA_IMM_OP 0x0a2
120#define LDSA_IMM_OP 0x0a3
121#define LDBIAS_IMM_OP 0x0a4
122#define LDACQ_IMM_OP 0x0a5
123/* 0x0a6, 0xa7 are not relevant */
124#define LDCCLR_IMM_OP 0x0a8
125#define LDCNC_IMM_OP 0x0a9
126#define LDCCLRACQ_IMM_OP 0x0aa
127#define ST_IMM_OP 0x0ac
128#define STREL_IMM_OP 0x0ad
129/* 0x0ae,0xaf are not relevant */
130
131/*
132 * Table C-32 Floating-point Load/Store
133 */
134#define LDF_OP 0x0c0
135#define LDFS_OP 0x0c1
136#define LDFA_OP 0x0c2
137#define LDFSA_OP 0x0c3
138/* 0x0c6 is irrelevant */
139#define LDFCCLR_OP 0x0c8
140#define LDFCNC_OP 0x0c9
141/* 0x0cb is irrelevant */
142#define STF_OP 0x0cc
143
144/*
145 * Table C-33 Floating-point Load +Reg
146 *
147 * we use the ld->m (bit [36:36]) field to determine whether or not we have
148 * a load/store of this form.
149 */
150
151/*
152 * Table C-34 Floating-point Load/Store +Imm
153 */
154#define LDF_IMM_OP 0x0e0
155#define LDFS_IMM_OP 0x0e1
156#define LDFA_IMM_OP 0x0e2
157#define LDFSA_IMM_OP 0x0e3
158/* 0x0e6 is irrelevant */
159#define LDFCCLR_IMM_OP 0x0e8
160#define LDFCNC_IMM_OP 0x0e9
161#define STF_IMM_OP 0x0ec
162
163typedef struct {
164 unsigned long qp:6; /* [0:5] */
165 unsigned long r1:7; /* [6:12] */
166 unsigned long imm:7; /* [13:19] */
167 unsigned long r3:7; /* [20:26] */
168 unsigned long x:1; /* [27:27] */
169 unsigned long hint:2; /* [28:29] */
170 unsigned long x6_sz:2; /* [30:31] */
171 unsigned long x6_op:4; /* [32:35], x6 = x6_sz|x6_op */
172 unsigned long m:1; /* [36:36] */
173 unsigned long op:4; /* [37:40] */
174 unsigned long pad:23; /* [41:63] */
175} load_store_t;
176
177
178typedef enum {
179 UPD_IMMEDIATE, /* ldXZ r1=[r3],imm(9) */
180 UPD_REG /* ldXZ r1=[r3],r2 */
181} update_t;
182
183/*
184 * We use tables to keep track of the offsets of registers in the saved state.
185 * This way we save having big switch/case statements.
186 *
187 * We use bit 0 to indicate switch_stack or pt_regs.
188 * The offset is simply shifted by 1 bit.
189 * A 2-byte value should be enough to hold any kind of offset
190 *
191 * In case the calling convention changes (and thus pt_regs/switch_stack)
192 * simply use RSW instead of RPT or vice-versa.
193 */
194
195#define RPO(x) ((size_t) &((struct pt_regs *)0)->x)
196#define RSO(x) ((size_t) &((struct switch_stack *)0)->x)
197
198#define RPT(x) (RPO(x) << 1)
199#define RSW(x) (1| RSO(x)<<1)
200
201#define GR_OFFS(x) (gr_info[x]>>1)
202#define GR_IN_SW(x) (gr_info[x] & 0x1)
203
204#define FR_OFFS(x) (fr_info[x]>>1)
205#define FR_IN_SW(x) (fr_info[x] & 0x1)
206
207static u16 gr_info[32]={
208 0, /* r0 is read-only : WE SHOULD NEVER GET THIS */
209
210 RPT(r1), RPT(r2), RPT(r3),
211
212 RSW(r4), RSW(r5), RSW(r6), RSW(r7),
213
214 RPT(r8), RPT(r9), RPT(r10), RPT(r11),
215 RPT(r12), RPT(r13), RPT(r14), RPT(r15),
216
217 RPT(r16), RPT(r17), RPT(r18), RPT(r19),
218 RPT(r20), RPT(r21), RPT(r22), RPT(r23),
219 RPT(r24), RPT(r25), RPT(r26), RPT(r27),
220 RPT(r28), RPT(r29), RPT(r30), RPT(r31)
221};
222
223static u16 fr_info[32]={
224 0, /* constant : WE SHOULD NEVER GET THIS */
225 0, /* constant : WE SHOULD NEVER GET THIS */
226
227 RSW(f2), RSW(f3), RSW(f4), RSW(f5),
228
229 RPT(f6), RPT(f7), RPT(f8), RPT(f9),
230 RPT(f10), RPT(f11),
231
232 RSW(f12), RSW(f13), RSW(f14),
233 RSW(f15), RSW(f16), RSW(f17), RSW(f18), RSW(f19),
234 RSW(f20), RSW(f21), RSW(f22), RSW(f23), RSW(f24),
235 RSW(f25), RSW(f26), RSW(f27), RSW(f28), RSW(f29),
236 RSW(f30), RSW(f31)
237};
238
239/* Invalidate ALAT entry for integer register REGNO. */
240static void
241invala_gr (int regno)
242{
243# define F(reg) case reg: ia64_invala_gr(reg); break
244
245 switch (regno) {
246 F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7);
247 F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
248 F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
249 F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
250 F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
251 F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
252 F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
253 F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
254 F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
255 F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
256 F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
257 F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
258 F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
259 F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
260 F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
261 F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
262 }
263# undef F
264}
265
266/* Invalidate ALAT entry for floating-point register REGNO. */
267static void
268invala_fr (int regno)
269{
270# define F(reg) case reg: ia64_invala_fr(reg); break
271
272 switch (regno) {
273 F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7);
274 F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
275 F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
276 F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
277 F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
278 F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
279 F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
280 F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
281 F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
282 F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
283 F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
284 F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
285 F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
286 F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
287 F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
288 F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
289 }
290# undef F
291}
292
293static inline unsigned long
294rotate_reg (unsigned long sor, unsigned long rrb, unsigned long reg)
295{
296 reg += rrb;
297 if (reg >= sor)
298 reg -= sor;
299 return reg;
300}
301
302static void
303set_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long val, int nat)
304{
305 struct switch_stack *sw = (struct switch_stack *) regs - 1;
306 unsigned long *bsp, *bspstore, *addr, *rnat_addr, *ubs_end;
307 unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
308 unsigned long rnats, nat_mask;
309 unsigned long on_kbs;
310 long sof = (regs->cr_ifs) & 0x7f;
311 long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
312 long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
313 long ridx = r1 - 32;
314
315 if (ridx >= sof) {
316 /* this should never happen, as the "rsvd register fault" has higher priority */
317 DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1, sof);
318 return;
319 }
320
321 if (ridx < sor)
322 ridx = rotate_reg(sor, rrb_gr, ridx);
323
324 DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
325 r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
326
327 on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
328 addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
329 if (addr >= kbs) {
330 /* the register is on the kernel backing store: easy... */
331 rnat_addr = ia64_rse_rnat_addr(addr);
332 if ((unsigned long) rnat_addr >= sw->ar_bspstore)
333 rnat_addr = &sw->ar_rnat;
334 nat_mask = 1UL << ia64_rse_slot_num(addr);
335
336 *addr = val;
337 if (nat)
338 *rnat_addr |= nat_mask;
339 else
340 *rnat_addr &= ~nat_mask;
341 return;
342 }
343
344 if (!user_stack(current, regs)) {
345 DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1);
346 return;
347 }
348
349 bspstore = (unsigned long *)regs->ar_bspstore;
350 ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
351 bsp = ia64_rse_skip_regs(ubs_end, -sof);
352 addr = ia64_rse_skip_regs(bsp, ridx);
353
354 DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
355
356 ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
357
358 rnat_addr = ia64_rse_rnat_addr(addr);
359
360 ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
361 DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n",
362 (void *) rnat_addr, rnats, nat, (rnats >> ia64_rse_slot_num(addr)) & 1);
363
364 nat_mask = 1UL << ia64_rse_slot_num(addr);
365 if (nat)
366 rnats |= nat_mask;
367 else
368 rnats &= ~nat_mask;
369 ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, rnats);
370
371 DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr, rnats);
372}
373
374
375static void
376get_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long *val, int *nat)
377{
378 struct switch_stack *sw = (struct switch_stack *) regs - 1;
379 unsigned long *bsp, *addr, *rnat_addr, *ubs_end, *bspstore;
380 unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
381 unsigned long rnats, nat_mask;
382 unsigned long on_kbs;
383 long sof = (regs->cr_ifs) & 0x7f;
384 long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
385 long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
386 long ridx = r1 - 32;
387
388 if (ridx >= sof) {
389 /* read of out-of-frame register returns an undefined value; 0 in our case. */
390 DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1, sof);
391 goto fail;
392 }
393
394 if (ridx < sor)
395 ridx = rotate_reg(sor, rrb_gr, ridx);
396
397 DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
398 r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
399
400 on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
401 addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
402 if (addr >= kbs) {
403 /* the register is on the kernel backing store: easy... */
404 *val = *addr;
405 if (nat) {
406 rnat_addr = ia64_rse_rnat_addr(addr);
407 if ((unsigned long) rnat_addr >= sw->ar_bspstore)
408 rnat_addr = &sw->ar_rnat;
409 nat_mask = 1UL << ia64_rse_slot_num(addr);
410 *nat = (*rnat_addr & nat_mask) != 0;
411 }
412 return;
413 }
414
415 if (!user_stack(current, regs)) {
416 DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1);
417 goto fail;
418 }
419
420 bspstore = (unsigned long *)regs->ar_bspstore;
421 ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
422 bsp = ia64_rse_skip_regs(ubs_end, -sof);
423 addr = ia64_rse_skip_regs(bsp, ridx);
424
425 DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
426
427 ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
428
429 if (nat) {
430 rnat_addr = ia64_rse_rnat_addr(addr);
431 nat_mask = 1UL << ia64_rse_slot_num(addr);
432
433 DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr, rnats);
434
435 ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
436 *nat = (rnats & nat_mask) != 0;
437 }
438 return;
439
440 fail:
441 *val = 0;
442 if (nat)
443 *nat = 0;
444 return;
445}
446
447
448static void
449setreg (unsigned long regnum, unsigned long val, int nat, struct pt_regs *regs)
450{
451 struct switch_stack *sw = (struct switch_stack *) regs - 1;
452 unsigned long addr;
453 unsigned long bitmask;
454 unsigned long *unat;
455
456 /*
457 * First takes care of stacked registers
458 */
459 if (regnum >= IA64_FIRST_STACKED_GR) {
460 set_rse_reg(regs, regnum, val, nat);
461 return;
462 }
463
464 /*
465 * Using r0 as a target raises a General Exception fault which has higher priority
466 * than the Unaligned Reference fault.
467 */
468
469 /*
470 * Now look at registers in [0-31] range and init correct UNAT
471 */
472 if (GR_IN_SW(regnum)) {
473 addr = (unsigned long)sw;
474 unat = &sw->ar_unat;
475 } else {
476 addr = (unsigned long)regs;
477 unat = &sw->caller_unat;
478 }
479 DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n",
480 addr, unat==&sw->ar_unat ? "yes":"no", GR_OFFS(regnum));
481 /*
482 * add offset from base of struct
483 * and do it !
484 */
485 addr += GR_OFFS(regnum);
486
487 *(unsigned long *)addr = val;
488
489 /*
490 * We need to clear the corresponding UNAT bit to fully emulate the load
491 * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4
492 */
493 bitmask = 1UL << (addr >> 3 & 0x3f);
494 DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr, val, nat, (void *) unat, *unat);
495 if (nat) {
496 *unat |= bitmask;
497 } else {
498 *unat &= ~bitmask;
499 }
500 DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr, val, nat, (void *) unat,*unat);
501}
502
503/*
504 * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the
505 * range from 32-127, result is in the range from 0-95.
506 */
507static inline unsigned long
508fph_index (struct pt_regs *regs, long regnum)
509{
510 unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f;
511 return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR));
512}
513
514static void
515setfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
516{
517 struct switch_stack *sw = (struct switch_stack *)regs - 1;
518 unsigned long addr;
519
520 /*
521 * From EAS-2.5: FPDisableFault has higher priority than Unaligned
522 * Fault. Thus, when we get here, we know the partition is enabled.
523 * To update f32-f127, there are three choices:
524 *
525 * (1) save f32-f127 to thread.fph and update the values there
526 * (2) use a gigantic switch statement to directly access the registers
527 * (3) generate code on the fly to update the desired register
528 *
529 * For now, we are using approach (1).
530 */
531 if (regnum >= IA64_FIRST_ROTATING_FR) {
532 ia64_sync_fph(current);
533 current->thread.fph[fph_index(regs, regnum)] = *fpval;
534 } else {
535 /*
536 * pt_regs or switch_stack ?
537 */
538 if (FR_IN_SW(regnum)) {
539 addr = (unsigned long)sw;
540 } else {
541 addr = (unsigned long)regs;
542 }
543
544 DPRINT("tmp_base=%lx offset=%d\n", addr, FR_OFFS(regnum));
545
546 addr += FR_OFFS(regnum);
547 *(struct ia64_fpreg *)addr = *fpval;
548
549 /*
550 * mark the low partition as being used now
551 *
552 * It is highly unlikely that this bit is not already set, but
553 * let's do it for safety.
554 */
555 regs->cr_ipsr |= IA64_PSR_MFL;
556 }
557}
558
559/*
560 * Those 2 inline functions generate the spilled versions of the constant floating point
561 * registers which can be used with stfX
562 */
563static inline void
564float_spill_f0 (struct ia64_fpreg *final)
565{
566 ia64_stf_spill(final, 0);
567}
568
569static inline void
570float_spill_f1 (struct ia64_fpreg *final)
571{
572 ia64_stf_spill(final, 1);
573}
574
575static void
576getfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
577{
578 struct switch_stack *sw = (struct switch_stack *) regs - 1;
579 unsigned long addr;
580
581 /*
582 * From EAS-2.5: FPDisableFault has higher priority than
583 * Unaligned Fault. Thus, when we get here, we know the partition is
584 * enabled.
585 *
586 * When regnum > 31, the register is still live and we need to force a save
587 * to current->thread.fph to get access to it. See discussion in setfpreg()
588 * for reasons and other ways of doing this.
589 */
590 if (regnum >= IA64_FIRST_ROTATING_FR) {
591 ia64_flush_fph(current);
592 *fpval = current->thread.fph[fph_index(regs, regnum)];
593 } else {
594 /*
595 * f0 = 0.0, f1= 1.0. Those registers are constant and are thus
596 * not saved, we must generate their spilled form on the fly
597 */
598 switch(regnum) {
599 case 0:
600 float_spill_f0(fpval);
601 break;
602 case 1:
603 float_spill_f1(fpval);
604 break;
605 default:
606 /*
607 * pt_regs or switch_stack ?
608 */
609 addr = FR_IN_SW(regnum) ? (unsigned long)sw
610 : (unsigned long)regs;
611
612 DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n",
613 FR_IN_SW(regnum), addr, FR_OFFS(regnum));
614
615 addr += FR_OFFS(regnum);
616 *fpval = *(struct ia64_fpreg *)addr;
617 }
618 }
619}
620
621
622static void
623getreg (unsigned long regnum, unsigned long *val, int *nat, struct pt_regs *regs)
624{
625 struct switch_stack *sw = (struct switch_stack *) regs - 1;
626 unsigned long addr, *unat;
627
628 if (regnum >= IA64_FIRST_STACKED_GR) {
629 get_rse_reg(regs, regnum, val, nat);
630 return;
631 }
632
633 /*
634 * take care of r0 (read-only always evaluate to 0)
635 */
636 if (regnum == 0) {
637 *val = 0;
638 if (nat)
639 *nat = 0;
640 return;
641 }
642
643 /*
644 * Now look at registers in [0-31] range and init correct UNAT
645 */
646 if (GR_IN_SW(regnum)) {
647 addr = (unsigned long)sw;
648 unat = &sw->ar_unat;
649 } else {
650 addr = (unsigned long)regs;
651 unat = &sw->caller_unat;
652 }
653
654 DPRINT("addr_base=%lx offset=0x%x\n", addr, GR_OFFS(regnum));
655
656 addr += GR_OFFS(regnum);
657
658 *val = *(unsigned long *)addr;
659
660 /*
661 * do it only when requested
662 */
663 if (nat)
664 *nat = (*unat >> (addr >> 3 & 0x3f)) & 0x1UL;
665}
666
667static void
668emulate_load_updates (update_t type, load_store_t ld, struct pt_regs *regs, unsigned long ifa)
669{
670 /*
671 * IMPORTANT:
672 * Given the way we handle unaligned speculative loads, we should
673 * not get to this point in the code but we keep this sanity check,
674 * just in case.
675 */
676 if (ld.x6_op == 1 || ld.x6_op == 3) {
677 printk(KERN_ERR "%s: register update on speculative load, error\n", __FUNCTION__);
678 die_if_kernel("unaligned reference on speculative load with register update\n",
679 regs, 30);
680 }
681
682
683 /*
684 * at this point, we know that the base register to update is valid i.e.,
685 * it's not r0
686 */
687 if (type == UPD_IMMEDIATE) {
688 unsigned long imm;
689
690 /*
691 * Load +Imm: ldXZ r1=[r3],imm(9)
692 *
693 *
694 * form imm9: [13:19] contain the first 7 bits
695 */
696 imm = ld.x << 7 | ld.imm;
697
698 /*
699 * sign extend (1+8bits) if m set
700 */
701 if (ld.m) imm |= SIGN_EXT9;
702
703 /*
704 * ifa == r3 and we know that the NaT bit on r3 was clear so
705 * we can directly use ifa.
706 */
707 ifa += imm;
708
709 setreg(ld.r3, ifa, 0, regs);
710
711 DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld.x, ld.m, imm, ifa);
712
713 } else if (ld.m) {
714 unsigned long r2;
715 int nat_r2;
716
717 /*
718 * Load +Reg Opcode: ldXZ r1=[r3],r2
719 *
720 * Note: that we update r3 even in the case of ldfX.a
721 * (where the load does not happen)
722 *
723 * The way the load algorithm works, we know that r3 does not
724 * have its NaT bit set (would have gotten NaT consumption
725 * before getting the unaligned fault). So we can use ifa
726 * which equals r3 at this point.
727 *
728 * IMPORTANT:
729 * The above statement holds ONLY because we know that we
730 * never reach this code when trying to do a ldX.s.
731 * If we ever make it to here on an ldfX.s then
732 */
733 getreg(ld.imm, &r2, &nat_r2, regs);
734
735 ifa += r2;
736
737 /*
738 * propagate Nat r2 -> r3
739 */
740 setreg(ld.r3, ifa, nat_r2, regs);
741
742 DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld.imm, r2, ifa, nat_r2);
743 }
744}
745
746
747static int
748emulate_load_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
749{
750 unsigned int len = 1 << ld.x6_sz;
751 unsigned long val = 0;
752
753 /*
754 * r0, as target, doesn't need to be checked because Illegal Instruction
755 * faults have higher priority than unaligned faults.
756 *
757 * r0 cannot be found as the base as it would never generate an
758 * unaligned reference.
759 */
760
761 /*
762 * ldX.a we will emulate load and also invalidate the ALAT entry.
763 * See comment below for explanation on how we handle ldX.a
764 */
765
766 if (len != 2 && len != 4 && len != 8) {
767 DPRINT("unknown size: x6=%d\n", ld.x6_sz);
768 return -1;
769 }
770 /* this assumes little-endian byte-order: */
771 if (copy_from_user(&val, (void __user *) ifa, len))
772 return -1;
773 setreg(ld.r1, val, 0, regs);
774
775 /*
776 * check for updates on any kind of loads
777 */
778 if (ld.op == 0x5 || ld.m)
779 emulate_load_updates(ld.op == 0x5 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
780
781 /*
782 * handling of various loads (based on EAS2.4):
783 *
784 * ldX.acq (ordered load):
785 * - acquire semantics would have been used, so force fence instead.
786 *
787 * ldX.c.clr (check load and clear):
788 * - if we get to this handler, it's because the entry was not in the ALAT.
789 * Therefore the operation reverts to a normal load
790 *
791 * ldX.c.nc (check load no clear):
792 * - same as previous one
793 *
794 * ldX.c.clr.acq (ordered check load and clear):
795 * - same as above for c.clr part. The load needs to have acquire semantics. So
796 * we use the fence semantics which is stronger and thus ensures correctness.
797 *
798 * ldX.a (advanced load):
799 * - suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the
800 * address doesn't match requested size alignment. This means that we would
801 * possibly need more than one load to get the result.
802 *
803 * The load part can be handled just like a normal load, however the difficult
804 * part is to get the right thing into the ALAT. The critical piece of information
805 * in the base address of the load & size. To do that, a ld.a must be executed,
806 * clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now
807 * if we use the same target register, we will be okay for the check.a instruction.
808 * If we look at the store, basically a stX [r3]=r1 checks the ALAT for any entry
809 * which would overlap within [r3,r3+X] (the size of the load was store in the
810 * ALAT). If such an entry is found the entry is invalidated. But this is not good
811 * enough, take the following example:
812 * r3=3
813 * ld4.a r1=[r3]
814 *
815 * Could be emulated by doing:
816 * ld1.a r1=[r3],1
817 * store to temporary;
818 * ld1.a r1=[r3],1
819 * store & shift to temporary;
820 * ld1.a r1=[r3],1
821 * store & shift to temporary;
822 * ld1.a r1=[r3]
823 * store & shift to temporary;
824 * r1=temporary
825 *
826 * So in this case, you would get the right value is r1 but the wrong info in
827 * the ALAT. Notice that you could do it in reverse to finish with address 3
828 * but you would still get the size wrong. To get the size right, one needs to
829 * execute exactly the same kind of load. You could do it from a aligned
830 * temporary location, but you would get the address wrong.
831 *
832 * So no matter what, it is not possible to emulate an advanced load
833 * correctly. But is that really critical ?
834 *
835 * We will always convert ld.a into a normal load with ALAT invalidated. This
836 * will enable compiler to do optimization where certain code path after ld.a
837 * is not required to have ld.c/chk.a, e.g., code path with no intervening stores.
838 *
839 * If there is a store after the advanced load, one must either do a ld.c.* or
840 * chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no
841 * entry found in ALAT), and that's perfectly ok because:
842 *
843 * - ld.c.*, if the entry is not present a normal load is executed
844 * - chk.a.*, if the entry is not present, execution jumps to recovery code
845 *
846 * In either case, the load can be potentially retried in another form.
847 *
848 * ALAT must be invalidated for the register (so that chk.a or ld.c don't pick
849 * up a stale entry later). The register base update MUST also be performed.
850 */
851
852 /*
853 * when the load has the .acq completer then
854 * use ordering fence.
855 */
856 if (ld.x6_op == 0x5 || ld.x6_op == 0xa)
857 mb();
858
859 /*
860 * invalidate ALAT entry in case of advanced load
861 */
862 if (ld.x6_op == 0x2)
863 invala_gr(ld.r1);
864
865 return 0;
866}
867
868static int
869emulate_store_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
870{
871 unsigned long r2;
872 unsigned int len = 1 << ld.x6_sz;
873
874 /*
875 * if we get to this handler, Nat bits on both r3 and r2 have already
876 * been checked. so we don't need to do it
877 *
878 * extract the value to be stored
879 */
880 getreg(ld.imm, &r2, NULL, regs);
881
882 /*
883 * we rely on the macros in unaligned.h for now i.e.,
884 * we let the compiler figure out how to read memory gracefully.
885 *
886 * We need this switch/case because the way the inline function
887 * works. The code is optimized by the compiler and looks like
888 * a single switch/case.
889 */
890 DPRINT("st%d [%lx]=%lx\n", len, ifa, r2);
891
892 if (len != 2 && len != 4 && len != 8) {
893 DPRINT("unknown size: x6=%d\n", ld.x6_sz);
894 return -1;
895 }
896
897 /* this assumes little-endian byte-order: */
898 if (copy_to_user((void __user *) ifa, &r2, len))
899 return -1;
900
901 /*
902 * stX [r3]=r2,imm(9)
903 *
904 * NOTE:
905 * ld.r3 can never be r0, because r0 would not generate an
906 * unaligned access.
907 */
908 if (ld.op == 0x5) {
909 unsigned long imm;
910
911 /*
912 * form imm9: [12:6] contain first 7bits
913 */
914 imm = ld.x << 7 | ld.r1;
915 /*
916 * sign extend (8bits) if m set
917 */
918 if (ld.m) imm |= SIGN_EXT9;
919 /*
920 * ifa == r3 (NaT is necessarily cleared)
921 */
922 ifa += imm;
923
924 DPRINT("imm=%lx r3=%lx\n", imm, ifa);
925
926 setreg(ld.r3, ifa, 0, regs);
927 }
928 /*
929 * we don't have alat_invalidate_multiple() so we need
930 * to do the complete flush :-<<
931 */
932 ia64_invala();
933
934 /*
935 * stX.rel: use fence instead of release
936 */
937 if (ld.x6_op == 0xd)
938 mb();
939
940 return 0;
941}
942
943/*
944 * floating point operations sizes in bytes
945 */
946static const unsigned char float_fsz[4]={
947 10, /* extended precision (e) */
948 8, /* integer (8) */
949 4, /* single precision (s) */
950 8 /* double precision (d) */
951};
952
953static inline void
954mem2float_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
955{
956 ia64_ldfe(6, init);
957 ia64_stop();
958 ia64_stf_spill(final, 6);
959}
960
961static inline void
962mem2float_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
963{
964 ia64_ldf8(6, init);
965 ia64_stop();
966 ia64_stf_spill(final, 6);
967}
968
969static inline void
970mem2float_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
971{
972 ia64_ldfs(6, init);
973 ia64_stop();
974 ia64_stf_spill(final, 6);
975}
976
977static inline void
978mem2float_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
979{
980 ia64_ldfd(6, init);
981 ia64_stop();
982 ia64_stf_spill(final, 6);
983}
984
985static inline void
986float2mem_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
987{
988 ia64_ldf_fill(6, init);
989 ia64_stop();
990 ia64_stfe(final, 6);
991}
992
993static inline void
994float2mem_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
995{
996 ia64_ldf_fill(6, init);
997 ia64_stop();
998 ia64_stf8(final, 6);
999}
1000
1001static inline void
1002float2mem_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
1003{
1004 ia64_ldf_fill(6, init);
1005 ia64_stop();
1006 ia64_stfs(final, 6);
1007}
1008
1009static inline void
1010float2mem_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
1011{
1012 ia64_ldf_fill(6, init);
1013 ia64_stop();
1014 ia64_stfd(final, 6);
1015}
1016
1017static int
1018emulate_load_floatpair (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1019{
1020 struct ia64_fpreg fpr_init[2];
1021 struct ia64_fpreg fpr_final[2];
1022 unsigned long len = float_fsz[ld.x6_sz];
1023
1024 /*
1025 * fr0 & fr1 don't need to be checked because Illegal Instruction faults have
1026 * higher priority than unaligned faults.
1027 *
1028 * r0 cannot be found as the base as it would never generate an unaligned
1029 * reference.
1030 */
1031
1032 /*
1033 * make sure we get clean buffers
1034 */
1035 memset(&fpr_init, 0, sizeof(fpr_init));
1036 memset(&fpr_final, 0, sizeof(fpr_final));
1037
1038 /*
1039 * ldfpX.a: we don't try to emulate anything but we must
1040 * invalidate the ALAT entry and execute updates, if any.
1041 */
1042 if (ld.x6_op != 0x2) {
1043 /*
1044 * This assumes little-endian byte-order. Note that there is no "ldfpe"
1045 * instruction:
1046 */
1047 if (copy_from_user(&fpr_init[0], (void __user *) ifa, len)
1048 || copy_from_user(&fpr_init[1], (void __user *) (ifa + len), len))
1049 return -1;
1050
1051 DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld.r1, ld.imm, ld.x6_sz);
1052 DDUMP("frp_init =", &fpr_init, 2*len);
1053 /*
1054 * XXX fixme
1055 * Could optimize inlines by using ldfpX & 2 spills
1056 */
1057 switch( ld.x6_sz ) {
1058 case 0:
1059 mem2float_extended(&fpr_init[0], &fpr_final[0]);
1060 mem2float_extended(&fpr_init[1], &fpr_final[1]);
1061 break;
1062 case 1:
1063 mem2float_integer(&fpr_init[0], &fpr_final[0]);
1064 mem2float_integer(&fpr_init[1], &fpr_final[1]);
1065 break;
1066 case 2:
1067 mem2float_single(&fpr_init[0], &fpr_final[0]);
1068 mem2float_single(&fpr_init[1], &fpr_final[1]);
1069 break;
1070 case 3:
1071 mem2float_double(&fpr_init[0], &fpr_final[0]);
1072 mem2float_double(&fpr_init[1], &fpr_final[1]);
1073 break;
1074 }
1075 DDUMP("fpr_final =", &fpr_final, 2*len);
1076 /*
1077 * XXX fixme
1078 *
1079 * A possible optimization would be to drop fpr_final and directly
1080 * use the storage from the saved context i.e., the actual final
1081 * destination (pt_regs, switch_stack or thread structure).
1082 */
1083 setfpreg(ld.r1, &fpr_final[0], regs);
1084 setfpreg(ld.imm, &fpr_final[1], regs);
1085 }
1086
1087 /*
1088 * Check for updates: only immediate updates are available for this
1089 * instruction.
1090 */
1091 if (ld.m) {
1092 /*
1093 * the immediate is implicit given the ldsz of the operation:
1094 * single: 8 (2x4) and for all others it's 16 (2x8)
1095 */
1096 ifa += len<<1;
1097
1098 /*
1099 * IMPORTANT:
1100 * the fact that we force the NaT of r3 to zero is ONLY valid
1101 * as long as we don't come here with a ldfpX.s.
1102 * For this reason we keep this sanity check
1103 */
1104 if (ld.x6_op == 1 || ld.x6_op == 3)
1105 printk(KERN_ERR "%s: register update on speculative load pair, error\n",
1106 __FUNCTION__);
1107
1108 setreg(ld.r3, ifa, 0, regs);
1109 }
1110
1111 /*
1112 * Invalidate ALAT entries, if any, for both registers.
1113 */
1114 if (ld.x6_op == 0x2) {
1115 invala_fr(ld.r1);
1116 invala_fr(ld.imm);
1117 }
1118 return 0;
1119}
1120
1121
1122static int
1123emulate_load_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1124{
1125 struct ia64_fpreg fpr_init;
1126 struct ia64_fpreg fpr_final;
1127 unsigned long len = float_fsz[ld.x6_sz];
1128
1129 /*
1130 * fr0 & fr1 don't need to be checked because Illegal Instruction
1131 * faults have higher priority than unaligned faults.
1132 *
1133 * r0 cannot be found as the base as it would never generate an
1134 * unaligned reference.
1135 */
1136
1137 /*
1138 * make sure we get clean buffers
1139 */
1140 memset(&fpr_init,0, sizeof(fpr_init));
1141 memset(&fpr_final,0, sizeof(fpr_final));
1142
1143 /*
1144 * ldfX.a we don't try to emulate anything but we must
1145 * invalidate the ALAT entry.
1146 * See comments in ldX for descriptions on how the various loads are handled.
1147 */
1148 if (ld.x6_op != 0x2) {
1149 if (copy_from_user(&fpr_init, (void __user *) ifa, len))
1150 return -1;
1151
1152 DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
1153 DDUMP("fpr_init =", &fpr_init, len);
1154 /*
1155 * we only do something for x6_op={0,8,9}
1156 */
1157 switch( ld.x6_sz ) {
1158 case 0:
1159 mem2float_extended(&fpr_init, &fpr_final);
1160 break;
1161 case 1:
1162 mem2float_integer(&fpr_init, &fpr_final);
1163 break;
1164 case 2:
1165 mem2float_single(&fpr_init, &fpr_final);
1166 break;
1167 case 3:
1168 mem2float_double(&fpr_init, &fpr_final);
1169 break;
1170 }
1171 DDUMP("fpr_final =", &fpr_final, len);
1172 /*
1173 * XXX fixme
1174 *
1175 * A possible optimization would be to drop fpr_final and directly
1176 * use the storage from the saved context i.e., the actual final
1177 * destination (pt_regs, switch_stack or thread structure).
1178 */
1179 setfpreg(ld.r1, &fpr_final, regs);
1180 }
1181
1182 /*
1183 * check for updates on any loads
1184 */
1185 if (ld.op == 0x7 || ld.m)
1186 emulate_load_updates(ld.op == 0x7 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
1187
1188 /*
1189 * invalidate ALAT entry in case of advanced floating point loads
1190 */
1191 if (ld.x6_op == 0x2)
1192 invala_fr(ld.r1);
1193
1194 return 0;
1195}
1196
1197
1198static int
1199emulate_store_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1200{
1201 struct ia64_fpreg fpr_init;
1202 struct ia64_fpreg fpr_final;
1203 unsigned long len = float_fsz[ld.x6_sz];
1204
1205 /*
1206 * make sure we get clean buffers
1207 */
1208 memset(&fpr_init,0, sizeof(fpr_init));
1209 memset(&fpr_final,0, sizeof(fpr_final));
1210
1211 /*
1212 * if we get to this handler, Nat bits on both r3 and r2 have already
1213 * been checked. so we don't need to do it
1214 *
1215 * extract the value to be stored
1216 */
1217 getfpreg(ld.imm, &fpr_init, regs);
1218 /*
1219 * during this step, we extract the spilled registers from the saved
1220 * context i.e., we refill. Then we store (no spill) to temporary
1221 * aligned location
1222 */
1223 switch( ld.x6_sz ) {
1224 case 0:
1225 float2mem_extended(&fpr_init, &fpr_final);
1226 break;
1227 case 1:
1228 float2mem_integer(&fpr_init, &fpr_final);
1229 break;
1230 case 2:
1231 float2mem_single(&fpr_init, &fpr_final);
1232 break;
1233 case 3:
1234 float2mem_double(&fpr_init, &fpr_final);
1235 break;
1236 }
1237 DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
1238 DDUMP("fpr_init =", &fpr_init, len);
1239 DDUMP("fpr_final =", &fpr_final, len);
1240
1241 if (copy_to_user((void __user *) ifa, &fpr_final, len))
1242 return -1;
1243
1244 /*
1245 * stfX [r3]=r2,imm(9)
1246 *
1247 * NOTE:
1248 * ld.r3 can never be r0, because r0 would not generate an
1249 * unaligned access.
1250 */
1251 if (ld.op == 0x7) {
1252 unsigned long imm;
1253
1254 /*
1255 * form imm9: [12:6] contain first 7bits
1256 */
1257 imm = ld.x << 7 | ld.r1;
1258 /*
1259 * sign extend (8bits) if m set
1260 */
1261 if (ld.m)
1262 imm |= SIGN_EXT9;
1263 /*
1264 * ifa == r3 (NaT is necessarily cleared)
1265 */
1266 ifa += imm;
1267
1268 DPRINT("imm=%lx r3=%lx\n", imm, ifa);
1269
1270 setreg(ld.r3, ifa, 0, regs);
1271 }
1272 /*
1273 * we don't have alat_invalidate_multiple() so we need
1274 * to do the complete flush :-<<
1275 */
1276 ia64_invala();
1277
1278 return 0;
1279}
1280
1281/*
1282 * Make sure we log the unaligned access, so that user/sysadmin can notice it and
1283 * eventually fix the program. However, we don't want to do that for every access so we
1284 * pace it with jiffies. This isn't really MP-safe, but it doesn't really have to be
1285 * either...
1286 */
1287static int
1288within_logging_rate_limit (void)
1289{
1290 static unsigned long count, last_time;
1291
1292 if (jiffies - last_time > 5*HZ)
1293 count = 0;
79c83bd1 1294 if (count < 5) {
1da177e4 1295 last_time = jiffies;
79c83bd1 1296 count++;
1da177e4
LT
1297 return 1;
1298 }
1299 return 0;
1300
1301}
1302
1303void
1304ia64_handle_unaligned (unsigned long ifa, struct pt_regs *regs)
1305{
1306 struct ia64_psr *ipsr = ia64_psr(regs);
1307 mm_segment_t old_fs = get_fs();
1308 unsigned long bundle[2];
1309 unsigned long opcode;
1310 struct siginfo si;
1311 const struct exception_table_entry *eh = NULL;
1312 union {
1313 unsigned long l;
1314 load_store_t insn;
1315 } u;
1316 int ret = -1;
1317
1318 if (ia64_psr(regs)->be) {
1319 /* we don't support big-endian accesses */
1320 die_if_kernel("big-endian unaligned accesses are not supported", regs, 0);
1321 goto force_sigbus;
1322 }
1323
1324 /*
1325 * Treat kernel accesses for which there is an exception handler entry the same as
1326 * user-level unaligned accesses. Otherwise, a clever program could trick this
1327 * handler into reading an arbitrary kernel addresses...
1328 */
1329 if (!user_mode(regs))
1330 eh = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri);
1331 if (user_mode(regs) || eh) {
1332 if ((current->thread.flags & IA64_THREAD_UAC_SIGBUS) != 0)
1333 goto force_sigbus;
1334
d2b176ed
JS
1335 if (!no_unaligned_warning &&
1336 !(current->thread.flags & IA64_THREAD_UAC_NOPRINT) &&
1337 within_logging_rate_limit())
1da177e4
LT
1338 {
1339 char buf[200]; /* comm[] is at most 16 bytes... */
1340 size_t len;
1341
1342 len = sprintf(buf, "%s(%d): unaligned access to 0x%016lx, "
1343 "ip=0x%016lx\n\r", current->comm, current->pid,
1344 ifa, regs->cr_iip + ipsr->ri);
1345 /*
1346 * Don't call tty_write_message() if we're in the kernel; we might
1347 * be holding locks...
1348 */
1349 if (user_mode(regs))
1350 tty_write_message(current->signal->tty, buf);
1351 buf[len-1] = '\0'; /* drop '\r' */
d2b176ed
JS
1352 /* watch for command names containing %s */
1353 printk(KERN_WARNING "%s", buf);
1354 } else {
1355 if (no_unaligned_warning && !noprint_warning) {
1356 noprint_warning = 1;
1357 printk(KERN_WARNING "%s(%d) encountered an "
1358 "unaligned exception which required\n"
1359 "kernel assistance, which degrades "
1360 "the performance of the application.\n"
1361 "Unaligned exception warnings have "
1362 "been disabled by the system "
1363 "administrator\n"
1364 "echo 0 > /proc/sys/kernel/ignore-"
1365 "unaligned-usertrap to re-enable\n",
1366 current->comm, current->pid);
1367 }
1da177e4
LT
1368 }
1369 } else {
1370 if (within_logging_rate_limit())
1371 printk(KERN_WARNING "kernel unaligned access to 0x%016lx, ip=0x%016lx\n",
1372 ifa, regs->cr_iip + ipsr->ri);
1373 set_fs(KERNEL_DS);
1374 }
1375
1376 DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n",
1377 regs->cr_iip, ifa, regs->cr_ipsr, ipsr->ri, ipsr->it);
1378
1379 if (__copy_from_user(bundle, (void __user *) regs->cr_iip, 16))
1380 goto failure;
1381
1382 /*
1383 * extract the instruction from the bundle given the slot number
1384 */
1385 switch (ipsr->ri) {
1386 case 0: u.l = (bundle[0] >> 5); break;
1387 case 1: u.l = (bundle[0] >> 46) | (bundle[1] << 18); break;
1388 case 2: u.l = (bundle[1] >> 23); break;
1389 }
1390 opcode = (u.l >> IA64_OPCODE_SHIFT) & IA64_OPCODE_MASK;
1391
1392 DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d "
1393 "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode, u.insn.qp, u.insn.r1, u.insn.imm,
1394 u.insn.r3, u.insn.x, u.insn.hint, u.insn.x6_sz, u.insn.m, u.insn.op);
1395
1396 /*
1397 * IMPORTANT:
1398 * Notice that the switch statement DOES not cover all possible instructions
1399 * that DO generate unaligned references. This is made on purpose because for some
1400 * instructions it DOES NOT make sense to try and emulate the access. Sometimes it
1401 * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e.,
1402 * the program will get a signal and die:
1403 *
1404 * load/store:
1405 * - ldX.spill
1406 * - stX.spill
1407 * Reason: RNATs are based on addresses
1408 * - ld16
1409 * - st16
1410 * Reason: ld16 and st16 are supposed to occur in a single
1411 * memory op
1412 *
1413 * synchronization:
1414 * - cmpxchg
1415 * - fetchadd
1416 * - xchg
1417 * Reason: ATOMIC operations cannot be emulated properly using multiple
1418 * instructions.
1419 *
1420 * speculative loads:
1421 * - ldX.sZ
1422 * Reason: side effects, code must be ready to deal with failure so simpler
1423 * to let the load fail.
1424 * ---------------------------------------------------------------------------------
1425 * XXX fixme
1426 *
1427 * I would like to get rid of this switch case and do something
1428 * more elegant.
1429 */
1430 switch (opcode) {
1431 case LDS_OP:
1432 case LDSA_OP:
1433 if (u.insn.x)
1434 /* oops, really a semaphore op (cmpxchg, etc) */
1435 goto failure;
1436 /* no break */
1437 case LDS_IMM_OP:
1438 case LDSA_IMM_OP:
1439 case LDFS_OP:
1440 case LDFSA_OP:
1441 case LDFS_IMM_OP:
1442 /*
1443 * The instruction will be retried with deferred exceptions turned on, and
1444 * we should get Nat bit installed
1445 *
1446 * IMPORTANT: When PSR_ED is set, the register & immediate update forms
1447 * are actually executed even though the operation failed. So we don't
1448 * need to take care of this.
1449 */
1450 DPRINT("forcing PSR_ED\n");
1451 regs->cr_ipsr |= IA64_PSR_ED;
1452 goto done;
1453
1454 case LD_OP:
1455 case LDA_OP:
1456 case LDBIAS_OP:
1457 case LDACQ_OP:
1458 case LDCCLR_OP:
1459 case LDCNC_OP:
1460 case LDCCLRACQ_OP:
1461 if (u.insn.x)
1462 /* oops, really a semaphore op (cmpxchg, etc) */
1463 goto failure;
1464 /* no break */
1465 case LD_IMM_OP:
1466 case LDA_IMM_OP:
1467 case LDBIAS_IMM_OP:
1468 case LDACQ_IMM_OP:
1469 case LDCCLR_IMM_OP:
1470 case LDCNC_IMM_OP:
1471 case LDCCLRACQ_IMM_OP:
1472 ret = emulate_load_int(ifa, u.insn, regs);
1473 break;
1474
1475 case ST_OP:
1476 case STREL_OP:
1477 if (u.insn.x)
1478 /* oops, really a semaphore op (cmpxchg, etc) */
1479 goto failure;
1480 /* no break */
1481 case ST_IMM_OP:
1482 case STREL_IMM_OP:
1483 ret = emulate_store_int(ifa, u.insn, regs);
1484 break;
1485
1486 case LDF_OP:
1487 case LDFA_OP:
1488 case LDFCCLR_OP:
1489 case LDFCNC_OP:
1490 case LDF_IMM_OP:
1491 case LDFA_IMM_OP:
1492 case LDFCCLR_IMM_OP:
1493 case LDFCNC_IMM_OP:
1494 if (u.insn.x)
1495 ret = emulate_load_floatpair(ifa, u.insn, regs);
1496 else
1497 ret = emulate_load_float(ifa, u.insn, regs);
1498 break;
1499
1500 case STF_OP:
1501 case STF_IMM_OP:
1502 ret = emulate_store_float(ifa, u.insn, regs);
1503 break;
1504
1505 default:
1506 goto failure;
1507 }
1508 DPRINT("ret=%d\n", ret);
1509 if (ret)
1510 goto failure;
1511
1512 if (ipsr->ri == 2)
1513 /*
1514 * given today's architecture this case is not likely to happen because a
1515 * memory access instruction (M) can never be in the last slot of a
1516 * bundle. But let's keep it for now.
1517 */
1518 regs->cr_iip += 16;
1519 ipsr->ri = (ipsr->ri + 1) & 0x3;
1520
1521 DPRINT("ipsr->ri=%d iip=%lx\n", ipsr->ri, regs->cr_iip);
1522 done:
1523 set_fs(old_fs); /* restore original address limit */
1524 return;
1525
1526 failure:
1527 /* something went wrong... */
1528 if (!user_mode(regs)) {
1529 if (eh) {
1530 ia64_handle_exception(regs, eh);
1531 goto done;
1532 }
1533 die_if_kernel("error during unaligned kernel access\n", regs, ret);
1534 /* NOT_REACHED */
1535 }
1536 force_sigbus:
1537 si.si_signo = SIGBUS;
1538 si.si_errno = 0;
1539 si.si_code = BUS_ADRALN;
1540 si.si_addr = (void __user *) ifa;
1541 si.si_flags = 0;
1542 si.si_isr = 0;
1543 si.si_imm = 0;
1544 force_sig_info(SIGBUS, &si, current);
1545 goto done;
1546}