[IA64] remove redundant display of free swap space in show_mem()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / ia64 / kernel / unaligned.c
CommitLineData
1da177e4
LT
1/*
2 * Architecture-specific unaligned trap handling.
3 *
4 * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 *
8 * 2002/12/09 Fix rotating register handling (off-by-1 error, missing fr-rotation). Fix
9 * get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame
10 * stacked register returns an undefined value; it does NOT trigger a
11 * "rsvd register fault").
12 * 2001/10/11 Fix unaligned access to rotating registers in s/w pipelined loops.
13 * 2001/08/13 Correct size of extended floats (float_fsz) from 16 to 10 bytes.
14 * 2001/01/17 Add support emulation of unaligned kernel accesses.
15 */
16#include <linux/kernel.h>
17#include <linux/sched.h>
1da177e4
LT
18#include <linux/tty.h>
19
20#include <asm/intrinsics.h>
21#include <asm/processor.h>
22#include <asm/rse.h>
23#include <asm/uaccess.h>
24#include <asm/unaligned.h>
25
620de2f5 26extern int die_if_kernel(char *str, struct pt_regs *regs, long err);
1da177e4
LT
27
28#undef DEBUG_UNALIGNED_TRAP
29
30#ifdef DEBUG_UNALIGNED_TRAP
d4ed8084 31# define DPRINT(a...) do { printk("%s %u: ", __func__, __LINE__); printk (a); } while (0)
1da177e4
LT
32# define DDUMP(str,vp,len) dump(str, vp, len)
33
34static void
35dump (const char *str, void *vp, size_t len)
36{
37 unsigned char *cp = vp;
38 int i;
39
40 printk("%s", str);
41 for (i = 0; i < len; ++i)
42 printk (" %02x", *cp++);
43 printk("\n");
44}
45#else
46# define DPRINT(a...)
47# define DDUMP(str,vp,len)
48#endif
49
50#define IA64_FIRST_STACKED_GR 32
51#define IA64_FIRST_ROTATING_FR 32
52#define SIGN_EXT9 0xffffffffffffff00ul
53
d2b176ed
JS
54/*
55 * sysctl settable hook which tells the kernel whether to honor the
56 * IA64_THREAD_UAC_NOPRINT prctl. Because this is user settable, we want
57 * to allow the super user to enable/disable this for security reasons
58 * (i.e. don't allow attacker to fill up logs with unaligned accesses).
59 */
60int no_unaligned_warning;
61static int noprint_warning;
62
1da177e4
LT
63/*
64 * For M-unit:
65 *
66 * opcode | m | x6 |
67 * --------|------|---------|
68 * [40-37] | [36] | [35:30] |
69 * --------|------|---------|
70 * 4 | 1 | 6 | = 11 bits
71 * --------------------------
72 * However bits [31:30] are not directly useful to distinguish between
73 * load/store so we can use [35:32] instead, which gives the following
74 * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer
75 * checking the m-bit until later in the load/store emulation.
76 */
77#define IA64_OPCODE_MASK 0x1ef
78#define IA64_OPCODE_SHIFT 32
79
80/*
81 * Table C-28 Integer Load/Store
82 *
83 * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
84 *
85 * ld8.fill, st8.fill MUST be aligned because the RNATs are based on
86 * the address (bits [8:3]), so we must failed.
87 */
88#define LD_OP 0x080
89#define LDS_OP 0x081
90#define LDA_OP 0x082
91#define LDSA_OP 0x083
92#define LDBIAS_OP 0x084
93#define LDACQ_OP 0x085
94/* 0x086, 0x087 are not relevant */
95#define LDCCLR_OP 0x088
96#define LDCNC_OP 0x089
97#define LDCCLRACQ_OP 0x08a
98#define ST_OP 0x08c
99#define STREL_OP 0x08d
100/* 0x08e,0x8f are not relevant */
101
102/*
103 * Table C-29 Integer Load +Reg
104 *
105 * we use the ld->m (bit [36:36]) field to determine whether or not we have
106 * a load/store of this form.
107 */
108
109/*
110 * Table C-30 Integer Load/Store +Imm
111 *
112 * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
113 *
114 * ld8.fill, st8.fill must be aligned because the Nat register are based on
115 * the address, so we must fail and the program must be fixed.
116 */
117#define LD_IMM_OP 0x0a0
118#define LDS_IMM_OP 0x0a1
119#define LDA_IMM_OP 0x0a2
120#define LDSA_IMM_OP 0x0a3
121#define LDBIAS_IMM_OP 0x0a4
122#define LDACQ_IMM_OP 0x0a5
123/* 0x0a6, 0xa7 are not relevant */
124#define LDCCLR_IMM_OP 0x0a8
125#define LDCNC_IMM_OP 0x0a9
126#define LDCCLRACQ_IMM_OP 0x0aa
127#define ST_IMM_OP 0x0ac
128#define STREL_IMM_OP 0x0ad
129/* 0x0ae,0xaf are not relevant */
130
131/*
132 * Table C-32 Floating-point Load/Store
133 */
134#define LDF_OP 0x0c0
135#define LDFS_OP 0x0c1
136#define LDFA_OP 0x0c2
137#define LDFSA_OP 0x0c3
138/* 0x0c6 is irrelevant */
139#define LDFCCLR_OP 0x0c8
140#define LDFCNC_OP 0x0c9
141/* 0x0cb is irrelevant */
142#define STF_OP 0x0cc
143
144/*
145 * Table C-33 Floating-point Load +Reg
146 *
147 * we use the ld->m (bit [36:36]) field to determine whether or not we have
148 * a load/store of this form.
149 */
150
151/*
152 * Table C-34 Floating-point Load/Store +Imm
153 */
154#define LDF_IMM_OP 0x0e0
155#define LDFS_IMM_OP 0x0e1
156#define LDFA_IMM_OP 0x0e2
157#define LDFSA_IMM_OP 0x0e3
158/* 0x0e6 is irrelevant */
159#define LDFCCLR_IMM_OP 0x0e8
160#define LDFCNC_IMM_OP 0x0e9
161#define STF_IMM_OP 0x0ec
162
163typedef struct {
164 unsigned long qp:6; /* [0:5] */
165 unsigned long r1:7; /* [6:12] */
166 unsigned long imm:7; /* [13:19] */
167 unsigned long r3:7; /* [20:26] */
168 unsigned long x:1; /* [27:27] */
169 unsigned long hint:2; /* [28:29] */
170 unsigned long x6_sz:2; /* [30:31] */
171 unsigned long x6_op:4; /* [32:35], x6 = x6_sz|x6_op */
172 unsigned long m:1; /* [36:36] */
173 unsigned long op:4; /* [37:40] */
174 unsigned long pad:23; /* [41:63] */
175} load_store_t;
176
177
178typedef enum {
179 UPD_IMMEDIATE, /* ldXZ r1=[r3],imm(9) */
180 UPD_REG /* ldXZ r1=[r3],r2 */
181} update_t;
182
183/*
184 * We use tables to keep track of the offsets of registers in the saved state.
185 * This way we save having big switch/case statements.
186 *
187 * We use bit 0 to indicate switch_stack or pt_regs.
188 * The offset is simply shifted by 1 bit.
189 * A 2-byte value should be enough to hold any kind of offset
190 *
191 * In case the calling convention changes (and thus pt_regs/switch_stack)
192 * simply use RSW instead of RPT or vice-versa.
193 */
194
195#define RPO(x) ((size_t) &((struct pt_regs *)0)->x)
196#define RSO(x) ((size_t) &((struct switch_stack *)0)->x)
197
198#define RPT(x) (RPO(x) << 1)
199#define RSW(x) (1| RSO(x)<<1)
200
201#define GR_OFFS(x) (gr_info[x]>>1)
202#define GR_IN_SW(x) (gr_info[x] & 0x1)
203
204#define FR_OFFS(x) (fr_info[x]>>1)
205#define FR_IN_SW(x) (fr_info[x] & 0x1)
206
207static u16 gr_info[32]={
208 0, /* r0 is read-only : WE SHOULD NEVER GET THIS */
209
210 RPT(r1), RPT(r2), RPT(r3),
211
212 RSW(r4), RSW(r5), RSW(r6), RSW(r7),
213
214 RPT(r8), RPT(r9), RPT(r10), RPT(r11),
215 RPT(r12), RPT(r13), RPT(r14), RPT(r15),
216
217 RPT(r16), RPT(r17), RPT(r18), RPT(r19),
218 RPT(r20), RPT(r21), RPT(r22), RPT(r23),
219 RPT(r24), RPT(r25), RPT(r26), RPT(r27),
220 RPT(r28), RPT(r29), RPT(r30), RPT(r31)
221};
222
223static u16 fr_info[32]={
224 0, /* constant : WE SHOULD NEVER GET THIS */
225 0, /* constant : WE SHOULD NEVER GET THIS */
226
227 RSW(f2), RSW(f3), RSW(f4), RSW(f5),
228
229 RPT(f6), RPT(f7), RPT(f8), RPT(f9),
230 RPT(f10), RPT(f11),
231
232 RSW(f12), RSW(f13), RSW(f14),
233 RSW(f15), RSW(f16), RSW(f17), RSW(f18), RSW(f19),
234 RSW(f20), RSW(f21), RSW(f22), RSW(f23), RSW(f24),
235 RSW(f25), RSW(f26), RSW(f27), RSW(f28), RSW(f29),
236 RSW(f30), RSW(f31)
237};
238
239/* Invalidate ALAT entry for integer register REGNO. */
240static void
241invala_gr (int regno)
242{
243# define F(reg) case reg: ia64_invala_gr(reg); break
244
245 switch (regno) {
246 F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7);
247 F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
248 F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
249 F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
250 F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
251 F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
252 F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
253 F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
254 F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
255 F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
256 F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
257 F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
258 F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
259 F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
260 F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
261 F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
262 }
263# undef F
264}
265
266/* Invalidate ALAT entry for floating-point register REGNO. */
267static void
268invala_fr (int regno)
269{
270# define F(reg) case reg: ia64_invala_fr(reg); break
271
272 switch (regno) {
273 F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7);
274 F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
275 F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
276 F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
277 F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
278 F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
279 F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
280 F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
281 F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
282 F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
283 F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
284 F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
285 F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
286 F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
287 F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
288 F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
289 }
290# undef F
291}
292
293static inline unsigned long
294rotate_reg (unsigned long sor, unsigned long rrb, unsigned long reg)
295{
296 reg += rrb;
297 if (reg >= sor)
298 reg -= sor;
299 return reg;
300}
301
302static void
303set_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long val, int nat)
304{
305 struct switch_stack *sw = (struct switch_stack *) regs - 1;
306 unsigned long *bsp, *bspstore, *addr, *rnat_addr, *ubs_end;
307 unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
308 unsigned long rnats, nat_mask;
309 unsigned long on_kbs;
310 long sof = (regs->cr_ifs) & 0x7f;
311 long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
312 long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
313 long ridx = r1 - 32;
314
315 if (ridx >= sof) {
316 /* this should never happen, as the "rsvd register fault" has higher priority */
317 DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1, sof);
318 return;
319 }
320
321 if (ridx < sor)
322 ridx = rotate_reg(sor, rrb_gr, ridx);
323
324 DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
325 r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
326
327 on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
328 addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
329 if (addr >= kbs) {
330 /* the register is on the kernel backing store: easy... */
331 rnat_addr = ia64_rse_rnat_addr(addr);
332 if ((unsigned long) rnat_addr >= sw->ar_bspstore)
333 rnat_addr = &sw->ar_rnat;
334 nat_mask = 1UL << ia64_rse_slot_num(addr);
335
336 *addr = val;
337 if (nat)
338 *rnat_addr |= nat_mask;
339 else
340 *rnat_addr &= ~nat_mask;
341 return;
342 }
343
344 if (!user_stack(current, regs)) {
345 DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1);
346 return;
347 }
348
349 bspstore = (unsigned long *)regs->ar_bspstore;
350 ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
351 bsp = ia64_rse_skip_regs(ubs_end, -sof);
352 addr = ia64_rse_skip_regs(bsp, ridx);
353
354 DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
355
356 ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
357
358 rnat_addr = ia64_rse_rnat_addr(addr);
359
360 ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
361 DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n",
362 (void *) rnat_addr, rnats, nat, (rnats >> ia64_rse_slot_num(addr)) & 1);
363
364 nat_mask = 1UL << ia64_rse_slot_num(addr);
365 if (nat)
366 rnats |= nat_mask;
367 else
368 rnats &= ~nat_mask;
369 ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, rnats);
370
371 DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr, rnats);
372}
373
374
375static void
376get_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long *val, int *nat)
377{
378 struct switch_stack *sw = (struct switch_stack *) regs - 1;
379 unsigned long *bsp, *addr, *rnat_addr, *ubs_end, *bspstore;
380 unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
381 unsigned long rnats, nat_mask;
382 unsigned long on_kbs;
383 long sof = (regs->cr_ifs) & 0x7f;
384 long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
385 long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
386 long ridx = r1 - 32;
387
388 if (ridx >= sof) {
389 /* read of out-of-frame register returns an undefined value; 0 in our case. */
390 DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1, sof);
391 goto fail;
392 }
393
394 if (ridx < sor)
395 ridx = rotate_reg(sor, rrb_gr, ridx);
396
397 DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
398 r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
399
400 on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
401 addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
402 if (addr >= kbs) {
403 /* the register is on the kernel backing store: easy... */
404 *val = *addr;
405 if (nat) {
406 rnat_addr = ia64_rse_rnat_addr(addr);
407 if ((unsigned long) rnat_addr >= sw->ar_bspstore)
408 rnat_addr = &sw->ar_rnat;
409 nat_mask = 1UL << ia64_rse_slot_num(addr);
410 *nat = (*rnat_addr & nat_mask) != 0;
411 }
412 return;
413 }
414
415 if (!user_stack(current, regs)) {
416 DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1);
417 goto fail;
418 }
419
420 bspstore = (unsigned long *)regs->ar_bspstore;
421 ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
422 bsp = ia64_rse_skip_regs(ubs_end, -sof);
423 addr = ia64_rse_skip_regs(bsp, ridx);
424
425 DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
426
427 ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
428
429 if (nat) {
430 rnat_addr = ia64_rse_rnat_addr(addr);
431 nat_mask = 1UL << ia64_rse_slot_num(addr);
432
433 DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr, rnats);
434
435 ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
436 *nat = (rnats & nat_mask) != 0;
437 }
438 return;
439
440 fail:
441 *val = 0;
442 if (nat)
443 *nat = 0;
444 return;
445}
446
447
448static void
449setreg (unsigned long regnum, unsigned long val, int nat, struct pt_regs *regs)
450{
451 struct switch_stack *sw = (struct switch_stack *) regs - 1;
452 unsigned long addr;
453 unsigned long bitmask;
454 unsigned long *unat;
455
456 /*
457 * First takes care of stacked registers
458 */
459 if (regnum >= IA64_FIRST_STACKED_GR) {
460 set_rse_reg(regs, regnum, val, nat);
461 return;
462 }
463
464 /*
465 * Using r0 as a target raises a General Exception fault which has higher priority
466 * than the Unaligned Reference fault.
467 */
468
469 /*
470 * Now look at registers in [0-31] range and init correct UNAT
471 */
472 if (GR_IN_SW(regnum)) {
473 addr = (unsigned long)sw;
474 unat = &sw->ar_unat;
475 } else {
476 addr = (unsigned long)regs;
477 unat = &sw->caller_unat;
478 }
479 DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n",
480 addr, unat==&sw->ar_unat ? "yes":"no", GR_OFFS(regnum));
481 /*
482 * add offset from base of struct
483 * and do it !
484 */
485 addr += GR_OFFS(regnum);
486
487 *(unsigned long *)addr = val;
488
489 /*
490 * We need to clear the corresponding UNAT bit to fully emulate the load
491 * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4
492 */
493 bitmask = 1UL << (addr >> 3 & 0x3f);
494 DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr, val, nat, (void *) unat, *unat);
495 if (nat) {
496 *unat |= bitmask;
497 } else {
498 *unat &= ~bitmask;
499 }
500 DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr, val, nat, (void *) unat,*unat);
501}
502
503/*
504 * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the
505 * range from 32-127, result is in the range from 0-95.
506 */
507static inline unsigned long
508fph_index (struct pt_regs *regs, long regnum)
509{
510 unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f;
511 return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR));
512}
513
514static void
515setfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
516{
517 struct switch_stack *sw = (struct switch_stack *)regs - 1;
518 unsigned long addr;
519
520 /*
521 * From EAS-2.5: FPDisableFault has higher priority than Unaligned
522 * Fault. Thus, when we get here, we know the partition is enabled.
523 * To update f32-f127, there are three choices:
524 *
525 * (1) save f32-f127 to thread.fph and update the values there
526 * (2) use a gigantic switch statement to directly access the registers
527 * (3) generate code on the fly to update the desired register
528 *
529 * For now, we are using approach (1).
530 */
531 if (regnum >= IA64_FIRST_ROTATING_FR) {
532 ia64_sync_fph(current);
533 current->thread.fph[fph_index(regs, regnum)] = *fpval;
534 } else {
535 /*
536 * pt_regs or switch_stack ?
537 */
538 if (FR_IN_SW(regnum)) {
539 addr = (unsigned long)sw;
540 } else {
541 addr = (unsigned long)regs;
542 }
543
544 DPRINT("tmp_base=%lx offset=%d\n", addr, FR_OFFS(regnum));
545
546 addr += FR_OFFS(regnum);
547 *(struct ia64_fpreg *)addr = *fpval;
548
549 /*
550 * mark the low partition as being used now
551 *
552 * It is highly unlikely that this bit is not already set, but
553 * let's do it for safety.
554 */
555 regs->cr_ipsr |= IA64_PSR_MFL;
556 }
557}
558
559/*
560 * Those 2 inline functions generate the spilled versions of the constant floating point
561 * registers which can be used with stfX
562 */
563static inline void
564float_spill_f0 (struct ia64_fpreg *final)
565{
566 ia64_stf_spill(final, 0);
567}
568
569static inline void
570float_spill_f1 (struct ia64_fpreg *final)
571{
572 ia64_stf_spill(final, 1);
573}
574
575static void
576getfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
577{
578 struct switch_stack *sw = (struct switch_stack *) regs - 1;
579 unsigned long addr;
580
581 /*
582 * From EAS-2.5: FPDisableFault has higher priority than
583 * Unaligned Fault. Thus, when we get here, we know the partition is
584 * enabled.
585 *
586 * When regnum > 31, the register is still live and we need to force a save
587 * to current->thread.fph to get access to it. See discussion in setfpreg()
588 * for reasons and other ways of doing this.
589 */
590 if (regnum >= IA64_FIRST_ROTATING_FR) {
591 ia64_flush_fph(current);
592 *fpval = current->thread.fph[fph_index(regs, regnum)];
593 } else {
594 /*
595 * f0 = 0.0, f1= 1.0. Those registers are constant and are thus
596 * not saved, we must generate their spilled form on the fly
597 */
598 switch(regnum) {
599 case 0:
600 float_spill_f0(fpval);
601 break;
602 case 1:
603 float_spill_f1(fpval);
604 break;
605 default:
606 /*
607 * pt_regs or switch_stack ?
608 */
609 addr = FR_IN_SW(regnum) ? (unsigned long)sw
610 : (unsigned long)regs;
611
612 DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n",
613 FR_IN_SW(regnum), addr, FR_OFFS(regnum));
614
615 addr += FR_OFFS(regnum);
616 *fpval = *(struct ia64_fpreg *)addr;
617 }
618 }
619}
620
621
622static void
623getreg (unsigned long regnum, unsigned long *val, int *nat, struct pt_regs *regs)
624{
625 struct switch_stack *sw = (struct switch_stack *) regs - 1;
626 unsigned long addr, *unat;
627
628 if (regnum >= IA64_FIRST_STACKED_GR) {
629 get_rse_reg(regs, regnum, val, nat);
630 return;
631 }
632
633 /*
634 * take care of r0 (read-only always evaluate to 0)
635 */
636 if (regnum == 0) {
637 *val = 0;
638 if (nat)
639 *nat = 0;
640 return;
641 }
642
643 /*
644 * Now look at registers in [0-31] range and init correct UNAT
645 */
646 if (GR_IN_SW(regnum)) {
647 addr = (unsigned long)sw;
648 unat = &sw->ar_unat;
649 } else {
650 addr = (unsigned long)regs;
651 unat = &sw->caller_unat;
652 }
653
654 DPRINT("addr_base=%lx offset=0x%x\n", addr, GR_OFFS(regnum));
655
656 addr += GR_OFFS(regnum);
657
658 *val = *(unsigned long *)addr;
659
660 /*
661 * do it only when requested
662 */
663 if (nat)
664 *nat = (*unat >> (addr >> 3 & 0x3f)) & 0x1UL;
665}
666
667static void
668emulate_load_updates (update_t type, load_store_t ld, struct pt_regs *regs, unsigned long ifa)
669{
670 /*
671 * IMPORTANT:
672 * Given the way we handle unaligned speculative loads, we should
673 * not get to this point in the code but we keep this sanity check,
674 * just in case.
675 */
676 if (ld.x6_op == 1 || ld.x6_op == 3) {
d4ed8084 677 printk(KERN_ERR "%s: register update on speculative load, error\n", __func__);
620de2f5
JB
678 if (die_if_kernel("unaligned reference on speculative load with register update\n",
679 regs, 30))
680 return;
1da177e4
LT
681 }
682
683
684 /*
685 * at this point, we know that the base register to update is valid i.e.,
686 * it's not r0
687 */
688 if (type == UPD_IMMEDIATE) {
689 unsigned long imm;
690
691 /*
692 * Load +Imm: ldXZ r1=[r3],imm(9)
693 *
694 *
695 * form imm9: [13:19] contain the first 7 bits
696 */
697 imm = ld.x << 7 | ld.imm;
698
699 /*
700 * sign extend (1+8bits) if m set
701 */
702 if (ld.m) imm |= SIGN_EXT9;
703
704 /*
705 * ifa == r3 and we know that the NaT bit on r3 was clear so
706 * we can directly use ifa.
707 */
708 ifa += imm;
709
710 setreg(ld.r3, ifa, 0, regs);
711
712 DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld.x, ld.m, imm, ifa);
713
714 } else if (ld.m) {
715 unsigned long r2;
716 int nat_r2;
717
718 /*
719 * Load +Reg Opcode: ldXZ r1=[r3],r2
720 *
721 * Note: that we update r3 even in the case of ldfX.a
722 * (where the load does not happen)
723 *
724 * The way the load algorithm works, we know that r3 does not
725 * have its NaT bit set (would have gotten NaT consumption
726 * before getting the unaligned fault). So we can use ifa
727 * which equals r3 at this point.
728 *
729 * IMPORTANT:
730 * The above statement holds ONLY because we know that we
731 * never reach this code when trying to do a ldX.s.
732 * If we ever make it to here on an ldfX.s then
733 */
734 getreg(ld.imm, &r2, &nat_r2, regs);
735
736 ifa += r2;
737
738 /*
739 * propagate Nat r2 -> r3
740 */
741 setreg(ld.r3, ifa, nat_r2, regs);
742
743 DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld.imm, r2, ifa, nat_r2);
744 }
745}
746
747
748static int
749emulate_load_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
750{
751 unsigned int len = 1 << ld.x6_sz;
752 unsigned long val = 0;
753
754 /*
755 * r0, as target, doesn't need to be checked because Illegal Instruction
756 * faults have higher priority than unaligned faults.
757 *
758 * r0 cannot be found as the base as it would never generate an
759 * unaligned reference.
760 */
761
762 /*
763 * ldX.a we will emulate load and also invalidate the ALAT entry.
764 * See comment below for explanation on how we handle ldX.a
765 */
766
767 if (len != 2 && len != 4 && len != 8) {
768 DPRINT("unknown size: x6=%d\n", ld.x6_sz);
769 return -1;
770 }
771 /* this assumes little-endian byte-order: */
772 if (copy_from_user(&val, (void __user *) ifa, len))
773 return -1;
774 setreg(ld.r1, val, 0, regs);
775
776 /*
777 * check for updates on any kind of loads
778 */
779 if (ld.op == 0x5 || ld.m)
780 emulate_load_updates(ld.op == 0x5 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
781
782 /*
783 * handling of various loads (based on EAS2.4):
784 *
785 * ldX.acq (ordered load):
786 * - acquire semantics would have been used, so force fence instead.
787 *
788 * ldX.c.clr (check load and clear):
789 * - if we get to this handler, it's because the entry was not in the ALAT.
790 * Therefore the operation reverts to a normal load
791 *
792 * ldX.c.nc (check load no clear):
793 * - same as previous one
794 *
795 * ldX.c.clr.acq (ordered check load and clear):
796 * - same as above for c.clr part. The load needs to have acquire semantics. So
797 * we use the fence semantics which is stronger and thus ensures correctness.
798 *
799 * ldX.a (advanced load):
800 * - suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the
801 * address doesn't match requested size alignment. This means that we would
802 * possibly need more than one load to get the result.
803 *
804 * The load part can be handled just like a normal load, however the difficult
805 * part is to get the right thing into the ALAT. The critical piece of information
806 * in the base address of the load & size. To do that, a ld.a must be executed,
807 * clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now
808 * if we use the same target register, we will be okay for the check.a instruction.
809 * If we look at the store, basically a stX [r3]=r1 checks the ALAT for any entry
810 * which would overlap within [r3,r3+X] (the size of the load was store in the
811 * ALAT). If such an entry is found the entry is invalidated. But this is not good
812 * enough, take the following example:
813 * r3=3
814 * ld4.a r1=[r3]
815 *
816 * Could be emulated by doing:
817 * ld1.a r1=[r3],1
818 * store to temporary;
819 * ld1.a r1=[r3],1
820 * store & shift to temporary;
821 * ld1.a r1=[r3],1
822 * store & shift to temporary;
823 * ld1.a r1=[r3]
824 * store & shift to temporary;
825 * r1=temporary
826 *
827 * So in this case, you would get the right value is r1 but the wrong info in
828 * the ALAT. Notice that you could do it in reverse to finish with address 3
829 * but you would still get the size wrong. To get the size right, one needs to
830 * execute exactly the same kind of load. You could do it from a aligned
831 * temporary location, but you would get the address wrong.
832 *
833 * So no matter what, it is not possible to emulate an advanced load
834 * correctly. But is that really critical ?
835 *
836 * We will always convert ld.a into a normal load with ALAT invalidated. This
837 * will enable compiler to do optimization where certain code path after ld.a
838 * is not required to have ld.c/chk.a, e.g., code path with no intervening stores.
839 *
840 * If there is a store after the advanced load, one must either do a ld.c.* or
841 * chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no
842 * entry found in ALAT), and that's perfectly ok because:
843 *
844 * - ld.c.*, if the entry is not present a normal load is executed
845 * - chk.a.*, if the entry is not present, execution jumps to recovery code
846 *
847 * In either case, the load can be potentially retried in another form.
848 *
849 * ALAT must be invalidated for the register (so that chk.a or ld.c don't pick
850 * up a stale entry later). The register base update MUST also be performed.
851 */
852
853 /*
854 * when the load has the .acq completer then
855 * use ordering fence.
856 */
857 if (ld.x6_op == 0x5 || ld.x6_op == 0xa)
858 mb();
859
860 /*
861 * invalidate ALAT entry in case of advanced load
862 */
863 if (ld.x6_op == 0x2)
864 invala_gr(ld.r1);
865
866 return 0;
867}
868
869static int
870emulate_store_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
871{
872 unsigned long r2;
873 unsigned int len = 1 << ld.x6_sz;
874
875 /*
876 * if we get to this handler, Nat bits on both r3 and r2 have already
877 * been checked. so we don't need to do it
878 *
879 * extract the value to be stored
880 */
881 getreg(ld.imm, &r2, NULL, regs);
882
883 /*
884 * we rely on the macros in unaligned.h for now i.e.,
885 * we let the compiler figure out how to read memory gracefully.
886 *
887 * We need this switch/case because the way the inline function
888 * works. The code is optimized by the compiler and looks like
889 * a single switch/case.
890 */
891 DPRINT("st%d [%lx]=%lx\n", len, ifa, r2);
892
893 if (len != 2 && len != 4 && len != 8) {
894 DPRINT("unknown size: x6=%d\n", ld.x6_sz);
895 return -1;
896 }
897
898 /* this assumes little-endian byte-order: */
899 if (copy_to_user((void __user *) ifa, &r2, len))
900 return -1;
901
902 /*
903 * stX [r3]=r2,imm(9)
904 *
905 * NOTE:
906 * ld.r3 can never be r0, because r0 would not generate an
907 * unaligned access.
908 */
909 if (ld.op == 0x5) {
910 unsigned long imm;
911
912 /*
913 * form imm9: [12:6] contain first 7bits
914 */
915 imm = ld.x << 7 | ld.r1;
916 /*
917 * sign extend (8bits) if m set
918 */
919 if (ld.m) imm |= SIGN_EXT9;
920 /*
921 * ifa == r3 (NaT is necessarily cleared)
922 */
923 ifa += imm;
924
925 DPRINT("imm=%lx r3=%lx\n", imm, ifa);
926
927 setreg(ld.r3, ifa, 0, regs);
928 }
929 /*
930 * we don't have alat_invalidate_multiple() so we need
931 * to do the complete flush :-<<
932 */
933 ia64_invala();
934
935 /*
936 * stX.rel: use fence instead of release
937 */
938 if (ld.x6_op == 0xd)
939 mb();
940
941 return 0;
942}
943
944/*
945 * floating point operations sizes in bytes
946 */
947static const unsigned char float_fsz[4]={
948 10, /* extended precision (e) */
949 8, /* integer (8) */
950 4, /* single precision (s) */
951 8 /* double precision (d) */
952};
953
954static inline void
955mem2float_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
956{
957 ia64_ldfe(6, init);
958 ia64_stop();
959 ia64_stf_spill(final, 6);
960}
961
962static inline void
963mem2float_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
964{
965 ia64_ldf8(6, init);
966 ia64_stop();
967 ia64_stf_spill(final, 6);
968}
969
970static inline void
971mem2float_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
972{
973 ia64_ldfs(6, init);
974 ia64_stop();
975 ia64_stf_spill(final, 6);
976}
977
978static inline void
979mem2float_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
980{
981 ia64_ldfd(6, init);
982 ia64_stop();
983 ia64_stf_spill(final, 6);
984}
985
986static inline void
987float2mem_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
988{
989 ia64_ldf_fill(6, init);
990 ia64_stop();
991 ia64_stfe(final, 6);
992}
993
994static inline void
995float2mem_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
996{
997 ia64_ldf_fill(6, init);
998 ia64_stop();
999 ia64_stf8(final, 6);
1000}
1001
1002static inline void
1003float2mem_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
1004{
1005 ia64_ldf_fill(6, init);
1006 ia64_stop();
1007 ia64_stfs(final, 6);
1008}
1009
1010static inline void
1011float2mem_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
1012{
1013 ia64_ldf_fill(6, init);
1014 ia64_stop();
1015 ia64_stfd(final, 6);
1016}
1017
1018static int
1019emulate_load_floatpair (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1020{
1021 struct ia64_fpreg fpr_init[2];
1022 struct ia64_fpreg fpr_final[2];
1023 unsigned long len = float_fsz[ld.x6_sz];
1024
1025 /*
1026 * fr0 & fr1 don't need to be checked because Illegal Instruction faults have
1027 * higher priority than unaligned faults.
1028 *
1029 * r0 cannot be found as the base as it would never generate an unaligned
1030 * reference.
1031 */
1032
1033 /*
1034 * make sure we get clean buffers
1035 */
1036 memset(&fpr_init, 0, sizeof(fpr_init));
1037 memset(&fpr_final, 0, sizeof(fpr_final));
1038
1039 /*
1040 * ldfpX.a: we don't try to emulate anything but we must
1041 * invalidate the ALAT entry and execute updates, if any.
1042 */
1043 if (ld.x6_op != 0x2) {
1044 /*
1045 * This assumes little-endian byte-order. Note that there is no "ldfpe"
1046 * instruction:
1047 */
1048 if (copy_from_user(&fpr_init[0], (void __user *) ifa, len)
1049 || copy_from_user(&fpr_init[1], (void __user *) (ifa + len), len))
1050 return -1;
1051
1052 DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld.r1, ld.imm, ld.x6_sz);
1053 DDUMP("frp_init =", &fpr_init, 2*len);
1054 /*
1055 * XXX fixme
1056 * Could optimize inlines by using ldfpX & 2 spills
1057 */
1058 switch( ld.x6_sz ) {
1059 case 0:
1060 mem2float_extended(&fpr_init[0], &fpr_final[0]);
1061 mem2float_extended(&fpr_init[1], &fpr_final[1]);
1062 break;
1063 case 1:
1064 mem2float_integer(&fpr_init[0], &fpr_final[0]);
1065 mem2float_integer(&fpr_init[1], &fpr_final[1]);
1066 break;
1067 case 2:
1068 mem2float_single(&fpr_init[0], &fpr_final[0]);
1069 mem2float_single(&fpr_init[1], &fpr_final[1]);
1070 break;
1071 case 3:
1072 mem2float_double(&fpr_init[0], &fpr_final[0]);
1073 mem2float_double(&fpr_init[1], &fpr_final[1]);
1074 break;
1075 }
1076 DDUMP("fpr_final =", &fpr_final, 2*len);
1077 /*
1078 * XXX fixme
1079 *
1080 * A possible optimization would be to drop fpr_final and directly
1081 * use the storage from the saved context i.e., the actual final
1082 * destination (pt_regs, switch_stack or thread structure).
1083 */
1084 setfpreg(ld.r1, &fpr_final[0], regs);
1085 setfpreg(ld.imm, &fpr_final[1], regs);
1086 }
1087
1088 /*
1089 * Check for updates: only immediate updates are available for this
1090 * instruction.
1091 */
1092 if (ld.m) {
1093 /*
1094 * the immediate is implicit given the ldsz of the operation:
1095 * single: 8 (2x4) and for all others it's 16 (2x8)
1096 */
1097 ifa += len<<1;
1098
1099 /*
1100 * IMPORTANT:
1101 * the fact that we force the NaT of r3 to zero is ONLY valid
1102 * as long as we don't come here with a ldfpX.s.
1103 * For this reason we keep this sanity check
1104 */
1105 if (ld.x6_op == 1 || ld.x6_op == 3)
1106 printk(KERN_ERR "%s: register update on speculative load pair, error\n",
d4ed8084 1107 __func__);
1da177e4
LT
1108
1109 setreg(ld.r3, ifa, 0, regs);
1110 }
1111
1112 /*
1113 * Invalidate ALAT entries, if any, for both registers.
1114 */
1115 if (ld.x6_op == 0x2) {
1116 invala_fr(ld.r1);
1117 invala_fr(ld.imm);
1118 }
1119 return 0;
1120}
1121
1122
1123static int
1124emulate_load_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1125{
1126 struct ia64_fpreg fpr_init;
1127 struct ia64_fpreg fpr_final;
1128 unsigned long len = float_fsz[ld.x6_sz];
1129
1130 /*
1131 * fr0 & fr1 don't need to be checked because Illegal Instruction
1132 * faults have higher priority than unaligned faults.
1133 *
1134 * r0 cannot be found as the base as it would never generate an
1135 * unaligned reference.
1136 */
1137
1138 /*
1139 * make sure we get clean buffers
1140 */
1141 memset(&fpr_init,0, sizeof(fpr_init));
1142 memset(&fpr_final,0, sizeof(fpr_final));
1143
1144 /*
1145 * ldfX.a we don't try to emulate anything but we must
1146 * invalidate the ALAT entry.
1147 * See comments in ldX for descriptions on how the various loads are handled.
1148 */
1149 if (ld.x6_op != 0x2) {
1150 if (copy_from_user(&fpr_init, (void __user *) ifa, len))
1151 return -1;
1152
1153 DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
1154 DDUMP("fpr_init =", &fpr_init, len);
1155 /*
1156 * we only do something for x6_op={0,8,9}
1157 */
1158 switch( ld.x6_sz ) {
1159 case 0:
1160 mem2float_extended(&fpr_init, &fpr_final);
1161 break;
1162 case 1:
1163 mem2float_integer(&fpr_init, &fpr_final);
1164 break;
1165 case 2:
1166 mem2float_single(&fpr_init, &fpr_final);
1167 break;
1168 case 3:
1169 mem2float_double(&fpr_init, &fpr_final);
1170 break;
1171 }
1172 DDUMP("fpr_final =", &fpr_final, len);
1173 /*
1174 * XXX fixme
1175 *
1176 * A possible optimization would be to drop fpr_final and directly
1177 * use the storage from the saved context i.e., the actual final
1178 * destination (pt_regs, switch_stack or thread structure).
1179 */
1180 setfpreg(ld.r1, &fpr_final, regs);
1181 }
1182
1183 /*
1184 * check for updates on any loads
1185 */
1186 if (ld.op == 0x7 || ld.m)
1187 emulate_load_updates(ld.op == 0x7 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
1188
1189 /*
1190 * invalidate ALAT entry in case of advanced floating point loads
1191 */
1192 if (ld.x6_op == 0x2)
1193 invala_fr(ld.r1);
1194
1195 return 0;
1196}
1197
1198
1199static int
1200emulate_store_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1201{
1202 struct ia64_fpreg fpr_init;
1203 struct ia64_fpreg fpr_final;
1204 unsigned long len = float_fsz[ld.x6_sz];
1205
1206 /*
1207 * make sure we get clean buffers
1208 */
1209 memset(&fpr_init,0, sizeof(fpr_init));
1210 memset(&fpr_final,0, sizeof(fpr_final));
1211
1212 /*
1213 * if we get to this handler, Nat bits on both r3 and r2 have already
1214 * been checked. so we don't need to do it
1215 *
1216 * extract the value to be stored
1217 */
1218 getfpreg(ld.imm, &fpr_init, regs);
1219 /*
1220 * during this step, we extract the spilled registers from the saved
1221 * context i.e., we refill. Then we store (no spill) to temporary
1222 * aligned location
1223 */
1224 switch( ld.x6_sz ) {
1225 case 0:
1226 float2mem_extended(&fpr_init, &fpr_final);
1227 break;
1228 case 1:
1229 float2mem_integer(&fpr_init, &fpr_final);
1230 break;
1231 case 2:
1232 float2mem_single(&fpr_init, &fpr_final);
1233 break;
1234 case 3:
1235 float2mem_double(&fpr_init, &fpr_final);
1236 break;
1237 }
1238 DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
1239 DDUMP("fpr_init =", &fpr_init, len);
1240 DDUMP("fpr_final =", &fpr_final, len);
1241
1242 if (copy_to_user((void __user *) ifa, &fpr_final, len))
1243 return -1;
1244
1245 /*
1246 * stfX [r3]=r2,imm(9)
1247 *
1248 * NOTE:
1249 * ld.r3 can never be r0, because r0 would not generate an
1250 * unaligned access.
1251 */
1252 if (ld.op == 0x7) {
1253 unsigned long imm;
1254
1255 /*
1256 * form imm9: [12:6] contain first 7bits
1257 */
1258 imm = ld.x << 7 | ld.r1;
1259 /*
1260 * sign extend (8bits) if m set
1261 */
1262 if (ld.m)
1263 imm |= SIGN_EXT9;
1264 /*
1265 * ifa == r3 (NaT is necessarily cleared)
1266 */
1267 ifa += imm;
1268
1269 DPRINT("imm=%lx r3=%lx\n", imm, ifa);
1270
1271 setreg(ld.r3, ifa, 0, regs);
1272 }
1273 /*
1274 * we don't have alat_invalidate_multiple() so we need
1275 * to do the complete flush :-<<
1276 */
1277 ia64_invala();
1278
1279 return 0;
1280}
1281
1282/*
1283 * Make sure we log the unaligned access, so that user/sysadmin can notice it and
1284 * eventually fix the program. However, we don't want to do that for every access so we
1285 * pace it with jiffies. This isn't really MP-safe, but it doesn't really have to be
1286 * either...
1287 */
1288static int
1289within_logging_rate_limit (void)
1290{
1291 static unsigned long count, last_time;
1292
1293 if (jiffies - last_time > 5*HZ)
1294 count = 0;
79c83bd1 1295 if (count < 5) {
1da177e4 1296 last_time = jiffies;
79c83bd1 1297 count++;
1da177e4
LT
1298 return 1;
1299 }
1300 return 0;
1301
1302}
1303
1304void
1305ia64_handle_unaligned (unsigned long ifa, struct pt_regs *regs)
1306{
1307 struct ia64_psr *ipsr = ia64_psr(regs);
1308 mm_segment_t old_fs = get_fs();
1309 unsigned long bundle[2];
1310 unsigned long opcode;
1311 struct siginfo si;
1312 const struct exception_table_entry *eh = NULL;
1313 union {
1314 unsigned long l;
1315 load_store_t insn;
1316 } u;
1317 int ret = -1;
1318
1319 if (ia64_psr(regs)->be) {
1320 /* we don't support big-endian accesses */
620de2f5
JB
1321 if (die_if_kernel("big-endian unaligned accesses are not supported", regs, 0))
1322 return;
1da177e4
LT
1323 goto force_sigbus;
1324 }
1325
1326 /*
1327 * Treat kernel accesses for which there is an exception handler entry the same as
1328 * user-level unaligned accesses. Otherwise, a clever program could trick this
1329 * handler into reading an arbitrary kernel addresses...
1330 */
1331 if (!user_mode(regs))
1332 eh = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri);
1333 if (user_mode(regs) || eh) {
1334 if ((current->thread.flags & IA64_THREAD_UAC_SIGBUS) != 0)
1335 goto force_sigbus;
1336
d2b176ed
JS
1337 if (!no_unaligned_warning &&
1338 !(current->thread.flags & IA64_THREAD_UAC_NOPRINT) &&
1339 within_logging_rate_limit())
1da177e4
LT
1340 {
1341 char buf[200]; /* comm[] is at most 16 bytes... */
1342 size_t len;
1343
1344 len = sprintf(buf, "%s(%d): unaligned access to 0x%016lx, "
19c5870c
AD
1345 "ip=0x%016lx\n\r", current->comm,
1346 task_pid_nr(current),
1da177e4
LT
1347 ifa, regs->cr_iip + ipsr->ri);
1348 /*
1349 * Don't call tty_write_message() if we're in the kernel; we might
1350 * be holding locks...
1351 */
1352 if (user_mode(regs))
1353 tty_write_message(current->signal->tty, buf);
1354 buf[len-1] = '\0'; /* drop '\r' */
d2b176ed
JS
1355 /* watch for command names containing %s */
1356 printk(KERN_WARNING "%s", buf);
1357 } else {
1358 if (no_unaligned_warning && !noprint_warning) {
1359 noprint_warning = 1;
1360 printk(KERN_WARNING "%s(%d) encountered an "
1361 "unaligned exception which required\n"
1362 "kernel assistance, which degrades "
1363 "the performance of the application.\n"
1364 "Unaligned exception warnings have "
1365 "been disabled by the system "
1366 "administrator\n"
1367 "echo 0 > /proc/sys/kernel/ignore-"
1368 "unaligned-usertrap to re-enable\n",
19c5870c 1369 current->comm, task_pid_nr(current));
d2b176ed 1370 }
1da177e4
LT
1371 }
1372 } else {
1373 if (within_logging_rate_limit())
1374 printk(KERN_WARNING "kernel unaligned access to 0x%016lx, ip=0x%016lx\n",
1375 ifa, regs->cr_iip + ipsr->ri);
1376 set_fs(KERNEL_DS);
1377 }
1378
1379 DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n",
1380 regs->cr_iip, ifa, regs->cr_ipsr, ipsr->ri, ipsr->it);
1381
1382 if (__copy_from_user(bundle, (void __user *) regs->cr_iip, 16))
1383 goto failure;
1384
1385 /*
1386 * extract the instruction from the bundle given the slot number
1387 */
1388 switch (ipsr->ri) {
1389 case 0: u.l = (bundle[0] >> 5); break;
1390 case 1: u.l = (bundle[0] >> 46) | (bundle[1] << 18); break;
1391 case 2: u.l = (bundle[1] >> 23); break;
1392 }
1393 opcode = (u.l >> IA64_OPCODE_SHIFT) & IA64_OPCODE_MASK;
1394
1395 DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d "
1396 "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode, u.insn.qp, u.insn.r1, u.insn.imm,
1397 u.insn.r3, u.insn.x, u.insn.hint, u.insn.x6_sz, u.insn.m, u.insn.op);
1398
1399 /*
1400 * IMPORTANT:
1401 * Notice that the switch statement DOES not cover all possible instructions
1402 * that DO generate unaligned references. This is made on purpose because for some
1403 * instructions it DOES NOT make sense to try and emulate the access. Sometimes it
1404 * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e.,
1405 * the program will get a signal and die:
1406 *
1407 * load/store:
1408 * - ldX.spill
1409 * - stX.spill
1410 * Reason: RNATs are based on addresses
1411 * - ld16
1412 * - st16
1413 * Reason: ld16 and st16 are supposed to occur in a single
1414 * memory op
1415 *
1416 * synchronization:
1417 * - cmpxchg
1418 * - fetchadd
1419 * - xchg
1420 * Reason: ATOMIC operations cannot be emulated properly using multiple
1421 * instructions.
1422 *
1423 * speculative loads:
1424 * - ldX.sZ
1425 * Reason: side effects, code must be ready to deal with failure so simpler
1426 * to let the load fail.
1427 * ---------------------------------------------------------------------------------
1428 * XXX fixme
1429 *
1430 * I would like to get rid of this switch case and do something
1431 * more elegant.
1432 */
1433 switch (opcode) {
1434 case LDS_OP:
1435 case LDSA_OP:
1436 if (u.insn.x)
1437 /* oops, really a semaphore op (cmpxchg, etc) */
1438 goto failure;
1439 /* no break */
1440 case LDS_IMM_OP:
1441 case LDSA_IMM_OP:
1442 case LDFS_OP:
1443 case LDFSA_OP:
1444 case LDFS_IMM_OP:
1445 /*
1446 * The instruction will be retried with deferred exceptions turned on, and
1447 * we should get Nat bit installed
1448 *
1449 * IMPORTANT: When PSR_ED is set, the register & immediate update forms
1450 * are actually executed even though the operation failed. So we don't
1451 * need to take care of this.
1452 */
1453 DPRINT("forcing PSR_ED\n");
1454 regs->cr_ipsr |= IA64_PSR_ED;
1455 goto done;
1456
1457 case LD_OP:
1458 case LDA_OP:
1459 case LDBIAS_OP:
1460 case LDACQ_OP:
1461 case LDCCLR_OP:
1462 case LDCNC_OP:
1463 case LDCCLRACQ_OP:
1464 if (u.insn.x)
1465 /* oops, really a semaphore op (cmpxchg, etc) */
1466 goto failure;
1467 /* no break */
1468 case LD_IMM_OP:
1469 case LDA_IMM_OP:
1470 case LDBIAS_IMM_OP:
1471 case LDACQ_IMM_OP:
1472 case LDCCLR_IMM_OP:
1473 case LDCNC_IMM_OP:
1474 case LDCCLRACQ_IMM_OP:
1475 ret = emulate_load_int(ifa, u.insn, regs);
1476 break;
1477
1478 case ST_OP:
1479 case STREL_OP:
1480 if (u.insn.x)
1481 /* oops, really a semaphore op (cmpxchg, etc) */
1482 goto failure;
1483 /* no break */
1484 case ST_IMM_OP:
1485 case STREL_IMM_OP:
1486 ret = emulate_store_int(ifa, u.insn, regs);
1487 break;
1488
1489 case LDF_OP:
1490 case LDFA_OP:
1491 case LDFCCLR_OP:
1492 case LDFCNC_OP:
1da177e4
LT
1493 if (u.insn.x)
1494 ret = emulate_load_floatpair(ifa, u.insn, regs);
1495 else
1496 ret = emulate_load_float(ifa, u.insn, regs);
1497 break;
1498
1a499150
TL
1499 case LDF_IMM_OP:
1500 case LDFA_IMM_OP:
1501 case LDFCCLR_IMM_OP:
1502 case LDFCNC_IMM_OP:
1503 ret = emulate_load_float(ifa, u.insn, regs);
1504 break;
1505
1da177e4
LT
1506 case STF_OP:
1507 case STF_IMM_OP:
1508 ret = emulate_store_float(ifa, u.insn, regs);
1509 break;
1510
1511 default:
1512 goto failure;
1513 }
1514 DPRINT("ret=%d\n", ret);
1515 if (ret)
1516 goto failure;
1517
1518 if (ipsr->ri == 2)
1519 /*
1520 * given today's architecture this case is not likely to happen because a
1521 * memory access instruction (M) can never be in the last slot of a
1522 * bundle. But let's keep it for now.
1523 */
1524 regs->cr_iip += 16;
1525 ipsr->ri = (ipsr->ri + 1) & 0x3;
1526
1527 DPRINT("ipsr->ri=%d iip=%lx\n", ipsr->ri, regs->cr_iip);
1528 done:
1529 set_fs(old_fs); /* restore original address limit */
1530 return;
1531
1532 failure:
1533 /* something went wrong... */
1534 if (!user_mode(regs)) {
1535 if (eh) {
1536 ia64_handle_exception(regs, eh);
1537 goto done;
1538 }
620de2f5
JB
1539 if (die_if_kernel("error during unaligned kernel access\n", regs, ret))
1540 return;
1da177e4
LT
1541 /* NOT_REACHED */
1542 }
1543 force_sigbus:
1544 si.si_signo = SIGBUS;
1545 si.si_errno = 0;
1546 si.si_code = BUS_ADRALN;
1547 si.si_addr = (void __user *) ifa;
1548 si.si_flags = 0;
1549 si.si_isr = 0;
1550 si.si_imm = 0;
1551 force_sig_info(SIGBUS, &si, current);
1552 goto done;
1553}