move die notifier handling to common code
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / ia64 / kernel / process.c
CommitLineData
1da177e4
LT
1/*
2 * Architecture-specific setup.
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
b8d8b883 6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
9138d581
KO
7 *
8 * 2005-10-07 Keith Owens <kaos@sgi.com>
9 * Add notify_die() hooks.
1da177e4 10 */
1da177e4
LT
11#include <linux/cpu.h>
12#include <linux/pm.h>
13#include <linux/elf.h>
14#include <linux/errno.h>
15#include <linux/kallsyms.h>
16#include <linux/kernel.h>
17#include <linux/mm.h>
18#include <linux/module.h>
19#include <linux/notifier.h>
20#include <linux/personality.h>
21#include <linux/sched.h>
22#include <linux/slab.h>
23#include <linux/smp_lock.h>
24#include <linux/stddef.h>
25#include <linux/thread_info.h>
26#include <linux/unistd.h>
27#include <linux/efi.h>
28#include <linux/interrupt.h>
29#include <linux/delay.h>
1eeb66a1 30#include <linux/kdebug.h>
1da177e4
LT
31
32#include <asm/cpu.h>
33#include <asm/delay.h>
34#include <asm/elf.h>
35#include <asm/ia32.h>
36#include <asm/irq.h>
c237508a 37#include <asm/kexec.h>
1da177e4
LT
38#include <asm/pgalloc.h>
39#include <asm/processor.h>
40#include <asm/sal.h>
41#include <asm/tlbflush.h>
42#include <asm/uaccess.h>
43#include <asm/unwind.h>
44#include <asm/user.h>
45
46#include "entry.h"
47
48#ifdef CONFIG_PERFMON
49# include <asm/perfmon.h>
50#endif
51
52#include "sigframe.h"
53
54void (*ia64_mark_idle)(int);
7d5f9c0f 55static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
1da177e4
LT
56
57unsigned long boot_option_idle_override = 0;
58EXPORT_SYMBOL(boot_option_idle_override);
59
60void
61ia64_do_show_stack (struct unw_frame_info *info, void *arg)
62{
63 unsigned long ip, sp, bsp;
64 char buf[128]; /* don't make it so big that it overflows the stack! */
65
66 printk("\nCall Trace:\n");
67 do {
68 unw_get_ip(info, &ip);
69 if (ip == 0)
70 break;
71
72 unw_get_sp(info, &sp);
73 unw_get_bsp(info, &bsp);
74 snprintf(buf, sizeof(buf),
75 " [<%016lx>] %%s\n"
76 " sp=%016lx bsp=%016lx\n",
77 ip, sp, bsp);
78 print_symbol(buf, ip);
79 } while (unw_unwind(info) >= 0);
80}
81
82void
83show_stack (struct task_struct *task, unsigned long *sp)
84{
85 if (!task)
86 unw_init_running(ia64_do_show_stack, NULL);
87 else {
88 struct unw_frame_info info;
89
90 unw_init_from_blocked_task(&info, task);
91 ia64_do_show_stack(&info, NULL);
92 }
93}
94
95void
96dump_stack (void)
97{
98 show_stack(NULL, NULL);
99}
100
101EXPORT_SYMBOL(dump_stack);
102
103void
104show_regs (struct pt_regs *regs)
105{
106 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
107
108 print_modules();
109 printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm);
110 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n",
111 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted());
112 print_symbol("ip is at %s\n", ip);
113 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
114 regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
115 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
116 regs->ar_rnat, regs->ar_bspstore, regs->pr);
117 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
118 regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
119 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
120 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
121 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
122 regs->f6.u.bits[1], regs->f6.u.bits[0],
123 regs->f7.u.bits[1], regs->f7.u.bits[0]);
124 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
125 regs->f8.u.bits[1], regs->f8.u.bits[0],
126 regs->f9.u.bits[1], regs->f9.u.bits[0]);
127 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
128 regs->f10.u.bits[1], regs->f10.u.bits[0],
129 regs->f11.u.bits[1], regs->f11.u.bits[0]);
130
131 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
132 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
133 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
134 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
135 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
136 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
137 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
138 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
139 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
140
141 if (user_mode(regs)) {
142 /* print the stacked registers */
143 unsigned long val, *bsp, ndirty;
144 int i, sof, is_nat = 0;
145
146 sof = regs->cr_ifs & 0x7f; /* size of frame */
147 ndirty = (regs->loadrs >> 19);
148 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
149 for (i = 0; i < sof; ++i) {
150 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
151 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
152 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
153 }
154 } else
155 show_stack(NULL, NULL);
156}
157
158void
159do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall)
160{
161 if (fsys_mode(current, &scr->pt)) {
162 /* defer signal-handling etc. until we return to privilege-level 0. */
163 if (!ia64_psr(&scr->pt)->lp)
164 ia64_psr(&scr->pt)->lp = 1;
165 return;
166 }
167
168#ifdef CONFIG_PERFMON
169 if (current->thread.pfm_needs_checking)
170 pfm_handle_work();
171#endif
172
173 /* deal with pending signal delivery */
174 if (test_thread_flag(TIF_SIGPENDING))
175 ia64_do_signal(oldset, scr, in_syscall);
176}
177
8df5a500
SE
178static int pal_halt = 1;
179static int can_do_pal_halt = 1;
180
1da177e4
LT
181static int __init nohalt_setup(char * str)
182{
fb573856 183 pal_halt = can_do_pal_halt = 0;
1da177e4
LT
184 return 1;
185}
186__setup("nohalt", nohalt_setup);
187
a71f62ed 188void
8df5a500
SE
189update_pal_halt_status(int status)
190{
191 can_do_pal_halt = pal_halt && status;
192}
193
1da177e4
LT
194/*
195 * We use this if we don't have any better idle routine..
196 */
197void
198default_idle (void)
199{
6c4fa560 200 local_irq_enable();
64c7c8f8 201 while (!need_resched()) {
1e185b97
KC
202 if (can_do_pal_halt)
203 safe_halt();
204 else
1da177e4 205 cpu_relax();
64c7c8f8 206 }
1da177e4
LT
207}
208
209#ifdef CONFIG_HOTPLUG_CPU
210/* We don't actually take CPU down, just spin without interrupts. */
211static inline void play_dead(void)
212{
213 extern void ia64_cpu_local_tick (void);
b8d8b883
AR
214 unsigned int this_cpu = smp_processor_id();
215
1da177e4
LT
216 /* Ack it */
217 __get_cpu_var(cpu_state) = CPU_DEAD;
218
1da177e4
LT
219 max_xtp();
220 local_irq_disable();
b8d8b883
AR
221 idle_task_exit();
222 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
1da177e4 223 /*
b8d8b883
AR
224 * The above is a point of no-return, the processor is
225 * expected to be in SAL loop now.
1da177e4 226 */
b8d8b883 227 BUG();
1da177e4
LT
228}
229#else
230static inline void play_dead(void)
231{
232 BUG();
233}
234#endif /* CONFIG_HOTPLUG_CPU */
235
1da177e4
LT
236void cpu_idle_wait(void)
237{
7d5f9c0f
ZM
238 unsigned int cpu, this_cpu = get_cpu();
239 cpumask_t map;
240
241 set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
242 put_cpu();
1da177e4 243
7d5f9c0f
ZM
244 cpus_clear(map);
245 for_each_online_cpu(cpu) {
246 per_cpu(cpu_idle_state, cpu) = 1;
247 cpu_set(cpu, map);
248 }
1da177e4 249
7d5f9c0f
ZM
250 __get_cpu_var(cpu_idle_state) = 0;
251
252 wmb();
253 do {
254 ssleep(1);
255 for_each_online_cpu(cpu) {
256 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
257 cpu_clear(cpu, map);
258 }
259 cpus_and(map, map, cpu_online_map);
260 } while (!cpus_empty(map));
1da177e4
LT
261}
262EXPORT_SYMBOL_GPL(cpu_idle_wait);
263
264void __attribute__((noreturn))
265cpu_idle (void)
266{
267 void (*mark_idle)(int) = ia64_mark_idle;
64c7c8f8 268 int cpu = smp_processor_id();
1da177e4
LT
269
270 /* endless idle loop with no priority at all */
271 while (1) {
0888f06a 272 if (can_do_pal_halt) {
495ab9c0 273 current_thread_info()->status &= ~TS_POLLING;
0888f06a
IM
274 /*
275 * TS_POLLING-cleared state must be visible before we
276 * test NEED_RESCHED:
277 */
278 smp_mb();
279 } else {
495ab9c0 280 current_thread_info()->status |= TS_POLLING;
0888f06a 281 }
1e185b97 282
64c7c8f8
NP
283 if (!need_resched()) {
284 void (*idle)(void);
1da177e4 285#ifdef CONFIG_SMP
1da177e4
LT
286 min_xtp();
287#endif
7d5f9c0f
ZM
288 if (__get_cpu_var(cpu_idle_state))
289 __get_cpu_var(cpu_idle_state) = 0;
290
291 rmb();
1da177e4
LT
292 if (mark_idle)
293 (*mark_idle)(1);
294
1da177e4
LT
295 idle = pm_idle;
296 if (!idle)
297 idle = default_idle;
298 (*idle)();
64c7c8f8
NP
299 if (mark_idle)
300 (*mark_idle)(0);
1da177e4 301#ifdef CONFIG_SMP
64c7c8f8 302 normal_xtp();
1da177e4 303#endif
64c7c8f8 304 }
5bfb5d69 305 preempt_enable_no_resched();
1da177e4 306 schedule();
5bfb5d69 307 preempt_disable();
1da177e4 308 check_pgt_cache();
64c7c8f8 309 if (cpu_is_offline(cpu))
1da177e4
LT
310 play_dead();
311 }
312}
313
314void
315ia64_save_extra (struct task_struct *task)
316{
317#ifdef CONFIG_PERFMON
318 unsigned long info;
319#endif
320
321 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
322 ia64_save_debug_regs(&task->thread.dbr[0]);
323
324#ifdef CONFIG_PERFMON
325 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
326 pfm_save_regs(task);
327
328 info = __get_cpu_var(pfm_syst_info);
329 if (info & PFM_CPUINFO_SYST_WIDE)
330 pfm_syst_wide_update_task(task, info, 0);
331#endif
332
333#ifdef CONFIG_IA32_SUPPORT
6450578f 334 if (IS_IA32_PROCESS(task_pt_regs(task)))
1da177e4
LT
335 ia32_save_state(task);
336#endif
337}
338
339void
340ia64_load_extra (struct task_struct *task)
341{
342#ifdef CONFIG_PERFMON
343 unsigned long info;
344#endif
345
346 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
347 ia64_load_debug_regs(&task->thread.dbr[0]);
348
349#ifdef CONFIG_PERFMON
350 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
351 pfm_load_regs(task);
352
353 info = __get_cpu_var(pfm_syst_info);
354 if (info & PFM_CPUINFO_SYST_WIDE)
355 pfm_syst_wide_update_task(task, info, 1);
356#endif
357
358#ifdef CONFIG_IA32_SUPPORT
6450578f 359 if (IS_IA32_PROCESS(task_pt_regs(task)))
1da177e4
LT
360 ia32_load_state(task);
361#endif
362}
363
364/*
365 * Copy the state of an ia-64 thread.
366 *
367 * We get here through the following call chain:
368 *
369 * from user-level: from kernel:
370 *
371 * <clone syscall> <some kernel call frames>
372 * sys_clone :
373 * do_fork do_fork
374 * copy_thread copy_thread
375 *
376 * This means that the stack layout is as follows:
377 *
378 * +---------------------+ (highest addr)
379 * | struct pt_regs |
380 * +---------------------+
381 * | struct switch_stack |
382 * +---------------------+
383 * | |
384 * | memory stack |
385 * | | <-- sp (lowest addr)
386 * +---------------------+
387 *
388 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
389 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
390 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
391 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
392 * the stack is page aligned and the page size is at least 4KB, this is always the case,
393 * so there is nothing to worry about.
394 */
395int
396copy_thread (int nr, unsigned long clone_flags,
397 unsigned long user_stack_base, unsigned long user_stack_size,
398 struct task_struct *p, struct pt_regs *regs)
399{
400 extern char ia64_ret_from_clone, ia32_ret_from_clone;
401 struct switch_stack *child_stack, *stack;
402 unsigned long rbs, child_rbs, rbs_size;
403 struct pt_regs *child_ptregs;
404 int retval = 0;
405
406#ifdef CONFIG_SMP
407 /*
408 * For SMP idle threads, fork_by_hand() calls do_fork with
409 * NULL regs.
410 */
411 if (!regs)
412 return 0;
413#endif
414
415 stack = ((struct switch_stack *) regs) - 1;
416
417 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
418 child_stack = (struct switch_stack *) child_ptregs - 1;
419
420 /* copy parent's switch_stack & pt_regs to child: */
421 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
422
423 rbs = (unsigned long) current + IA64_RBS_OFFSET;
424 child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
425 rbs_size = stack->ar_bspstore - rbs;
426
427 /* copy the parent's register backing store to the child: */
428 memcpy((void *) child_rbs, (void *) rbs, rbs_size);
429
430 if (likely(user_mode(child_ptregs))) {
431 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
432 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
433 if (user_stack_base) {
434 child_ptregs->r12 = user_stack_base + user_stack_size - 16;
435 child_ptregs->ar_bspstore = user_stack_base;
436 child_ptregs->ar_rnat = 0;
437 child_ptregs->loadrs = 0;
438 }
439 } else {
440 /*
441 * Note: we simply preserve the relative position of
442 * the stack pointer here. There is no need to
443 * allocate a scratch area here, since that will have
444 * been taken care of by the caller of sys_clone()
445 * already.
446 */
447 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
448 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
449 }
450 child_stack->ar_bspstore = child_rbs + rbs_size;
451 if (IS_IA32_PROCESS(regs))
452 child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
453 else
454 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
455
456 /* copy parts of thread_struct: */
457 p->thread.ksp = (unsigned long) child_stack - 16;
458
459 /* stop some PSR bits from being inherited.
460 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
461 * therefore we must specify them explicitly here and not include them in
462 * IA64_PSR_BITS_TO_CLEAR.
463 */
464 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
465 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
466
467 /*
468 * NOTE: The calling convention considers all floating point
469 * registers in the high partition (fph) to be scratch. Since
470 * the only way to get to this point is through a system call,
471 * we know that the values in fph are all dead. Hence, there
472 * is no need to inherit the fph state from the parent to the
473 * child and all we have to do is to make sure that
474 * IA64_THREAD_FPH_VALID is cleared in the child.
475 *
476 * XXX We could push this optimization a bit further by
477 * clearing IA64_THREAD_FPH_VALID on ANY system call.
478 * However, it's not clear this is worth doing. Also, it
479 * would be a slight deviation from the normal Linux system
480 * call behavior where scratch registers are preserved across
481 * system calls (unless used by the system call itself).
482 */
483# define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
484 | IA64_THREAD_PM_VALID)
485# define THREAD_FLAGS_TO_SET 0
486 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
487 | THREAD_FLAGS_TO_SET);
488 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
489#ifdef CONFIG_IA32_SUPPORT
490 /*
491 * If we're cloning an IA32 task then save the IA32 extra
492 * state from the current task to the new task
493 */
6450578f 494 if (IS_IA32_PROCESS(task_pt_regs(current))) {
1da177e4
LT
495 ia32_save_state(p);
496 if (clone_flags & CLONE_SETTLS)
497 retval = ia32_clone_tls(p, child_ptregs);
498
499 /* Copy partially mapped page list */
500 if (!retval)
501 retval = ia32_copy_partial_page_list(p, clone_flags);
502 }
503#endif
504
505#ifdef CONFIG_PERFMON
506 if (current->thread.pfm_context)
507 pfm_inherit(p, child_ptregs);
508#endif
509 return retval;
510}
511
512static void
513do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
514{
515 unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm;
516 elf_greg_t *dst = arg;
517 struct pt_regs *pt;
518 char nat;
519 int i;
520
521 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
522
523 if (unw_unwind_to_user(info) < 0)
524 return;
525
526 unw_get_sp(info, &sp);
527 pt = (struct pt_regs *) (sp + 16);
528
529 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
530
531 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
532 return;
533
534 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
535 &ar_rnat);
536
537 /*
538 * coredump format:
539 * r0-r31
540 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
541 * predicate registers (p0-p63)
542 * b0-b7
543 * ip cfm user-mask
544 * ar.rsc ar.bsp ar.bspstore ar.rnat
545 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
546 */
547
548 /* r0 is zero */
549 for (i = 1, mask = (1UL << i); i < 32; ++i) {
550 unw_get_gr(info, i, &dst[i], &nat);
551 if (nat)
552 nat_bits |= mask;
553 mask <<= 1;
554 }
555 dst[32] = nat_bits;
556 unw_get_pr(info, &dst[33]);
557
558 for (i = 0; i < 8; ++i)
559 unw_get_br(info, i, &dst[34 + i]);
560
561 unw_get_rp(info, &ip);
562 dst[42] = ip + ia64_psr(pt)->ri;
563 dst[43] = cfm;
564 dst[44] = pt->cr_ipsr & IA64_PSR_UM;
565
566 unw_get_ar(info, UNW_AR_RSC, &dst[45]);
567 /*
568 * For bsp and bspstore, unw_get_ar() would return the kernel
569 * addresses, but we need the user-level addresses instead:
570 */
571 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
572 dst[47] = pt->ar_bspstore;
573 dst[48] = ar_rnat;
574 unw_get_ar(info, UNW_AR_CCV, &dst[49]);
575 unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
576 unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
577 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
578 unw_get_ar(info, UNW_AR_LC, &dst[53]);
579 unw_get_ar(info, UNW_AR_EC, &dst[54]);
580 unw_get_ar(info, UNW_AR_CSD, &dst[55]);
581 unw_get_ar(info, UNW_AR_SSD, &dst[56]);
582}
583
584void
585do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
586{
587 elf_fpreg_t *dst = arg;
588 int i;
589
590 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
591
592 if (unw_unwind_to_user(info) < 0)
593 return;
594
595 /* f0 is 0.0, f1 is 1.0 */
596
597 for (i = 2; i < 32; ++i)
598 unw_get_fr(info, i, dst + i);
599
600 ia64_flush_fph(task);
601 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
602 memcpy(dst + 32, task->thread.fph, 96*16);
603}
604
605void
606do_copy_regs (struct unw_frame_info *info, void *arg)
607{
608 do_copy_task_regs(current, info, arg);
609}
610
611void
612do_dump_fpu (struct unw_frame_info *info, void *arg)
613{
614 do_dump_task_fpu(current, info, arg);
615}
616
617int
618dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
619{
620 struct unw_frame_info tcore_info;
621
622 if (current == task) {
623 unw_init_running(do_copy_regs, regs);
624 } else {
625 memset(&tcore_info, 0, sizeof(tcore_info));
626 unw_init_from_blocked_task(&tcore_info, task);
627 do_copy_task_regs(task, &tcore_info, regs);
628 }
629 return 1;
630}
631
632void
633ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
634{
635 unw_init_running(do_copy_regs, dst);
636}
637
638int
639dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
640{
641 struct unw_frame_info tcore_info;
642
643 if (current == task) {
644 unw_init_running(do_dump_fpu, dst);
645 } else {
646 memset(&tcore_info, 0, sizeof(tcore_info));
647 unw_init_from_blocked_task(&tcore_info, task);
648 do_dump_task_fpu(task, &tcore_info, dst);
649 }
650 return 1;
651}
652
653int
654dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
655{
656 unw_init_running(do_dump_fpu, dst);
657 return 1; /* f0-f31 are always valid so we always return 1 */
658}
659
660long
661sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
662 struct pt_regs *regs)
663{
664 char *fname;
665 int error;
666
667 fname = getname(filename);
668 error = PTR_ERR(fname);
669 if (IS_ERR(fname))
670 goto out;
671 error = do_execve(fname, argv, envp, regs);
672 putname(fname);
673out:
674 return error;
675}
676
677pid_t
678kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
679{
680 extern void start_kernel_thread (void);
681 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
682 struct {
683 struct switch_stack sw;
684 struct pt_regs pt;
685 } regs;
686
687 memset(&regs, 0, sizeof(regs));
688 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
689 regs.pt.r1 = helper_fptr[1]; /* set GP */
690 regs.pt.r9 = (unsigned long) fn; /* 1st argument */
691 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
692 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
693 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
694 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
695 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
696 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
697 regs.sw.pr = (1 << PRED_KERNEL_STACK);
698 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
699}
700EXPORT_SYMBOL(kernel_thread);
701
702/* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
703int
704kernel_thread_helper (int (*fn)(void *), void *arg)
705{
706#ifdef CONFIG_IA32_SUPPORT
6450578f 707 if (IS_IA32_PROCESS(task_pt_regs(current))) {
1da177e4
LT
708 /* A kernel thread is always a 64-bit process. */
709 current->thread.map_base = DEFAULT_MAP_BASE;
710 current->thread.task_size = DEFAULT_TASK_SIZE;
711 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
712 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
713 }
714#endif
715 return (*fn)(arg);
716}
717
718/*
719 * Flush thread state. This is called when a thread does an execve().
720 */
721void
722flush_thread (void)
723{
724 /* drop floating-point and debug-register state if it exists: */
725 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
726 ia64_drop_fpu(current);
27af4cfd 727#ifdef CONFIG_IA32_SUPPORT
6450578f 728 if (IS_IA32_PROCESS(task_pt_regs(current))) {
1da177e4 729 ia32_drop_partial_page_list(current);
bd1d6e24
RH
730 current->thread.task_size = IA32_PAGE_OFFSET;
731 set_fs(USER_DS);
732 }
27af4cfd 733#endif
1da177e4
LT
734}
735
736/*
737 * Clean up state associated with current thread. This is called when
738 * the thread calls exit().
739 */
740void
741exit_thread (void)
742{
9508dbfe 743
1da177e4
LT
744 ia64_drop_fpu(current);
745#ifdef CONFIG_PERFMON
746 /* if needed, stop monitoring and flush state to perfmon context */
747 if (current->thread.pfm_context)
748 pfm_exit_thread(current);
749
750 /* free debug register resources */
751 if (current->thread.flags & IA64_THREAD_DBG_VALID)
752 pfm_release_debug_registers(current);
753#endif
6450578f 754 if (IS_IA32_PROCESS(task_pt_regs(current)))
1da177e4
LT
755 ia32_drop_partial_page_list(current);
756}
757
758unsigned long
759get_wchan (struct task_struct *p)
760{
761 struct unw_frame_info info;
762 unsigned long ip;
763 int count = 0;
764
765 /*
766 * Note: p may not be a blocked task (it could be current or
767 * another process running on some other CPU. Rather than
768 * trying to determine if p is really blocked, we just assume
769 * it's blocked and rely on the unwind routines to fail
770 * gracefully if the process wasn't really blocked after all.
771 * --davidm 99/12/15
772 */
773 unw_init_from_blocked_task(&info, p);
774 do {
775 if (unw_unwind(&info) < 0)
776 return 0;
777 unw_get_ip(&info, &ip);
778 if (!in_sched_functions(ip))
779 return ip;
780 } while (count++ < 16);
781 return 0;
782}
783
784void
785cpu_halt (void)
786{
787 pal_power_mgmt_info_u_t power_info[8];
788 unsigned long min_power;
789 int i, min_power_state;
790
791 if (ia64_pal_halt_info(power_info) != 0)
792 return;
793
794 min_power_state = 0;
795 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
796 for (i = 1; i < 8; ++i)
797 if (power_info[i].pal_power_mgmt_info_s.im
798 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
799 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
800 min_power_state = i;
801 }
802
803 while (1)
804 ia64_pal_halt(min_power_state);
805}
806
c237508a
H
807void machine_shutdown(void)
808{
809#ifdef CONFIG_HOTPLUG_CPU
810 int cpu;
811
812 for_each_online_cpu(cpu) {
813 if (cpu != smp_processor_id())
814 cpu_down(cpu);
815 }
816#endif
817#ifdef CONFIG_KEXEC
818 kexec_disable_iosapic();
819#endif
820}
821
1da177e4
LT
822void
823machine_restart (char *restart_cmd)
824{
9138d581 825 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
1da177e4
LT
826 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
827}
828
1da177e4
LT
829void
830machine_halt (void)
831{
9138d581 832 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
1da177e4
LT
833 cpu_halt();
834}
835
1da177e4
LT
836void
837machine_power_off (void)
838{
839 if (pm_power_off)
840 pm_power_off();
841 machine_halt();
842}
843