[IA64] Reschedule break_fault() for better performance.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / ia64 / kernel / gate.S
CommitLineData
1da177e4
LT
1/*
2 * This file contains the code that gets mapped at the upper end of each task's text
3 * region. For now, it contains the signal trampoline code only.
4 *
5 * Copyright (C) 1999-2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 */
8
9#include <linux/config.h>
10
11#include <asm/asmmacro.h>
12#include <asm/errno.h>
13#include <asm/offsets.h>
14#include <asm/sigcontext.h>
15#include <asm/system.h>
16#include <asm/unistd.h>
17
18/*
19 * We can't easily refer to symbols inside the kernel. To avoid full runtime relocation,
20 * complications with the linker (which likes to create PLT stubs for branches
21 * to targets outside the shared object) and to avoid multi-phase kernel builds, we
22 * simply create minimalistic "patch lists" in special ELF sections.
23 */
24 .section ".data.patch.fsyscall_table", "a"
25 .previous
26#define LOAD_FSYSCALL_TABLE(reg) \
27[1:] movl reg=0; \
28 .xdata4 ".data.patch.fsyscall_table", 1b-.
29
30 .section ".data.patch.brl_fsys_bubble_down", "a"
31 .previous
32#define BRL_COND_FSYS_BUBBLE_DOWN(pr) \
33[1:](pr)brl.cond.sptk 0; \
34 .xdata4 ".data.patch.brl_fsys_bubble_down", 1b-.
35
36GLOBAL_ENTRY(__kernel_syscall_via_break)
37 .prologue
38 .altrp b6
39 .body
40 /*
41 * Note: for (fast) syscall restart to work, the break instruction must be
42 * the first one in the bundle addressed by syscall_via_break.
43 */
44{ .mib
45 break 0x100000
46 nop.i 0
47 br.ret.sptk.many b6
48}
49END(__kernel_syscall_via_break)
50
51/*
52 * On entry:
53 * r11 = saved ar.pfs
54 * r15 = system call #
55 * b0 = saved return address
56 * b6 = return address
57 * On exit:
58 * r11 = saved ar.pfs
59 * r15 = system call #
60 * b0 = saved return address
61 * all other "scratch" registers: undefined
62 * all "preserved" registers: same as on entry
63 */
64
65GLOBAL_ENTRY(__kernel_syscall_via_epc)
66 .prologue
67 .altrp b6
68 .body
69{
70 /*
71 * Note: the kernel cannot assume that the first two instructions in this
72 * bundle get executed. The remaining code must be safe even if
73 * they do not get executed.
74 */
75 adds r17=-1024,r15
76 mov r10=0 // default to successful syscall execution
77 epc
78}
79 ;;
80 rsm psr.be // note: on McKinley "rsm psr.be/srlz.d" is slightly faster than "rum psr.be"
81 LOAD_FSYSCALL_TABLE(r14)
82
83 mov r16=IA64_KR(CURRENT) // 12 cycle read latency
84 tnat.nz p10,p9=r15
85 mov r19=NR_syscalls-1
86 ;;
87 shladd r18=r17,3,r14
88
89 srlz.d
90 cmp.ne p8,p0=r0,r0 // p8 <- FALSE
91 /* Note: if r17 is a NaT, p6 will be set to zero. */
92 cmp.geu p6,p7=r19,r17 // (syscall > 0 && syscall < 1024+NR_syscalls)?
93 ;;
94(p6) ld8 r18=[r18]
95 mov r21=ar.fpsr
96 add r14=-8,r14 // r14 <- addr of fsys_bubble_down entry
97 ;;
98(p6) mov b7=r18
99(p6) tbit.z p8,p0=r18,0
100(p8) br.dptk.many b7
101
102(p6) rsm psr.i
103 mov r27=ar.rsc
104 mov r26=ar.pfs
105 ;;
106 mov r29=psr // read psr (12 cyc load latency)
107/*
108 * brl.cond doesn't work as intended because the linker would convert this branch
109 * into a branch to a PLT. Perhaps there will be a way to avoid this with some
110 * future version of the linker. In the meantime, we just use an indirect branch
111 * instead.
112 */
113#ifdef CONFIG_ITANIUM
114(p6) ld8 r14=[r14] // r14 <- fsys_bubble_down
115 ;;
116(p6) mov b7=r14
117(p6) br.sptk.many b7
118#else
119 BRL_COND_FSYS_BUBBLE_DOWN(p6)
120#endif
121
122 mov r10=-1
123(p10) mov r8=EINVAL
124(p9) mov r8=ENOSYS
125 FSYS_RETURN
126END(__kernel_syscall_via_epc)
127
128# define ARG0_OFF (16 + IA64_SIGFRAME_ARG0_OFFSET)
129# define ARG1_OFF (16 + IA64_SIGFRAME_ARG1_OFFSET)
130# define ARG2_OFF (16 + IA64_SIGFRAME_ARG2_OFFSET)
131# define SIGHANDLER_OFF (16 + IA64_SIGFRAME_HANDLER_OFFSET)
132# define SIGCONTEXT_OFF (16 + IA64_SIGFRAME_SIGCONTEXT_OFFSET)
133
134# define FLAGS_OFF IA64_SIGCONTEXT_FLAGS_OFFSET
135# define CFM_OFF IA64_SIGCONTEXT_CFM_OFFSET
136# define FR6_OFF IA64_SIGCONTEXT_FR6_OFFSET
137# define BSP_OFF IA64_SIGCONTEXT_AR_BSP_OFFSET
138# define RNAT_OFF IA64_SIGCONTEXT_AR_RNAT_OFFSET
139# define UNAT_OFF IA64_SIGCONTEXT_AR_UNAT_OFFSET
140# define FPSR_OFF IA64_SIGCONTEXT_AR_FPSR_OFFSET
141# define PR_OFF IA64_SIGCONTEXT_PR_OFFSET
142# define RP_OFF IA64_SIGCONTEXT_IP_OFFSET
143# define SP_OFF IA64_SIGCONTEXT_R12_OFFSET
144# define RBS_BASE_OFF IA64_SIGCONTEXT_RBS_BASE_OFFSET
145# define LOADRS_OFF IA64_SIGCONTEXT_LOADRS_OFFSET
146# define base0 r2
147# define base1 r3
148 /*
149 * When we get here, the memory stack looks like this:
150 *
151 * +===============================+
152 * | |
153 * // struct sigframe //
154 * | |
155 * +-------------------------------+ <-- sp+16
156 * | 16 byte of scratch |
157 * | space |
158 * +-------------------------------+ <-- sp
159 *
160 * The register stack looks _exactly_ the way it looked at the time the signal
161 * occurred. In other words, we're treading on a potential mine-field: each
162 * incoming general register may be a NaT value (including sp, in which case the
163 * process ends up dying with a SIGSEGV).
164 *
165 * The first thing need to do is a cover to get the registers onto the backing
166 * store. Once that is done, we invoke the signal handler which may modify some
167 * of the machine state. After returning from the signal handler, we return
168 * control to the previous context by executing a sigreturn system call. A signal
169 * handler may call the rt_sigreturn() function to directly return to a given
170 * sigcontext. However, the user-level sigreturn() needs to do much more than
171 * calling the rt_sigreturn() system call as it needs to unwind the stack to
172 * restore preserved registers that may have been saved on the signal handler's
173 * call stack.
174 */
175
176#define SIGTRAMP_SAVES \
177 .unwabi 3, 's'; /* mark this as a sigtramp handler (saves scratch regs) */ \
178 .unwabi @svr4, 's'; /* backwards compatibility with old unwinders (remove in v2.7) */ \
179 .savesp ar.unat, UNAT_OFF+SIGCONTEXT_OFF; \
180 .savesp ar.fpsr, FPSR_OFF+SIGCONTEXT_OFF; \
181 .savesp pr, PR_OFF+SIGCONTEXT_OFF; \
182 .savesp rp, RP_OFF+SIGCONTEXT_OFF; \
183 .savesp ar.pfs, CFM_OFF+SIGCONTEXT_OFF; \
184 .vframesp SP_OFF+SIGCONTEXT_OFF
185
186GLOBAL_ENTRY(__kernel_sigtramp)
187 // describe the state that is active when we get here:
188 .prologue
189 SIGTRAMP_SAVES
190 .body
191
192 .label_state 1
193
194 adds base0=SIGHANDLER_OFF,sp
195 adds base1=RBS_BASE_OFF+SIGCONTEXT_OFF,sp
196 br.call.sptk.many rp=1f
1971:
198 ld8 r17=[base0],(ARG0_OFF-SIGHANDLER_OFF) // get pointer to signal handler's plabel
199 ld8 r15=[base1] // get address of new RBS base (or NULL)
200 cover // push args in interrupted frame onto backing store
201 ;;
202 cmp.ne p1,p0=r15,r0 // do we need to switch rbs? (note: pr is saved by kernel)
203 mov.m r9=ar.bsp // fetch ar.bsp
204 .spillsp.p p1, ar.rnat, RNAT_OFF+SIGCONTEXT_OFF
205(p1) br.cond.spnt setup_rbs // yup -> (clobbers p8, r14-r16, and r18-r20)
206back_from_setup_rbs:
207 alloc r8=ar.pfs,0,0,3,0
208 ld8 out0=[base0],16 // load arg0 (signum)
209 adds base1=(ARG1_OFF-(RBS_BASE_OFF+SIGCONTEXT_OFF)),base1
210 ;;
211 ld8 out1=[base1] // load arg1 (siginfop)
212 ld8 r10=[r17],8 // get signal handler entry point
213 ;;
214 ld8 out2=[base0] // load arg2 (sigcontextp)
215 ld8 gp=[r17] // get signal handler's global pointer
216 adds base0=(BSP_OFF+SIGCONTEXT_OFF),sp
217 ;;
218 .spillsp ar.bsp, BSP_OFF+SIGCONTEXT_OFF
219 st8 [base0]=r9 // save sc_ar_bsp
220 adds base0=(FR6_OFF+SIGCONTEXT_OFF),sp
221 adds base1=(FR6_OFF+16+SIGCONTEXT_OFF),sp
222 ;;
223 stf.spill [base0]=f6,32
224 stf.spill [base1]=f7,32
225 ;;
226 stf.spill [base0]=f8,32
227 stf.spill [base1]=f9,32
228 mov b6=r10
229 ;;
230 stf.spill [base0]=f10,32
231 stf.spill [base1]=f11,32
232 ;;
233 stf.spill [base0]=f12,32
234 stf.spill [base1]=f13,32
235 ;;
236 stf.spill [base0]=f14,32
237 stf.spill [base1]=f15,32
238 br.call.sptk.many rp=b6 // call the signal handler
239.ret0: adds base0=(BSP_OFF+SIGCONTEXT_OFF),sp
240 ;;
241 ld8 r15=[base0] // fetch sc_ar_bsp
242 mov r14=ar.bsp
243 ;;
244 cmp.ne p1,p0=r14,r15 // do we need to restore the rbs?
245(p1) br.cond.spnt restore_rbs // yup -> (clobbers r14-r18, f6 & f7)
246 ;;
247back_from_restore_rbs:
248 adds base0=(FR6_OFF+SIGCONTEXT_OFF),sp
249 adds base1=(FR6_OFF+16+SIGCONTEXT_OFF),sp
250 ;;
251 ldf.fill f6=[base0],32
252 ldf.fill f7=[base1],32
253 ;;
254 ldf.fill f8=[base0],32
255 ldf.fill f9=[base1],32
256 ;;
257 ldf.fill f10=[base0],32
258 ldf.fill f11=[base1],32
259 ;;
260 ldf.fill f12=[base0],32
261 ldf.fill f13=[base1],32
262 ;;
263 ldf.fill f14=[base0],32
264 ldf.fill f15=[base1],32
265 mov r15=__NR_rt_sigreturn
266 .restore sp // pop .prologue
267 break __BREAK_SYSCALL
268
269 .prologue
270 SIGTRAMP_SAVES
271setup_rbs:
272 mov ar.rsc=0 // put RSE into enforced lazy mode
273 ;;
274 .save ar.rnat, r19
275 mov r19=ar.rnat // save RNaT before switching backing store area
276 adds r14=(RNAT_OFF+SIGCONTEXT_OFF),sp
277
278 mov r18=ar.bspstore
279 mov ar.bspstore=r15 // switch over to new register backing store area
280 ;;
281
282 .spillsp ar.rnat, RNAT_OFF+SIGCONTEXT_OFF
283 st8 [r14]=r19 // save sc_ar_rnat
284 .body
285 mov.m r16=ar.bsp // sc_loadrs <- (new bsp - new bspstore) << 16
286 adds r14=(LOADRS_OFF+SIGCONTEXT_OFF),sp
287 ;;
288 invala
289 sub r15=r16,r15
290 extr.u r20=r18,3,6
291 ;;
292 mov ar.rsc=0xf // set RSE into eager mode, pl 3
293 cmp.eq p8,p0=63,r20
294 shl r15=r15,16
295 ;;
296 st8 [r14]=r15 // save sc_loadrs
297(p8) st8 [r18]=r19 // if bspstore points at RNaT slot, store RNaT there now
298 .restore sp // pop .prologue
299 br.cond.sptk back_from_setup_rbs
300
301 .prologue
302 SIGTRAMP_SAVES
303 .spillsp ar.rnat, RNAT_OFF+SIGCONTEXT_OFF
304 .body
305restore_rbs:
306 // On input:
307 // r14 = bsp1 (bsp at the time of return from signal handler)
308 // r15 = bsp0 (bsp at the time the signal occurred)
309 //
310 // Here, we need to calculate bspstore0, the value that ar.bspstore needs
311 // to be set to, based on bsp0 and the size of the dirty partition on
312 // the alternate stack (sc_loadrs >> 16). This can be done with the
313 // following algorithm:
314 //
315 // bspstore0 = rse_skip_regs(bsp0, -rse_num_regs(bsp1 - (loadrs >> 19), bsp1));
316 //
317 // This is what the code below does.
318 //
319 alloc r2=ar.pfs,0,0,0,0 // alloc null frame
320 adds r16=(LOADRS_OFF+SIGCONTEXT_OFF),sp
321 adds r18=(RNAT_OFF+SIGCONTEXT_OFF),sp
322 ;;
323 ld8 r17=[r16]
324 ld8 r16=[r18] // get new rnat
325 extr.u r18=r15,3,6 // r18 <- rse_slot_num(bsp0)
326 ;;
327 mov ar.rsc=r17 // put RSE into enforced lazy mode
328 shr.u r17=r17,16
329 ;;
330 sub r14=r14,r17 // r14 (bspstore1) <- bsp1 - (sc_loadrs >> 16)
331 shr.u r17=r17,3 // r17 <- (sc_loadrs >> 19)
332 ;;
333 loadrs // restore dirty partition
334 extr.u r14=r14,3,6 // r14 <- rse_slot_num(bspstore1)
335 ;;
336 add r14=r14,r17 // r14 <- rse_slot_num(bspstore1) + (sc_loadrs >> 19)
337 ;;
338 shr.u r14=r14,6 // r14 <- (rse_slot_num(bspstore1) + (sc_loadrs >> 19))/0x40
339 ;;
340 sub r14=r14,r17 // r14 <- -rse_num_regs(bspstore1, bsp1)
341 movl r17=0x8208208208208209
342 ;;
343 add r18=r18,r14 // r18 (delta) <- rse_slot_num(bsp0) - rse_num_regs(bspstore1,bsp1)
344 setf.sig f7=r17
345 cmp.lt p7,p0=r14,r0 // p7 <- (r14 < 0)?
346 ;;
347(p7) adds r18=-62,r18 // delta -= 62
348 ;;
349 setf.sig f6=r18
350 ;;
351 xmpy.h f6=f6,f7
352 ;;
353 getf.sig r17=f6
354 ;;
355 add r17=r17,r18
356 shr r18=r18,63
357 ;;
358 shr r17=r17,5
359 ;;
360 sub r17=r17,r18 // r17 = delta/63
361 ;;
362 add r17=r14,r17 // r17 <- delta/63 - rse_num_regs(bspstore1, bsp1)
363 ;;
364 shladd r15=r17,3,r15 // r15 <- bsp0 + 8*(delta/63 - rse_num_regs(bspstore1, bsp1))
365 ;;
366 mov ar.bspstore=r15 // switch back to old register backing store area
367 ;;
368 mov ar.rnat=r16 // restore RNaT
369 mov ar.rsc=0xf // (will be restored later on from sc_ar_rsc)
370 // invala not necessary as that will happen when returning to user-mode
371 br.cond.sptk back_from_restore_rbs
372END(__kernel_sigtramp)