[PATCH] fix missing includes
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / cris / arch-v32 / drivers / axisflashmap.c
CommitLineData
51533b61
MS
1/*
2 * Physical mapping layer for MTD using the Axis partitiontable format
3 *
4 * Copyright (c) 2001, 2002, 2003 Axis Communications AB
5 *
6 * This file is under the GPL.
7 *
8 * First partition is always sector 0 regardless of if we find a partitiontable
9 * or not. In the start of the next sector, there can be a partitiontable that
10 * tells us what other partitions to define. If there isn't, we use a default
11 * partition split defined below.
12 *
13 * Copy of os/lx25/arch/cris/arch-v10/drivers/axisflashmap.c 1.5
14 * with minor changes.
15 *
16 */
17
18#include <linux/module.h>
19#include <linux/types.h>
20#include <linux/kernel.h>
21#include <linux/config.h>
22#include <linux/init.h>
4e57b681 23#include <linux/slab.h>
51533b61
MS
24
25#include <linux/mtd/concat.h>
26#include <linux/mtd/map.h>
27#include <linux/mtd/mtd.h>
28#include <linux/mtd/mtdram.h>
29#include <linux/mtd/partitions.h>
30
31#include <asm/arch/hwregs/config_defs.h>
32#include <asm/axisflashmap.h>
33#include <asm/mmu.h>
34
35#define MEM_CSE0_SIZE (0x04000000)
36#define MEM_CSE1_SIZE (0x04000000)
37
38#define FLASH_UNCACHED_ADDR KSEG_E
39#define FLASH_CACHED_ADDR KSEG_F
40
41#if CONFIG_ETRAX_FLASH_BUSWIDTH==1
42#define flash_data __u8
43#elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
44#define flash_data __u16
45#elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
46#define flash_data __u16
47#endif
48
49/* From head.S */
50extern unsigned long romfs_start, romfs_length, romfs_in_flash;
51
52/* The master mtd for the entire flash. */
53struct mtd_info* axisflash_mtd = NULL;
54
55/* Map driver functions. */
56
57static map_word flash_read(struct map_info *map, unsigned long ofs)
58{
59 map_word tmp;
60 tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);
61 return tmp;
62}
63
64static void flash_copy_from(struct map_info *map, void *to,
65 unsigned long from, ssize_t len)
66{
67 memcpy(to, (void *)(map->map_priv_1 + from), len);
68}
69
70static void flash_write(struct map_info *map, map_word d, unsigned long adr)
71{
72 *(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];
73}
74
75/*
76 * The map for chip select e0.
77 *
78 * We run into tricky coherence situations if we mix cached with uncached
79 * accesses to we only use the uncached version here.
80 *
81 * The size field is the total size where the flash chips may be mapped on the
82 * chip select. MTD probes should find all devices there and it does not matter
83 * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
84 * probes will ignore them.
85 *
86 * The start address in map_priv_1 is in virtual memory so we cannot use
87 * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
88 * address of cse0.
89 */
90static struct map_info map_cse0 = {
91 .name = "cse0",
92 .size = MEM_CSE0_SIZE,
93 .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
94 .read = flash_read,
95 .copy_from = flash_copy_from,
96 .write = flash_write,
97 .map_priv_1 = FLASH_UNCACHED_ADDR
98};
99
100/*
101 * The map for chip select e1.
102 *
103 * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
104 * address, but there isn't.
105 */
106static struct map_info map_cse1 = {
107 .name = "cse1",
108 .size = MEM_CSE1_SIZE,
109 .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
110 .read = flash_read,
111 .copy_from = flash_copy_from,
112 .write = flash_write,
113 .map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
114};
115
116/* If no partition-table was found, we use this default-set. */
117#define MAX_PARTITIONS 7
118#define NUM_DEFAULT_PARTITIONS 3
119
120/*
121 * Default flash size is 2MB. CONFIG_ETRAX_PTABLE_SECTOR is most likely the
122 * size of one flash block and "filesystem"-partition needs 5 blocks to be able
123 * to use JFFS.
124 */
125static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
126 {
127 .name = "boot firmware",
128 .size = CONFIG_ETRAX_PTABLE_SECTOR,
129 .offset = 0
130 },
131 {
132 .name = "kernel",
133 .size = 0x200000 - (6 * CONFIG_ETRAX_PTABLE_SECTOR),
134 .offset = CONFIG_ETRAX_PTABLE_SECTOR
135 },
136 {
137 .name = "filesystem",
138 .size = 5 * CONFIG_ETRAX_PTABLE_SECTOR,
139 .offset = 0x200000 - (5 * CONFIG_ETRAX_PTABLE_SECTOR)
140 }
141};
142
143/* Initialize the ones normally used. */
144static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
145 {
146 .name = "part0",
147 .size = CONFIG_ETRAX_PTABLE_SECTOR,
148 .offset = 0
149 },
150 {
151 .name = "part1",
152 .size = 0,
153 .offset = 0
154 },
155 {
156 .name = "part2",
157 .size = 0,
158 .offset = 0
159 },
160 {
161 .name = "part3",
162 .size = 0,
163 .offset = 0
164 },
165 {
166 .name = "part4",
167 .size = 0,
168 .offset = 0
169 },
170 {
171 .name = "part5",
172 .size = 0,
173 .offset = 0
174 },
175 {
176 .name = "part6",
177 .size = 0,
178 .offset = 0
179 },
180};
181
182/*
183 * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
184 * chips in that order (because the amd_flash-driver is faster).
185 */
186static struct mtd_info *probe_cs(struct map_info *map_cs)
187{
188 struct mtd_info *mtd_cs = NULL;
189
190 printk(KERN_INFO
191 "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
192 map_cs->name, map_cs->size, map_cs->map_priv_1);
193
194#ifdef CONFIG_MTD_AMDSTD
195 mtd_cs = do_map_probe("amd_flash", map_cs);
196#endif
197#ifdef CONFIG_MTD_CFI
198 if (!mtd_cs) {
199 mtd_cs = do_map_probe("cfi_probe", map_cs);
200 }
201#endif
202
203 return mtd_cs;
204}
205
206/*
207 * Probe each chip select individually for flash chips. If there are chips on
208 * both cse0 and cse1, the mtd_info structs will be concatenated to one struct
209 * so that MTD partitions can cross chip boundries.
210 *
211 * The only known restriction to how you can mount your chips is that each
212 * chip select must hold similar flash chips. But you need external hardware
213 * to do that anyway and you can put totally different chips on cse0 and cse1
214 * so it isn't really much of a restriction.
215 */
216extern struct mtd_info* __init crisv32_nand_flash_probe (void);
217static struct mtd_info *flash_probe(void)
218{
219 struct mtd_info *mtd_cse0;
220 struct mtd_info *mtd_cse1;
221 struct mtd_info *mtd_nand = NULL;
222 struct mtd_info *mtd_total;
223 struct mtd_info *mtds[3];
224 int count = 0;
225
226 if ((mtd_cse0 = probe_cs(&map_cse0)) != NULL)
227 mtds[count++] = mtd_cse0;
228 if ((mtd_cse1 = probe_cs(&map_cse1)) != NULL)
229 mtds[count++] = mtd_cse1;
230
231#ifdef CONFIG_ETRAX_NANDFLASH
232 if ((mtd_nand = crisv32_nand_flash_probe()) != NULL)
233 mtds[count++] = mtd_nand;
234#endif
235
236 if (!mtd_cse0 && !mtd_cse1 && !mtd_nand) {
237 /* No chip found. */
238 return NULL;
239 }
240
241 if (count > 1) {
242#ifdef CONFIG_MTD_CONCAT
243 /* Since the concatenation layer adds a small overhead we
244 * could try to figure out if the chips in cse0 and cse1 are
245 * identical and reprobe the whole cse0+cse1 window. But since
246 * flash chips are slow, the overhead is relatively small.
247 * So we use the MTD concatenation layer instead of further
248 * complicating the probing procedure.
249 */
250 mtd_total = mtd_concat_create(mtds,
251 count,
252 "cse0+cse1+nand");
253#else
254 printk(KERN_ERR "%s and %s: Cannot concatenate due to kernel "
255 "(mis)configuration!\n", map_cse0.name, map_cse1.name);
256 mtd_toal = NULL;
257#endif
258 if (!mtd_total) {
259 printk(KERN_ERR "%s and %s: Concatenation failed!\n",
260 map_cse0.name, map_cse1.name);
261
262 /* The best we can do now is to only use what we found
263 * at cse0.
264 */
265 mtd_total = mtd_cse0;
266 map_destroy(mtd_cse1);
267 }
268 } else {
269 mtd_total = mtd_cse0? mtd_cse0 : mtd_cse1 ? mtd_cse1 : mtd_nand;
270
271 }
272
273 return mtd_total;
274}
275
276extern unsigned long crisv32_nand_boot;
277extern unsigned long crisv32_nand_cramfs_offset;
278
279/*
280 * Probe the flash chip(s) and, if it succeeds, read the partition-table
281 * and register the partitions with MTD.
282 */
283static int __init init_axis_flash(void)
284{
285 struct mtd_info *mymtd;
286 int err = 0;
287 int pidx = 0;
288 struct partitiontable_head *ptable_head = NULL;
289 struct partitiontable_entry *ptable;
290 int use_default_ptable = 1; /* Until proven otherwise. */
291 const char *pmsg = KERN_INFO " /dev/flash%d at 0x%08x, size 0x%08x\n";
292 static char page[512];
293 size_t len;
294
295#ifndef CONFIG_ETRAXFS_SIM
296 mymtd = flash_probe();
297 mymtd->read(mymtd, CONFIG_ETRAX_PTABLE_SECTOR, 512, &len, page);
298 ptable_head = (struct partitiontable_head *)(page + PARTITION_TABLE_OFFSET);
299
300 if (!mymtd) {
301 /* There's no reason to use this module if no flash chip can
302 * be identified. Make sure that's understood.
303 */
304 printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
305 } else {
306 printk(KERN_INFO "%s: 0x%08x bytes of flash memory.\n",
307 mymtd->name, mymtd->size);
308 axisflash_mtd = mymtd;
309 }
310
311 if (mymtd) {
312 mymtd->owner = THIS_MODULE;
313 }
314 pidx++; /* First partition is always set to the default. */
315
316 if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
317 && (ptable_head->size <
318 (MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
319 PARTITIONTABLE_END_MARKER_SIZE))
320 && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
321 ptable_head->size -
322 PARTITIONTABLE_END_MARKER_SIZE)
323 == PARTITIONTABLE_END_MARKER)) {
324 /* Looks like a start, sane length and end of a
325 * partition table, lets check csum etc.
326 */
327 int ptable_ok = 0;
328 struct partitiontable_entry *max_addr =
329 (struct partitiontable_entry *)
330 ((unsigned long)ptable_head + sizeof(*ptable_head) +
331 ptable_head->size);
332 unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
333 unsigned char *p;
334 unsigned long csum = 0;
335
336 ptable = (struct partitiontable_entry *)
337 ((unsigned long)ptable_head + sizeof(*ptable_head));
338
339 /* Lets be PARANOID, and check the checksum. */
340 p = (unsigned char*) ptable;
341
342 while (p <= (unsigned char*)max_addr) {
343 csum += *p++;
344 csum += *p++;
345 csum += *p++;
346 csum += *p++;
347 }
348 ptable_ok = (csum == ptable_head->checksum);
349
350 /* Read the entries and use/show the info. */
351 printk(KERN_INFO " Found a%s partition table at 0x%p-0x%p.\n",
352 (ptable_ok ? " valid" : "n invalid"), ptable_head,
353 max_addr);
354
355 /* We have found a working bootblock. Now read the
356 * partition table. Scan the table. It ends when
357 * there is 0xffffffff, that is, empty flash.
358 */
359 while (ptable_ok
360 && ptable->offset != 0xffffffff
361 && ptable < max_addr
362 && pidx < MAX_PARTITIONS) {
363
364 axis_partitions[pidx].offset = offset + ptable->offset + (crisv32_nand_boot ? 16384 : 0);
365 axis_partitions[pidx].size = ptable->size;
366
367 printk(pmsg, pidx, axis_partitions[pidx].offset,
368 axis_partitions[pidx].size);
369 pidx++;
370 ptable++;
371 }
372 use_default_ptable = !ptable_ok;
373 }
374
375 if (romfs_in_flash) {
376 /* Add an overlapping device for the root partition (romfs). */
377
378 axis_partitions[pidx].name = "romfs";
379 if (crisv32_nand_boot) {
380 char* data = kmalloc(1024, GFP_KERNEL);
381 int len;
382 int offset = crisv32_nand_cramfs_offset & ~(1024-1);
383 char* tmp;
384
385 mymtd->read(mymtd, offset, 1024, &len, data);
386 tmp = &data[crisv32_nand_cramfs_offset % 512];
387 axis_partitions[pidx].size = *(unsigned*)(tmp + 4);
388 axis_partitions[pidx].offset = crisv32_nand_cramfs_offset;
389 kfree(data);
390 } else {
391 axis_partitions[pidx].size = romfs_length;
392 axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
393 }
394
395 axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
396
397 printk(KERN_INFO
398 " Adding readonly flash partition for romfs image:\n");
399 printk(pmsg, pidx, axis_partitions[pidx].offset,
400 axis_partitions[pidx].size);
401 pidx++;
402 }
403
404 if (mymtd) {
405 if (use_default_ptable) {
406 printk(KERN_INFO " Using default partition table.\n");
407 err = add_mtd_partitions(mymtd, axis_default_partitions,
408 NUM_DEFAULT_PARTITIONS);
409 } else {
410 err = add_mtd_partitions(mymtd, axis_partitions, pidx);
411 }
412
413 if (err) {
414 panic("axisflashmap could not add MTD partitions!\n");
415 }
416 }
417/* CONFIG_EXTRAXFS_SIM */
418#endif
419
420 if (!romfs_in_flash) {
421 /* Create an RAM device for the root partition (romfs). */
422
423#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
424 /* No use trying to boot this kernel from RAM. Panic! */
425 printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
426 "device due to kernel (mis)configuration!\n");
427 panic("This kernel cannot boot from RAM!\n");
428#else
429 struct mtd_info *mtd_ram;
430
431 mtd_ram = (struct mtd_info *)kmalloc(sizeof(struct mtd_info),
432 GFP_KERNEL);
433 if (!mtd_ram) {
434 panic("axisflashmap couldn't allocate memory for "
435 "mtd_info!\n");
436 }
437
438 printk(KERN_INFO " Adding RAM partition for romfs image:\n");
439 printk(pmsg, pidx, romfs_start, romfs_length);
440
441 err = mtdram_init_device(mtd_ram, (void*)romfs_start,
442 romfs_length, "romfs");
443 if (err) {
444 panic("axisflashmap could not initialize MTD RAM "
445 "device!\n");
446 }
447#endif
448 }
449
450 return err;
451}
452
453/* This adds the above to the kernels init-call chain. */
454module_init(init_axis_flash);
455
456EXPORT_SYMBOL(axisflash_mtd);