Merge branch 'davem-next' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / cris / arch-v10 / kernel / kgdb.c
CommitLineData
1da177e4
LT
1/*!**************************************************************************
2*!
3*! FILE NAME : kgdb.c
4*!
5*! DESCRIPTION: Implementation of the gdb stub with respect to ETRAX 100.
6*! It is a mix of arch/m68k/kernel/kgdb.c and cris_stub.c.
7*!
8*!---------------------------------------------------------------------------
9*! HISTORY
10*!
11*! DATE NAME CHANGES
12*! ---- ---- -------
13*! Apr 26 1999 Hendrik Ruijter Initial version.
14*! May 6 1999 Hendrik Ruijter Removed call to strlen in libc and removed
15*! struct assignment as it generates calls to
16*! memcpy in libc.
17*! Jun 17 1999 Hendrik Ruijter Added gdb 4.18 support. 'X', 'qC' and 'qL'.
18*! Jul 21 1999 Bjorn Wesen eLinux port
19*!
1da177e4
LT
20*!---------------------------------------------------------------------------
21*!
1da177e4
LT
22*! (C) Copyright 1999, Axis Communications AB, LUND, SWEDEN
23*!
24*!**************************************************************************/
25/* @(#) cris_stub.c 1.3 06/17/99 */
26
27/*
28 * kgdb usage notes:
29 * -----------------
30 *
31 * If you select CONFIG_ETRAX_KGDB in the configuration, the kernel will be
32 * built with different gcc flags: "-g" is added to get debug infos, and
33 * "-fomit-frame-pointer" is omitted to make debugging easier. Since the
34 * resulting kernel will be quite big (approx. > 7 MB), it will be stripped
35 * before compresion. Such a kernel will behave just as usually, except if
36 * given a "debug=<device>" command line option. (Only serial devices are
37 * allowed for <device>, i.e. no printers or the like; possible values are
38 * machine depedend and are the same as for the usual debug device, the one
39 * for logging kernel messages.) If that option is given and the device can be
40 * initialized, the kernel will connect to the remote gdb in trap_init(). The
41 * serial parameters are fixed to 8N1 and 115200 bps, for easyness of
42 * implementation.
43 *
44 * To start a debugging session, start that gdb with the debugging kernel
45 * image (the one with the symbols, vmlinux.debug) named on the command line.
46 * This file will be used by gdb to get symbol and debugging infos about the
47 * kernel. Next, select remote debug mode by
48 * target remote <device>
49 * where <device> is the name of the serial device over which the debugged
50 * machine is connected. Maybe you have to adjust the baud rate by
51 * set remotebaud <rate>
52 * or also other parameters with stty:
53 * shell stty ... </dev/...
54 * If the kernel to debug has already booted, it waited for gdb and now
55 * connects, and you'll see a breakpoint being reported. If the kernel isn't
56 * running yet, start it now. The order of gdb and the kernel doesn't matter.
57 * Another thing worth knowing about in the getting-started phase is how to
58 * debug the remote protocol itself. This is activated with
59 * set remotedebug 1
60 * gdb will then print out each packet sent or received. You'll also get some
61 * messages about the gdb stub on the console of the debugged machine.
62 *
63 * If all that works, you can use lots of the usual debugging techniques on
64 * the kernel, e.g. inspecting and changing variables/memory, setting
65 * breakpoints, single stepping and so on. It's also possible to interrupt the
66 * debugged kernel by pressing C-c in gdb. Have fun! :-)
67 *
68 * The gdb stub is entered (and thus the remote gdb gets control) in the
69 * following situations:
70 *
71 * - If breakpoint() is called. This is just after kgdb initialization, or if
72 * a breakpoint() call has been put somewhere into the kernel source.
73 * (Breakpoints can of course also be set the usual way in gdb.)
74 * In eLinux, we call breakpoint() in init/main.c after IRQ initialization.
75 *
76 * - If there is a kernel exception, i.e. bad_super_trap() or die_if_kernel()
77 * are entered. All the CPU exceptions are mapped to (more or less..., see
78 * the hard_trap_info array below) appropriate signal, which are reported
79 * to gdb. die_if_kernel() is usually called after some kind of access
80 * error and thus is reported as SIGSEGV.
81 *
82 * - When panic() is called. This is reported as SIGABRT.
83 *
84 * - If C-c is received over the serial line, which is treated as
85 * SIGINT.
86 *
87 * Of course, all these signals are just faked for gdb, since there is no
88 * signal concept as such for the kernel. It also isn't possible --obviously--
89 * to set signal handlers from inside gdb, or restart the kernel with a
90 * signal.
91 *
92 * Current limitations:
93 *
94 * - While the kernel is stopped, interrupts are disabled for safety reasons
95 * (i.e., variables not changing magically or the like). But this also
96 * means that the clock isn't running anymore, and that interrupts from the
97 * hardware may get lost/not be served in time. This can cause some device
98 * errors...
99 *
100 * - When single-stepping, only one instruction of the current thread is
101 * executed, but interrupts are allowed for that time and will be serviced
102 * if pending. Be prepared for that.
103 *
104 * - All debugging happens in kernel virtual address space. There's no way to
105 * access physical memory not mapped in kernel space, or to access user
106 * space. A way to work around this is using get_user_long & Co. in gdb
107 * expressions, but only for the current process.
108 *
109 * - Interrupting the kernel only works if interrupts are currently allowed,
110 * and the interrupt of the serial line isn't blocked by some other means
111 * (IPL too high, disabled, ...)
112 *
113 * - The gdb stub is currently not reentrant, i.e. errors that happen therein
114 * (e.g. accessing invalid memory) may not be caught correctly. This could
115 * be removed in future by introducing a stack of struct registers.
116 *
117 */
118
119/*
120 * To enable debugger support, two things need to happen. One, a
121 * call to kgdb_init() is necessary in order to allow any breakpoints
122 * or error conditions to be properly intercepted and reported to gdb.
123 * Two, a breakpoint needs to be generated to begin communication. This
124 * is most easily accomplished by a call to breakpoint().
125 *
126 * The following gdb commands are supported:
127 *
128 * command function Return value
129 *
130 * g return the value of the CPU registers hex data or ENN
131 * G set the value of the CPU registers OK or ENN
132 *
133 * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
134 * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
135 *
136 * c Resume at current address SNN ( signal NN)
137 * cAA..AA Continue at address AA..AA SNN
138 *
139 * s Step one instruction SNN
140 * sAA..AA Step one instruction from AA..AA SNN
141 *
142 * k kill
143 *
144 * ? What was the last sigval ? SNN (signal NN)
145 *
146 * bBB..BB Set baud rate to BB..BB OK or BNN, then sets
147 * baud rate
148 *
149 * All commands and responses are sent with a packet which includes a
150 * checksum. A packet consists of
151 *
152 * $<packet info>#<checksum>.
153 *
154 * where
155 * <packet info> :: <characters representing the command or response>
156 * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
157 *
158 * When a packet is received, it is first acknowledged with either '+' or '-'.
159 * '+' indicates a successful transfer. '-' indicates a failed transfer.
160 *
161 * Example:
162 *
163 * Host: Reply:
164 * $m0,10#2a +$00010203040506070809101112131415#42
165 *
166 */
167
168
169#include <linux/string.h>
170#include <linux/signal.h>
171#include <linux/kernel.h>
172#include <linux/delay.h>
173#include <linux/linkage.h>
7cf32cad 174#include <linux/reboot.h>
1da177e4
LT
175
176#include <asm/setup.h>
177#include <asm/ptrace.h>
178
556dcee7 179#include <arch/svinto.h>
1da177e4
LT
180#include <asm/irq.h>
181
182static int kgdb_started = 0;
183
184/********************************* Register image ****************************/
185/* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
186 Reference", p. 1-1, with the additional register definitions of the
187 ETRAX 100LX in cris-opc.h.
188 There are 16 general 32-bit registers, R0-R15, where R14 is the stack
189 pointer, SP, and R15 is the program counter, PC.
190 There are 16 special registers, P0-P15, where three of the unimplemented
191 registers, P0, P4 and P8, are reserved as zero-registers. A read from
192 any of these registers returns zero and a write has no effect. */
193
194typedef
195struct register_image
196{
197 /* Offset */
198 unsigned int r0; /* 0x00 */
199 unsigned int r1; /* 0x04 */
200 unsigned int r2; /* 0x08 */
201 unsigned int r3; /* 0x0C */
202 unsigned int r4; /* 0x10 */
203 unsigned int r5; /* 0x14 */
204 unsigned int r6; /* 0x18 */
205 unsigned int r7; /* 0x1C */
206 unsigned int r8; /* 0x20 Frame pointer */
207 unsigned int r9; /* 0x24 */
208 unsigned int r10; /* 0x28 */
209 unsigned int r11; /* 0x2C */
210 unsigned int r12; /* 0x30 */
211 unsigned int r13; /* 0x34 */
212 unsigned int sp; /* 0x38 Stack pointer */
213 unsigned int pc; /* 0x3C Program counter */
214
215 unsigned char p0; /* 0x40 8-bit zero-register */
216 unsigned char vr; /* 0x41 Version register */
217
218 unsigned short p4; /* 0x42 16-bit zero-register */
219 unsigned short ccr; /* 0x44 Condition code register */
220
221 unsigned int mof; /* 0x46 Multiply overflow register */
222
223 unsigned int p8; /* 0x4A 32-bit zero-register */
224 unsigned int ibr; /* 0x4E Interrupt base register */
225 unsigned int irp; /* 0x52 Interrupt return pointer */
226 unsigned int srp; /* 0x56 Subroutine return pointer */
227 unsigned int bar; /* 0x5A Breakpoint address register */
228 unsigned int dccr; /* 0x5E Double condition code register */
229 unsigned int brp; /* 0x62 Breakpoint return pointer (pc in caller) */
230 unsigned int usp; /* 0x66 User mode stack pointer */
231} registers;
232
233/************** Prototypes for local library functions ***********************/
234
235/* Copy of strcpy from libc. */
236static char *gdb_cris_strcpy (char *s1, const char *s2);
237
238/* Copy of strlen from libc. */
239static int gdb_cris_strlen (const char *s);
240
241/* Copy of memchr from libc. */
242static void *gdb_cris_memchr (const void *s, int c, int n);
243
244/* Copy of strtol from libc. Does only support base 16. */
245static int gdb_cris_strtol (const char *s, char **endptr, int base);
246
247/********************** Prototypes for local functions. **********************/
248/* Copy the content of a register image into another. The size n is
249 the size of the register image. Due to struct assignment generation of
250 memcpy in libc. */
251static void copy_registers (registers *dptr, registers *sptr, int n);
252
253/* Copy the stored registers from the stack. Put the register contents
254 of thread thread_id in the struct reg. */
255static void copy_registers_from_stack (int thread_id, registers *reg);
256
257/* Copy the registers to the stack. Put the register contents of thread
258 thread_id from struct reg to the stack. */
259static void copy_registers_to_stack (int thread_id, registers *reg);
260
261/* Write a value to a specified register regno in the register image
262 of the current thread. */
263static int write_register (int regno, char *val);
264
265/* Write a value to a specified register in the stack of a thread other
266 than the current thread. */
267static write_stack_register (int thread_id, int regno, char *valptr);
268
269/* Read a value from a specified register in the register image. Returns the
270 status of the read operation. The register value is returned in valptr. */
271static int read_register (char regno, unsigned int *valptr);
272
273/* Serial port, reads one character. ETRAX 100 specific. from debugport.c */
274int getDebugChar (void);
275
276/* Serial port, writes one character. ETRAX 100 specific. from debugport.c */
277void putDebugChar (int val);
278
279void enableDebugIRQ (void);
280
1da177e4
LT
281/* Returns the integer equivalent of a hexadecimal character. */
282static int hex (char ch);
283
284/* Convert the memory, pointed to by mem into hexadecimal representation.
285 Put the result in buf, and return a pointer to the last character
286 in buf (null). */
287static char *mem2hex (char *buf, unsigned char *mem, int count);
288
289/* Convert the array, in hexadecimal representation, pointed to by buf into
290 binary representation. Put the result in mem, and return a pointer to
291 the character after the last byte written. */
292static unsigned char *hex2mem (unsigned char *mem, char *buf, int count);
293
294/* Put the content of the array, in binary representation, pointed to by buf
295 into memory pointed to by mem, and return a pointer to
296 the character after the last byte written. */
297static unsigned char *bin2mem (unsigned char *mem, unsigned char *buf, int count);
298
299/* Await the sequence $<data>#<checksum> and store <data> in the array buffer
300 returned. */
301static void getpacket (char *buffer);
302
303/* Send $<data>#<checksum> from the <data> in the array buffer. */
304static void putpacket (char *buffer);
305
306/* Build and send a response packet in order to inform the host the
307 stub is stopped. */
308static void stub_is_stopped (int sigval);
309
310/* All expected commands are sent from remote.c. Send a response according
311 to the description in remote.c. */
312static void handle_exception (int sigval);
313
314/* Performs a complete re-start from scratch. ETRAX specific. */
315static void kill_restart (void);
316
317/******************** Prototypes for global functions. ***********************/
318
319/* The string str is prepended with the GDB printout token and sent. */
320void putDebugString (const unsigned char *str, int length); /* used by etrax100ser.c */
321
322/* The hook for both static (compiled) and dynamic breakpoints set by GDB.
323 ETRAX 100 specific. */
324void handle_breakpoint (void); /* used by irq.c */
325
326/* The hook for an interrupt generated by GDB. ETRAX 100 specific. */
327void handle_interrupt (void); /* used by irq.c */
328
329/* A static breakpoint to be used at startup. */
330void breakpoint (void); /* called by init/main.c */
331
332/* From osys_int.c, executing_task contains the number of the current
333 executing task in osys. Does not know of object-oriented threads. */
334extern unsigned char executing_task;
335
336/* The number of characters used for a 64 bit thread identifier. */
337#define HEXCHARS_IN_THREAD_ID 16
338
339/* Avoid warning as the internal_stack is not used in the C-code. */
340#define USEDVAR(name) { if (name) { ; } }
341#define USEDFUN(name) { void (*pf)(void) = (void *)name; USEDVAR(pf) }
342
343/********************************** Packet I/O ******************************/
344/* BUFMAX defines the maximum number of characters in
345 inbound/outbound buffers */
346#define BUFMAX 512
347
348/* Run-length encoding maximum length. Send 64 at most. */
349#define RUNLENMAX 64
350
1da177e4
LT
351/* The inbound/outbound buffers used in packet I/O */
352static char remcomInBuffer[BUFMAX];
353static char remcomOutBuffer[BUFMAX];
354
355/* Error and warning messages. */
356enum error_type
357{
358 SUCCESS, E01, E02, E03, E04, E05, E06, E07
359};
360static char *error_message[] =
361{
362 "",
363 "E01 Set current or general thread - H[c,g] - internal error.",
364 "E02 Change register content - P - cannot change read-only register.",
365 "E03 Thread is not alive.", /* T, not used. */
366 "E04 The command is not supported - [s,C,S,!,R,d,r] - internal error.",
367 "E05 Change register content - P - the register is not implemented..",
368 "E06 Change memory content - M - internal error.",
369 "E07 Change register content - P - the register is not stored on the stack"
370};
371/********************************* Register image ****************************/
372/* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
373 Reference", p. 1-1, with the additional register definitions of the
374 ETRAX 100LX in cris-opc.h.
375 There are 16 general 32-bit registers, R0-R15, where R14 is the stack
376 pointer, SP, and R15 is the program counter, PC.
377 There are 16 special registers, P0-P15, where three of the unimplemented
378 registers, P0, P4 and P8, are reserved as zero-registers. A read from
379 any of these registers returns zero and a write has no effect. */
380enum register_name
381{
382 R0, R1, R2, R3,
383 R4, R5, R6, R7,
384 R8, R9, R10, R11,
385 R12, R13, SP, PC,
386 P0, VR, P2, P3,
387 P4, CCR, P6, MOF,
388 P8, IBR, IRP, SRP,
389 BAR, DCCR, BRP, USP
390};
391
392/* The register sizes of the registers in register_name. An unimplemented register
393 is designated by size 0 in this array. */
394static int register_size[] =
395{
396 4, 4, 4, 4,
397 4, 4, 4, 4,
398 4, 4, 4, 4,
399 4, 4, 4, 4,
400 1, 1, 0, 0,
401 2, 2, 0, 4,
402 4, 4, 4, 4,
403 4, 4, 4, 4
404};
405
406/* Contains the register image of the executing thread in the assembler
407 part of the code in order to avoid horrible addressing modes. */
408static registers reg;
409
410/* FIXME: Should this be used? Delete otherwise. */
411/* Contains the assumed consistency state of the register image. Uses the
412 enum error_type for state information. */
413static int consistency_status = SUCCESS;
414
415/********************************** Handle exceptions ************************/
416/* The variable reg contains the register image associated with the
417 current_thread_c variable. It is a complete register image created at
418 entry. The reg_g contains a register image of a task where the general
419 registers are taken from the stack and all special registers are taken
420 from the executing task. It is associated with current_thread_g and used
421 in order to provide access mainly for 'g', 'G' and 'P'.
422*/
423
424/* Need two task id pointers in order to handle Hct and Hgt commands. */
425static int current_thread_c = 0;
426static int current_thread_g = 0;
427
428/* Need two register images in order to handle Hct and Hgt commands. The
429 variable reg_g is in addition to reg above. */
430static registers reg_g;
431
432/********************************** Breakpoint *******************************/
433/* Use an internal stack in the breakpoint and interrupt response routines */
434#define INTERNAL_STACK_SIZE 1024
435static char internal_stack[INTERNAL_STACK_SIZE];
436
437/* Due to the breakpoint return pointer, a state variable is needed to keep
438 track of whether it is a static (compiled) or dynamic (gdb-invoked)
439 breakpoint to be handled. A static breakpoint uses the content of register
440 BRP as it is whereas a dynamic breakpoint requires subtraction with 2
441 in order to execute the instruction. The first breakpoint is static. */
442static unsigned char is_dyn_brkp = 0;
443
444/********************************* String library ****************************/
445/* Single-step over library functions creates trap loops. */
446
447/* Copy char s2[] to s1[]. */
448static char*
449gdb_cris_strcpy (char *s1, const char *s2)
450{
451 char *s = s1;
452
453 for (s = s1; (*s++ = *s2++) != '\0'; )
454 ;
455 return (s1);
456}
457
458/* Find length of s[]. */
459static int
460gdb_cris_strlen (const char *s)
461{
462 const char *sc;
463
464 for (sc = s; *sc != '\0'; sc++)
465 ;
466 return (sc - s);
467}
468
469/* Find first occurrence of c in s[n]. */
470static void*
471gdb_cris_memchr (const void *s, int c, int n)
472{
473 const unsigned char uc = c;
474 const unsigned char *su;
475
476 for (su = s; 0 < n; ++su, --n)
477 if (*su == uc)
478 return ((void *)su);
479 return (NULL);
480}
481/******************************* Standard library ****************************/
482/* Single-step over library functions creates trap loops. */
483/* Convert string to long. */
484static int
485gdb_cris_strtol (const char *s, char **endptr, int base)
486{
487 char *s1;
488 char *sd;
489 int x = 0;
490
42a9a583
HH
491 for (s1 = (char*)s; (sd = gdb_cris_memchr(hex_asc, *s1, base)) != NULL; ++s1)
492 x = x * base + (sd - hex_asc);
1da177e4
LT
493
494 if (endptr)
495 {
496 /* Unconverted suffix is stored in endptr unless endptr is NULL. */
497 *endptr = s1;
498 }
499
500 return x;
501}
502
1da177e4
LT
503/********************************* Register image ****************************/
504/* Copy the content of a register image into another. The size n is
505 the size of the register image. Due to struct assignment generation of
506 memcpy in libc. */
507static void
508copy_registers (registers *dptr, registers *sptr, int n)
509{
510 unsigned char *dreg;
511 unsigned char *sreg;
512
513 for (dreg = (unsigned char*)dptr, sreg = (unsigned char*)sptr; n > 0; n--)
514 *dreg++ = *sreg++;
515}
516
517#ifdef PROCESS_SUPPORT
518/* Copy the stored registers from the stack. Put the register contents
519 of thread thread_id in the struct reg. */
520static void
521copy_registers_from_stack (int thread_id, registers *regptr)
522{
523 int j;
524 stack_registers *s = (stack_registers *)stack_list[thread_id];
525 unsigned int *d = (unsigned int *)regptr;
526
527 for (j = 13; j >= 0; j--)
528 *d++ = s->r[j];
529 regptr->sp = (unsigned int)stack_list[thread_id];
530 regptr->pc = s->pc;
531 regptr->dccr = s->dccr;
532 regptr->srp = s->srp;
533}
534
535/* Copy the registers to the stack. Put the register contents of thread
536 thread_id from struct reg to the stack. */
537static void
538copy_registers_to_stack (int thread_id, registers *regptr)
539{
540 int i;
541 stack_registers *d = (stack_registers *)stack_list[thread_id];
542 unsigned int *s = (unsigned int *)regptr;
543
544 for (i = 0; i < 14; i++) {
545 d->r[i] = *s++;
546 }
547 d->pc = regptr->pc;
548 d->dccr = regptr->dccr;
549 d->srp = regptr->srp;
550}
551#endif
552
553/* Write a value to a specified register in the register image of the current
554 thread. Returns status code SUCCESS, E02 or E05. */
555static int
556write_register (int regno, char *val)
557{
558 int status = SUCCESS;
559 registers *current_reg = &reg;
560
561 if (regno >= R0 && regno <= PC) {
562 /* 32-bit register with simple offset. */
563 hex2mem ((unsigned char *)current_reg + regno * sizeof(unsigned int),
564 val, sizeof(unsigned int));
565 }
566 else if (regno == P0 || regno == VR || regno == P4 || regno == P8) {
567 /* Do not support read-only registers. */
568 status = E02;
569 }
570 else if (regno == CCR) {
571 /* 16 bit register with complex offset. (P4 is read-only, P6 is not implemented,
572 and P7 (MOF) is 32 bits in ETRAX 100LX. */
573 hex2mem ((unsigned char *)&(current_reg->ccr) + (regno-CCR) * sizeof(unsigned short),
574 val, sizeof(unsigned short));
575 }
576 else if (regno >= MOF && regno <= USP) {
577 /* 32 bit register with complex offset. (P8 has been taken care of.) */
578 hex2mem ((unsigned char *)&(current_reg->ibr) + (regno-IBR) * sizeof(unsigned int),
579 val, sizeof(unsigned int));
580 }
581 else {
582 /* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
583 status = E05;
584 }
585 return status;
586}
587
588#ifdef PROCESS_SUPPORT
589/* Write a value to a specified register in the stack of a thread other
590 than the current thread. Returns status code SUCCESS or E07. */
591static int
592write_stack_register (int thread_id, int regno, char *valptr)
593{
594 int status = SUCCESS;
595 stack_registers *d = (stack_registers *)stack_list[thread_id];
596 unsigned int val;
597
598 hex2mem ((unsigned char *)&val, valptr, sizeof(unsigned int));
599 if (regno >= R0 && regno < SP) {
600 d->r[regno] = val;
601 }
602 else if (regno == SP) {
603 stack_list[thread_id] = val;
604 }
605 else if (regno == PC) {
606 d->pc = val;
607 }
608 else if (regno == SRP) {
609 d->srp = val;
610 }
611 else if (regno == DCCR) {
612 d->dccr = val;
613 }
614 else {
615 /* Do not support registers in the current thread. */
616 status = E07;
617 }
618 return status;
619}
620#endif
621
622/* Read a value from a specified register in the register image. Returns the
623 value in the register or -1 for non-implemented registers.
624 Should check consistency_status after a call which may be E05 after changes
625 in the implementation. */
626static int
627read_register (char regno, unsigned int *valptr)
628{
629 registers *current_reg = &reg;
630
631 if (regno >= R0 && regno <= PC) {
632 /* 32-bit register with simple offset. */
633 *valptr = *(unsigned int *)((char *)current_reg + regno * sizeof(unsigned int));
634 return SUCCESS;
635 }
636 else if (regno == P0 || regno == VR) {
637 /* 8 bit register with complex offset. */
638 *valptr = (unsigned int)(*(unsigned char *)
639 ((char *)&(current_reg->p0) + (regno-P0) * sizeof(char)));
640 return SUCCESS;
641 }
642 else if (regno == P4 || regno == CCR) {
643 /* 16 bit register with complex offset. */
644 *valptr = (unsigned int)(*(unsigned short *)
645 ((char *)&(current_reg->p4) + (regno-P4) * sizeof(unsigned short)));
646 return SUCCESS;
647 }
648 else if (regno >= MOF && regno <= USP) {
649 /* 32 bit register with complex offset. */
650 *valptr = *(unsigned int *)((char *)&(current_reg->p8)
651 + (regno-P8) * sizeof(unsigned int));
652 return SUCCESS;
653 }
654 else {
655 /* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
656 consistency_status = E05;
657 return E05;
658 }
659}
660
661/********************************** Packet I/O ******************************/
1da177e4
LT
662/* Returns the integer equivalent of a hexadecimal character. */
663static int
664hex (char ch)
665{
666 if ((ch >= 'a') && (ch <= 'f'))
667 return (ch - 'a' + 10);
668 if ((ch >= '0') && (ch <= '9'))
669 return (ch - '0');
670 if ((ch >= 'A') && (ch <= 'F'))
671 return (ch - 'A' + 10);
672 return (-1);
673}
674
675/* Convert the memory, pointed to by mem into hexadecimal representation.
676 Put the result in buf, and return a pointer to the last character
677 in buf (null). */
678
679static int do_printk = 0;
680
681static char *
682mem2hex(char *buf, unsigned char *mem, int count)
683{
684 int i;
685 int ch;
686
687 if (mem == NULL) {
688 /* Bogus read from m0. FIXME: What constitutes a valid address? */
689 for (i = 0; i < count; i++) {
690 *buf++ = '0';
691 *buf++ = '0';
692 }
693 } else {
694 /* Valid mem address. */
695 for (i = 0; i < count; i++) {
696 ch = *mem++;
42a9a583 697 buf = pack_hex_byte(buf, ch);
1da177e4
LT
698 }
699 }
700
701 /* Terminate properly. */
702 *buf = '\0';
703 return (buf);
704}
705
706/* Convert the array, in hexadecimal representation, pointed to by buf into
707 binary representation. Put the result in mem, and return a pointer to
708 the character after the last byte written. */
709static unsigned char*
710hex2mem (unsigned char *mem, char *buf, int count)
711{
712 int i;
713 unsigned char ch;
714 for (i = 0; i < count; i++) {
715 ch = hex (*buf++) << 4;
716 ch = ch + hex (*buf++);
717 *mem++ = ch;
718 }
719 return (mem);
720}
721
722/* Put the content of the array, in binary representation, pointed to by buf
723 into memory pointed to by mem, and return a pointer to the character after
724 the last byte written.
725 Gdb will escape $, #, and the escape char (0x7d). */
726static unsigned char*
727bin2mem (unsigned char *mem, unsigned char *buf, int count)
728{
729 int i;
730 unsigned char *next;
731 for (i = 0; i < count; i++) {
732 /* Check for any escaped characters. Be paranoid and
733 only unescape chars that should be escaped. */
734 if (*buf == 0x7d) {
735 next = buf + 1;
736 if (*next == 0x3 || *next == 0x4 || *next == 0x5D) /* #, $, ESC */
737 {
738 buf++;
739 *buf += 0x20;
740 }
741 }
742 *mem++ = *buf++;
743 }
744 return (mem);
745}
746
747/* Await the sequence $<data>#<checksum> and store <data> in the array buffer
748 returned. */
749static void
750getpacket (char *buffer)
751{
752 unsigned char checksum;
753 unsigned char xmitcsum;
754 int i;
755 int count;
756 char ch;
757 do {
758 while ((ch = getDebugChar ()) != '$')
759 /* Wait for the start character $ and ignore all other characters */;
760 checksum = 0;
761 xmitcsum = -1;
762 count = 0;
763 /* Read until a # or the end of the buffer is reached */
764 while (count < BUFMAX) {
765 ch = getDebugChar ();
766 if (ch == '#')
767 break;
768 checksum = checksum + ch;
769 buffer[count] = ch;
770 count = count + 1;
771 }
772 buffer[count] = '\0';
773
774 if (ch == '#') {
775 xmitcsum = hex (getDebugChar ()) << 4;
776 xmitcsum += hex (getDebugChar ());
777 if (checksum != xmitcsum) {
778 /* Wrong checksum */
779 putDebugChar ('-');
780 }
781 else {
782 /* Correct checksum */
783 putDebugChar ('+');
784 /* If sequence characters are received, reply with them */
785 if (buffer[2] == ':') {
786 putDebugChar (buffer[0]);
787 putDebugChar (buffer[1]);
788 /* Remove the sequence characters from the buffer */
789 count = gdb_cris_strlen (buffer);
790 for (i = 3; i <= count; i++)
791 buffer[i - 3] = buffer[i];
792 }
793 }
794 }
795 } while (checksum != xmitcsum);
796}
797
798/* Send $<data>#<checksum> from the <data> in the array buffer. */
799
800static void
801putpacket(char *buffer)
802{
803 int checksum;
804 int runlen;
805 int encode;
806
807 do {
808 char *src = buffer;
809 putDebugChar ('$');
810 checksum = 0;
811 while (*src) {
812 /* Do run length encoding */
813 putDebugChar (*src);
814 checksum += *src;
815 runlen = 0;
816 while (runlen < RUNLENMAX && *src == src[runlen]) {
817 runlen++;
818 }
819 if (runlen > 3) {
820 /* Got a useful amount */
821 putDebugChar ('*');
822 checksum += '*';
823 encode = runlen + ' ' - 4;
824 putDebugChar (encode);
825 checksum += encode;
826 src += runlen;
827 }
828 else {
829 src++;
830 }
831 }
42a9a583
HH
832 putDebugChar('#');
833 putDebugChar(hex_asc_hi(checksum));
834 putDebugChar(hex_asc_lo(checksum));
1da177e4
LT
835 } while(kgdb_started && (getDebugChar() != '+'));
836}
837
838/* The string str is prepended with the GDB printout token and sent. Required
839 in traditional implementations. */
840void
841putDebugString (const unsigned char *str, int length)
842{
843 remcomOutBuffer[0] = 'O';
844 mem2hex(&remcomOutBuffer[1], (unsigned char *)str, length);
845 putpacket(remcomOutBuffer);
846}
847
848/********************************** Handle exceptions ************************/
849/* Build and send a response packet in order to inform the host the
850 stub is stopped. TAAn...:r...;n...:r...;n...:r...;
851 AA = signal number
852 n... = register number (hex)
853 r... = register contents
854 n... = `thread'
855 r... = thread process ID. This is a hex integer.
856 n... = other string not starting with valid hex digit.
857 gdb should ignore this n,r pair and go on to the next.
858 This way we can extend the protocol. */
859static void
860stub_is_stopped(int sigval)
861{
862 char *ptr = remcomOutBuffer;
863 int regno;
864
865 unsigned int reg_cont;
866 int status;
867
868 /* Send trap type (converted to signal) */
869
42a9a583
HH
870 *ptr++ = 'T';
871 ptr = pack_hex_byte(ptr, sigval);
1da177e4
LT
872
873 /* Send register contents. We probably only need to send the
874 * PC, frame pointer and stack pointer here. Other registers will be
c03983ac 875 * explicitly asked for. But for now, send all.
1da177e4
LT
876 */
877
878 for (regno = R0; regno <= USP; regno++) {
879 /* Store n...:r...; for the registers in the buffer. */
880
881 status = read_register (regno, &reg_cont);
882
883 if (status == SUCCESS) {
42a9a583 884 ptr = pack_hex_byte(ptr, regno);
1da177e4
LT
885 *ptr++ = ':';
886
887 ptr = mem2hex(ptr, (unsigned char *)&reg_cont,
888 register_size[regno]);
889 *ptr++ = ';';
890 }
891
892 }
893
894#ifdef PROCESS_SUPPORT
895 /* Store the registers of the executing thread. Assume that both step,
896 continue, and register content requests are with respect to this
897 thread. The executing task is from the operating system scheduler. */
898
899 current_thread_c = executing_task;
900 current_thread_g = executing_task;
901
902 /* A struct assignment translates into a libc memcpy call. Avoid
903 all libc functions in order to prevent recursive break points. */
904 copy_registers (&reg_g, &reg, sizeof(registers));
905
906 /* Store thread:r...; with the executing task TID. */
907 gdb_cris_strcpy (&remcomOutBuffer[pos], "thread:");
908 pos += gdb_cris_strlen ("thread:");
42a9a583
HH
909 remcomOutBuffer[pos++] = hex_asc_hi(executing_task);
910 remcomOutBuffer[pos++] = hex_asc_lo(executing_task);
1da177e4
LT
911 gdb_cris_strcpy (&remcomOutBuffer[pos], ";");
912#endif
913
914 /* null-terminate and send it off */
915
916 *ptr = 0;
917
918 putpacket (remcomOutBuffer);
919}
920
921/* All expected commands are sent from remote.c. Send a response according
922 to the description in remote.c. */
923static void
924handle_exception (int sigval)
925{
926 /* Avoid warning of not used. */
927
928 USEDFUN(handle_exception);
929 USEDVAR(internal_stack[0]);
930
931 /* Send response. */
932
933 stub_is_stopped (sigval);
934
935 for (;;) {
936 remcomOutBuffer[0] = '\0';
937 getpacket (remcomInBuffer);
938 switch (remcomInBuffer[0]) {
939 case 'g':
940 /* Read registers: g
941 Success: Each byte of register data is described by two hex digits.
942 Registers are in the internal order for GDB, and the bytes
943 in a register are in the same order the machine uses.
944 Failure: void. */
945
946 {
947#ifdef PROCESS_SUPPORT
948 /* Use the special register content in the executing thread. */
949 copy_registers (&reg_g, &reg, sizeof(registers));
950 /* Replace the content available on the stack. */
951 if (current_thread_g != executing_task) {
952 copy_registers_from_stack (current_thread_g, &reg_g);
953 }
954 mem2hex ((unsigned char *)remcomOutBuffer, (unsigned char *)&reg_g, sizeof(registers));
955#else
956 mem2hex(remcomOutBuffer, (char *)&reg, sizeof(registers));
957#endif
958 }
959 break;
960
961 case 'G':
962 /* Write registers. GXX..XX
963 Each byte of register data is described by two hex digits.
964 Success: OK
965 Failure: void. */
966#ifdef PROCESS_SUPPORT
967 hex2mem ((unsigned char *)&reg_g, &remcomInBuffer[1], sizeof(registers));
968 if (current_thread_g == executing_task) {
969 copy_registers (&reg, &reg_g, sizeof(registers));
970 }
971 else {
972 copy_registers_to_stack(current_thread_g, &reg_g);
973 }
974#else
975 hex2mem((char *)&reg, &remcomInBuffer[1], sizeof(registers));
976#endif
977 gdb_cris_strcpy (remcomOutBuffer, "OK");
978 break;
979
980 case 'P':
981 /* Write register. Pn...=r...
982 Write register n..., hex value without 0x, with value r...,
983 which contains a hex value without 0x and two hex digits
984 for each byte in the register (target byte order). P1f=11223344 means
985 set register 31 to 44332211.
986 Success: OK
987 Failure: E02, E05 */
988 {
989 char *suffix;
990 int regno = gdb_cris_strtol (&remcomInBuffer[1], &suffix, 16);
991 int status;
992#ifdef PROCESS_SUPPORT
993 if (current_thread_g != executing_task)
994 status = write_stack_register (current_thread_g, regno, suffix+1);
995 else
996#endif
997 status = write_register (regno, suffix+1);
998
999 switch (status) {
1000 case E02:
1001 /* Do not support read-only registers. */
1002 gdb_cris_strcpy (remcomOutBuffer, error_message[E02]);
1003 break;
1004 case E05:
1005 /* Do not support non-existing registers. */
1006 gdb_cris_strcpy (remcomOutBuffer, error_message[E05]);
1007 break;
1008 case E07:
1009 /* Do not support non-existing registers on the stack. */
1010 gdb_cris_strcpy (remcomOutBuffer, error_message[E07]);
1011 break;
1012 default:
1013 /* Valid register number. */
1014 gdb_cris_strcpy (remcomOutBuffer, "OK");
1015 break;
1016 }
1017 }
1018 break;
1019
1020 case 'm':
1021 /* Read from memory. mAA..AA,LLLL
1022 AA..AA is the address and LLLL is the length.
1023 Success: XX..XX is the memory content. Can be fewer bytes than
1024 requested if only part of the data may be read. m6000120a,6c means
1025 retrieve 108 byte from base address 6000120a.
1026 Failure: void. */
1027 {
1028 char *suffix;
1029 unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
1030 &suffix, 16); int length = gdb_cris_strtol(suffix+1, 0, 16);
1031
1032 mem2hex(remcomOutBuffer, addr, length);
1033 }
1034 break;
1035
1036 case 'X':
1037 /* Write to memory. XAA..AA,LLLL:XX..XX
1038 AA..AA is the start address, LLLL is the number of bytes, and
1039 XX..XX is the binary data.
1040 Success: OK
1041 Failure: void. */
1042 case 'M':
1043 /* Write to memory. MAA..AA,LLLL:XX..XX
1044 AA..AA is the start address, LLLL is the number of bytes, and
1045 XX..XX is the hexadecimal data.
1046 Success: OK
1047 Failure: void. */
1048 {
1049 char *lenptr;
1050 char *dataptr;
1051 unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
1052 &lenptr, 16);
1053 int length = gdb_cris_strtol(lenptr+1, &dataptr, 16);
1054 if (*lenptr == ',' && *dataptr == ':') {
1055 if (remcomInBuffer[0] == 'M') {
1056 hex2mem(addr, dataptr + 1, length);
1057 }
1058 else /* X */ {
1059 bin2mem(addr, dataptr + 1, length);
1060 }
1061 gdb_cris_strcpy (remcomOutBuffer, "OK");
1062 }
1063 else {
1064 gdb_cris_strcpy (remcomOutBuffer, error_message[E06]);
1065 }
1066 }
1067 break;
1068
1069 case 'c':
1070 /* Continue execution. cAA..AA
1071 AA..AA is the address where execution is resumed. If AA..AA is
1072 omitted, resume at the present address.
1073 Success: return to the executing thread.
1074 Failure: will never know. */
1075 if (remcomInBuffer[1] != '\0') {
1076 reg.pc = gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
1077 }
1078 enableDebugIRQ();
1079 return;
1080
1081 case 's':
1082 /* Step. sAA..AA
1083 AA..AA is the address where execution is resumed. If AA..AA is
1084 omitted, resume at the present address. Success: return to the
1085 executing thread. Failure: will never know.
1086
1087 Should never be invoked. The single-step is implemented on
1088 the host side. If ever invoked, it is an internal error E04. */
1089 gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
1090 putpacket (remcomOutBuffer);
1091 return;
1092
1093 case '?':
1094 /* The last signal which caused a stop. ?
1095 Success: SAA, where AA is the signal number.
1096 Failure: void. */
1097 remcomOutBuffer[0] = 'S';
42a9a583
HH
1098 remcomOutBuffer[1] = hex_asc_hi(sigval);
1099 remcomOutBuffer[2] = hex_asc_lo(sigval);
1da177e4
LT
1100 remcomOutBuffer[3] = 0;
1101 break;
1102
1103 case 'D':
1104 /* Detach from host. D
1105 Success: OK, and return to the executing thread.
1106 Failure: will never know */
1107 putpacket ("OK");
1108 return;
1109
1110 case 'k':
1111 case 'r':
1112 /* kill request or reset request.
1113 Success: restart of target.
1114 Failure: will never know. */
1115 kill_restart ();
1116 break;
1117
1118 case 'C':
1119 case 'S':
1120 case '!':
1121 case 'R':
1122 case 'd':
1123 /* Continue with signal sig. Csig;AA..AA
1124 Step with signal sig. Ssig;AA..AA
1125 Use the extended remote protocol. !
1126 Restart the target system. R0
1127 Toggle debug flag. d
1128 Search backwards. tAA:PP,MM
1129 Not supported: E04 */
1130 gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
1131 break;
1132#ifdef PROCESS_SUPPORT
1133
1134 case 'T':
1135 /* Thread alive. TXX
1136 Is thread XX alive?
1137 Success: OK, thread XX is alive.
1138 Failure: E03, thread XX is dead. */
1139 {
1140 int thread_id = (int)gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
1141 /* Cannot tell whether it is alive or not. */
1142 if (thread_id >= 0 && thread_id < number_of_tasks)
1143 gdb_cris_strcpy (remcomOutBuffer, "OK");
1144 }
1145 break;
1146
1147 case 'H':
1148 /* Set thread for subsequent operations: Hct
1149 c = 'c' for thread used in step and continue;
1150 t can be -1 for all threads.
1151 c = 'g' for thread used in other operations.
1152 t = 0 means pick any thread.
1153 Success: OK
1154 Failure: E01 */
1155 {
1156 int thread_id = gdb_cris_strtol (&remcomInBuffer[2], 0, 16);
1157 if (remcomInBuffer[1] == 'c') {
1158 /* c = 'c' for thread used in step and continue */
1159 /* Do not change current_thread_c here. It would create a mess in
1160 the scheduler. */
1161 gdb_cris_strcpy (remcomOutBuffer, "OK");
1162 }
1163 else if (remcomInBuffer[1] == 'g') {
1164 /* c = 'g' for thread used in other operations.
1165 t = 0 means pick any thread. Impossible since the scheduler does
1166 not allow that. */
1167 if (thread_id >= 0 && thread_id < number_of_tasks) {
1168 current_thread_g = thread_id;
1169 gdb_cris_strcpy (remcomOutBuffer, "OK");
1170 }
1171 else {
1172 /* Not expected - send an error message. */
1173 gdb_cris_strcpy (remcomOutBuffer, error_message[E01]);
1174 }
1175 }
1176 else {
1177 /* Not expected - send an error message. */
1178 gdb_cris_strcpy (remcomOutBuffer, error_message[E01]);
1179 }
1180 }
1181 break;
1182
1183 case 'q':
1184 case 'Q':
1185 /* Query of general interest. qXXXX
1186 Set general value XXXX. QXXXX=yyyy */
1187 {
1188 int pos;
1189 int nextpos;
1190 int thread_id;
1191
1192 switch (remcomInBuffer[1]) {
1193 case 'C':
1194 /* Identify the remote current thread. */
1195 gdb_cris_strcpy (&remcomOutBuffer[0], "QC");
42a9a583
HH
1196 remcomOutBuffer[2] = hex_asc_hi(current_thread_c);
1197 remcomOutBuffer[3] = hex_asc_lo(current_thread_c);
1da177e4
LT
1198 remcomOutBuffer[4] = '\0';
1199 break;
1200 case 'L':
1201 gdb_cris_strcpy (&remcomOutBuffer[0], "QM");
1202 /* Reply with number of threads. */
1203 if (os_is_started()) {
42a9a583
HH
1204 remcomOutBuffer[2] = hex_asc_hi(number_of_tasks);
1205 remcomOutBuffer[3] = hex_asc_lo(number_of_tasks);
1da177e4
LT
1206 }
1207 else {
42a9a583
HH
1208 remcomOutBuffer[2] = hex_asc_hi(0);
1209 remcomOutBuffer[3] = hex_asc_lo(1);
1da177e4
LT
1210 }
1211 /* Done with the reply. */
42a9a583 1212 remcomOutBuffer[4] = hex_asc_lo(1);
1da177e4
LT
1213 pos = 5;
1214 /* Expects the argument thread id. */
1215 for (; pos < (5 + HEXCHARS_IN_THREAD_ID); pos++)
1216 remcomOutBuffer[pos] = remcomInBuffer[pos];
1217 /* Reply with the thread identifiers. */
1218 if (os_is_started()) {
1219 /* Store the thread identifiers of all tasks. */
1220 for (thread_id = 0; thread_id < number_of_tasks; thread_id++) {
1221 nextpos = pos + HEXCHARS_IN_THREAD_ID - 1;
1222 for (; pos < nextpos; pos ++)
42a9a583
HH
1223 remcomOutBuffer[pos] = hex_asc_lo(0);
1224 remcomOutBuffer[pos++] = hex_asc_lo(thread_id);
1da177e4
LT
1225 }
1226 }
1227 else {
1228 /* Store the thread identifier of the boot task. */
1229 nextpos = pos + HEXCHARS_IN_THREAD_ID - 1;
1230 for (; pos < nextpos; pos ++)
42a9a583
HH
1231 remcomOutBuffer[pos] = hex_asc_lo(0);
1232 remcomOutBuffer[pos++] = hex_asc_lo(current_thread_c);
1da177e4
LT
1233 }
1234 remcomOutBuffer[pos] = '\0';
1235 break;
1236 default:
1237 /* Not supported: "" */
1238 /* Request information about section offsets: qOffsets. */
1239 remcomOutBuffer[0] = 0;
1240 break;
1241 }
1242 }
1243 break;
1244#endif /* PROCESS_SUPPORT */
1245
1246 default:
1247 /* The stub should ignore other request and send an empty
1248 response ($#<checksum>). This way we can extend the protocol and GDB
1249 can tell whether the stub it is talking to uses the old or the new. */
1250 remcomOutBuffer[0] = 0;
1251 break;
1252 }
1253 putpacket(remcomOutBuffer);
1254 }
1255}
1256
7cf32cad 1257/* Performs a complete re-start from scratch. */
1da177e4
LT
1258static void
1259kill_restart ()
1260{
7cf32cad 1261 machine_restart("");
1da177e4
LT
1262}
1263
1264/********************************** Breakpoint *******************************/
1265/* The hook for both a static (compiled) and a dynamic breakpoint set by GDB.
1266 An internal stack is used by the stub. The register image of the caller is
1267 stored in the structure register_image.
1268 Interactive communication with the host is handled by handle_exception and
1269 finally the register image is restored. */
1270
1271void kgdb_handle_breakpoint(void);
1272
1273asm ("
1274 .global kgdb_handle_breakpoint
1275kgdb_handle_breakpoint:
1276;;
1277;; Response to the break-instruction
1278;;
1279;; Create a register image of the caller
1280;;
1281 move $dccr,[reg+0x5E] ; Save the flags in DCCR before disable interrupts
1282 di ; Disable interrupts
1283 move.d $r0,[reg] ; Save R0
1284 move.d $r1,[reg+0x04] ; Save R1
1285 move.d $r2,[reg+0x08] ; Save R2
1286 move.d $r3,[reg+0x0C] ; Save R3
1287 move.d $r4,[reg+0x10] ; Save R4
1288 move.d $r5,[reg+0x14] ; Save R5
1289 move.d $r6,[reg+0x18] ; Save R6
1290 move.d $r7,[reg+0x1C] ; Save R7
1291 move.d $r8,[reg+0x20] ; Save R8
1292 move.d $r9,[reg+0x24] ; Save R9
1293 move.d $r10,[reg+0x28] ; Save R10
1294 move.d $r11,[reg+0x2C] ; Save R11
1295 move.d $r12,[reg+0x30] ; Save R12
1296 move.d $r13,[reg+0x34] ; Save R13
1297 move.d $sp,[reg+0x38] ; Save SP (R14)
1298;; Due to the old assembler-versions BRP might not be recognized
1299 .word 0xE670 ; move brp,$r0
1300 subq 2,$r0 ; Set to address of previous instruction.
1301 move.d $r0,[reg+0x3c] ; Save the address in PC (R15)
1302 clear.b [reg+0x40] ; Clear P0
1303 move $vr,[reg+0x41] ; Save special register P1
1304 clear.w [reg+0x42] ; Clear P4
1305 move $ccr,[reg+0x44] ; Save special register CCR
1306 move $mof,[reg+0x46] ; P7
1307 clear.d [reg+0x4A] ; Clear P8
1308 move $ibr,[reg+0x4E] ; P9,
1309 move $irp,[reg+0x52] ; P10,
1310 move $srp,[reg+0x56] ; P11,
1311 move $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR
1312 ; P13, register DCCR already saved
1313;; Due to the old assembler-versions BRP might not be recognized
1314 .word 0xE670 ; move brp,r0
1315;; Static (compiled) breakpoints must return to the next instruction in order
1316;; to avoid infinite loops. Dynamic (gdb-invoked) must restore the instruction
1317;; in order to execute it when execution is continued.
1318 test.b [is_dyn_brkp] ; Is this a dynamic breakpoint?
1319 beq is_static ; No, a static breakpoint
1320 nop
1321 subq 2,$r0 ; rerun the instruction the break replaced
1322is_static:
1323 moveq 1,$r1
1324 move.b $r1,[is_dyn_brkp] ; Set the state variable to dynamic breakpoint
1325 move.d $r0,[reg+0x62] ; Save the return address in BRP
1326 move $usp,[reg+0x66] ; USP
1327;;
1328;; Handle the communication
1329;;
1330 move.d internal_stack+1020,$sp ; Use the internal stack which grows upward
1331 moveq 5,$r10 ; SIGTRAP
1332 jsr handle_exception ; Interactive routine
1333;;
1334;; Return to the caller
1335;;
1336 move.d [reg],$r0 ; Restore R0
1337 move.d [reg+0x04],$r1 ; Restore R1
1338 move.d [reg+0x08],$r2 ; Restore R2
1339 move.d [reg+0x0C],$r3 ; Restore R3
1340 move.d [reg+0x10],$r4 ; Restore R4
1341 move.d [reg+0x14],$r5 ; Restore R5
1342 move.d [reg+0x18],$r6 ; Restore R6
1343 move.d [reg+0x1C],$r7 ; Restore R7
1344 move.d [reg+0x20],$r8 ; Restore R8
1345 move.d [reg+0x24],$r9 ; Restore R9
1346 move.d [reg+0x28],$r10 ; Restore R10
1347 move.d [reg+0x2C],$r11 ; Restore R11
1348 move.d [reg+0x30],$r12 ; Restore R12
1349 move.d [reg+0x34],$r13 ; Restore R13
1350;;
1351;; FIXME: Which registers should be restored?
1352;;
1353 move.d [reg+0x38],$sp ; Restore SP (R14)
1354 move [reg+0x56],$srp ; Restore the subroutine return pointer.
1355 move [reg+0x5E],$dccr ; Restore DCCR
1356 move [reg+0x66],$usp ; Restore USP
1357 jump [reg+0x62] ; A jump to the content in register BRP works.
1358 nop ;
1359");
1360
1361/* The hook for an interrupt generated by GDB. An internal stack is used
1362 by the stub. The register image of the caller is stored in the structure
1363 register_image. Interactive communication with the host is handled by
1364 handle_exception and finally the register image is restored. Due to the
1365 old assembler which does not recognise the break instruction and the
1366 breakpoint return pointer hex-code is used. */
1367
1368void kgdb_handle_serial(void);
1369
1370asm ("
1371 .global kgdb_handle_serial
1372kgdb_handle_serial:
1373;;
1374;; Response to a serial interrupt
1375;;
1376
1377 move $dccr,[reg+0x5E] ; Save the flags in DCCR
1378 di ; Disable interrupts
1379 move.d $r0,[reg] ; Save R0
1380 move.d $r1,[reg+0x04] ; Save R1
1381 move.d $r2,[reg+0x08] ; Save R2
1382 move.d $r3,[reg+0x0C] ; Save R3
1383 move.d $r4,[reg+0x10] ; Save R4
1384 move.d $r5,[reg+0x14] ; Save R5
1385 move.d $r6,[reg+0x18] ; Save R6
1386 move.d $r7,[reg+0x1C] ; Save R7
1387 move.d $r8,[reg+0x20] ; Save R8
1388 move.d $r9,[reg+0x24] ; Save R9
1389 move.d $r10,[reg+0x28] ; Save R10
1390 move.d $r11,[reg+0x2C] ; Save R11
1391 move.d $r12,[reg+0x30] ; Save R12
1392 move.d $r13,[reg+0x34] ; Save R13
1393 move.d $sp,[reg+0x38] ; Save SP (R14)
1394 move $irp,[reg+0x3c] ; Save the address in PC (R15)
1395 clear.b [reg+0x40] ; Clear P0
1396 move $vr,[reg+0x41] ; Save special register P1,
1397 clear.w [reg+0x42] ; Clear P4
1398 move $ccr,[reg+0x44] ; Save special register CCR
1399 move $mof,[reg+0x46] ; P7
1400 clear.d [reg+0x4A] ; Clear P8
1401 move $ibr,[reg+0x4E] ; P9,
1402 move $irp,[reg+0x52] ; P10,
1403 move $srp,[reg+0x56] ; P11,
1404 move $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR
1405 ; P13, register DCCR already saved
1406;; Due to the old assembler-versions BRP might not be recognized
1407 .word 0xE670 ; move brp,r0
1408 move.d $r0,[reg+0x62] ; Save the return address in BRP
1409 move $usp,[reg+0x66] ; USP
1410
1411;; get the serial character (from debugport.c) and check if it is a ctrl-c
1412
1413 jsr getDebugChar
1414 cmp.b 3, $r10
1415 bne goback
1416 nop
1417
7cf32cad
MS
1418 move.d [reg+0x5E], $r10 ; Get DCCR
1419 btstq 8, $r10 ; Test the U-flag.
1420 bmi goback
1421 nop
1422
1da177e4
LT
1423;;
1424;; Handle the communication
1425;;
1426 move.d internal_stack+1020,$sp ; Use the internal stack
1427 moveq 2,$r10 ; SIGINT
1428 jsr handle_exception ; Interactive routine
1429
1430goback:
1431;;
1432;; Return to the caller
1433;;
1434 move.d [reg],$r0 ; Restore R0
1435 move.d [reg+0x04],$r1 ; Restore R1
1436 move.d [reg+0x08],$r2 ; Restore R2
1437 move.d [reg+0x0C],$r3 ; Restore R3
1438 move.d [reg+0x10],$r4 ; Restore R4
1439 move.d [reg+0x14],$r5 ; Restore R5
1440 move.d [reg+0x18],$r6 ; Restore R6
1441 move.d [reg+0x1C],$r7 ; Restore R7
1442 move.d [reg+0x20],$r8 ; Restore R8
1443 move.d [reg+0x24],$r9 ; Restore R9
1444 move.d [reg+0x28],$r10 ; Restore R10
1445 move.d [reg+0x2C],$r11 ; Restore R11
1446 move.d [reg+0x30],$r12 ; Restore R12
1447 move.d [reg+0x34],$r13 ; Restore R13
1448;;
1449;; FIXME: Which registers should be restored?
1450;;
1451 move.d [reg+0x38],$sp ; Restore SP (R14)
1452 move [reg+0x56],$srp ; Restore the subroutine return pointer.
1453 move [reg+0x5E],$dccr ; Restore DCCR
1454 move [reg+0x66],$usp ; Restore USP
1455 reti ; Return from the interrupt routine
1456 nop
1457");
1458
1459/* Use this static breakpoint in the start-up only. */
1460
1461void
1462breakpoint(void)
1463{
1464 kgdb_started = 1;
1465 is_dyn_brkp = 0; /* This is a static, not a dynamic breakpoint. */
1466 __asm__ volatile ("break 8"); /* Jump to handle_breakpoint. */
1467}
1468
1469/* initialize kgdb. doesn't break into the debugger, but sets up irq and ports */
1470
1471void
1472kgdb_init(void)
1473{
1474 /* could initialize debug port as well but it's done in head.S already... */
1475
1476 /* breakpoint handler is now set in irq.c */
1477 set_int_vector(8, kgdb_handle_serial);
1478
1479 enableDebugIRQ();
1480}
1481
1482/****************************** End of file **********************************/