Merge remote-tracking branch 'iwlwifi-fixes/master' into HEAD
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm64 / kernel / perf_event.c
CommitLineData
03089688
WD
1/*
2 * PMU support
3 *
4 * Copyright (C) 2012 ARM Limited
5 * Author: Will Deacon <will.deacon@arm.com>
6 *
7 * This code is based heavily on the ARMv7 perf event code.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21#define pr_fmt(fmt) "hw perfevents: " fmt
22
23#include <linux/bitmap.h>
24#include <linux/interrupt.h>
25#include <linux/kernel.h>
26#include <linux/export.h>
27#include <linux/perf_event.h>
28#include <linux/platform_device.h>
29#include <linux/spinlock.h>
30#include <linux/uaccess.h>
31
32#include <asm/cputype.h>
33#include <asm/irq.h>
34#include <asm/irq_regs.h>
35#include <asm/pmu.h>
36#include <asm/stacktrace.h>
37
38/*
39 * ARMv8 supports a maximum of 32 events.
40 * The cycle counter is included in this total.
41 */
42#define ARMPMU_MAX_HWEVENTS 32
43
44static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
45static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
46static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
47
48#define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
49
50/* Set at runtime when we know what CPU type we are. */
51static struct arm_pmu *cpu_pmu;
52
53int
54armpmu_get_max_events(void)
55{
56 int max_events = 0;
57
58 if (cpu_pmu != NULL)
59 max_events = cpu_pmu->num_events;
60
61 return max_events;
62}
63EXPORT_SYMBOL_GPL(armpmu_get_max_events);
64
65int perf_num_counters(void)
66{
67 return armpmu_get_max_events();
68}
69EXPORT_SYMBOL_GPL(perf_num_counters);
70
71#define HW_OP_UNSUPPORTED 0xFFFF
72
73#define C(_x) \
74 PERF_COUNT_HW_CACHE_##_x
75
76#define CACHE_OP_UNSUPPORTED 0xFFFF
77
78static int
79armpmu_map_cache_event(const unsigned (*cache_map)
80 [PERF_COUNT_HW_CACHE_MAX]
81 [PERF_COUNT_HW_CACHE_OP_MAX]
82 [PERF_COUNT_HW_CACHE_RESULT_MAX],
83 u64 config)
84{
85 unsigned int cache_type, cache_op, cache_result, ret;
86
87 cache_type = (config >> 0) & 0xff;
88 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
89 return -EINVAL;
90
91 cache_op = (config >> 8) & 0xff;
92 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
93 return -EINVAL;
94
95 cache_result = (config >> 16) & 0xff;
96 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
97 return -EINVAL;
98
99 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
100
101 if (ret == CACHE_OP_UNSUPPORTED)
102 return -ENOENT;
103
104 return ret;
105}
106
107static int
108armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
109{
110 int mapping = (*event_map)[config];
111 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
112}
113
114static int
115armpmu_map_raw_event(u32 raw_event_mask, u64 config)
116{
117 return (int)(config & raw_event_mask);
118}
119
120static int map_cpu_event(struct perf_event *event,
121 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
122 const unsigned (*cache_map)
123 [PERF_COUNT_HW_CACHE_MAX]
124 [PERF_COUNT_HW_CACHE_OP_MAX]
125 [PERF_COUNT_HW_CACHE_RESULT_MAX],
126 u32 raw_event_mask)
127{
128 u64 config = event->attr.config;
129
130 switch (event->attr.type) {
131 case PERF_TYPE_HARDWARE:
132 return armpmu_map_event(event_map, config);
133 case PERF_TYPE_HW_CACHE:
134 return armpmu_map_cache_event(cache_map, config);
135 case PERF_TYPE_RAW:
136 return armpmu_map_raw_event(raw_event_mask, config);
137 }
138
139 return -ENOENT;
140}
141
142int
143armpmu_event_set_period(struct perf_event *event,
144 struct hw_perf_event *hwc,
145 int idx)
146{
147 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
148 s64 left = local64_read(&hwc->period_left);
149 s64 period = hwc->sample_period;
150 int ret = 0;
151
152 if (unlikely(left <= -period)) {
153 left = period;
154 local64_set(&hwc->period_left, left);
155 hwc->last_period = period;
156 ret = 1;
157 }
158
159 if (unlikely(left <= 0)) {
160 left += period;
161 local64_set(&hwc->period_left, left);
162 hwc->last_period = period;
163 ret = 1;
164 }
165
166 if (left > (s64)armpmu->max_period)
167 left = armpmu->max_period;
168
169 local64_set(&hwc->prev_count, (u64)-left);
170
171 armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
172
173 perf_event_update_userpage(event);
174
175 return ret;
176}
177
178u64
179armpmu_event_update(struct perf_event *event,
180 struct hw_perf_event *hwc,
181 int idx)
182{
183 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
184 u64 delta, prev_raw_count, new_raw_count;
185
186again:
187 prev_raw_count = local64_read(&hwc->prev_count);
188 new_raw_count = armpmu->read_counter(idx);
189
190 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
191 new_raw_count) != prev_raw_count)
192 goto again;
193
194 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
195
196 local64_add(delta, &event->count);
197 local64_sub(delta, &hwc->period_left);
198
199 return new_raw_count;
200}
201
202static void
203armpmu_read(struct perf_event *event)
204{
205 struct hw_perf_event *hwc = &event->hw;
206
207 /* Don't read disabled counters! */
208 if (hwc->idx < 0)
209 return;
210
211 armpmu_event_update(event, hwc, hwc->idx);
212}
213
214static void
215armpmu_stop(struct perf_event *event, int flags)
216{
217 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
218 struct hw_perf_event *hwc = &event->hw;
219
220 /*
221 * ARM pmu always has to update the counter, so ignore
222 * PERF_EF_UPDATE, see comments in armpmu_start().
223 */
224 if (!(hwc->state & PERF_HES_STOPPED)) {
225 armpmu->disable(hwc, hwc->idx);
226 barrier(); /* why? */
227 armpmu_event_update(event, hwc, hwc->idx);
228 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
229 }
230}
231
232static void
233armpmu_start(struct perf_event *event, int flags)
234{
235 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
236 struct hw_perf_event *hwc = &event->hw;
237
238 /*
239 * ARM pmu always has to reprogram the period, so ignore
240 * PERF_EF_RELOAD, see the comment below.
241 */
242 if (flags & PERF_EF_RELOAD)
243 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
244
245 hwc->state = 0;
246 /*
247 * Set the period again. Some counters can't be stopped, so when we
248 * were stopped we simply disabled the IRQ source and the counter
249 * may have been left counting. If we don't do this step then we may
250 * get an interrupt too soon or *way* too late if the overflow has
251 * happened since disabling.
252 */
253 armpmu_event_set_period(event, hwc, hwc->idx);
254 armpmu->enable(hwc, hwc->idx);
255}
256
257static void
258armpmu_del(struct perf_event *event, int flags)
259{
260 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
261 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
262 struct hw_perf_event *hwc = &event->hw;
263 int idx = hwc->idx;
264
265 WARN_ON(idx < 0);
266
267 armpmu_stop(event, PERF_EF_UPDATE);
268 hw_events->events[idx] = NULL;
269 clear_bit(idx, hw_events->used_mask);
270
271 perf_event_update_userpage(event);
272}
273
274static int
275armpmu_add(struct perf_event *event, int flags)
276{
277 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
278 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
279 struct hw_perf_event *hwc = &event->hw;
280 int idx;
281 int err = 0;
282
283 perf_pmu_disable(event->pmu);
284
285 /* If we don't have a space for the counter then finish early. */
286 idx = armpmu->get_event_idx(hw_events, hwc);
287 if (idx < 0) {
288 err = idx;
289 goto out;
290 }
291
292 /*
293 * If there is an event in the counter we are going to use then make
294 * sure it is disabled.
295 */
296 event->hw.idx = idx;
297 armpmu->disable(hwc, idx);
298 hw_events->events[idx] = event;
299
300 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
301 if (flags & PERF_EF_START)
302 armpmu_start(event, PERF_EF_RELOAD);
303
304 /* Propagate our changes to the userspace mapping. */
305 perf_event_update_userpage(event);
306
307out:
308 perf_pmu_enable(event->pmu);
309 return err;
310}
311
312static int
313validate_event(struct pmu_hw_events *hw_events,
314 struct perf_event *event)
315{
316 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
317 struct hw_perf_event fake_event = event->hw;
318 struct pmu *leader_pmu = event->group_leader->pmu;
319
320 if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
321 return 1;
322
323 return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
324}
325
326static int
327validate_group(struct perf_event *event)
328{
329 struct perf_event *sibling, *leader = event->group_leader;
330 struct pmu_hw_events fake_pmu;
331 DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
332
333 /*
334 * Initialise the fake PMU. We only need to populate the
335 * used_mask for the purposes of validation.
336 */
337 memset(fake_used_mask, 0, sizeof(fake_used_mask));
338 fake_pmu.used_mask = fake_used_mask;
339
340 if (!validate_event(&fake_pmu, leader))
341 return -EINVAL;
342
343 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
344 if (!validate_event(&fake_pmu, sibling))
345 return -EINVAL;
346 }
347
348 if (!validate_event(&fake_pmu, event))
349 return -EINVAL;
350
351 return 0;
352}
353
354static void
355armpmu_release_hardware(struct arm_pmu *armpmu)
356{
357 int i, irq, irqs;
358 struct platform_device *pmu_device = armpmu->plat_device;
359
360 irqs = min(pmu_device->num_resources, num_possible_cpus());
361
362 for (i = 0; i < irqs; ++i) {
363 if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
364 continue;
365 irq = platform_get_irq(pmu_device, i);
366 if (irq >= 0)
367 free_irq(irq, armpmu);
368 }
369}
370
371static int
372armpmu_reserve_hardware(struct arm_pmu *armpmu)
373{
374 int i, err, irq, irqs;
375 struct platform_device *pmu_device = armpmu->plat_device;
376
377 if (!pmu_device) {
378 pr_err("no PMU device registered\n");
379 return -ENODEV;
380 }
381
382 irqs = min(pmu_device->num_resources, num_possible_cpus());
383 if (irqs < 1) {
384 pr_err("no irqs for PMUs defined\n");
385 return -ENODEV;
386 }
387
388 for (i = 0; i < irqs; ++i) {
389 err = 0;
390 irq = platform_get_irq(pmu_device, i);
391 if (irq < 0)
392 continue;
393
394 /*
395 * If we have a single PMU interrupt that we can't shift,
396 * assume that we're running on a uniprocessor machine and
397 * continue. Otherwise, continue without this interrupt.
398 */
399 if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
400 pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
401 irq, i);
402 continue;
403 }
404
405 err = request_irq(irq, armpmu->handle_irq,
406 IRQF_NOBALANCING,
407 "arm-pmu", armpmu);
408 if (err) {
409 pr_err("unable to request IRQ%d for ARM PMU counters\n",
410 irq);
411 armpmu_release_hardware(armpmu);
412 return err;
413 }
414
415 cpumask_set_cpu(i, &armpmu->active_irqs);
416 }
417
418 return 0;
419}
420
421static void
422hw_perf_event_destroy(struct perf_event *event)
423{
424 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
425 atomic_t *active_events = &armpmu->active_events;
426 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
427
428 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
429 armpmu_release_hardware(armpmu);
430 mutex_unlock(pmu_reserve_mutex);
431 }
432}
433
434static int
435event_requires_mode_exclusion(struct perf_event_attr *attr)
436{
437 return attr->exclude_idle || attr->exclude_user ||
438 attr->exclude_kernel || attr->exclude_hv;
439}
440
441static int
442__hw_perf_event_init(struct perf_event *event)
443{
444 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
445 struct hw_perf_event *hwc = &event->hw;
446 int mapping, err;
447
448 mapping = armpmu->map_event(event);
449
450 if (mapping < 0) {
451 pr_debug("event %x:%llx not supported\n", event->attr.type,
452 event->attr.config);
453 return mapping;
454 }
455
456 /*
457 * We don't assign an index until we actually place the event onto
458 * hardware. Use -1 to signify that we haven't decided where to put it
459 * yet. For SMP systems, each core has it's own PMU so we can't do any
460 * clever allocation or constraints checking at this point.
461 */
462 hwc->idx = -1;
463 hwc->config_base = 0;
464 hwc->config = 0;
465 hwc->event_base = 0;
466
467 /*
468 * Check whether we need to exclude the counter from certain modes.
469 */
470 if ((!armpmu->set_event_filter ||
471 armpmu->set_event_filter(hwc, &event->attr)) &&
472 event_requires_mode_exclusion(&event->attr)) {
473 pr_debug("ARM performance counters do not support mode exclusion\n");
474 return -EPERM;
475 }
476
477 /*
478 * Store the event encoding into the config_base field.
479 */
480 hwc->config_base |= (unsigned long)mapping;
481
482 if (!hwc->sample_period) {
483 /*
484 * For non-sampling runs, limit the sample_period to half
485 * of the counter width. That way, the new counter value
486 * is far less likely to overtake the previous one unless
487 * you have some serious IRQ latency issues.
488 */
489 hwc->sample_period = armpmu->max_period >> 1;
490 hwc->last_period = hwc->sample_period;
491 local64_set(&hwc->period_left, hwc->sample_period);
492 }
493
494 err = 0;
495 if (event->group_leader != event) {
496 err = validate_group(event);
497 if (err)
498 return -EINVAL;
499 }
500
501 return err;
502}
503
504static int armpmu_event_init(struct perf_event *event)
505{
506 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
507 int err = 0;
508 atomic_t *active_events = &armpmu->active_events;
509
510 if (armpmu->map_event(event) == -ENOENT)
511 return -ENOENT;
512
513 event->destroy = hw_perf_event_destroy;
514
515 if (!atomic_inc_not_zero(active_events)) {
516 mutex_lock(&armpmu->reserve_mutex);
517 if (atomic_read(active_events) == 0)
518 err = armpmu_reserve_hardware(armpmu);
519
520 if (!err)
521 atomic_inc(active_events);
522 mutex_unlock(&armpmu->reserve_mutex);
523 }
524
525 if (err)
526 return err;
527
528 err = __hw_perf_event_init(event);
529 if (err)
530 hw_perf_event_destroy(event);
531
532 return err;
533}
534
535static void armpmu_enable(struct pmu *pmu)
536{
537 struct arm_pmu *armpmu = to_arm_pmu(pmu);
538 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
539 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
540
541 if (enabled)
542 armpmu->start();
543}
544
545static void armpmu_disable(struct pmu *pmu)
546{
547 struct arm_pmu *armpmu = to_arm_pmu(pmu);
548 armpmu->stop();
549}
550
551static void __init armpmu_init(struct arm_pmu *armpmu)
552{
553 atomic_set(&armpmu->active_events, 0);
554 mutex_init(&armpmu->reserve_mutex);
555
556 armpmu->pmu = (struct pmu) {
557 .pmu_enable = armpmu_enable,
558 .pmu_disable = armpmu_disable,
559 .event_init = armpmu_event_init,
560 .add = armpmu_add,
561 .del = armpmu_del,
562 .start = armpmu_start,
563 .stop = armpmu_stop,
564 .read = armpmu_read,
565 };
566}
567
568int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
569{
570 armpmu_init(armpmu);
571 return perf_pmu_register(&armpmu->pmu, name, type);
572}
573
574/*
575 * ARMv8 PMUv3 Performance Events handling code.
576 * Common event types.
577 */
578enum armv8_pmuv3_perf_types {
579 /* Required events. */
580 ARMV8_PMUV3_PERFCTR_PMNC_SW_INCR = 0x00,
581 ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL = 0x03,
582 ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS = 0x04,
583 ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED = 0x10,
584 ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES = 0x11,
585 ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED = 0x12,
586
587 /* At least one of the following is required. */
588 ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED = 0x08,
589 ARMV8_PMUV3_PERFCTR_OP_SPEC = 0x1B,
590
591 /* Common architectural events. */
592 ARMV8_PMUV3_PERFCTR_MEM_READ = 0x06,
593 ARMV8_PMUV3_PERFCTR_MEM_WRITE = 0x07,
594 ARMV8_PMUV3_PERFCTR_EXC_TAKEN = 0x09,
595 ARMV8_PMUV3_PERFCTR_EXC_EXECUTED = 0x0A,
596 ARMV8_PMUV3_PERFCTR_CID_WRITE = 0x0B,
597 ARMV8_PMUV3_PERFCTR_PC_WRITE = 0x0C,
598 ARMV8_PMUV3_PERFCTR_PC_IMM_BRANCH = 0x0D,
599 ARMV8_PMUV3_PERFCTR_PC_PROC_RETURN = 0x0E,
600 ARMV8_PMUV3_PERFCTR_MEM_UNALIGNED_ACCESS = 0x0F,
601 ARMV8_PMUV3_PERFCTR_TTBR_WRITE = 0x1C,
602
603 /* Common microarchitectural events. */
604 ARMV8_PMUV3_PERFCTR_L1_ICACHE_REFILL = 0x01,
605 ARMV8_PMUV3_PERFCTR_ITLB_REFILL = 0x02,
606 ARMV8_PMUV3_PERFCTR_DTLB_REFILL = 0x05,
607 ARMV8_PMUV3_PERFCTR_MEM_ACCESS = 0x13,
608 ARMV8_PMUV3_PERFCTR_L1_ICACHE_ACCESS = 0x14,
609 ARMV8_PMUV3_PERFCTR_L1_DCACHE_WB = 0x15,
610 ARMV8_PMUV3_PERFCTR_L2_CACHE_ACCESS = 0x16,
611 ARMV8_PMUV3_PERFCTR_L2_CACHE_REFILL = 0x17,
612 ARMV8_PMUV3_PERFCTR_L2_CACHE_WB = 0x18,
613 ARMV8_PMUV3_PERFCTR_BUS_ACCESS = 0x19,
614 ARMV8_PMUV3_PERFCTR_MEM_ERROR = 0x1A,
615 ARMV8_PMUV3_PERFCTR_BUS_CYCLES = 0x1D,
03089688
WD
616};
617
618/* PMUv3 HW events mapping. */
619static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
f46f979f 620 [PERF_COUNT_HW_CPU_CYCLES] = ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES,
03089688
WD
621 [PERF_COUNT_HW_INSTRUCTIONS] = ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED,
622 [PERF_COUNT_HW_CACHE_REFERENCES] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
623 [PERF_COUNT_HW_CACHE_MISSES] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
624 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = HW_OP_UNSUPPORTED,
625 [PERF_COUNT_HW_BRANCH_MISSES] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
626 [PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED,
627 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = HW_OP_UNSUPPORTED,
628 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = HW_OP_UNSUPPORTED,
629};
630
631static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
632 [PERF_COUNT_HW_CACHE_OP_MAX]
633 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
634 [C(L1D)] = {
635 [C(OP_READ)] = {
636 [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
637 [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
638 },
639 [C(OP_WRITE)] = {
640 [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
641 [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
642 },
643 [C(OP_PREFETCH)] = {
644 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
645 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
646 },
647 },
648 [C(L1I)] = {
649 [C(OP_READ)] = {
650 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
651 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
652 },
653 [C(OP_WRITE)] = {
654 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
655 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
656 },
657 [C(OP_PREFETCH)] = {
658 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
659 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
660 },
661 },
662 [C(LL)] = {
663 [C(OP_READ)] = {
664 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
665 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
666 },
667 [C(OP_WRITE)] = {
668 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
669 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
670 },
671 [C(OP_PREFETCH)] = {
672 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
673 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
674 },
675 },
676 [C(DTLB)] = {
677 [C(OP_READ)] = {
678 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
679 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
680 },
681 [C(OP_WRITE)] = {
682 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
683 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
684 },
685 [C(OP_PREFETCH)] = {
686 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
687 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
688 },
689 },
690 [C(ITLB)] = {
691 [C(OP_READ)] = {
692 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
693 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
694 },
695 [C(OP_WRITE)] = {
696 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
697 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
698 },
699 [C(OP_PREFETCH)] = {
700 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
701 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
702 },
703 },
704 [C(BPU)] = {
705 [C(OP_READ)] = {
706 [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
707 [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
708 },
709 [C(OP_WRITE)] = {
710 [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
711 [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
712 },
713 [C(OP_PREFETCH)] = {
714 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
715 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
716 },
717 },
718 [C(NODE)] = {
719 [C(OP_READ)] = {
720 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
721 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
722 },
723 [C(OP_WRITE)] = {
724 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
725 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
726 },
727 [C(OP_PREFETCH)] = {
728 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
729 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
730 },
731 },
732};
733
734/*
735 * Perf Events' indices
736 */
737#define ARMV8_IDX_CYCLE_COUNTER 0
738#define ARMV8_IDX_COUNTER0 1
739#define ARMV8_IDX_COUNTER_LAST (ARMV8_IDX_CYCLE_COUNTER + cpu_pmu->num_events - 1)
740
741#define ARMV8_MAX_COUNTERS 32
742#define ARMV8_COUNTER_MASK (ARMV8_MAX_COUNTERS - 1)
743
744/*
745 * ARMv8 low level PMU access
746 */
747
748/*
749 * Perf Event to low level counters mapping
750 */
751#define ARMV8_IDX_TO_COUNTER(x) \
752 (((x) - ARMV8_IDX_COUNTER0) & ARMV8_COUNTER_MASK)
753
754/*
755 * Per-CPU PMCR: config reg
756 */
757#define ARMV8_PMCR_E (1 << 0) /* Enable all counters */
758#define ARMV8_PMCR_P (1 << 1) /* Reset all counters */
759#define ARMV8_PMCR_C (1 << 2) /* Cycle counter reset */
760#define ARMV8_PMCR_D (1 << 3) /* CCNT counts every 64th cpu cycle */
761#define ARMV8_PMCR_X (1 << 4) /* Export to ETM */
762#define ARMV8_PMCR_DP (1 << 5) /* Disable CCNT if non-invasive debug*/
763#define ARMV8_PMCR_N_SHIFT 11 /* Number of counters supported */
764#define ARMV8_PMCR_N_MASK 0x1f
765#define ARMV8_PMCR_MASK 0x3f /* Mask for writable bits */
766
767/*
768 * PMOVSR: counters overflow flag status reg
769 */
770#define ARMV8_OVSR_MASK 0xffffffff /* Mask for writable bits */
771#define ARMV8_OVERFLOWED_MASK ARMV8_OVSR_MASK
772
773/*
774 * PMXEVTYPER: Event selection reg
775 */
776#define ARMV8_EVTYPE_MASK 0xc00000ff /* Mask for writable bits */
777#define ARMV8_EVTYPE_EVENT 0xff /* Mask for EVENT bits */
778
779/*
780 * Event filters for PMUv3
781 */
782#define ARMV8_EXCLUDE_EL1 (1 << 31)
783#define ARMV8_EXCLUDE_EL0 (1 << 30)
784#define ARMV8_INCLUDE_EL2 (1 << 27)
785
786static inline u32 armv8pmu_pmcr_read(void)
787{
788 u32 val;
789 asm volatile("mrs %0, pmcr_el0" : "=r" (val));
790 return val;
791}
792
793static inline void armv8pmu_pmcr_write(u32 val)
794{
795 val &= ARMV8_PMCR_MASK;
796 isb();
797 asm volatile("msr pmcr_el0, %0" :: "r" (val));
798}
799
800static inline int armv8pmu_has_overflowed(u32 pmovsr)
801{
802 return pmovsr & ARMV8_OVERFLOWED_MASK;
803}
804
805static inline int armv8pmu_counter_valid(int idx)
806{
807 return idx >= ARMV8_IDX_CYCLE_COUNTER && idx <= ARMV8_IDX_COUNTER_LAST;
808}
809
810static inline int armv8pmu_counter_has_overflowed(u32 pmnc, int idx)
811{
812 int ret = 0;
813 u32 counter;
814
815 if (!armv8pmu_counter_valid(idx)) {
816 pr_err("CPU%u checking wrong counter %d overflow status\n",
817 smp_processor_id(), idx);
818 } else {
819 counter = ARMV8_IDX_TO_COUNTER(idx);
820 ret = pmnc & BIT(counter);
821 }
822
823 return ret;
824}
825
826static inline int armv8pmu_select_counter(int idx)
827{
828 u32 counter;
829
830 if (!armv8pmu_counter_valid(idx)) {
831 pr_err("CPU%u selecting wrong PMNC counter %d\n",
832 smp_processor_id(), idx);
833 return -EINVAL;
834 }
835
836 counter = ARMV8_IDX_TO_COUNTER(idx);
837 asm volatile("msr pmselr_el0, %0" :: "r" (counter));
838 isb();
839
840 return idx;
841}
842
843static inline u32 armv8pmu_read_counter(int idx)
844{
845 u32 value = 0;
846
847 if (!armv8pmu_counter_valid(idx))
848 pr_err("CPU%u reading wrong counter %d\n",
849 smp_processor_id(), idx);
850 else if (idx == ARMV8_IDX_CYCLE_COUNTER)
851 asm volatile("mrs %0, pmccntr_el0" : "=r" (value));
852 else if (armv8pmu_select_counter(idx) == idx)
853 asm volatile("mrs %0, pmxevcntr_el0" : "=r" (value));
854
855 return value;
856}
857
858static inline void armv8pmu_write_counter(int idx, u32 value)
859{
860 if (!armv8pmu_counter_valid(idx))
861 pr_err("CPU%u writing wrong counter %d\n",
862 smp_processor_id(), idx);
863 else if (idx == ARMV8_IDX_CYCLE_COUNTER)
864 asm volatile("msr pmccntr_el0, %0" :: "r" (value));
865 else if (armv8pmu_select_counter(idx) == idx)
866 asm volatile("msr pmxevcntr_el0, %0" :: "r" (value));
867}
868
869static inline void armv8pmu_write_evtype(int idx, u32 val)
870{
871 if (armv8pmu_select_counter(idx) == idx) {
872 val &= ARMV8_EVTYPE_MASK;
873 asm volatile("msr pmxevtyper_el0, %0" :: "r" (val));
874 }
875}
876
877static inline int armv8pmu_enable_counter(int idx)
878{
879 u32 counter;
880
881 if (!armv8pmu_counter_valid(idx)) {
882 pr_err("CPU%u enabling wrong PMNC counter %d\n",
883 smp_processor_id(), idx);
884 return -EINVAL;
885 }
886
887 counter = ARMV8_IDX_TO_COUNTER(idx);
888 asm volatile("msr pmcntenset_el0, %0" :: "r" (BIT(counter)));
889 return idx;
890}
891
892static inline int armv8pmu_disable_counter(int idx)
893{
894 u32 counter;
895
896 if (!armv8pmu_counter_valid(idx)) {
897 pr_err("CPU%u disabling wrong PMNC counter %d\n",
898 smp_processor_id(), idx);
899 return -EINVAL;
900 }
901
902 counter = ARMV8_IDX_TO_COUNTER(idx);
903 asm volatile("msr pmcntenclr_el0, %0" :: "r" (BIT(counter)));
904 return idx;
905}
906
907static inline int armv8pmu_enable_intens(int idx)
908{
909 u32 counter;
910
911 if (!armv8pmu_counter_valid(idx)) {
912 pr_err("CPU%u enabling wrong PMNC counter IRQ enable %d\n",
913 smp_processor_id(), idx);
914 return -EINVAL;
915 }
916
917 counter = ARMV8_IDX_TO_COUNTER(idx);
918 asm volatile("msr pmintenset_el1, %0" :: "r" (BIT(counter)));
919 return idx;
920}
921
922static inline int armv8pmu_disable_intens(int idx)
923{
924 u32 counter;
925
926 if (!armv8pmu_counter_valid(idx)) {
927 pr_err("CPU%u disabling wrong PMNC counter IRQ enable %d\n",
928 smp_processor_id(), idx);
929 return -EINVAL;
930 }
931
932 counter = ARMV8_IDX_TO_COUNTER(idx);
933 asm volatile("msr pmintenclr_el1, %0" :: "r" (BIT(counter)));
934 isb();
935 /* Clear the overflow flag in case an interrupt is pending. */
936 asm volatile("msr pmovsclr_el0, %0" :: "r" (BIT(counter)));
937 isb();
938 return idx;
939}
940
941static inline u32 armv8pmu_getreset_flags(void)
942{
943 u32 value;
944
945 /* Read */
946 asm volatile("mrs %0, pmovsclr_el0" : "=r" (value));
947
948 /* Write to clear flags */
949 value &= ARMV8_OVSR_MASK;
950 asm volatile("msr pmovsclr_el0, %0" :: "r" (value));
951
952 return value;
953}
954
955static void armv8pmu_enable_event(struct hw_perf_event *hwc, int idx)
956{
957 unsigned long flags;
958 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
959
960 /*
961 * Enable counter and interrupt, and set the counter to count
962 * the event that we're interested in.
963 */
964 raw_spin_lock_irqsave(&events->pmu_lock, flags);
965
966 /*
967 * Disable counter
968 */
969 armv8pmu_disable_counter(idx);
970
971 /*
972 * Set event (if destined for PMNx counters).
973 */
974 armv8pmu_write_evtype(idx, hwc->config_base);
975
976 /*
977 * Enable interrupt for this counter
978 */
979 armv8pmu_enable_intens(idx);
980
981 /*
982 * Enable counter
983 */
984 armv8pmu_enable_counter(idx);
985
986 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
987}
988
989static void armv8pmu_disable_event(struct hw_perf_event *hwc, int idx)
990{
991 unsigned long flags;
992 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
993
994 /*
995 * Disable counter and interrupt
996 */
997 raw_spin_lock_irqsave(&events->pmu_lock, flags);
998
999 /*
1000 * Disable counter
1001 */
1002 armv8pmu_disable_counter(idx);
1003
1004 /*
1005 * Disable interrupt for this counter
1006 */
1007 armv8pmu_disable_intens(idx);
1008
1009 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1010}
1011
1012static irqreturn_t armv8pmu_handle_irq(int irq_num, void *dev)
1013{
1014 u32 pmovsr;
1015 struct perf_sample_data data;
1016 struct pmu_hw_events *cpuc;
1017 struct pt_regs *regs;
1018 int idx;
1019
1020 /*
1021 * Get and reset the IRQ flags
1022 */
1023 pmovsr = armv8pmu_getreset_flags();
1024
1025 /*
1026 * Did an overflow occur?
1027 */
1028 if (!armv8pmu_has_overflowed(pmovsr))
1029 return IRQ_NONE;
1030
1031 /*
1032 * Handle the counter(s) overflow(s)
1033 */
1034 regs = get_irq_regs();
1035
1036 cpuc = &__get_cpu_var(cpu_hw_events);
1037 for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
1038 struct perf_event *event = cpuc->events[idx];
1039 struct hw_perf_event *hwc;
1040
1041 /* Ignore if we don't have an event. */
1042 if (!event)
1043 continue;
1044
1045 /*
1046 * We have a single interrupt for all counters. Check that
1047 * each counter has overflowed before we process it.
1048 */
1049 if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
1050 continue;
1051
1052 hwc = &event->hw;
1053 armpmu_event_update(event, hwc, idx);
1054 perf_sample_data_init(&data, 0, hwc->last_period);
1055 if (!armpmu_event_set_period(event, hwc, idx))
1056 continue;
1057
1058 if (perf_event_overflow(event, &data, regs))
1059 cpu_pmu->disable(hwc, idx);
1060 }
1061
1062 /*
1063 * Handle the pending perf events.
1064 *
1065 * Note: this call *must* be run with interrupts disabled. For
1066 * platforms that can have the PMU interrupts raised as an NMI, this
1067 * will not work.
1068 */
1069 irq_work_run();
1070
1071 return IRQ_HANDLED;
1072}
1073
1074static void armv8pmu_start(void)
1075{
1076 unsigned long flags;
1077 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1078
1079 raw_spin_lock_irqsave(&events->pmu_lock, flags);
1080 /* Enable all counters */
1081 armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMCR_E);
1082 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1083}
1084
1085static void armv8pmu_stop(void)
1086{
1087 unsigned long flags;
1088 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1089
1090 raw_spin_lock_irqsave(&events->pmu_lock, flags);
1091 /* Disable all counters */
1092 armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMCR_E);
1093 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1094}
1095
1096static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
1097 struct hw_perf_event *event)
1098{
1099 int idx;
1100 unsigned long evtype = event->config_base & ARMV8_EVTYPE_EVENT;
1101
1102 /* Always place a cycle counter into the cycle counter. */
f46f979f 1103 if (evtype == ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES) {
03089688
WD
1104 if (test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
1105 return -EAGAIN;
1106
1107 return ARMV8_IDX_CYCLE_COUNTER;
1108 }
1109
1110 /*
1111 * For anything other than a cycle counter, try and use
1112 * the events counters
1113 */
1114 for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; ++idx) {
1115 if (!test_and_set_bit(idx, cpuc->used_mask))
1116 return idx;
1117 }
1118
1119 /* The counters are all in use. */
1120 return -EAGAIN;
1121}
1122
1123/*
1124 * Add an event filter to a given event. This will only work for PMUv2 PMUs.
1125 */
1126static int armv8pmu_set_event_filter(struct hw_perf_event *event,
1127 struct perf_event_attr *attr)
1128{
1129 unsigned long config_base = 0;
1130
1131 if (attr->exclude_idle)
1132 return -EPERM;
1133 if (attr->exclude_user)
1134 config_base |= ARMV8_EXCLUDE_EL0;
1135 if (attr->exclude_kernel)
1136 config_base |= ARMV8_EXCLUDE_EL1;
1137 if (!attr->exclude_hv)
1138 config_base |= ARMV8_INCLUDE_EL2;
1139
1140 /*
1141 * Install the filter into config_base as this is used to
1142 * construct the event type.
1143 */
1144 event->config_base = config_base;
1145
1146 return 0;
1147}
1148
1149static void armv8pmu_reset(void *info)
1150{
1151 u32 idx, nb_cnt = cpu_pmu->num_events;
1152
1153 /* The counter and interrupt enable registers are unknown at reset. */
1154 for (idx = ARMV8_IDX_CYCLE_COUNTER; idx < nb_cnt; ++idx)
1155 armv8pmu_disable_event(NULL, idx);
1156
1157 /* Initialize & Reset PMNC: C and P bits. */
1158 armv8pmu_pmcr_write(ARMV8_PMCR_P | ARMV8_PMCR_C);
1159
1160 /* Disable access from userspace. */
1161 asm volatile("msr pmuserenr_el0, %0" :: "r" (0));
1162}
1163
1164static int armv8_pmuv3_map_event(struct perf_event *event)
1165{
1166 return map_cpu_event(event, &armv8_pmuv3_perf_map,
1167 &armv8_pmuv3_perf_cache_map, 0xFF);
1168}
1169
1170static struct arm_pmu armv8pmu = {
1171 .handle_irq = armv8pmu_handle_irq,
1172 .enable = armv8pmu_enable_event,
1173 .disable = armv8pmu_disable_event,
1174 .read_counter = armv8pmu_read_counter,
1175 .write_counter = armv8pmu_write_counter,
1176 .get_event_idx = armv8pmu_get_event_idx,
1177 .start = armv8pmu_start,
1178 .stop = armv8pmu_stop,
1179 .reset = armv8pmu_reset,
1180 .max_period = (1LLU << 32) - 1,
1181};
1182
1183static u32 __init armv8pmu_read_num_pmnc_events(void)
1184{
1185 u32 nb_cnt;
1186
1187 /* Read the nb of CNTx counters supported from PMNC */
1188 nb_cnt = (armv8pmu_pmcr_read() >> ARMV8_PMCR_N_SHIFT) & ARMV8_PMCR_N_MASK;
1189
1190 /* Add the CPU cycles counter and return */
1191 return nb_cnt + 1;
1192}
1193
1194static struct arm_pmu *__init armv8_pmuv3_pmu_init(void)
1195{
1196 armv8pmu.name = "arm/armv8-pmuv3";
1197 armv8pmu.map_event = armv8_pmuv3_map_event;
1198 armv8pmu.num_events = armv8pmu_read_num_pmnc_events();
1199 armv8pmu.set_event_filter = armv8pmu_set_event_filter;
1200 return &armv8pmu;
1201}
1202
1203/*
1204 * Ensure the PMU has sane values out of reset.
1205 * This requires SMP to be available, so exists as a separate initcall.
1206 */
1207static int __init
1208cpu_pmu_reset(void)
1209{
1210 if (cpu_pmu && cpu_pmu->reset)
1211 return on_each_cpu(cpu_pmu->reset, NULL, 1);
1212 return 0;
1213}
1214arch_initcall(cpu_pmu_reset);
1215
1216/*
1217 * PMU platform driver and devicetree bindings.
1218 */
1219static struct of_device_id armpmu_of_device_ids[] = {
1220 {.compatible = "arm,armv8-pmuv3"},
1221 {},
1222};
1223
b881bc46 1224static int armpmu_device_probe(struct platform_device *pdev)
03089688
WD
1225{
1226 if (!cpu_pmu)
1227 return -ENODEV;
1228
1229 cpu_pmu->plat_device = pdev;
1230 return 0;
1231}
1232
1233static struct platform_driver armpmu_driver = {
1234 .driver = {
1235 .name = "arm-pmu",
1236 .of_match_table = armpmu_of_device_ids,
1237 },
1238 .probe = armpmu_device_probe,
1239};
1240
1241static int __init register_pmu_driver(void)
1242{
1243 return platform_driver_register(&armpmu_driver);
1244}
1245device_initcall(register_pmu_driver);
1246
1247static struct pmu_hw_events *armpmu_get_cpu_events(void)
1248{
1249 return &__get_cpu_var(cpu_hw_events);
1250}
1251
1252static void __init cpu_pmu_init(struct arm_pmu *armpmu)
1253{
1254 int cpu;
1255 for_each_possible_cpu(cpu) {
1256 struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
1257 events->events = per_cpu(hw_events, cpu);
1258 events->used_mask = per_cpu(used_mask, cpu);
1259 raw_spin_lock_init(&events->pmu_lock);
1260 }
1261 armpmu->get_hw_events = armpmu_get_cpu_events;
1262}
1263
1264static int __init init_hw_perf_events(void)
1265{
1266 u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
1267
1268 switch ((dfr >> 8) & 0xf) {
1269 case 0x1: /* PMUv3 */
1270 cpu_pmu = armv8_pmuv3_pmu_init();
1271 break;
1272 }
1273
1274 if (cpu_pmu) {
1275 pr_info("enabled with %s PMU driver, %d counters available\n",
1276 cpu_pmu->name, cpu_pmu->num_events);
1277 cpu_pmu_init(cpu_pmu);
1278 armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
1279 } else {
1280 pr_info("no hardware support available\n");
1281 }
1282
1283 return 0;
1284}
1285early_initcall(init_hw_perf_events);
1286
1287/*
1288 * Callchain handling code.
1289 */
1290struct frame_tail {
1291 struct frame_tail __user *fp;
1292 unsigned long lr;
1293} __attribute__((packed));
1294
1295/*
1296 * Get the return address for a single stackframe and return a pointer to the
1297 * next frame tail.
1298 */
1299static struct frame_tail __user *
1300user_backtrace(struct frame_tail __user *tail,
1301 struct perf_callchain_entry *entry)
1302{
1303 struct frame_tail buftail;
1304 unsigned long err;
1305
1306 /* Also check accessibility of one struct frame_tail beyond */
1307 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
1308 return NULL;
1309
1310 pagefault_disable();
1311 err = __copy_from_user_inatomic(&buftail, tail, sizeof(buftail));
1312 pagefault_enable();
1313
1314 if (err)
1315 return NULL;
1316
1317 perf_callchain_store(entry, buftail.lr);
1318
1319 /*
1320 * Frame pointers should strictly progress back up the stack
1321 * (towards higher addresses).
1322 */
1323 if (tail >= buftail.fp)
1324 return NULL;
1325
1326 return buftail.fp;
1327}
1328
1329void perf_callchain_user(struct perf_callchain_entry *entry,
1330 struct pt_regs *regs)
1331{
1332 struct frame_tail __user *tail;
1333
75e42462
MZ
1334 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1335 /* We don't support guest os callchain now */
1336 return;
1337 }
1338
03089688
WD
1339 tail = (struct frame_tail __user *)regs->regs[29];
1340
1341 while (entry->nr < PERF_MAX_STACK_DEPTH &&
1342 tail && !((unsigned long)tail & 0xf))
1343 tail = user_backtrace(tail, entry);
1344}
1345
1346/*
1347 * Gets called by walk_stackframe() for every stackframe. This will be called
1348 * whist unwinding the stackframe and is like a subroutine return so we use
1349 * the PC.
1350 */
1351static int callchain_trace(struct stackframe *frame, void *data)
1352{
1353 struct perf_callchain_entry *entry = data;
1354 perf_callchain_store(entry, frame->pc);
1355 return 0;
1356}
1357
1358void perf_callchain_kernel(struct perf_callchain_entry *entry,
1359 struct pt_regs *regs)
1360{
1361 struct stackframe frame;
1362
75e42462
MZ
1363 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1364 /* We don't support guest os callchain now */
1365 return;
1366 }
1367
03089688
WD
1368 frame.fp = regs->regs[29];
1369 frame.sp = regs->sp;
1370 frame.pc = regs->pc;
1371 walk_stackframe(&frame, callchain_trace, entry);
1372}
75e42462
MZ
1373
1374unsigned long perf_instruction_pointer(struct pt_regs *regs)
1375{
1376 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1377 return perf_guest_cbs->get_guest_ip();
1378
1379 return instruction_pointer(regs);
1380}
1381
1382unsigned long perf_misc_flags(struct pt_regs *regs)
1383{
1384 int misc = 0;
1385
1386 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1387 if (perf_guest_cbs->is_user_mode())
1388 misc |= PERF_RECORD_MISC_GUEST_USER;
1389 else
1390 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1391 } else {
1392 if (user_mode(regs))
1393 misc |= PERF_RECORD_MISC_USER;
1394 else
1395 misc |= PERF_RECORD_MISC_KERNEL;
1396 }
1397
1398 return misc;
1399}