ARM: Ensure meminfo is sorted prior to sanity_check_meminfo
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
14#include <linux/bootmem.h>
15#include <linux/mman.h>
16#include <linux/nodemask.h>
ceb683d3 17#include <linux/sort.h>
d111e8f9 18
0ba8b9b2 19#include <asm/cputype.h>
d111e8f9 20#include <asm/mach-types.h>
37efe642 21#include <asm/sections.h>
3f973e22 22#include <asm/cachetype.h>
d111e8f9
RK
23#include <asm/setup.h>
24#include <asm/sizes.h>
e616c591 25#include <asm/smp_plat.h>
d111e8f9 26#include <asm/tlb.h>
d73cd428 27#include <asm/highmem.h>
d111e8f9
RK
28
29#include <asm/mach/arch.h>
30#include <asm/mach/map.h>
31
32#include "mm.h"
33
34DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
35
d111e8f9
RK
36/*
37 * empty_zero_page is a special page that is used for
38 * zero-initialized data and COW.
39 */
40struct page *empty_zero_page;
3653f3ab 41EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
42
43/*
44 * The pmd table for the upper-most set of pages.
45 */
46pmd_t *top_pmd;
47
ae8f1541
RK
48#define CPOLICY_UNCACHED 0
49#define CPOLICY_BUFFERED 1
50#define CPOLICY_WRITETHROUGH 2
51#define CPOLICY_WRITEBACK 3
52#define CPOLICY_WRITEALLOC 4
53
54static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
55static unsigned int ecc_mask __initdata = 0;
44b18693 56pgprot_t pgprot_user;
ae8f1541
RK
57pgprot_t pgprot_kernel;
58
44b18693 59EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
60EXPORT_SYMBOL(pgprot_kernel);
61
62struct cachepolicy {
63 const char policy[16];
64 unsigned int cr_mask;
65 unsigned int pmd;
66 unsigned int pte;
67};
68
69static struct cachepolicy cache_policies[] __initdata = {
70 {
71 .policy = "uncached",
72 .cr_mask = CR_W|CR_C,
73 .pmd = PMD_SECT_UNCACHED,
bb30f36f 74 .pte = L_PTE_MT_UNCACHED,
ae8f1541
RK
75 }, {
76 .policy = "buffered",
77 .cr_mask = CR_C,
78 .pmd = PMD_SECT_BUFFERED,
bb30f36f 79 .pte = L_PTE_MT_BUFFERABLE,
ae8f1541
RK
80 }, {
81 .policy = "writethrough",
82 .cr_mask = 0,
83 .pmd = PMD_SECT_WT,
bb30f36f 84 .pte = L_PTE_MT_WRITETHROUGH,
ae8f1541
RK
85 }, {
86 .policy = "writeback",
87 .cr_mask = 0,
88 .pmd = PMD_SECT_WB,
bb30f36f 89 .pte = L_PTE_MT_WRITEBACK,
ae8f1541
RK
90 }, {
91 .policy = "writealloc",
92 .cr_mask = 0,
93 .pmd = PMD_SECT_WBWA,
bb30f36f 94 .pte = L_PTE_MT_WRITEALLOC,
ae8f1541
RK
95 }
96};
97
98/*
6cbdc8c5 99 * These are useful for identifying cache coherency
ae8f1541
RK
100 * problems by allowing the cache or the cache and
101 * writebuffer to be turned off. (Note: the write
102 * buffer should not be on and the cache off).
103 */
2b0d8c25 104static int __init early_cachepolicy(char *p)
ae8f1541
RK
105{
106 int i;
107
108 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
109 int len = strlen(cache_policies[i].policy);
110
2b0d8c25 111 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ae8f1541
RK
112 cachepolicy = i;
113 cr_alignment &= ~cache_policies[i].cr_mask;
114 cr_no_alignment &= ~cache_policies[i].cr_mask;
ae8f1541
RK
115 break;
116 }
117 }
118 if (i == ARRAY_SIZE(cache_policies))
119 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
4b46d641
RK
120 /*
121 * This restriction is partly to do with the way we boot; it is
122 * unpredictable to have memory mapped using two different sets of
123 * memory attributes (shared, type, and cache attribs). We can not
124 * change these attributes once the initial assembly has setup the
125 * page tables.
126 */
11179d8c
CM
127 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
128 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
129 cachepolicy = CPOLICY_WRITEBACK;
130 }
ae8f1541
RK
131 flush_cache_all();
132 set_cr(cr_alignment);
2b0d8c25 133 return 0;
ae8f1541 134}
2b0d8c25 135early_param("cachepolicy", early_cachepolicy);
ae8f1541 136
2b0d8c25 137static int __init early_nocache(char *__unused)
ae8f1541
RK
138{
139 char *p = "buffered";
140 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
141 early_cachepolicy(p);
142 return 0;
ae8f1541 143}
2b0d8c25 144early_param("nocache", early_nocache);
ae8f1541 145
2b0d8c25 146static int __init early_nowrite(char *__unused)
ae8f1541
RK
147{
148 char *p = "uncached";
149 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
150 early_cachepolicy(p);
151 return 0;
ae8f1541 152}
2b0d8c25 153early_param("nowb", early_nowrite);
ae8f1541 154
2b0d8c25 155static int __init early_ecc(char *p)
ae8f1541 156{
2b0d8c25 157 if (memcmp(p, "on", 2) == 0)
ae8f1541 158 ecc_mask = PMD_PROTECTION;
2b0d8c25 159 else if (memcmp(p, "off", 3) == 0)
ae8f1541 160 ecc_mask = 0;
2b0d8c25 161 return 0;
ae8f1541 162}
2b0d8c25 163early_param("ecc", early_ecc);
ae8f1541
RK
164
165static int __init noalign_setup(char *__unused)
166{
167 cr_alignment &= ~CR_A;
168 cr_no_alignment &= ~CR_A;
169 set_cr(cr_alignment);
170 return 1;
171}
172__setup("noalign", noalign_setup);
173
255d1f86
RK
174#ifndef CONFIG_SMP
175void adjust_cr(unsigned long mask, unsigned long set)
176{
177 unsigned long flags;
178
179 mask &= ~CR_A;
180
181 set &= mask;
182
183 local_irq_save(flags);
184
185 cr_no_alignment = (cr_no_alignment & ~mask) | set;
186 cr_alignment = (cr_alignment & ~mask) | set;
187
188 set_cr((get_cr() & ~mask) | set);
189
190 local_irq_restore(flags);
191}
192#endif
193
0af92bef 194#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
b1cce6b1 195#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 196
b29e9f5e 197static struct mem_type mem_types[] = {
0af92bef 198 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
199 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
200 L_PTE_SHARED,
0af92bef 201 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 202 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
203 .domain = DOMAIN_IO,
204 },
205 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 206 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 207 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 208 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
209 .domain = DOMAIN_IO,
210 },
211 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 212 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
213 .prot_l1 = PMD_TYPE_TABLE,
214 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
215 .domain = DOMAIN_IO,
216 },
1ad77a87 217 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 218 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 219 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 220 .prot_sect = PROT_SECT_DEVICE,
0af92bef 221 .domain = DOMAIN_IO,
ae8f1541 222 },
ebb4c658
RK
223 [MT_UNCACHED] = {
224 .prot_pte = PROT_PTE_DEVICE,
225 .prot_l1 = PMD_TYPE_TABLE,
226 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
227 .domain = DOMAIN_IO,
228 },
ae8f1541 229 [MT_CACHECLEAN] = {
9ef79635 230 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
231 .domain = DOMAIN_KERNEL,
232 },
233 [MT_MINICLEAN] = {
9ef79635 234 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
235 .domain = DOMAIN_KERNEL,
236 },
237 [MT_LOW_VECTORS] = {
238 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
239 L_PTE_EXEC,
240 .prot_l1 = PMD_TYPE_TABLE,
241 .domain = DOMAIN_USER,
242 },
243 [MT_HIGH_VECTORS] = {
244 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
245 L_PTE_USER | L_PTE_EXEC,
246 .prot_l1 = PMD_TYPE_TABLE,
247 .domain = DOMAIN_USER,
248 },
249 [MT_MEMORY] = {
9ef79635 250 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
251 .domain = DOMAIN_KERNEL,
252 },
253 [MT_ROM] = {
9ef79635 254 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
255 .domain = DOMAIN_KERNEL,
256 },
e4707dd3
PW
257 [MT_MEMORY_NONCACHED] = {
258 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
259 .domain = DOMAIN_KERNEL,
260 },
ae8f1541
RK
261};
262
b29e9f5e
RK
263const struct mem_type *get_mem_type(unsigned int type)
264{
265 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
266}
69d3a84a 267EXPORT_SYMBOL(get_mem_type);
b29e9f5e 268
ae8f1541
RK
269/*
270 * Adjust the PMD section entries according to the CPU in use.
271 */
272static void __init build_mem_type_table(void)
273{
274 struct cachepolicy *cp;
275 unsigned int cr = get_cr();
bb30f36f 276 unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
ae8f1541
RK
277 int cpu_arch = cpu_architecture();
278 int i;
279
11179d8c 280 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 281#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
282 if (cachepolicy > CPOLICY_BUFFERED)
283 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 284#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
285 if (cachepolicy > CPOLICY_WRITETHROUGH)
286 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 287#endif
11179d8c 288 }
ae8f1541
RK
289 if (cpu_arch < CPU_ARCH_ARMv5) {
290 if (cachepolicy >= CPOLICY_WRITEALLOC)
291 cachepolicy = CPOLICY_WRITEBACK;
292 ecc_mask = 0;
293 }
bb30f36f
RK
294#ifdef CONFIG_SMP
295 cachepolicy = CPOLICY_WRITEALLOC;
296#endif
ae8f1541 297
1ad77a87 298 /*
b1cce6b1
RK
299 * Strip out features not present on earlier architectures.
300 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
301 * without extended page tables don't have the 'Shared' bit.
1ad77a87 302 */
b1cce6b1
RK
303 if (cpu_arch < CPU_ARCH_ARMv5)
304 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
305 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
306 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
307 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
308 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
309
310 /*
b1cce6b1
RK
311 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
312 * "update-able on write" bit on ARM610). However, Xscale and
313 * Xscale3 require this bit to be cleared.
ae8f1541 314 */
b1cce6b1 315 if (cpu_is_xscale() || cpu_is_xsc3()) {
9ef79635 316 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 317 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
318 mem_types[i].prot_l1 &= ~PMD_BIT4;
319 }
320 } else if (cpu_arch < CPU_ARCH_ARMv6) {
321 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
322 if (mem_types[i].prot_l1)
323 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
324 if (mem_types[i].prot_sect)
325 mem_types[i].prot_sect |= PMD_BIT4;
326 }
327 }
ae8f1541 328
b1cce6b1
RK
329 /*
330 * Mark the device areas according to the CPU/architecture.
331 */
332 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
333 if (!cpu_is_xsc3()) {
334 /*
335 * Mark device regions on ARMv6+ as execute-never
336 * to prevent speculative instruction fetches.
337 */
338 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
339 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
340 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
341 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
342 }
343 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
344 /*
345 * For ARMv7 with TEX remapping,
346 * - shared device is SXCB=1100
347 * - nonshared device is SXCB=0100
348 * - write combine device mem is SXCB=0001
349 * (Uncached Normal memory)
350 */
351 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
352 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
353 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
354 } else if (cpu_is_xsc3()) {
355 /*
356 * For Xscale3,
357 * - shared device is TEXCB=00101
358 * - nonshared device is TEXCB=01000
359 * - write combine device mem is TEXCB=00100
360 * (Inner/Outer Uncacheable in xsc3 parlance)
361 */
362 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
363 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
364 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
365 } else {
366 /*
367 * For ARMv6 and ARMv7 without TEX remapping,
368 * - shared device is TEXCB=00001
369 * - nonshared device is TEXCB=01000
370 * - write combine device mem is TEXCB=00100
371 * (Uncached Normal in ARMv6 parlance).
372 */
373 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
374 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
375 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
376 }
377 } else {
378 /*
379 * On others, write combining is "Uncached/Buffered"
380 */
381 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
382 }
383
384 /*
385 * Now deal with the memory-type mappings
386 */
ae8f1541 387 cp = &cache_policies[cachepolicy];
bb30f36f
RK
388 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
389
390#ifndef CONFIG_SMP
391 /*
392 * Only use write-through for non-SMP systems
393 */
394 if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
395 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
396#endif
ae8f1541
RK
397
398 /*
399 * Enable CPU-specific coherency if supported.
400 * (Only available on XSC3 at the moment.)
401 */
b1cce6b1
RK
402 if (arch_is_coherent() && cpu_is_xsc3())
403 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
ae8f1541
RK
404
405 /*
406 * ARMv6 and above have extended page tables.
407 */
408 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
ae8f1541
RK
409 /*
410 * Mark cache clean areas and XIP ROM read only
411 * from SVC mode and no access from userspace.
412 */
413 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
414 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
415 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
416
ae8f1541
RK
417#ifdef CONFIG_SMP
418 /*
419 * Mark memory with the "shared" attribute for SMP systems
420 */
421 user_pgprot |= L_PTE_SHARED;
422 kern_pgprot |= L_PTE_SHARED;
bb30f36f 423 vecs_pgprot |= L_PTE_SHARED;
ae8f1541 424 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
e4707dd3 425 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
ae8f1541
RK
426#endif
427 }
428
e4707dd3
PW
429 /*
430 * Non-cacheable Normal - intended for memory areas that must
431 * not cause dirty cache line writebacks when used
432 */
433 if (cpu_arch >= CPU_ARCH_ARMv6) {
434 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
435 /* Non-cacheable Normal is XCB = 001 */
436 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
437 PMD_SECT_BUFFERED;
438 } else {
439 /* For both ARMv6 and non-TEX-remapping ARMv7 */
440 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
441 PMD_SECT_TEX(1);
442 }
443 } else {
444 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
445 }
446
ae8f1541
RK
447 for (i = 0; i < 16; i++) {
448 unsigned long v = pgprot_val(protection_map[i]);
bb30f36f 449 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
450 }
451
bb30f36f
RK
452 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
453 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 454
44b18693 455 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 456 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
6dc995a3 457 L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
ae8f1541
RK
458
459 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
460 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
461 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
462 mem_types[MT_ROM].prot_sect |= cp->pmd;
463
464 switch (cp->pmd) {
465 case PMD_SECT_WT:
466 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
467 break;
468 case PMD_SECT_WB:
469 case PMD_SECT_WBWA:
470 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
471 break;
472 }
473 printk("Memory policy: ECC %sabled, Data cache %s\n",
474 ecc_mask ? "en" : "dis", cp->policy);
2497f0a8
RK
475
476 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
477 struct mem_type *t = &mem_types[i];
478 if (t->prot_l1)
479 t->prot_l1 |= PMD_DOMAIN(t->domain);
480 if (t->prot_sect)
481 t->prot_sect |= PMD_DOMAIN(t->domain);
482 }
ae8f1541
RK
483}
484
485#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
486
24e6c699
RK
487static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
488 unsigned long end, unsigned long pfn,
489 const struct mem_type *type)
ae8f1541 490{
24e6c699 491 pte_t *pte;
ae8f1541 492
24e6c699
RK
493 if (pmd_none(*pmd)) {
494 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
495 __pmd_populate(pmd, __pa(pte) | type->prot_l1);
496 }
ae8f1541 497
24e6c699
RK
498 pte = pte_offset_kernel(pmd, addr);
499 do {
40d192b6 500 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
24e6c699
RK
501 pfn++;
502 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
503}
504
24e6c699
RK
505static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
506 unsigned long end, unsigned long phys,
507 const struct mem_type *type)
ae8f1541 508{
24e6c699 509 pmd_t *pmd = pmd_offset(pgd, addr);
ae8f1541 510
24e6c699
RK
511 /*
512 * Try a section mapping - end, addr and phys must all be aligned
513 * to a section boundary. Note that PMDs refer to the individual
514 * L1 entries, whereas PGDs refer to a group of L1 entries making
515 * up one logical pointer to an L2 table.
516 */
517 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
518 pmd_t *p = pmd;
ae8f1541 519
24e6c699
RK
520 if (addr & SECTION_SIZE)
521 pmd++;
522
523 do {
524 *pmd = __pmd(phys | type->prot_sect);
525 phys += SECTION_SIZE;
526 } while (pmd++, addr += SECTION_SIZE, addr != end);
ae8f1541 527
24e6c699
RK
528 flush_pmd_entry(p);
529 } else {
530 /*
531 * No need to loop; pte's aren't interested in the
532 * individual L1 entries.
533 */
534 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
535 }
ae8f1541
RK
536}
537
4a56c1e4
RK
538static void __init create_36bit_mapping(struct map_desc *md,
539 const struct mem_type *type)
540{
541 unsigned long phys, addr, length, end;
542 pgd_t *pgd;
543
544 addr = md->virtual;
545 phys = (unsigned long)__pfn_to_phys(md->pfn);
546 length = PAGE_ALIGN(md->length);
547
548 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
549 printk(KERN_ERR "MM: CPU does not support supersection "
550 "mapping for 0x%08llx at 0x%08lx\n",
551 __pfn_to_phys((u64)md->pfn), addr);
552 return;
553 }
554
555 /* N.B. ARMv6 supersections are only defined to work with domain 0.
556 * Since domain assignments can in fact be arbitrary, the
557 * 'domain == 0' check below is required to insure that ARMv6
558 * supersections are only allocated for domain 0 regardless
559 * of the actual domain assignments in use.
560 */
561 if (type->domain) {
562 printk(KERN_ERR "MM: invalid domain in supersection "
563 "mapping for 0x%08llx at 0x%08lx\n",
564 __pfn_to_phys((u64)md->pfn), addr);
565 return;
566 }
567
568 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
569 printk(KERN_ERR "MM: cannot create mapping for "
570 "0x%08llx at 0x%08lx invalid alignment\n",
571 __pfn_to_phys((u64)md->pfn), addr);
572 return;
573 }
574
575 /*
576 * Shift bits [35:32] of address into bits [23:20] of PMD
577 * (See ARMv6 spec).
578 */
579 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
580
581 pgd = pgd_offset_k(addr);
582 end = addr + length;
583 do {
584 pmd_t *pmd = pmd_offset(pgd, addr);
585 int i;
586
587 for (i = 0; i < 16; i++)
588 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
589
590 addr += SUPERSECTION_SIZE;
591 phys += SUPERSECTION_SIZE;
592 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
593 } while (addr != end);
594}
595
ae8f1541
RK
596/*
597 * Create the page directory entries and any necessary
598 * page tables for the mapping specified by `md'. We
599 * are able to cope here with varying sizes and address
600 * offsets, and we take full advantage of sections and
601 * supersections.
602 */
603void __init create_mapping(struct map_desc *md)
604{
24e6c699 605 unsigned long phys, addr, length, end;
d5c98176 606 const struct mem_type *type;
24e6c699 607 pgd_t *pgd;
ae8f1541
RK
608
609 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
610 printk(KERN_WARNING "BUG: not creating mapping for "
611 "0x%08llx at 0x%08lx in user region\n",
612 __pfn_to_phys((u64)md->pfn), md->virtual);
613 return;
614 }
615
616 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
617 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
618 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
619 "overlaps vmalloc space\n",
620 __pfn_to_phys((u64)md->pfn), md->virtual);
621 }
622
d5c98176 623 type = &mem_types[md->type];
ae8f1541
RK
624
625 /*
626 * Catch 36-bit addresses
627 */
4a56c1e4
RK
628 if (md->pfn >= 0x100000) {
629 create_36bit_mapping(md, type);
630 return;
ae8f1541
RK
631 }
632
7b9c7b4d 633 addr = md->virtual & PAGE_MASK;
24e6c699 634 phys = (unsigned long)__pfn_to_phys(md->pfn);
7b9c7b4d 635 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 636
24e6c699 637 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
ae8f1541
RK
638 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
639 "be mapped using pages, ignoring.\n",
24e6c699 640 __pfn_to_phys(md->pfn), addr);
ae8f1541
RK
641 return;
642 }
643
24e6c699
RK
644 pgd = pgd_offset_k(addr);
645 end = addr + length;
646 do {
647 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 648
24e6c699 649 alloc_init_section(pgd, addr, next, phys, type);
ae8f1541 650
24e6c699
RK
651 phys += next - addr;
652 addr = next;
653 } while (pgd++, addr != end);
ae8f1541
RK
654}
655
656/*
657 * Create the architecture specific mappings
658 */
659void __init iotable_init(struct map_desc *io_desc, int nr)
660{
661 int i;
662
663 for (i = 0; i < nr; i++)
664 create_mapping(io_desc + i);
665}
666
6c5da7ac
RK
667static unsigned long __initdata vmalloc_reserve = SZ_128M;
668
669/*
670 * vmalloc=size forces the vmalloc area to be exactly 'size'
671 * bytes. This can be used to increase (or decrease) the vmalloc
672 * area - the default is 128m.
673 */
2b0d8c25 674static int __init early_vmalloc(char *arg)
6c5da7ac 675{
2b0d8c25 676 vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
677
678 if (vmalloc_reserve < SZ_16M) {
679 vmalloc_reserve = SZ_16M;
680 printk(KERN_WARNING
681 "vmalloc area too small, limiting to %luMB\n",
682 vmalloc_reserve >> 20);
683 }
9210807c
NP
684
685 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
686 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
687 printk(KERN_WARNING
688 "vmalloc area is too big, limiting to %luMB\n",
689 vmalloc_reserve >> 20);
690 }
2b0d8c25 691 return 0;
6c5da7ac 692}
2b0d8c25 693early_param("vmalloc", early_vmalloc);
6c5da7ac
RK
694
695#define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
696
4b5f32ce 697static void __init sanity_check_meminfo(void)
60296c71 698{
dde5828f 699 int i, j, highmem = 0;
60296c71 700
4b5f32ce 701 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
a1bbaec0
NP
702 struct membank *bank = &meminfo.bank[j];
703 *bank = meminfo.bank[i];
60296c71 704
a1bbaec0 705#ifdef CONFIG_HIGHMEM
dde5828f
RK
706 if (__va(bank->start) > VMALLOC_MIN ||
707 __va(bank->start) < (void *)PAGE_OFFSET)
708 highmem = 1;
709
710 bank->highmem = highmem;
711
a1bbaec0
NP
712 /*
713 * Split those memory banks which are partially overlapping
714 * the vmalloc area greatly simplifying things later.
715 */
716 if (__va(bank->start) < VMALLOC_MIN &&
717 bank->size > VMALLOC_MIN - __va(bank->start)) {
718 if (meminfo.nr_banks >= NR_BANKS) {
719 printk(KERN_CRIT "NR_BANKS too low, "
720 "ignoring high memory\n");
721 } else {
722 memmove(bank + 1, bank,
723 (meminfo.nr_banks - i) * sizeof(*bank));
724 meminfo.nr_banks++;
725 i++;
726 bank[1].size -= VMALLOC_MIN - __va(bank->start);
727 bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
dde5828f 728 bank[1].highmem = highmem = 1;
a1bbaec0
NP
729 j++;
730 }
731 bank->size = VMALLOC_MIN - __va(bank->start);
732 }
733#else
041d785f
RK
734 bank->highmem = highmem;
735
a1bbaec0
NP
736 /*
737 * Check whether this memory bank would entirely overlap
738 * the vmalloc area.
739 */
3fd9825c 740 if (__va(bank->start) >= VMALLOC_MIN ||
f0bba9f9 741 __va(bank->start) < (void *)PAGE_OFFSET) {
a1bbaec0
NP
742 printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
743 "(vmalloc region overlap).\n",
744 bank->start, bank->start + bank->size - 1);
745 continue;
746 }
60296c71 747
a1bbaec0
NP
748 /*
749 * Check whether this memory bank would partially overlap
750 * the vmalloc area.
751 */
752 if (__va(bank->start + bank->size) > VMALLOC_MIN ||
753 __va(bank->start + bank->size) < __va(bank->start)) {
754 unsigned long newsize = VMALLOC_MIN - __va(bank->start);
755 printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
756 "to -%.8lx (vmalloc region overlap).\n",
757 bank->start, bank->start + bank->size - 1,
758 bank->start + newsize - 1);
759 bank->size = newsize;
760 }
761#endif
762 j++;
60296c71 763 }
e616c591
RK
764#ifdef CONFIG_HIGHMEM
765 if (highmem) {
766 const char *reason = NULL;
767
768 if (cache_is_vipt_aliasing()) {
769 /*
770 * Interactions between kmap and other mappings
771 * make highmem support with aliasing VIPT caches
772 * rather difficult.
773 */
774 reason = "with VIPT aliasing cache";
775#ifdef CONFIG_SMP
776 } else if (tlb_ops_need_broadcast()) {
777 /*
778 * kmap_high needs to occasionally flush TLB entries,
779 * however, if the TLB entries need to be broadcast
780 * we may deadlock:
781 * kmap_high(irqs off)->flush_all_zero_pkmaps->
782 * flush_tlb_kernel_range->smp_call_function_many
783 * (must not be called with irqs off)
784 */
785 reason = "without hardware TLB ops broadcasting";
786#endif
787 }
788 if (reason) {
789 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
790 reason);
791 while (j > 0 && meminfo.bank[j - 1].highmem)
792 j--;
793 }
794 }
795#endif
4b5f32ce 796 meminfo.nr_banks = j;
60296c71
LB
797}
798
4b5f32ce 799static inline void prepare_page_table(void)
d111e8f9
RK
800{
801 unsigned long addr;
802
803 /*
804 * Clear out all the mappings below the kernel image.
805 */
ab4f2ee1 806 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
d111e8f9
RK
807 pmd_clear(pmd_off_k(addr));
808
809#ifdef CONFIG_XIP_KERNEL
810 /* The XIP kernel is mapped in the module area -- skip over it */
37efe642 811 addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
d111e8f9
RK
812#endif
813 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
814 pmd_clear(pmd_off_k(addr));
815
816 /*
817 * Clear out all the kernel space mappings, except for the first
818 * memory bank, up to the end of the vmalloc region.
819 */
4b5f32ce 820 for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
d111e8f9
RK
821 addr < VMALLOC_END; addr += PGDIR_SIZE)
822 pmd_clear(pmd_off_k(addr));
823}
824
825/*
826 * Reserve the various regions of node 0
827 */
828void __init reserve_node_zero(pg_data_t *pgdat)
829{
830 unsigned long res_size = 0;
831
832 /*
833 * Register the kernel text and data with bootmem.
834 * Note that this can only be in node 0.
835 */
836#ifdef CONFIG_XIP_KERNEL
37efe642 837 reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
72a7fe39 838 BOOTMEM_DEFAULT);
d111e8f9 839#else
37efe642 840 reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
72a7fe39 841 BOOTMEM_DEFAULT);
d111e8f9
RK
842#endif
843
844 /*
845 * Reserve the page tables. These are already in use,
846 * and can only be in node 0.
847 */
848 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
72a7fe39 849 PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
d111e8f9
RK
850
851 /*
852 * Hmm... This should go elsewhere, but we really really need to
853 * stop things allocating the low memory; ideally we need a better
854 * implementation of GFP_DMA which does not assume that DMA-able
855 * memory starts at zero.
856 */
857 if (machine_is_integrator() || machine_is_cintegrator())
858 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
859
860 /*
861 * These should likewise go elsewhere. They pre-reserve the
862 * screen memory region at the start of main system memory.
863 */
864 if (machine_is_edb7211())
865 res_size = 0x00020000;
866 if (machine_is_p720t())
867 res_size = 0x00014000;
868
bbf6f280
BD
869 /* H1940 and RX3715 need to reserve this for suspend */
870
871 if (machine_is_h1940() || machine_is_rx3715()) {
72a7fe39
BW
872 reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
873 BOOTMEM_DEFAULT);
874 reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
875 BOOTMEM_DEFAULT);
9073341c
BD
876 }
877
81854f82
MV
878 if (machine_is_palmld() || machine_is_palmtx()) {
879 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
880 BOOTMEM_EXCLUSIVE);
881 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
882 BOOTMEM_EXCLUSIVE);
883 }
884
d0a92fd3 885 if (machine_is_treo680() || machine_is_centro()) {
e6c3f4b8
TSC
886 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
887 BOOTMEM_EXCLUSIVE);
888 reserve_bootmem_node(pgdat, 0xa2000000, 0x1000,
889 BOOTMEM_EXCLUSIVE);
890 }
891
81854f82
MV
892 if (machine_is_palmt5())
893 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
894 BOOTMEM_EXCLUSIVE);
895
d98aac75
LW
896 /*
897 * U300 - This platform family can share physical memory
898 * between two ARM cpus, one running Linux and the other
899 * running another OS.
900 */
901 if (machine_is_u300()) {
902#ifdef CONFIG_MACH_U300_SINGLE_RAM
903#if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) && \
904 CONFIG_MACH_U300_2MB_ALIGNMENT_FIX
905 res_size = 0x00100000;
906#endif
907#endif
908 }
909
d111e8f9
RK
910#ifdef CONFIG_SA1111
911 /*
912 * Because of the SA1111 DMA bug, we want to preserve our
913 * precious DMA-able memory...
914 */
915 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
916#endif
917 if (res_size)
72a7fe39
BW
918 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
919 BOOTMEM_DEFAULT);
d111e8f9
RK
920}
921
922/*
923 * Set up device the mappings. Since we clear out the page tables for all
924 * mappings above VMALLOC_END, we will remove any debug device mappings.
925 * This means you have to be careful how you debug this function, or any
926 * called function. This means you can't use any function or debugging
927 * method which may touch any device, otherwise the kernel _will_ crash.
928 */
929static void __init devicemaps_init(struct machine_desc *mdesc)
930{
931 struct map_desc map;
932 unsigned long addr;
933 void *vectors;
934
935 /*
936 * Allocate the vector page early.
937 */
938 vectors = alloc_bootmem_low_pages(PAGE_SIZE);
d111e8f9
RK
939
940 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
941 pmd_clear(pmd_off_k(addr));
942
943 /*
944 * Map the kernel if it is XIP.
945 * It is always first in the modulearea.
946 */
947#ifdef CONFIG_XIP_KERNEL
948 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 949 map.virtual = MODULES_VADDR;
37efe642 950 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
951 map.type = MT_ROM;
952 create_mapping(&map);
953#endif
954
955 /*
956 * Map the cache flushing regions.
957 */
958#ifdef FLUSH_BASE
959 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
960 map.virtual = FLUSH_BASE;
961 map.length = SZ_1M;
962 map.type = MT_CACHECLEAN;
963 create_mapping(&map);
964#endif
965#ifdef FLUSH_BASE_MINICACHE
966 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
967 map.virtual = FLUSH_BASE_MINICACHE;
968 map.length = SZ_1M;
969 map.type = MT_MINICLEAN;
970 create_mapping(&map);
971#endif
972
973 /*
974 * Create a mapping for the machine vectors at the high-vectors
975 * location (0xffff0000). If we aren't using high-vectors, also
976 * create a mapping at the low-vectors virtual address.
977 */
978 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
979 map.virtual = 0xffff0000;
980 map.length = PAGE_SIZE;
981 map.type = MT_HIGH_VECTORS;
982 create_mapping(&map);
983
984 if (!vectors_high()) {
985 map.virtual = 0;
986 map.type = MT_LOW_VECTORS;
987 create_mapping(&map);
988 }
989
990 /*
991 * Ask the machine support to map in the statically mapped devices.
992 */
993 if (mdesc->map_io)
994 mdesc->map_io();
995
996 /*
997 * Finally flush the caches and tlb to ensure that we're in a
998 * consistent state wrt the writebuffer. This also ensures that
999 * any write-allocated cache lines in the vector page are written
1000 * back. After this point, we can start to touch devices again.
1001 */
1002 local_flush_tlb_all();
1003 flush_cache_all();
1004}
1005
d73cd428
NP
1006static void __init kmap_init(void)
1007{
1008#ifdef CONFIG_HIGHMEM
1009 pmd_t *pmd = pmd_off_k(PKMAP_BASE);
1010 pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
1011 BUG_ON(!pmd_none(*pmd) || !pte);
1012 __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
1013 pkmap_page_table = pte + PTRS_PER_PTE;
1014#endif
1015}
1016
ceb683d3
RK
1017static int __init meminfo_cmp(const void *_a, const void *_b)
1018{
1019 const struct membank *a = _a, *b = _b;
1020 long cmp = bank_pfn_start(a) - bank_pfn_start(b);
1021 return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
1022}
1023
d111e8f9
RK
1024/*
1025 * paging_init() sets up the page tables, initialises the zone memory
1026 * maps, and sets up the zero page, bad page and bad page tables.
1027 */
4b5f32ce 1028void __init paging_init(struct machine_desc *mdesc)
d111e8f9
RK
1029{
1030 void *zero_page;
1031
ceb683d3
RK
1032 sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
1033
d111e8f9 1034 build_mem_type_table();
4b5f32ce
NP
1035 sanity_check_meminfo();
1036 prepare_page_table();
1037 bootmem_init();
d111e8f9 1038 devicemaps_init(mdesc);
d73cd428 1039 kmap_init();
d111e8f9
RK
1040
1041 top_pmd = pmd_off_k(0xffff0000);
1042
1043 /*
6ce1b871
JL
1044 * allocate the zero page. Note that this always succeeds and
1045 * returns a zeroed result.
d111e8f9
RK
1046 */
1047 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
d111e8f9 1048 empty_zero_page = virt_to_page(zero_page);
421fe93c 1049 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1050}
ae8f1541
RK
1051
1052/*
1053 * In order to soft-boot, we need to insert a 1:1 mapping in place of
1054 * the user-mode pages. This will then ensure that we have predictable
1055 * results when turning the mmu off
1056 */
1057void setup_mm_for_reboot(char mode)
1058{
1059 unsigned long base_pmdval;
1060 pgd_t *pgd;
1061 int i;
1062
1063 if (current->mm && current->mm->pgd)
1064 pgd = current->mm->pgd;
1065 else
1066 pgd = init_mm.pgd;
1067
1068 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1069 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1070 base_pmdval |= PMD_BIT4;
1071
1072 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1073 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1074 pmd_t *pmd;
1075
1076 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1077 pmd[0] = __pmd(pmdval);
1078 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1079 flush_pmd_entry(pmd);
1080 }
ad3e6c0b
TL
1081
1082 local_flush_tlb_all();
ae8f1541 1083}