Merge branch 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/groec...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / mach-davinci / dma.c
CommitLineData
a4768d22
KH
1/*
2 * EDMA3 support for DaVinci
3 *
4 * Copyright (C) 2006-2009 Texas Instruments.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20#include <linux/kernel.h>
a4768d22
KH
21#include <linux/init.h>
22#include <linux/module.h>
23#include <linux/interrupt.h>
24#include <linux/platform_device.h>
a4768d22 25#include <linux/io.h>
5a0e3ad6 26#include <linux/slab.h>
a4768d22 27
a4768d22 28#include <mach/edma.h>
a4768d22
KH
29
30/* Offsets matching "struct edmacc_param" */
31#define PARM_OPT 0x00
32#define PARM_SRC 0x04
33#define PARM_A_B_CNT 0x08
34#define PARM_DST 0x0c
35#define PARM_SRC_DST_BIDX 0x10
36#define PARM_LINK_BCNTRLD 0x14
37#define PARM_SRC_DST_CIDX 0x18
38#define PARM_CCNT 0x1c
39
40#define PARM_SIZE 0x20
41
42/* Offsets for EDMA CC global channel registers and their shadows */
43#define SH_ER 0x00 /* 64 bits */
44#define SH_ECR 0x08 /* 64 bits */
45#define SH_ESR 0x10 /* 64 bits */
46#define SH_CER 0x18 /* 64 bits */
47#define SH_EER 0x20 /* 64 bits */
48#define SH_EECR 0x28 /* 64 bits */
49#define SH_EESR 0x30 /* 64 bits */
50#define SH_SER 0x38 /* 64 bits */
51#define SH_SECR 0x40 /* 64 bits */
52#define SH_IER 0x50 /* 64 bits */
53#define SH_IECR 0x58 /* 64 bits */
54#define SH_IESR 0x60 /* 64 bits */
55#define SH_IPR 0x68 /* 64 bits */
56#define SH_ICR 0x70 /* 64 bits */
57#define SH_IEVAL 0x78
58#define SH_QER 0x80
59#define SH_QEER 0x84
60#define SH_QEECR 0x88
61#define SH_QEESR 0x8c
62#define SH_QSER 0x90
63#define SH_QSECR 0x94
64#define SH_SIZE 0x200
65
66/* Offsets for EDMA CC global registers */
67#define EDMA_REV 0x0000
68#define EDMA_CCCFG 0x0004
69#define EDMA_QCHMAP 0x0200 /* 8 registers */
70#define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
71#define EDMA_QDMAQNUM 0x0260
72#define EDMA_QUETCMAP 0x0280
73#define EDMA_QUEPRI 0x0284
74#define EDMA_EMR 0x0300 /* 64 bits */
75#define EDMA_EMCR 0x0308 /* 64 bits */
76#define EDMA_QEMR 0x0310
77#define EDMA_QEMCR 0x0314
78#define EDMA_CCERR 0x0318
79#define EDMA_CCERRCLR 0x031c
80#define EDMA_EEVAL 0x0320
81#define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
82#define EDMA_QRAE 0x0380 /* 4 registers */
83#define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
84#define EDMA_QSTAT 0x0600 /* 2 registers */
85#define EDMA_QWMTHRA 0x0620
86#define EDMA_QWMTHRB 0x0624
87#define EDMA_CCSTAT 0x0640
88
89#define EDMA_M 0x1000 /* global channel registers */
90#define EDMA_ECR 0x1008
91#define EDMA_ECRH 0x100C
92#define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
93#define EDMA_PARM 0x4000 /* 128 param entries */
94
a4768d22
KH
95#define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
96
60902a2c
SR
97#define EDMA_DCHMAP 0x0100 /* 64 registers */
98#define CHMAP_EXIST BIT(24)
99
a4768d22
KH
100#define EDMA_MAX_DMACH 64
101#define EDMA_MAX_PARAMENTRY 512
a4768d22
KH
102
103/*****************************************************************************/
104
60902a2c 105static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
a4768d22 106
60902a2c 107static inline unsigned int edma_read(unsigned ctlr, int offset)
a4768d22 108{
60902a2c 109 return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
a4768d22
KH
110}
111
60902a2c 112static inline void edma_write(unsigned ctlr, int offset, int val)
a4768d22 113{
60902a2c 114 __raw_writel(val, edmacc_regs_base[ctlr] + offset);
a4768d22 115}
60902a2c
SR
116static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
117 unsigned or)
a4768d22 118{
60902a2c 119 unsigned val = edma_read(ctlr, offset);
a4768d22
KH
120 val &= and;
121 val |= or;
60902a2c 122 edma_write(ctlr, offset, val);
a4768d22 123}
60902a2c 124static inline void edma_and(unsigned ctlr, int offset, unsigned and)
a4768d22 125{
60902a2c 126 unsigned val = edma_read(ctlr, offset);
a4768d22 127 val &= and;
60902a2c 128 edma_write(ctlr, offset, val);
a4768d22 129}
60902a2c 130static inline void edma_or(unsigned ctlr, int offset, unsigned or)
a4768d22 131{
60902a2c 132 unsigned val = edma_read(ctlr, offset);
a4768d22 133 val |= or;
60902a2c 134 edma_write(ctlr, offset, val);
a4768d22 135}
60902a2c 136static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
a4768d22 137{
60902a2c 138 return edma_read(ctlr, offset + (i << 2));
a4768d22 139}
60902a2c
SR
140static inline void edma_write_array(unsigned ctlr, int offset, int i,
141 unsigned val)
a4768d22 142{
60902a2c 143 edma_write(ctlr, offset + (i << 2), val);
a4768d22 144}
60902a2c 145static inline void edma_modify_array(unsigned ctlr, int offset, int i,
a4768d22
KH
146 unsigned and, unsigned or)
147{
60902a2c 148 edma_modify(ctlr, offset + (i << 2), and, or);
a4768d22 149}
60902a2c 150static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
a4768d22 151{
60902a2c 152 edma_or(ctlr, offset + (i << 2), or);
a4768d22 153}
60902a2c
SR
154static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
155 unsigned or)
a4768d22 156{
60902a2c 157 edma_or(ctlr, offset + ((i*2 + j) << 2), or);
a4768d22 158}
60902a2c
SR
159static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
160 unsigned val)
a4768d22 161{
60902a2c 162 edma_write(ctlr, offset + ((i*2 + j) << 2), val);
a4768d22 163}
60902a2c 164static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
a4768d22 165{
60902a2c 166 return edma_read(ctlr, EDMA_SHADOW0 + offset);
a4768d22 167}
60902a2c
SR
168static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
169 int i)
a4768d22 170{
60902a2c 171 return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
a4768d22 172}
60902a2c 173static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
a4768d22 174{
60902a2c 175 edma_write(ctlr, EDMA_SHADOW0 + offset, val);
a4768d22 176}
60902a2c
SR
177static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
178 unsigned val)
a4768d22 179{
60902a2c 180 edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
a4768d22 181}
60902a2c
SR
182static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
183 int param_no)
a4768d22 184{
60902a2c 185 return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
a4768d22 186}
60902a2c
SR
187static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
188 unsigned val)
a4768d22 189{
60902a2c 190 edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
a4768d22 191}
60902a2c 192static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
a4768d22
KH
193 unsigned and, unsigned or)
194{
60902a2c 195 edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
a4768d22 196}
60902a2c
SR
197static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
198 unsigned and)
a4768d22 199{
60902a2c 200 edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
a4768d22 201}
60902a2c
SR
202static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
203 unsigned or)
a4768d22 204{
60902a2c 205 edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
a4768d22
KH
206}
207
90bd4e6d
RS
208static inline void set_bits(int offset, int len, unsigned long *p)
209{
210 for (; len > 0; len--)
211 set_bit(offset + (len - 1), p);
212}
213
214static inline void clear_bits(int offset, int len, unsigned long *p)
215{
216 for (; len > 0; len--)
217 clear_bit(offset + (len - 1), p);
218}
219
a4768d22
KH
220/*****************************************************************************/
221
222/* actual number of DMA channels and slots on this silicon */
60902a2c
SR
223struct edma {
224 /* how many dma resources of each type */
225 unsigned num_channels;
226 unsigned num_region;
227 unsigned num_slots;
228 unsigned num_tc;
229 unsigned num_cc;
a0f0202e 230 enum dma_event_q default_queue;
60902a2c
SR
231
232 /* list of channels with no even trigger; terminated by "-1" */
233 const s8 *noevent;
234
235 /* The edma_inuse bit for each PaRAM slot is clear unless the
236 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
237 */
238 DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
a4768d22 239
f900d552
SR
240 /* The edma_unused bit for each channel is clear unless
241 * it is not being used on this platform. It uses a bit
242 * of SOC-specific initialization code.
60902a2c 243 */
f900d552 244 DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
a4768d22 245
60902a2c
SR
246 unsigned irq_res_start;
247 unsigned irq_res_end;
a4768d22 248
60902a2c
SR
249 struct dma_interrupt_data {
250 void (*callback)(unsigned channel, unsigned short ch_status,
251 void *data);
252 void *data;
253 } intr_data[EDMA_MAX_DMACH];
254};
255
3f68b98a 256static struct edma *edma_cc[EDMA_MAX_CC];
2d517508 257static int arch_num_cc;
a4768d22
KH
258
259/* dummy param set used to (re)initialize parameter RAM slots */
260static const struct edmacc_param dummy_paramset = {
261 .link_bcntrld = 0xffff,
262 .ccnt = 1,
263};
264
a4768d22
KH
265/*****************************************************************************/
266
60902a2c
SR
267static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
268 enum dma_event_q queue_no)
a4768d22
KH
269{
270 int bit = (ch_no & 0x7) * 4;
271
272 /* default to low priority queue */
273 if (queue_no == EVENTQ_DEFAULT)
3f68b98a 274 queue_no = edma_cc[ctlr]->default_queue;
a4768d22
KH
275
276 queue_no &= 7;
60902a2c 277 edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
a4768d22
KH
278 ~(0x7 << bit), queue_no << bit);
279}
280
60902a2c 281static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
a4768d22
KH
282{
283 int bit = queue_no * 4;
60902a2c 284 edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
a4768d22
KH
285}
286
60902a2c
SR
287static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
288 int priority)
a4768d22
KH
289{
290 int bit = queue_no * 4;
60902a2c
SR
291 edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
292 ((priority & 0x7) << bit));
293}
294
295/**
296 * map_dmach_param - Maps channel number to param entry number
297 *
298 * This maps the dma channel number to param entry numberter. In
299 * other words using the DMA channel mapping registers a param entry
300 * can be mapped to any channel
301 *
302 * Callers are responsible for ensuring the channel mapping logic is
303 * included in that particular EDMA variant (Eg : dm646x)
304 *
305 */
306static void __init map_dmach_param(unsigned ctlr)
307{
308 int i;
309 for (i = 0; i < EDMA_MAX_DMACH; i++)
310 edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
a4768d22
KH
311}
312
313static inline void
314setup_dma_interrupt(unsigned lch,
315 void (*callback)(unsigned channel, u16 ch_status, void *data),
316 void *data)
317{
60902a2c
SR
318 unsigned ctlr;
319
320 ctlr = EDMA_CTLR(lch);
321 lch = EDMA_CHAN_SLOT(lch);
322
243bc654 323 if (!callback)
60902a2c 324 edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
d78a9494 325 BIT(lch & 0x1f));
a4768d22 326
3f68b98a
SN
327 edma_cc[ctlr]->intr_data[lch].callback = callback;
328 edma_cc[ctlr]->intr_data[lch].data = data;
a4768d22
KH
329
330 if (callback) {
60902a2c 331 edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
d78a9494 332 BIT(lch & 0x1f));
60902a2c 333 edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
d78a9494 334 BIT(lch & 0x1f));
a4768d22
KH
335 }
336}
337
60902a2c
SR
338static int irq2ctlr(int irq)
339{
3f68b98a 340 if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
60902a2c 341 return 0;
3f68b98a
SN
342 else if (irq >= edma_cc[1]->irq_res_start &&
343 irq <= edma_cc[1]->irq_res_end)
60902a2c
SR
344 return 1;
345
346 return -1;
347}
348
a4768d22
KH
349/******************************************************************************
350 *
351 * DMA interrupt handler
352 *
353 *****************************************************************************/
354static irqreturn_t dma_irq_handler(int irq, void *data)
355{
356 int i;
93fe23d8 357 int ctlr;
a4768d22
KH
358 unsigned int cnt = 0;
359
60902a2c 360 ctlr = irq2ctlr(irq);
93fe23d8
KV
361 if (ctlr < 0)
362 return IRQ_NONE;
60902a2c 363
a4768d22
KH
364 dev_dbg(data, "dma_irq_handler\n");
365
a6374f53
SN
366 if ((edma_shadow0_read_array(ctlr, SH_IPR, 0) == 0) &&
367 (edma_shadow0_read_array(ctlr, SH_IPR, 1) == 0))
a4768d22
KH
368 return IRQ_NONE;
369
370 while (1) {
371 int j;
a7e05065
AA
372 if (edma_shadow0_read_array(ctlr, SH_IPR, 0) &
373 edma_shadow0_read_array(ctlr, SH_IER, 0))
a4768d22 374 j = 0;
a7e05065
AA
375 else if (edma_shadow0_read_array(ctlr, SH_IPR, 1) &
376 edma_shadow0_read_array(ctlr, SH_IER, 1))
a4768d22
KH
377 j = 1;
378 else
379 break;
380 dev_dbg(data, "IPR%d %08x\n", j,
60902a2c 381 edma_shadow0_read_array(ctlr, SH_IPR, j));
a4768d22
KH
382 for (i = 0; i < 32; i++) {
383 int k = (j << 5) + i;
a7e05065
AA
384 if ((edma_shadow0_read_array(ctlr, SH_IPR, j) & BIT(i))
385 && (edma_shadow0_read_array(ctlr,
386 SH_IER, j) & BIT(i))) {
a4768d22 387 /* Clear the corresponding IPR bits */
60902a2c 388 edma_shadow0_write_array(ctlr, SH_ICR, j,
d78a9494 389 BIT(i));
243bc654 390 if (edma_cc[ctlr]->intr_data[k].callback)
3f68b98a 391 edma_cc[ctlr]->intr_data[k].callback(
60902a2c 392 k, DMA_COMPLETE,
3f68b98a 393 edma_cc[ctlr]->intr_data[k].
60902a2c 394 data);
a4768d22
KH
395 }
396 }
397 cnt++;
398 if (cnt > 10)
399 break;
400 }
60902a2c 401 edma_shadow0_write(ctlr, SH_IEVAL, 1);
a4768d22
KH
402 return IRQ_HANDLED;
403}
404
405/******************************************************************************
406 *
407 * DMA error interrupt handler
408 *
409 *****************************************************************************/
410static irqreturn_t dma_ccerr_handler(int irq, void *data)
411{
412 int i;
93fe23d8 413 int ctlr;
a4768d22
KH
414 unsigned int cnt = 0;
415
60902a2c 416 ctlr = irq2ctlr(irq);
93fe23d8
KV
417 if (ctlr < 0)
418 return IRQ_NONE;
60902a2c 419
a4768d22
KH
420 dev_dbg(data, "dma_ccerr_handler\n");
421
60902a2c
SR
422 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
423 (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
424 (edma_read(ctlr, EDMA_QEMR) == 0) &&
425 (edma_read(ctlr, EDMA_CCERR) == 0))
a4768d22
KH
426 return IRQ_NONE;
427
428 while (1) {
429 int j = -1;
60902a2c 430 if (edma_read_array(ctlr, EDMA_EMR, 0))
a4768d22 431 j = 0;
60902a2c 432 else if (edma_read_array(ctlr, EDMA_EMR, 1))
a4768d22
KH
433 j = 1;
434 if (j >= 0) {
435 dev_dbg(data, "EMR%d %08x\n", j,
60902a2c 436 edma_read_array(ctlr, EDMA_EMR, j));
a4768d22
KH
437 for (i = 0; i < 32; i++) {
438 int k = (j << 5) + i;
60902a2c 439 if (edma_read_array(ctlr, EDMA_EMR, j) &
d78a9494 440 BIT(i)) {
a4768d22 441 /* Clear the corresponding EMR bits */
60902a2c 442 edma_write_array(ctlr, EDMA_EMCR, j,
d78a9494 443 BIT(i));
a4768d22 444 /* Clear any SER */
60902a2c 445 edma_shadow0_write_array(ctlr, SH_SECR,
d78a9494 446 j, BIT(i));
3f68b98a 447 if (edma_cc[ctlr]->intr_data[k].
60902a2c 448 callback) {
3f68b98a 449 edma_cc[ctlr]->intr_data[k].
60902a2c
SR
450 callback(k,
451 DMA_CC_ERROR,
3f68b98a 452 edma_cc[ctlr]->intr_data
60902a2c 453 [k].data);
a4768d22
KH
454 }
455 }
456 }
60902a2c 457 } else if (edma_read(ctlr, EDMA_QEMR)) {
a4768d22 458 dev_dbg(data, "QEMR %02x\n",
60902a2c 459 edma_read(ctlr, EDMA_QEMR));
a4768d22 460 for (i = 0; i < 8; i++) {
d78a9494 461 if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
a4768d22 462 /* Clear the corresponding IPR bits */
d78a9494 463 edma_write(ctlr, EDMA_QEMCR, BIT(i));
60902a2c 464 edma_shadow0_write(ctlr, SH_QSECR,
d78a9494 465 BIT(i));
a4768d22
KH
466
467 /* NOTE: not reported!! */
468 }
469 }
60902a2c 470 } else if (edma_read(ctlr, EDMA_CCERR)) {
a4768d22 471 dev_dbg(data, "CCERR %08x\n",
60902a2c 472 edma_read(ctlr, EDMA_CCERR));
a4768d22
KH
473 /* FIXME: CCERR.BIT(16) ignored! much better
474 * to just write CCERRCLR with CCERR value...
475 */
476 for (i = 0; i < 8; i++) {
d78a9494 477 if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
a4768d22 478 /* Clear the corresponding IPR bits */
d78a9494 479 edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
a4768d22
KH
480
481 /* NOTE: not reported!! */
482 }
483 }
484 }
a6374f53
SN
485 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
486 (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
487 (edma_read(ctlr, EDMA_QEMR) == 0) &&
488 (edma_read(ctlr, EDMA_CCERR) == 0))
a4768d22 489 break;
a4768d22
KH
490 cnt++;
491 if (cnt > 10)
492 break;
493 }
60902a2c 494 edma_write(ctlr, EDMA_EEVAL, 1);
a4768d22
KH
495 return IRQ_HANDLED;
496}
497
498/******************************************************************************
499 *
500 * Transfer controller error interrupt handlers
501 *
502 *****************************************************************************/
503
504#define tc_errs_handled false /* disabled as long as they're NOPs */
505
506static irqreturn_t dma_tc0err_handler(int irq, void *data)
507{
508 dev_dbg(data, "dma_tc0err_handler\n");
509 return IRQ_HANDLED;
510}
511
512static irqreturn_t dma_tc1err_handler(int irq, void *data)
513{
514 dev_dbg(data, "dma_tc1err_handler\n");
515 return IRQ_HANDLED;
516}
517
134ce221
SP
518static int reserve_contiguous_slots(int ctlr, unsigned int id,
519 unsigned int num_slots,
520 unsigned int start_slot)
213765d7
SP
521{
522 int i, j;
134ce221
SP
523 unsigned int count = num_slots;
524 int stop_slot = start_slot;
cc93fc3f 525 DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
213765d7 526
3f68b98a 527 for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
213765d7 528 j = EDMA_CHAN_SLOT(i);
3f68b98a 529 if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
cc93fc3f 530 /* Record our current beginning slot */
134ce221
SP
531 if (count == num_slots)
532 stop_slot = i;
cc93fc3f 533
213765d7 534 count--;
cc93fc3f
SP
535 set_bit(j, tmp_inuse);
536
213765d7
SP
537 if (count == 0)
538 break;
cc93fc3f
SP
539 } else {
540 clear_bit(j, tmp_inuse);
541
542 if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
134ce221 543 stop_slot = i;
cc93fc3f 544 break;
243bc654 545 } else {
134ce221 546 count = num_slots;
243bc654 547 }
cc93fc3f 548 }
213765d7
SP
549 }
550
551 /*
552 * We have to clear any bits that we set
134ce221
SP
553 * if we run out parameter RAM slots, i.e we do find a set
554 * of contiguous parameter RAM slots but do not find the exact number
555 * requested as we may reach the total number of parameter RAM slots
213765d7 556 */
3f68b98a 557 if (i == edma_cc[ctlr]->num_slots)
134ce221 558 stop_slot = i;
cc93fc3f 559
134ce221 560 for (j = start_slot; j < stop_slot; j++)
cc93fc3f 561 if (test_bit(j, tmp_inuse))
3f68b98a 562 clear_bit(j, edma_cc[ctlr]->edma_inuse);
213765d7 563
cc93fc3f 564 if (count)
213765d7 565 return -EBUSY;
213765d7 566
134ce221 567 for (j = i - num_slots + 1; j <= i; ++j)
213765d7
SP
568 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
569 &dummy_paramset, PARM_SIZE);
570
134ce221 571 return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
213765d7
SP
572}
573
f900d552
SR
574static int prepare_unused_channel_list(struct device *dev, void *data)
575{
576 struct platform_device *pdev = to_platform_device(dev);
577 int i, ctlr;
578
579 for (i = 0; i < pdev->num_resources; i++) {
580 if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
581 (int)pdev->resource[i].start >= 0) {
582 ctlr = EDMA_CTLR(pdev->resource[i].start);
583 clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
3f68b98a 584 edma_cc[ctlr]->edma_unused);
f900d552
SR
585 }
586 }
587
588 return 0;
589}
590
a4768d22
KH
591/*-----------------------------------------------------------------------*/
592
f900d552
SR
593static bool unused_chan_list_done;
594
a4768d22
KH
595/* Resource alloc/free: dma channels, parameter RAM slots */
596
597/**
598 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
599 * @channel: specific channel to allocate; negative for "any unmapped channel"
600 * @callback: optional; to be issued on DMA completion or errors
601 * @data: passed to callback
602 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
603 * Controller (TC) executes requests using this channel. Use
604 * EVENTQ_DEFAULT unless you really need a high priority queue.
605 *
606 * This allocates a DMA channel and its associated parameter RAM slot.
607 * The parameter RAM is initialized to hold a dummy transfer.
608 *
609 * Normal use is to pass a specific channel number as @channel, to make
610 * use of hardware events mapped to that channel. When the channel will
611 * be used only for software triggering or event chaining, channels not
612 * mapped to hardware events (or mapped to unused events) are preferable.
613 *
614 * DMA transfers start from a channel using edma_start(), or by
615 * chaining. When the transfer described in that channel's parameter RAM
616 * slot completes, that slot's data may be reloaded through a link.
617 *
618 * DMA errors are only reported to the @callback associated with the
619 * channel driving that transfer, but transfer completion callbacks can
620 * be sent to another channel under control of the TCC field in
621 * the option word of the transfer's parameter RAM set. Drivers must not
622 * use DMA transfer completion callbacks for channels they did not allocate.
623 * (The same applies to TCC codes used in transfer chaining.)
624 *
625 * Returns the number of the channel, else negative errno.
626 */
627int edma_alloc_channel(int channel,
628 void (*callback)(unsigned channel, u16 ch_status, void *data),
629 void *data,
630 enum dma_event_q eventq_no)
631{
447f18f1 632 unsigned i, done = 0, ctlr = 0;
f900d552
SR
633 int ret = 0;
634
635 if (!unused_chan_list_done) {
636 /*
637 * Scan all the platform devices to find out the EDMA channels
638 * used and clear them in the unused list, making the rest
639 * available for ARM usage.
640 */
641 ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
642 prepare_unused_channel_list);
643 if (ret < 0)
644 return ret;
645
646 unused_chan_list_done = true;
647 }
60902a2c
SR
648
649 if (channel >= 0) {
650 ctlr = EDMA_CTLR(channel);
651 channel = EDMA_CHAN_SLOT(channel);
652 }
653
a4768d22 654 if (channel < 0) {
2d517508 655 for (i = 0; i < arch_num_cc; i++) {
60902a2c
SR
656 channel = 0;
657 for (;;) {
3f68b98a
SN
658 channel = find_next_bit(edma_cc[i]->edma_unused,
659 edma_cc[i]->num_channels,
60902a2c 660 channel);
3f68b98a 661 if (channel == edma_cc[i]->num_channels)
447f18f1 662 break;
60902a2c 663 if (!test_and_set_bit(channel,
3f68b98a 664 edma_cc[i]->edma_inuse)) {
60902a2c
SR
665 done = 1;
666 ctlr = i;
667 break;
668 }
669 channel++;
670 }
671 if (done)
a4768d22 672 break;
a4768d22 673 }
447f18f1
SR
674 if (!done)
675 return -ENOMEM;
3f68b98a 676 } else if (channel >= edma_cc[ctlr]->num_channels) {
a4768d22 677 return -EINVAL;
3f68b98a 678 } else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
a4768d22
KH
679 return -EBUSY;
680 }
681
682 /* ensure access through shadow region 0 */
d78a9494 683 edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
a4768d22
KH
684
685 /* ensure no events are pending */
60902a2c
SR
686 edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
687 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
a4768d22
KH
688 &dummy_paramset, PARM_SIZE);
689
690 if (callback)
60902a2c
SR
691 setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
692 callback, data);
a4768d22 693
60902a2c 694 map_dmach_queue(ctlr, channel, eventq_no);
a4768d22 695
0e6cb8d2 696 return EDMA_CTLR_CHAN(ctlr, channel);
a4768d22
KH
697}
698EXPORT_SYMBOL(edma_alloc_channel);
699
700
701/**
702 * edma_free_channel - deallocate DMA channel
703 * @channel: dma channel returned from edma_alloc_channel()
704 *
705 * This deallocates the DMA channel and associated parameter RAM slot
706 * allocated by edma_alloc_channel().
707 *
708 * Callers are responsible for ensuring the channel is inactive, and
709 * will not be reactivated by linking, chaining, or software calls to
710 * edma_start().
711 */
712void edma_free_channel(unsigned channel)
713{
60902a2c
SR
714 unsigned ctlr;
715
716 ctlr = EDMA_CTLR(channel);
717 channel = EDMA_CHAN_SLOT(channel);
718
3f68b98a 719 if (channel >= edma_cc[ctlr]->num_channels)
a4768d22
KH
720 return;
721
722 setup_dma_interrupt(channel, NULL, NULL);
723 /* REVISIT should probably take out of shadow region 0 */
724
60902a2c 725 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
a4768d22 726 &dummy_paramset, PARM_SIZE);
3f68b98a 727 clear_bit(channel, edma_cc[ctlr]->edma_inuse);
a4768d22
KH
728}
729EXPORT_SYMBOL(edma_free_channel);
730
731/**
732 * edma_alloc_slot - allocate DMA parameter RAM
733 * @slot: specific slot to allocate; negative for "any unused slot"
734 *
735 * This allocates a parameter RAM slot, initializing it to hold a
736 * dummy transfer. Slots allocated using this routine have not been
737 * mapped to a hardware DMA channel, and will normally be used by
738 * linking to them from a slot associated with a DMA channel.
739 *
740 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
741 * slots may be allocated on behalf of DSP firmware.
742 *
743 * Returns the number of the slot, else negative errno.
744 */
60902a2c 745int edma_alloc_slot(unsigned ctlr, int slot)
a4768d22 746{
60902a2c
SR
747 if (slot >= 0)
748 slot = EDMA_CHAN_SLOT(slot);
749
a4768d22 750 if (slot < 0) {
3f68b98a 751 slot = edma_cc[ctlr]->num_channels;
a4768d22 752 for (;;) {
3f68b98a
SN
753 slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
754 edma_cc[ctlr]->num_slots, slot);
755 if (slot == edma_cc[ctlr]->num_slots)
a4768d22 756 return -ENOMEM;
3f68b98a 757 if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
a4768d22
KH
758 break;
759 }
3f68b98a
SN
760 } else if (slot < edma_cc[ctlr]->num_channels ||
761 slot >= edma_cc[ctlr]->num_slots) {
a4768d22 762 return -EINVAL;
3f68b98a 763 } else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
a4768d22
KH
764 return -EBUSY;
765 }
766
60902a2c 767 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
a4768d22
KH
768 &dummy_paramset, PARM_SIZE);
769
60902a2c 770 return EDMA_CTLR_CHAN(ctlr, slot);
a4768d22
KH
771}
772EXPORT_SYMBOL(edma_alloc_slot);
773
774/**
775 * edma_free_slot - deallocate DMA parameter RAM
776 * @slot: parameter RAM slot returned from edma_alloc_slot()
777 *
778 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
779 * Callers are responsible for ensuring the slot is inactive, and will
780 * not be activated.
781 */
782void edma_free_slot(unsigned slot)
783{
60902a2c
SR
784 unsigned ctlr;
785
786 ctlr = EDMA_CTLR(slot);
787 slot = EDMA_CHAN_SLOT(slot);
788
3f68b98a
SN
789 if (slot < edma_cc[ctlr]->num_channels ||
790 slot >= edma_cc[ctlr]->num_slots)
a4768d22
KH
791 return;
792
60902a2c 793 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
a4768d22 794 &dummy_paramset, PARM_SIZE);
3f68b98a 795 clear_bit(slot, edma_cc[ctlr]->edma_inuse);
a4768d22
KH
796}
797EXPORT_SYMBOL(edma_free_slot);
798
213765d7
SP
799
800/**
801 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
802 * The API will return the starting point of a set of
134ce221 803 * contiguous parameter RAM slots that have been requested
213765d7
SP
804 *
805 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
806 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
134ce221
SP
807 * @count: number of contiguous Paramter RAM slots
808 * @slot - the start value of Parameter RAM slot that should be passed if id
213765d7
SP
809 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
810 *
811 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
134ce221
SP
812 * contiguous Parameter RAM slots from parameter RAM 64 in the case of
813 * DaVinci SOCs and 32 in the case of DA8xx SOCs.
213765d7
SP
814 *
815 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
134ce221 816 * set of contiguous parameter RAM slots from the "slot" that is passed as an
213765d7
SP
817 * argument to the API.
818 *
819 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
134ce221 820 * starts looking for a set of contiguous parameter RAMs from the "slot"
213765d7 821 * that is passed as an argument to the API. On failure the API will try to
134ce221
SP
822 * find a set of contiguous Parameter RAM slots from the remaining Parameter
823 * RAM slots
213765d7
SP
824 */
825int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
826{
827 /*
828 * The start slot requested should be greater than
829 * the number of channels and lesser than the total number
830 * of slots
831 */
6b0cf4e9 832 if ((id != EDMA_CONT_PARAMS_ANY) &&
3f68b98a
SN
833 (slot < edma_cc[ctlr]->num_channels ||
834 slot >= edma_cc[ctlr]->num_slots))
213765d7
SP
835 return -EINVAL;
836
837 /*
134ce221 838 * The number of parameter RAM slots requested cannot be less than 1
213765d7
SP
839 * and cannot be more than the number of slots minus the number of
840 * channels
841 */
842 if (count < 1 || count >
3f68b98a 843 (edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
213765d7
SP
844 return -EINVAL;
845
846 switch (id) {
847 case EDMA_CONT_PARAMS_ANY:
134ce221 848 return reserve_contiguous_slots(ctlr, id, count,
3f68b98a 849 edma_cc[ctlr]->num_channels);
213765d7
SP
850 case EDMA_CONT_PARAMS_FIXED_EXACT:
851 case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
134ce221 852 return reserve_contiguous_slots(ctlr, id, count, slot);
213765d7
SP
853 default:
854 return -EINVAL;
855 }
856
857}
858EXPORT_SYMBOL(edma_alloc_cont_slots);
859
860/**
134ce221
SP
861 * edma_free_cont_slots - deallocate DMA parameter RAM slots
862 * @slot: first parameter RAM of a set of parameter RAM slots to be freed
863 * @count: the number of contiguous parameter RAM slots to be freed
213765d7
SP
864 *
865 * This deallocates the parameter RAM slots allocated by
866 * edma_alloc_cont_slots.
867 * Callers/applications need to keep track of sets of contiguous
134ce221 868 * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
213765d7
SP
869 * API.
870 * Callers are responsible for ensuring the slots are inactive, and will
871 * not be activated.
872 */
873int edma_free_cont_slots(unsigned slot, int count)
874{
51c99e04 875 unsigned ctlr, slot_to_free;
213765d7
SP
876 int i;
877
878 ctlr = EDMA_CTLR(slot);
879 slot = EDMA_CHAN_SLOT(slot);
880
3f68b98a
SN
881 if (slot < edma_cc[ctlr]->num_channels ||
882 slot >= edma_cc[ctlr]->num_slots ||
213765d7
SP
883 count < 1)
884 return -EINVAL;
885
886 for (i = slot; i < slot + count; ++i) {
887 ctlr = EDMA_CTLR(i);
51c99e04 888 slot_to_free = EDMA_CHAN_SLOT(i);
213765d7 889
51c99e04 890 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
213765d7 891 &dummy_paramset, PARM_SIZE);
3f68b98a 892 clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
213765d7
SP
893 }
894
895 return 0;
896}
897EXPORT_SYMBOL(edma_free_cont_slots);
898
a4768d22
KH
899/*-----------------------------------------------------------------------*/
900
901/* Parameter RAM operations (i) -- read/write partial slots */
902
903/**
904 * edma_set_src - set initial DMA source address in parameter RAM slot
905 * @slot: parameter RAM slot being configured
906 * @src_port: physical address of source (memory, controller FIFO, etc)
907 * @addressMode: INCR, except in very rare cases
908 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
909 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
910 *
911 * Note that the source address is modified during the DMA transfer
912 * according to edma_set_src_index().
913 */
914void edma_set_src(unsigned slot, dma_addr_t src_port,
915 enum address_mode mode, enum fifo_width width)
916{
60902a2c
SR
917 unsigned ctlr;
918
919 ctlr = EDMA_CTLR(slot);
920 slot = EDMA_CHAN_SLOT(slot);
921
3f68b98a 922 if (slot < edma_cc[ctlr]->num_slots) {
60902a2c 923 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
a4768d22
KH
924
925 if (mode) {
926 /* set SAM and program FWID */
927 i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
928 } else {
929 /* clear SAM */
930 i &= ~SAM;
931 }
60902a2c 932 edma_parm_write(ctlr, PARM_OPT, slot, i);
a4768d22
KH
933
934 /* set the source port address
935 in source register of param structure */
60902a2c 936 edma_parm_write(ctlr, PARM_SRC, slot, src_port);
a4768d22
KH
937 }
938}
939EXPORT_SYMBOL(edma_set_src);
940
941/**
942 * edma_set_dest - set initial DMA destination address in parameter RAM slot
943 * @slot: parameter RAM slot being configured
944 * @dest_port: physical address of destination (memory, controller FIFO, etc)
945 * @addressMode: INCR, except in very rare cases
946 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
947 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
948 *
949 * Note that the destination address is modified during the DMA transfer
950 * according to edma_set_dest_index().
951 */
952void edma_set_dest(unsigned slot, dma_addr_t dest_port,
953 enum address_mode mode, enum fifo_width width)
954{
60902a2c
SR
955 unsigned ctlr;
956
957 ctlr = EDMA_CTLR(slot);
958 slot = EDMA_CHAN_SLOT(slot);
959
3f68b98a 960 if (slot < edma_cc[ctlr]->num_slots) {
60902a2c 961 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
a4768d22
KH
962
963 if (mode) {
964 /* set DAM and program FWID */
965 i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
966 } else {
967 /* clear DAM */
968 i &= ~DAM;
969 }
60902a2c 970 edma_parm_write(ctlr, PARM_OPT, slot, i);
a4768d22
KH
971 /* set the destination port address
972 in dest register of param structure */
60902a2c 973 edma_parm_write(ctlr, PARM_DST, slot, dest_port);
a4768d22
KH
974 }
975}
976EXPORT_SYMBOL(edma_set_dest);
977
978/**
979 * edma_get_position - returns the current transfer points
980 * @slot: parameter RAM slot being examined
981 * @src: pointer to source port position
982 * @dst: pointer to destination port position
983 *
984 * Returns current source and destination addresses for a particular
985 * parameter RAM slot. Its channel should not be active when this is called.
986 */
987void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
988{
989 struct edmacc_param temp;
60902a2c
SR
990 unsigned ctlr;
991
992 ctlr = EDMA_CTLR(slot);
993 slot = EDMA_CHAN_SLOT(slot);
a4768d22 994
60902a2c 995 edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
a4768d22
KH
996 if (src != NULL)
997 *src = temp.src;
998 if (dst != NULL)
999 *dst = temp.dst;
1000}
1001EXPORT_SYMBOL(edma_get_position);
1002
1003/**
1004 * edma_set_src_index - configure DMA source address indexing
1005 * @slot: parameter RAM slot being configured
1006 * @src_bidx: byte offset between source arrays in a frame
1007 * @src_cidx: byte offset between source frames in a block
1008 *
1009 * Offsets are specified to support either contiguous or discontiguous
1010 * memory transfers, or repeated access to a hardware register, as needed.
1011 * When accessing hardware registers, both offsets are normally zero.
1012 */
1013void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
1014{
60902a2c
SR
1015 unsigned ctlr;
1016
1017 ctlr = EDMA_CTLR(slot);
1018 slot = EDMA_CHAN_SLOT(slot);
1019
3f68b98a 1020 if (slot < edma_cc[ctlr]->num_slots) {
60902a2c 1021 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
a4768d22 1022 0xffff0000, src_bidx);
60902a2c 1023 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
a4768d22
KH
1024 0xffff0000, src_cidx);
1025 }
1026}
1027EXPORT_SYMBOL(edma_set_src_index);
1028
1029/**
1030 * edma_set_dest_index - configure DMA destination address indexing
1031 * @slot: parameter RAM slot being configured
1032 * @dest_bidx: byte offset between destination arrays in a frame
1033 * @dest_cidx: byte offset between destination frames in a block
1034 *
1035 * Offsets are specified to support either contiguous or discontiguous
1036 * memory transfers, or repeated access to a hardware register, as needed.
1037 * When accessing hardware registers, both offsets are normally zero.
1038 */
1039void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
1040{
60902a2c
SR
1041 unsigned ctlr;
1042
1043 ctlr = EDMA_CTLR(slot);
1044 slot = EDMA_CHAN_SLOT(slot);
1045
3f68b98a 1046 if (slot < edma_cc[ctlr]->num_slots) {
60902a2c 1047 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
a4768d22 1048 0x0000ffff, dest_bidx << 16);
60902a2c 1049 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
a4768d22
KH
1050 0x0000ffff, dest_cidx << 16);
1051 }
1052}
1053EXPORT_SYMBOL(edma_set_dest_index);
1054
1055/**
1056 * edma_set_transfer_params - configure DMA transfer parameters
1057 * @slot: parameter RAM slot being configured
1058 * @acnt: how many bytes per array (at least one)
1059 * @bcnt: how many arrays per frame (at least one)
1060 * @ccnt: how many frames per block (at least one)
1061 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1062 * the value to reload into bcnt when it decrements to zero
1063 * @sync_mode: ASYNC or ABSYNC
1064 *
1065 * See the EDMA3 documentation to understand how to configure and link
1066 * transfers using the fields in PaRAM slots. If you are not doing it
1067 * all at once with edma_write_slot(), you will use this routine
1068 * plus two calls each for source and destination, setting the initial
1069 * address and saying how to index that address.
1070 *
1071 * An example of an A-Synchronized transfer is a serial link using a
1072 * single word shift register. In that case, @acnt would be equal to
1073 * that word size; the serial controller issues a DMA synchronization
1074 * event to transfer each word, and memory access by the DMA transfer
1075 * controller will be word-at-a-time.
1076 *
1077 * An example of an AB-Synchronized transfer is a device using a FIFO.
1078 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1079 * The controller with the FIFO issues DMA synchronization events when
1080 * the FIFO threshold is reached, and the DMA transfer controller will
1081 * transfer one frame to (or from) the FIFO. It will probably use
1082 * efficient burst modes to access memory.
1083 */
1084void edma_set_transfer_params(unsigned slot,
1085 u16 acnt, u16 bcnt, u16 ccnt,
1086 u16 bcnt_rld, enum sync_dimension sync_mode)
1087{
60902a2c
SR
1088 unsigned ctlr;
1089
1090 ctlr = EDMA_CTLR(slot);
1091 slot = EDMA_CHAN_SLOT(slot);
1092
3f68b98a 1093 if (slot < edma_cc[ctlr]->num_slots) {
60902a2c 1094 edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
a4768d22
KH
1095 0x0000ffff, bcnt_rld << 16);
1096 if (sync_mode == ASYNC)
60902a2c 1097 edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
a4768d22 1098 else
60902a2c 1099 edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
a4768d22 1100 /* Set the acount, bcount, ccount registers */
60902a2c
SR
1101 edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
1102 edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
a4768d22
KH
1103 }
1104}
1105EXPORT_SYMBOL(edma_set_transfer_params);
1106
1107/**
1108 * edma_link - link one parameter RAM slot to another
1109 * @from: parameter RAM slot originating the link
1110 * @to: parameter RAM slot which is the link target
1111 *
1112 * The originating slot should not be part of any active DMA transfer.
1113 */
1114void edma_link(unsigned from, unsigned to)
1115{
60902a2c
SR
1116 unsigned ctlr_from, ctlr_to;
1117
1118 ctlr_from = EDMA_CTLR(from);
1119 from = EDMA_CHAN_SLOT(from);
1120 ctlr_to = EDMA_CTLR(to);
1121 to = EDMA_CHAN_SLOT(to);
1122
3f68b98a 1123 if (from >= edma_cc[ctlr_from]->num_slots)
a4768d22 1124 return;
3f68b98a 1125 if (to >= edma_cc[ctlr_to]->num_slots)
a4768d22 1126 return;
60902a2c
SR
1127 edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
1128 PARM_OFFSET(to));
a4768d22
KH
1129}
1130EXPORT_SYMBOL(edma_link);
1131
1132/**
1133 * edma_unlink - cut link from one parameter RAM slot
1134 * @from: parameter RAM slot originating the link
1135 *
1136 * The originating slot should not be part of any active DMA transfer.
1137 * Its link is set to 0xffff.
1138 */
1139void edma_unlink(unsigned from)
1140{
60902a2c
SR
1141 unsigned ctlr;
1142
1143 ctlr = EDMA_CTLR(from);
1144 from = EDMA_CHAN_SLOT(from);
1145
3f68b98a 1146 if (from >= edma_cc[ctlr]->num_slots)
a4768d22 1147 return;
60902a2c 1148 edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
a4768d22
KH
1149}
1150EXPORT_SYMBOL(edma_unlink);
1151
1152/*-----------------------------------------------------------------------*/
1153
1154/* Parameter RAM operations (ii) -- read/write whole parameter sets */
1155
1156/**
1157 * edma_write_slot - write parameter RAM data for slot
1158 * @slot: number of parameter RAM slot being modified
1159 * @param: data to be written into parameter RAM slot
1160 *
1161 * Use this to assign all parameters of a transfer at once. This
1162 * allows more efficient setup of transfers than issuing multiple
1163 * calls to set up those parameters in small pieces, and provides
1164 * complete control over all transfer options.
1165 */
1166void edma_write_slot(unsigned slot, const struct edmacc_param *param)
1167{
60902a2c
SR
1168 unsigned ctlr;
1169
1170 ctlr = EDMA_CTLR(slot);
1171 slot = EDMA_CHAN_SLOT(slot);
1172
3f68b98a 1173 if (slot >= edma_cc[ctlr]->num_slots)
a4768d22 1174 return;
60902a2c
SR
1175 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
1176 PARM_SIZE);
a4768d22
KH
1177}
1178EXPORT_SYMBOL(edma_write_slot);
1179
1180/**
1181 * edma_read_slot - read parameter RAM data from slot
1182 * @slot: number of parameter RAM slot being copied
1183 * @param: where to store copy of parameter RAM data
1184 *
1185 * Use this to read data from a parameter RAM slot, perhaps to
1186 * save them as a template for later reuse.
1187 */
1188void edma_read_slot(unsigned slot, struct edmacc_param *param)
1189{
60902a2c
SR
1190 unsigned ctlr;
1191
1192 ctlr = EDMA_CTLR(slot);
1193 slot = EDMA_CHAN_SLOT(slot);
1194
3f68b98a 1195 if (slot >= edma_cc[ctlr]->num_slots)
a4768d22 1196 return;
60902a2c
SR
1197 memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
1198 PARM_SIZE);
a4768d22
KH
1199}
1200EXPORT_SYMBOL(edma_read_slot);
1201
1202/*-----------------------------------------------------------------------*/
1203
1204/* Various EDMA channel control operations */
1205
1206/**
1207 * edma_pause - pause dma on a channel
1208 * @channel: on which edma_start() has been called
1209 *
1210 * This temporarily disables EDMA hardware events on the specified channel,
1211 * preventing them from triggering new transfers on its behalf
1212 */
1213void edma_pause(unsigned channel)
1214{
60902a2c
SR
1215 unsigned ctlr;
1216
1217 ctlr = EDMA_CTLR(channel);
1218 channel = EDMA_CHAN_SLOT(channel);
1219
3f68b98a 1220 if (channel < edma_cc[ctlr]->num_channels) {
d78a9494 1221 unsigned int mask = BIT(channel & 0x1f);
a4768d22 1222
60902a2c 1223 edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
a4768d22
KH
1224 }
1225}
1226EXPORT_SYMBOL(edma_pause);
1227
1228/**
1229 * edma_resume - resumes dma on a paused channel
1230 * @channel: on which edma_pause() has been called
1231 *
1232 * This re-enables EDMA hardware events on the specified channel.
1233 */
1234void edma_resume(unsigned channel)
1235{
60902a2c
SR
1236 unsigned ctlr;
1237
1238 ctlr = EDMA_CTLR(channel);
1239 channel = EDMA_CHAN_SLOT(channel);
1240
3f68b98a 1241 if (channel < edma_cc[ctlr]->num_channels) {
d78a9494 1242 unsigned int mask = BIT(channel & 0x1f);
a4768d22 1243
60902a2c 1244 edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
a4768d22
KH
1245 }
1246}
1247EXPORT_SYMBOL(edma_resume);
1248
1249/**
1250 * edma_start - start dma on a channel
1251 * @channel: channel being activated
1252 *
1253 * Channels with event associations will be triggered by their hardware
1254 * events, and channels without such associations will be triggered by
1255 * software. (At this writing there is no interface for using software
1256 * triggers except with channels that don't support hardware triggers.)
1257 *
1258 * Returns zero on success, else negative errno.
1259 */
1260int edma_start(unsigned channel)
1261{
60902a2c
SR
1262 unsigned ctlr;
1263
1264 ctlr = EDMA_CTLR(channel);
1265 channel = EDMA_CHAN_SLOT(channel);
1266
3f68b98a 1267 if (channel < edma_cc[ctlr]->num_channels) {
a4768d22 1268 int j = channel >> 5;
d78a9494 1269 unsigned int mask = BIT(channel & 0x1f);
a4768d22
KH
1270
1271 /* EDMA channels without event association */
3f68b98a 1272 if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
a4768d22 1273 pr_debug("EDMA: ESR%d %08x\n", j,
60902a2c
SR
1274 edma_shadow0_read_array(ctlr, SH_ESR, j));
1275 edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
a4768d22
KH
1276 return 0;
1277 }
1278
1279 /* EDMA channel with event association */
1280 pr_debug("EDMA: ER%d %08x\n", j,
60902a2c 1281 edma_shadow0_read_array(ctlr, SH_ER, j));
bb17ef10
BN
1282 /* Clear any pending event or error */
1283 edma_write_array(ctlr, EDMA_ECR, j, mask);
60902a2c 1284 edma_write_array(ctlr, EDMA_EMCR, j, mask);
a4768d22 1285 /* Clear any SER */
60902a2c
SR
1286 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1287 edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
a4768d22 1288 pr_debug("EDMA: EER%d %08x\n", j,
60902a2c 1289 edma_shadow0_read_array(ctlr, SH_EER, j));
a4768d22
KH
1290 return 0;
1291 }
1292
1293 return -EINVAL;
1294}
1295EXPORT_SYMBOL(edma_start);
1296
1297/**
1298 * edma_stop - stops dma on the channel passed
1299 * @channel: channel being deactivated
1300 *
1301 * When @lch is a channel, any active transfer is paused and
1302 * all pending hardware events are cleared. The current transfer
1303 * may not be resumed, and the channel's Parameter RAM should be
1304 * reinitialized before being reused.
1305 */
1306void edma_stop(unsigned channel)
1307{
60902a2c
SR
1308 unsigned ctlr;
1309
1310 ctlr = EDMA_CTLR(channel);
1311 channel = EDMA_CHAN_SLOT(channel);
1312
3f68b98a 1313 if (channel < edma_cc[ctlr]->num_channels) {
a4768d22 1314 int j = channel >> 5;
d78a9494 1315 unsigned int mask = BIT(channel & 0x1f);
a4768d22 1316
60902a2c
SR
1317 edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
1318 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1319 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1320 edma_write_array(ctlr, EDMA_EMCR, j, mask);
a4768d22
KH
1321
1322 pr_debug("EDMA: EER%d %08x\n", j,
60902a2c 1323 edma_shadow0_read_array(ctlr, SH_EER, j));
a4768d22
KH
1324
1325 /* REVISIT: consider guarding against inappropriate event
1326 * chaining by overwriting with dummy_paramset.
1327 */
1328 }
1329}
1330EXPORT_SYMBOL(edma_stop);
1331
1332/******************************************************************************
1333 *
1334 * It cleans ParamEntry qand bring back EDMA to initial state if media has
1335 * been removed before EDMA has finished.It is usedful for removable media.
1336 * Arguments:
1337 * ch_no - channel no
1338 *
1339 * Return: zero on success, or corresponding error no on failure
1340 *
1341 * FIXME this should not be needed ... edma_stop() should suffice.
1342 *
1343 *****************************************************************************/
1344
1345void edma_clean_channel(unsigned channel)
1346{
60902a2c
SR
1347 unsigned ctlr;
1348
1349 ctlr = EDMA_CTLR(channel);
1350 channel = EDMA_CHAN_SLOT(channel);
1351
3f68b98a 1352 if (channel < edma_cc[ctlr]->num_channels) {
a4768d22 1353 int j = (channel >> 5);
d78a9494 1354 unsigned int mask = BIT(channel & 0x1f);
a4768d22
KH
1355
1356 pr_debug("EDMA: EMR%d %08x\n", j,
60902a2c
SR
1357 edma_read_array(ctlr, EDMA_EMR, j));
1358 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
a4768d22 1359 /* Clear the corresponding EMR bits */
60902a2c 1360 edma_write_array(ctlr, EDMA_EMCR, j, mask);
a4768d22 1361 /* Clear any SER */
60902a2c 1362 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
d78a9494 1363 edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
a4768d22
KH
1364 }
1365}
1366EXPORT_SYMBOL(edma_clean_channel);
1367
1368/*
1369 * edma_clear_event - clear an outstanding event on the DMA channel
1370 * Arguments:
1371 * channel - channel number
1372 */
1373void edma_clear_event(unsigned channel)
1374{
60902a2c
SR
1375 unsigned ctlr;
1376
1377 ctlr = EDMA_CTLR(channel);
1378 channel = EDMA_CHAN_SLOT(channel);
1379
3f68b98a 1380 if (channel >= edma_cc[ctlr]->num_channels)
a4768d22
KH
1381 return;
1382 if (channel < 32)
d78a9494 1383 edma_write(ctlr, EDMA_ECR, BIT(channel));
a4768d22 1384 else
d78a9494 1385 edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
a4768d22
KH
1386}
1387EXPORT_SYMBOL(edma_clear_event);
1388
1389/*-----------------------------------------------------------------------*/
1390
1391static int __init edma_probe(struct platform_device *pdev)
1392{
bc3ac9f3 1393 struct edma_soc_info **info = pdev->dev.platform_data;
60902a2c
SR
1394 const s8 (*queue_priority_mapping)[2];
1395 const s8 (*queue_tc_mapping)[2];
90bd4e6d 1396 int i, j, off, ln, found = 0;
60902a2c 1397 int status = -1;
90bd4e6d
RS
1398 const s16 (*rsv_chans)[2];
1399 const s16 (*rsv_slots)[2];
60902a2c
SR
1400 int irq[EDMA_MAX_CC] = {0, 0};
1401 int err_irq[EDMA_MAX_CC] = {0, 0};
1402 struct resource *r[EDMA_MAX_CC] = {NULL};
1403 resource_size_t len[EDMA_MAX_CC];
1404 char res_name[10];
1405 char irq_name[10];
a4768d22
KH
1406
1407 if (!info)
1408 return -ENODEV;
1409
60902a2c
SR
1410 for (j = 0; j < EDMA_MAX_CC; j++) {
1411 sprintf(res_name, "edma_cc%d", j);
1412 r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1413 res_name);
bc3ac9f3 1414 if (!r[j] || !info[j]) {
60902a2c
SR
1415 if (found)
1416 break;
1417 else
1418 return -ENODEV;
243bc654 1419 } else {
60902a2c 1420 found = 1;
243bc654 1421 }
60902a2c
SR
1422
1423 len[j] = resource_size(r[j]);
1424
1425 r[j] = request_mem_region(r[j]->start, len[j],
1426 dev_name(&pdev->dev));
1427 if (!r[j]) {
1428 status = -EBUSY;
1429 goto fail1;
1430 }
a4768d22 1431
60902a2c
SR
1432 edmacc_regs_base[j] = ioremap(r[j]->start, len[j]);
1433 if (!edmacc_regs_base[j]) {
1434 status = -EBUSY;
1435 goto fail1;
1436 }
a4768d22 1437
3f68b98a
SN
1438 edma_cc[j] = kmalloc(sizeof(struct edma), GFP_KERNEL);
1439 if (!edma_cc[j]) {
60902a2c
SR
1440 status = -ENOMEM;
1441 goto fail1;
1442 }
3f68b98a 1443 memset(edma_cc[j], 0, sizeof(struct edma));
60902a2c 1444
bc3ac9f3 1445 edma_cc[j]->num_channels = min_t(unsigned, info[j]->n_channel,
60902a2c 1446 EDMA_MAX_DMACH);
bc3ac9f3 1447 edma_cc[j]->num_slots = min_t(unsigned, info[j]->n_slot,
60902a2c 1448 EDMA_MAX_PARAMENTRY);
bc3ac9f3
SN
1449 edma_cc[j]->num_cc = min_t(unsigned, info[j]->n_cc,
1450 EDMA_MAX_CC);
60902a2c 1451
bc3ac9f3 1452 edma_cc[j]->default_queue = info[j]->default_queue;
3f68b98a
SN
1453 if (!edma_cc[j]->default_queue)
1454 edma_cc[j]->default_queue = EVENTQ_1;
a0f0202e 1455
60902a2c
SR
1456 dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
1457 edmacc_regs_base[j]);
1458
3f68b98a 1459 for (i = 0; i < edma_cc[j]->num_slots; i++)
60902a2c
SR
1460 memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
1461 &dummy_paramset, PARM_SIZE);
1462
f900d552 1463 /* Mark all channels as unused */
3f68b98a
SN
1464 memset(edma_cc[j]->edma_unused, 0xff,
1465 sizeof(edma_cc[j]->edma_unused));
a4768d22 1466
90bd4e6d
RS
1467 if (info[j]->rsv) {
1468
1469 /* Clear the reserved channels in unused list */
1470 rsv_chans = info[j]->rsv->rsv_chans;
1471 if (rsv_chans) {
1472 for (i = 0; rsv_chans[i][0] != -1; i++) {
1473 off = rsv_chans[i][0];
1474 ln = rsv_chans[i][1];
1475 clear_bits(off, ln,
1476 edma_cc[j]->edma_unused);
1477 }
1478 }
1479
1480 /* Set the reserved slots in inuse list */
1481 rsv_slots = info[j]->rsv->rsv_slots;
1482 if (rsv_slots) {
1483 for (i = 0; rsv_slots[i][0] != -1; i++) {
1484 off = rsv_slots[i][0];
1485 ln = rsv_slots[i][1];
1486 set_bits(off, ln,
1487 edma_cc[j]->edma_inuse);
1488 }
1489 }
1490 }
1491
60902a2c
SR
1492 sprintf(irq_name, "edma%d", j);
1493 irq[j] = platform_get_irq_byname(pdev, irq_name);
3f68b98a 1494 edma_cc[j]->irq_res_start = irq[j];
60902a2c
SR
1495 status = request_irq(irq[j], dma_irq_handler, 0, "edma",
1496 &pdev->dev);
1497 if (status < 0) {
1498 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1499 irq[j], status);
1500 goto fail;
1501 }
a4768d22 1502
60902a2c
SR
1503 sprintf(irq_name, "edma%d_err", j);
1504 err_irq[j] = platform_get_irq_byname(pdev, irq_name);
3f68b98a 1505 edma_cc[j]->irq_res_end = err_irq[j];
60902a2c
SR
1506 status = request_irq(err_irq[j], dma_ccerr_handler, 0,
1507 "edma_error", &pdev->dev);
1508 if (status < 0) {
1509 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1510 err_irq[j], status);
1511 goto fail;
1512 }
a4768d22 1513
60902a2c
SR
1514 /* Everything lives on transfer controller 1 until otherwise
1515 * specified. This way, long transfers on the low priority queue
1516 * started by the codec engine will not cause audio defects.
1517 */
3f68b98a 1518 for (i = 0; i < edma_cc[j]->num_channels; i++)
60902a2c 1519 map_dmach_queue(j, i, EVENTQ_1);
a4768d22 1520
bc3ac9f3
SN
1521 queue_tc_mapping = info[j]->queue_tc_mapping;
1522 queue_priority_mapping = info[j]->queue_priority_mapping;
a4768d22 1523
60902a2c
SR
1524 /* Event queue to TC mapping */
1525 for (i = 0; queue_tc_mapping[i][0] != -1; i++)
1526 map_queue_tc(j, queue_tc_mapping[i][0],
1527 queue_tc_mapping[i][1]);
a4768d22 1528
60902a2c
SR
1529 /* Event queue priority mapping */
1530 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
1531 assign_priority_to_queue(j,
1532 queue_priority_mapping[i][0],
1533 queue_priority_mapping[i][1]);
1534
1535 /* Map the channel to param entry if channel mapping logic
1536 * exist
1537 */
1538 if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
1539 map_dmach_param(j);
a4768d22 1540
bc3ac9f3 1541 for (i = 0; i < info[j]->n_region; i++) {
60902a2c
SR
1542 edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
1543 edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
1544 edma_write_array(j, EDMA_QRAE, i, 0x0);
1545 }
2d517508 1546 arch_num_cc++;
a4768d22
KH
1547 }
1548
1549 if (tc_errs_handled) {
1550 status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0,
1551 "edma_tc0", &pdev->dev);
1552 if (status < 0) {
1553 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1554 IRQ_TCERRINT0, status);
1555 return status;
1556 }
1557 status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0,
1558 "edma_tc1", &pdev->dev);
1559 if (status < 0) {
1560 dev_dbg(&pdev->dev, "request_irq %d --> %d\n",
1561 IRQ_TCERRINT, status);
1562 return status;
1563 }
1564 }
1565
a4768d22
KH
1566 return 0;
1567
1568fail:
60902a2c
SR
1569 for (i = 0; i < EDMA_MAX_CC; i++) {
1570 if (err_irq[i])
1571 free_irq(err_irq[i], &pdev->dev);
1572 if (irq[i])
1573 free_irq(irq[i], &pdev->dev);
1574 }
a4768d22 1575fail1:
60902a2c
SR
1576 for (i = 0; i < EDMA_MAX_CC; i++) {
1577 if (r[i])
1578 release_mem_region(r[i]->start, len[i]);
1579 if (edmacc_regs_base[i])
1580 iounmap(edmacc_regs_base[i]);
3f68b98a 1581 kfree(edma_cc[i]);
60902a2c 1582 }
a4768d22
KH
1583 return status;
1584}
1585
1586
1587static struct platform_driver edma_driver = {
1588 .driver.name = "edma",
1589};
1590
1591static int __init edma_init(void)
1592{
1593 return platform_driver_probe(&edma_driver, edma_probe);
1594}
1595arch_initcall(edma_init);
1596