include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / mach-bcmring / dma.c
CommitLineData
859277f7
LC
1/*****************************************************************************
2* Copyright 2004 - 2008 Broadcom Corporation. All rights reserved.
3*
4* Unless you and Broadcom execute a separate written software license
5* agreement governing use of this software, this software is licensed to you
6* under the terms of the GNU General Public License version 2, available at
7* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
8*
9* Notwithstanding the above, under no circumstances may you combine this
10* software in any way with any other Broadcom software provided under a
11* license other than the GPL, without Broadcom's express prior written
12* consent.
13*****************************************************************************/
14
15/****************************************************************************/
16/**
17* @file dma.c
18*
19* @brief Implements the DMA interface.
20*/
21/****************************************************************************/
22
23/* ---- Include Files ---------------------------------------------------- */
24
25#include <linux/module.h>
26#include <linux/device.h>
27#include <linux/dma-mapping.h>
28#include <linux/interrupt.h>
29#include <linux/irqreturn.h>
30#include <linux/proc_fs.h>
5a0e3ad6 31#include <linux/slab.h>
859277f7
LC
32
33#include <mach/timer.h>
34
35#include <linux/mm.h>
36#include <linux/pfn.h>
37#include <asm/atomic.h>
38#include <mach/dma.h>
39
40/* I don't quite understand why dc4 fails when this is set to 1 and DMA is enabled */
41/* especially since dc4 doesn't use kmalloc'd memory. */
42
43#define ALLOW_MAP_OF_KMALLOC_MEMORY 0
44
45/* ---- Public Variables ------------------------------------------------- */
46
47/* ---- Private Constants and Types -------------------------------------- */
48
49#define MAKE_HANDLE(controllerIdx, channelIdx) (((controllerIdx) << 4) | (channelIdx))
50
51#define CONTROLLER_FROM_HANDLE(handle) (((handle) >> 4) & 0x0f)
52#define CHANNEL_FROM_HANDLE(handle) ((handle) & 0x0f)
53
54#define DMA_MAP_DEBUG 0
55
56#if DMA_MAP_DEBUG
57# define DMA_MAP_PRINT(fmt, args...) printk("%s: " fmt, __func__, ## args)
58#else
59# define DMA_MAP_PRINT(fmt, args...)
60#endif
61
62/* ---- Private Variables ------------------------------------------------ */
63
64static DMA_Global_t gDMA;
65static struct proc_dir_entry *gDmaDir;
66
67static atomic_t gDmaStatMemTypeKmalloc = ATOMIC_INIT(0);
68static atomic_t gDmaStatMemTypeVmalloc = ATOMIC_INIT(0);
69static atomic_t gDmaStatMemTypeUser = ATOMIC_INIT(0);
70static atomic_t gDmaStatMemTypeCoherent = ATOMIC_INIT(0);
71
72#include "dma_device.c"
73
74/* ---- Private Function Prototypes -------------------------------------- */
75
76/* ---- Functions ------------------------------------------------------- */
77
78/****************************************************************************/
79/**
80* Displays information for /proc/dma/mem-type
81*/
82/****************************************************************************/
83
84static int dma_proc_read_mem_type(char *buf, char **start, off_t offset,
85 int count, int *eof, void *data)
86{
87 int len = 0;
88
89 len += sprintf(buf + len, "dma_map_mem statistics\n");
90 len +=
91 sprintf(buf + len, "coherent: %d\n",
92 atomic_read(&gDmaStatMemTypeCoherent));
93 len +=
94 sprintf(buf + len, "kmalloc: %d\n",
95 atomic_read(&gDmaStatMemTypeKmalloc));
96 len +=
97 sprintf(buf + len, "vmalloc: %d\n",
98 atomic_read(&gDmaStatMemTypeVmalloc));
99 len +=
100 sprintf(buf + len, "user: %d\n",
101 atomic_read(&gDmaStatMemTypeUser));
102
103 return len;
104}
105
106/****************************************************************************/
107/**
108* Displays information for /proc/dma/channels
109*/
110/****************************************************************************/
111
112static int dma_proc_read_channels(char *buf, char **start, off_t offset,
113 int count, int *eof, void *data)
114{
115 int controllerIdx;
116 int channelIdx;
117 int limit = count - 200;
118 int len = 0;
119 DMA_Channel_t *channel;
120
121 if (down_interruptible(&gDMA.lock) < 0) {
122 return -ERESTARTSYS;
123 }
124
125 for (controllerIdx = 0; controllerIdx < DMA_NUM_CONTROLLERS;
126 controllerIdx++) {
127 for (channelIdx = 0; channelIdx < DMA_NUM_CHANNELS;
128 channelIdx++) {
129 if (len >= limit) {
130 break;
131 }
132
133 channel =
134 &gDMA.controller[controllerIdx].channel[channelIdx];
135
136 len +=
137 sprintf(buf + len, "%d:%d ", controllerIdx,
138 channelIdx);
139
140 if ((channel->flags & DMA_CHANNEL_FLAG_IS_DEDICATED) !=
141 0) {
142 len +=
143 sprintf(buf + len, "Dedicated for %s ",
144 DMA_gDeviceAttribute[channel->
145 devType].name);
146 } else {
147 len += sprintf(buf + len, "Shared ");
148 }
149
150 if ((channel->flags & DMA_CHANNEL_FLAG_NO_ISR) != 0) {
151 len += sprintf(buf + len, "No ISR ");
152 }
153
154 if ((channel->flags & DMA_CHANNEL_FLAG_LARGE_FIFO) != 0) {
155 len += sprintf(buf + len, "Fifo: 128 ");
156 } else {
157 len += sprintf(buf + len, "Fifo: 64 ");
158 }
159
160 if ((channel->flags & DMA_CHANNEL_FLAG_IN_USE) != 0) {
161 len +=
162 sprintf(buf + len, "InUse by %s",
163 DMA_gDeviceAttribute[channel->
164 devType].name);
165#if (DMA_DEBUG_TRACK_RESERVATION)
166 len +=
167 sprintf(buf + len, " (%s:%d)",
168 channel->fileName,
169 channel->lineNum);
170#endif
171 } else {
172 len += sprintf(buf + len, "Avail ");
173 }
174
175 if (channel->lastDevType != DMA_DEVICE_NONE) {
176 len +=
177 sprintf(buf + len, "Last use: %s ",
178 DMA_gDeviceAttribute[channel->
179 lastDevType].
180 name);
181 }
182
183 len += sprintf(buf + len, "\n");
184 }
185 }
186 up(&gDMA.lock);
187 *eof = 1;
188
189 return len;
190}
191
192/****************************************************************************/
193/**
194* Displays information for /proc/dma/devices
195*/
196/****************************************************************************/
197
198static int dma_proc_read_devices(char *buf, char **start, off_t offset,
199 int count, int *eof, void *data)
200{
201 int limit = count - 200;
202 int len = 0;
203 int devIdx;
204
205 if (down_interruptible(&gDMA.lock) < 0) {
206 return -ERESTARTSYS;
207 }
208
209 for (devIdx = 0; devIdx < DMA_NUM_DEVICE_ENTRIES; devIdx++) {
210 DMA_DeviceAttribute_t *devAttr = &DMA_gDeviceAttribute[devIdx];
211
212 if (devAttr->name == NULL) {
213 continue;
214 }
215
216 if (len >= limit) {
217 break;
218 }
219
220 len += sprintf(buf + len, "%-12s ", devAttr->name);
221
222 if ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) != 0) {
223 len +=
224 sprintf(buf + len, "Dedicated %d:%d ",
225 devAttr->dedicatedController,
226 devAttr->dedicatedChannel);
227 } else {
228 len += sprintf(buf + len, "Shared DMA:");
229 if ((devAttr->flags & DMA_DEVICE_FLAG_ON_DMA0) != 0) {
230 len += sprintf(buf + len, "0");
231 }
232 if ((devAttr->flags & DMA_DEVICE_FLAG_ON_DMA1) != 0) {
233 len += sprintf(buf + len, "1");
234 }
235 len += sprintf(buf + len, " ");
236 }
237 if ((devAttr->flags & DMA_DEVICE_FLAG_NO_ISR) != 0) {
238 len += sprintf(buf + len, "NoISR ");
239 }
240 if ((devAttr->flags & DMA_DEVICE_FLAG_ALLOW_LARGE_FIFO) != 0) {
241 len += sprintf(buf + len, "Allow-128 ");
242 }
243
244 len +=
245 sprintf(buf + len,
246 "Xfer #: %Lu Ticks: %Lu Bytes: %Lu DescLen: %u\n",
247 devAttr->numTransfers, devAttr->transferTicks,
248 devAttr->transferBytes,
249 devAttr->ring.bytesAllocated);
250
251 }
252
253 up(&gDMA.lock);
254 *eof = 1;
255
256 return len;
257}
258
259/****************************************************************************/
260/**
261* Determines if a DMA_Device_t is "valid".
262*
263* @return
264* TRUE - dma device is valid
265* FALSE - dma device isn't valid
266*/
267/****************************************************************************/
268
269static inline int IsDeviceValid(DMA_Device_t device)
270{
271 return (device >= 0) && (device < DMA_NUM_DEVICE_ENTRIES);
272}
273
274/****************************************************************************/
275/**
276* Translates a DMA handle into a pointer to a channel.
277*
278* @return
279* non-NULL - pointer to DMA_Channel_t
280* NULL - DMA Handle was invalid
281*/
282/****************************************************************************/
283
284static inline DMA_Channel_t *HandleToChannel(DMA_Handle_t handle)
285{
286 int controllerIdx;
287 int channelIdx;
288
289 controllerIdx = CONTROLLER_FROM_HANDLE(handle);
290 channelIdx = CHANNEL_FROM_HANDLE(handle);
291
292 if ((controllerIdx > DMA_NUM_CONTROLLERS)
293 || (channelIdx > DMA_NUM_CHANNELS)) {
294 return NULL;
295 }
296 return &gDMA.controller[controllerIdx].channel[channelIdx];
297}
298
299/****************************************************************************/
300/**
301* Interrupt handler which is called to process DMA interrupts.
302*/
303/****************************************************************************/
304
305static irqreturn_t dma_interrupt_handler(int irq, void *dev_id)
306{
307 DMA_Channel_t *channel;
308 DMA_DeviceAttribute_t *devAttr;
309 int irqStatus;
310
311 channel = (DMA_Channel_t *) dev_id;
312
313 /* Figure out why we were called, and knock down the interrupt */
314
315 irqStatus = dmacHw_getInterruptStatus(channel->dmacHwHandle);
316 dmacHw_clearInterrupt(channel->dmacHwHandle);
317
318 if ((channel->devType < 0)
319 || (channel->devType > DMA_NUM_DEVICE_ENTRIES)) {
320 printk(KERN_ERR "dma_interrupt_handler: Invalid devType: %d\n",
321 channel->devType);
322 return IRQ_NONE;
323 }
324 devAttr = &DMA_gDeviceAttribute[channel->devType];
325
326 /* Update stats */
327
328 if ((irqStatus & dmacHw_INTERRUPT_STATUS_TRANS) != 0) {
329 devAttr->transferTicks +=
330 (timer_get_tick_count() - devAttr->transferStartTime);
331 }
332
333 if ((irqStatus & dmacHw_INTERRUPT_STATUS_ERROR) != 0) {
334 printk(KERN_ERR
335 "dma_interrupt_handler: devType :%d DMA error (%s)\n",
336 channel->devType, devAttr->name);
337 } else {
338 devAttr->numTransfers++;
339 devAttr->transferBytes += devAttr->numBytes;
340 }
341
342 /* Call any installed handler */
343
344 if (devAttr->devHandler != NULL) {
345 devAttr->devHandler(channel->devType, irqStatus,
346 devAttr->userData);
347 }
348
349 return IRQ_HANDLED;
350}
351
352/****************************************************************************/
353/**
354* Allocates memory to hold a descriptor ring. The descriptor ring then
355* needs to be populated by making one or more calls to
356* dna_add_descriptors.
357*
358* The returned descriptor ring will be automatically initialized.
359*
360* @return
361* 0 Descriptor ring was allocated successfully
362* -EINVAL Invalid parameters passed in
363* -ENOMEM Unable to allocate memory for the desired number of descriptors.
364*/
365/****************************************************************************/
366
367int dma_alloc_descriptor_ring(DMA_DescriptorRing_t *ring, /* Descriptor ring to populate */
368 int numDescriptors /* Number of descriptors that need to be allocated. */
369 ) {
370 size_t bytesToAlloc = dmacHw_descriptorLen(numDescriptors);
371
372 if ((ring == NULL) || (numDescriptors <= 0)) {
373 return -EINVAL;
374 }
375
376 ring->physAddr = 0;
377 ring->descriptorsAllocated = 0;
378 ring->bytesAllocated = 0;
379
380 ring->virtAddr = dma_alloc_writecombine(NULL,
381 bytesToAlloc,
382 &ring->physAddr,
383 GFP_KERNEL);
384 if (ring->virtAddr == NULL) {
385 return -ENOMEM;
386 }
387
388 ring->bytesAllocated = bytesToAlloc;
389 ring->descriptorsAllocated = numDescriptors;
390
391 return dma_init_descriptor_ring(ring, numDescriptors);
392}
393
394EXPORT_SYMBOL(dma_alloc_descriptor_ring);
395
396/****************************************************************************/
397/**
398* Releases the memory which was previously allocated for a descriptor ring.
399*/
400/****************************************************************************/
401
402void dma_free_descriptor_ring(DMA_DescriptorRing_t *ring /* Descriptor to release */
403 ) {
404 if (ring->virtAddr != NULL) {
405 dma_free_writecombine(NULL,
406 ring->bytesAllocated,
407 ring->virtAddr, ring->physAddr);
408 }
409
410 ring->bytesAllocated = 0;
411 ring->descriptorsAllocated = 0;
412 ring->virtAddr = NULL;
413 ring->physAddr = 0;
414}
415
416EXPORT_SYMBOL(dma_free_descriptor_ring);
417
418/****************************************************************************/
419/**
420* Initializes a descriptor ring, so that descriptors can be added to it.
421* Once a descriptor ring has been allocated, it may be reinitialized for
422* use with additional/different regions of memory.
423*
424* Note that if 7 descriptors are allocated, it's perfectly acceptable to
425* initialize the ring with a smaller number of descriptors. The amount
426* of memory allocated for the descriptor ring will not be reduced, and
427* the descriptor ring may be reinitialized later
428*
429* @return
430* 0 Descriptor ring was initialized successfully
431* -ENOMEM The descriptor which was passed in has insufficient space
432* to hold the desired number of descriptors.
433*/
434/****************************************************************************/
435
436int dma_init_descriptor_ring(DMA_DescriptorRing_t *ring, /* Descriptor ring to initialize */
437 int numDescriptors /* Number of descriptors to initialize. */
438 ) {
439 if (ring->virtAddr == NULL) {
440 return -EINVAL;
441 }
442 if (dmacHw_initDescriptor(ring->virtAddr,
443 ring->physAddr,
444 ring->bytesAllocated, numDescriptors) < 0) {
445 printk(KERN_ERR
446 "dma_init_descriptor_ring: dmacHw_initDescriptor failed\n");
447 return -ENOMEM;
448 }
449
450 return 0;
451}
452
453EXPORT_SYMBOL(dma_init_descriptor_ring);
454
455/****************************************************************************/
456/**
457* Determines the number of descriptors which would be required for a
458* transfer of the indicated memory region.
459*
460* This function also needs to know which DMA device this transfer will
461* be destined for, so that the appropriate DMA configuration can be retrieved.
462* DMA parameters such as transfer width, and whether this is a memory-to-memory
463* or memory-to-peripheral, etc can all affect the actual number of descriptors
464* required.
465*
466* @return
467* > 0 Returns the number of descriptors required for the indicated transfer
468* -ENODEV - Device handed in is invalid.
469* -EINVAL Invalid parameters
470* -ENOMEM Memory exhausted
471*/
472/****************************************************************************/
473
474int dma_calculate_descriptor_count(DMA_Device_t device, /* DMA Device that this will be associated with */
475 dma_addr_t srcData, /* Place to get data to write to device */
476 dma_addr_t dstData, /* Pointer to device data address */
477 size_t numBytes /* Number of bytes to transfer to the device */
478 ) {
479 int numDescriptors;
480 DMA_DeviceAttribute_t *devAttr;
481
482 if (!IsDeviceValid(device)) {
483 return -ENODEV;
484 }
485 devAttr = &DMA_gDeviceAttribute[device];
486
487 numDescriptors = dmacHw_calculateDescriptorCount(&devAttr->config,
488 (void *)srcData,
489 (void *)dstData,
490 numBytes);
491 if (numDescriptors < 0) {
492 printk(KERN_ERR
493 "dma_calculate_descriptor_count: dmacHw_calculateDescriptorCount failed\n");
494 return -EINVAL;
495 }
496
497 return numDescriptors;
498}
499
500EXPORT_SYMBOL(dma_calculate_descriptor_count);
501
502/****************************************************************************/
503/**
504* Adds a region of memory to the descriptor ring. Note that it may take
505* multiple descriptors for each region of memory. It is the callers
506* responsibility to allocate a sufficiently large descriptor ring.
507*
508* @return
509* 0 Descriptors were added successfully
510* -ENODEV Device handed in is invalid.
511* -EINVAL Invalid parameters
512* -ENOMEM Memory exhausted
513*/
514/****************************************************************************/
515
516int dma_add_descriptors(DMA_DescriptorRing_t *ring, /* Descriptor ring to add descriptors to */
517 DMA_Device_t device, /* DMA Device that descriptors are for */
518 dma_addr_t srcData, /* Place to get data (memory or device) */
519 dma_addr_t dstData, /* Place to put data (memory or device) */
520 size_t numBytes /* Number of bytes to transfer to the device */
521 ) {
522 int rc;
523 DMA_DeviceAttribute_t *devAttr;
524
525 if (!IsDeviceValid(device)) {
526 return -ENODEV;
527 }
528 devAttr = &DMA_gDeviceAttribute[device];
529
530 rc = dmacHw_setDataDescriptor(&devAttr->config,
531 ring->virtAddr,
532 (void *)srcData,
533 (void *)dstData, numBytes);
534 if (rc < 0) {
535 printk(KERN_ERR
536 "dma_add_descriptors: dmacHw_setDataDescriptor failed with code: %d\n",
537 rc);
538 return -ENOMEM;
539 }
540
541 return 0;
542}
543
544EXPORT_SYMBOL(dma_add_descriptors);
545
546/****************************************************************************/
547/**
548* Sets the descriptor ring associated with a device.
549*
550* Once set, the descriptor ring will be associated with the device, even
551* across channel request/free calls. Passing in a NULL descriptor ring
552* will release any descriptor ring currently associated with the device.
553*
554* Note: If you call dma_transfer, or one of the other dma_alloc_ functions
555* the descriptor ring may be released and reallocated.
556*
557* Note: This function will release the descriptor memory for any current
558* descriptor ring associated with this device.
559*
560* @return
561* 0 Descriptors were added successfully
562* -ENODEV Device handed in is invalid.
563*/
564/****************************************************************************/
565
566int dma_set_device_descriptor_ring(DMA_Device_t device, /* Device to update the descriptor ring for. */
567 DMA_DescriptorRing_t *ring /* Descriptor ring to add descriptors to */
568 ) {
569 DMA_DeviceAttribute_t *devAttr;
570
571 if (!IsDeviceValid(device)) {
572 return -ENODEV;
573 }
574 devAttr = &DMA_gDeviceAttribute[device];
575
576 /* Free the previously allocated descriptor ring */
577
578 dma_free_descriptor_ring(&devAttr->ring);
579
580 if (ring != NULL) {
581 /* Copy in the new one */
582
583 devAttr->ring = *ring;
584 }
585
586 /* Set things up so that if dma_transfer is called then this descriptor */
587 /* ring will get freed. */
588
589 devAttr->prevSrcData = 0;
590 devAttr->prevDstData = 0;
591 devAttr->prevNumBytes = 0;
592
593 return 0;
594}
595
596EXPORT_SYMBOL(dma_set_device_descriptor_ring);
597
598/****************************************************************************/
599/**
600* Retrieves the descriptor ring associated with a device.
601*
602* @return
603* 0 Descriptors were added successfully
604* -ENODEV Device handed in is invalid.
605*/
606/****************************************************************************/
607
608int dma_get_device_descriptor_ring(DMA_Device_t device, /* Device to retrieve the descriptor ring for. */
609 DMA_DescriptorRing_t *ring /* Place to store retrieved ring */
610 ) {
611 DMA_DeviceAttribute_t *devAttr;
612
613 memset(ring, 0, sizeof(*ring));
614
615 if (!IsDeviceValid(device)) {
616 return -ENODEV;
617 }
618 devAttr = &DMA_gDeviceAttribute[device];
619
620 *ring = devAttr->ring;
621
622 return 0;
623}
624
625EXPORT_SYMBOL(dma_get_device_descriptor_ring);
626
627/****************************************************************************/
628/**
629* Configures a DMA channel.
630*
631* @return
632* >= 0 - Initialization was successfull.
633*
634* -EBUSY - Device is currently being used.
635* -ENODEV - Device handed in is invalid.
636*/
637/****************************************************************************/
638
639static int ConfigChannel(DMA_Handle_t handle)
640{
641 DMA_Channel_t *channel;
642 DMA_DeviceAttribute_t *devAttr;
643 int controllerIdx;
644
645 channel = HandleToChannel(handle);
646 if (channel == NULL) {
647 return -ENODEV;
648 }
649 devAttr = &DMA_gDeviceAttribute[channel->devType];
650 controllerIdx = CONTROLLER_FROM_HANDLE(handle);
651
652 if ((devAttr->flags & DMA_DEVICE_FLAG_PORT_PER_DMAC) != 0) {
653 if (devAttr->config.transferType ==
654 dmacHw_TRANSFER_TYPE_MEM_TO_PERIPHERAL) {
655 devAttr->config.dstPeripheralPort =
656 devAttr->dmacPort[controllerIdx];
657 } else if (devAttr->config.transferType ==
658 dmacHw_TRANSFER_TYPE_PERIPHERAL_TO_MEM) {
659 devAttr->config.srcPeripheralPort =
660 devAttr->dmacPort[controllerIdx];
661 }
662 }
663
664 if (dmacHw_configChannel(channel->dmacHwHandle, &devAttr->config) != 0) {
665 printk(KERN_ERR "ConfigChannel: dmacHw_configChannel failed\n");
666 return -EIO;
667 }
668
669 return 0;
670}
671
672/****************************************************************************/
673/**
674* Intializes all of the data structures associated with the DMA.
675* @return
676* >= 0 - Initialization was successfull.
677*
678* -EBUSY - Device is currently being used.
679* -ENODEV - Device handed in is invalid.
680*/
681/****************************************************************************/
682
683int dma_init(void)
684{
685 int rc = 0;
686 int controllerIdx;
687 int channelIdx;
688 DMA_Device_t devIdx;
689 DMA_Channel_t *channel;
690 DMA_Handle_t dedicatedHandle;
691
692 memset(&gDMA, 0, sizeof(gDMA));
693
694 init_MUTEX_LOCKED(&gDMA.lock);
695 init_waitqueue_head(&gDMA.freeChannelQ);
696
697 /* Initialize the Hardware */
698
699 dmacHw_initDma();
700
701 /* Start off by marking all of the DMA channels as shared. */
702
703 for (controllerIdx = 0; controllerIdx < DMA_NUM_CONTROLLERS;
704 controllerIdx++) {
705 for (channelIdx = 0; channelIdx < DMA_NUM_CHANNELS;
706 channelIdx++) {
707 channel =
708 &gDMA.controller[controllerIdx].channel[channelIdx];
709
710 channel->flags = 0;
711 channel->devType = DMA_DEVICE_NONE;
712 channel->lastDevType = DMA_DEVICE_NONE;
713
714#if (DMA_DEBUG_TRACK_RESERVATION)
715 channel->fileName = "";
716 channel->lineNum = 0;
717#endif
718
719 channel->dmacHwHandle =
720 dmacHw_getChannelHandle(dmacHw_MAKE_CHANNEL_ID
721 (controllerIdx,
722 channelIdx));
723 dmacHw_initChannel(channel->dmacHwHandle);
724 }
725 }
726
727 /* Record any special attributes that channels may have */
728
729 gDMA.controller[0].channel[0].flags |= DMA_CHANNEL_FLAG_LARGE_FIFO;
730 gDMA.controller[0].channel[1].flags |= DMA_CHANNEL_FLAG_LARGE_FIFO;
731 gDMA.controller[1].channel[0].flags |= DMA_CHANNEL_FLAG_LARGE_FIFO;
732 gDMA.controller[1].channel[1].flags |= DMA_CHANNEL_FLAG_LARGE_FIFO;
733
734 /* Now walk through and record the dedicated channels. */
735
736 for (devIdx = 0; devIdx < DMA_NUM_DEVICE_ENTRIES; devIdx++) {
737 DMA_DeviceAttribute_t *devAttr = &DMA_gDeviceAttribute[devIdx];
738
739 if (((devAttr->flags & DMA_DEVICE_FLAG_NO_ISR) != 0)
740 && ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) == 0)) {
741 printk(KERN_ERR
742 "DMA Device: %s Can only request NO_ISR for dedicated devices\n",
743 devAttr->name);
744 rc = -EINVAL;
745 goto out;
746 }
747
748 if ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) != 0) {
749 /* This is a dedicated device. Mark the channel as being reserved. */
750
751 if (devAttr->dedicatedController >= DMA_NUM_CONTROLLERS) {
752 printk(KERN_ERR
753 "DMA Device: %s DMA Controller %d is out of range\n",
754 devAttr->name,
755 devAttr->dedicatedController);
756 rc = -EINVAL;
757 goto out;
758 }
759
760 if (devAttr->dedicatedChannel >= DMA_NUM_CHANNELS) {
761 printk(KERN_ERR
762 "DMA Device: %s DMA Channel %d is out of range\n",
763 devAttr->name,
764 devAttr->dedicatedChannel);
765 rc = -EINVAL;
766 goto out;
767 }
768
769 dedicatedHandle =
770 MAKE_HANDLE(devAttr->dedicatedController,
771 devAttr->dedicatedChannel);
772 channel = HandleToChannel(dedicatedHandle);
773
774 if ((channel->flags & DMA_CHANNEL_FLAG_IS_DEDICATED) !=
775 0) {
776 printk
777 ("DMA Device: %s attempting to use same DMA Controller:Channel (%d:%d) as %s\n",
778 devAttr->name,
779 devAttr->dedicatedController,
780 devAttr->dedicatedChannel,
781 DMA_gDeviceAttribute[channel->devType].
782 name);
783 rc = -EBUSY;
784 goto out;
785 }
786
787 channel->flags |= DMA_CHANNEL_FLAG_IS_DEDICATED;
788 channel->devType = devIdx;
789
790 if (devAttr->flags & DMA_DEVICE_FLAG_NO_ISR) {
791 channel->flags |= DMA_CHANNEL_FLAG_NO_ISR;
792 }
793
794 /* For dedicated channels, we can go ahead and configure the DMA channel now */
795 /* as well. */
796
797 ConfigChannel(dedicatedHandle);
798 }
799 }
800
801 /* Go through and register the interrupt handlers */
802
803 for (controllerIdx = 0; controllerIdx < DMA_NUM_CONTROLLERS;
804 controllerIdx++) {
805 for (channelIdx = 0; channelIdx < DMA_NUM_CHANNELS;
806 channelIdx++) {
807 channel =
808 &gDMA.controller[controllerIdx].channel[channelIdx];
809
810 if ((channel->flags & DMA_CHANNEL_FLAG_NO_ISR) == 0) {
811 snprintf(channel->name, sizeof(channel->name),
812 "dma %d:%d %s", controllerIdx,
813 channelIdx,
814 channel->devType ==
815 DMA_DEVICE_NONE ? "" :
816 DMA_gDeviceAttribute[channel->devType].
817 name);
818
819 rc =
820 request_irq(IRQ_DMA0C0 +
821 (controllerIdx *
822 DMA_NUM_CHANNELS) +
823 channelIdx,
824 dma_interrupt_handler,
825 IRQF_DISABLED, channel->name,
826 channel);
827 if (rc != 0) {
828 printk(KERN_ERR
829 "request_irq for IRQ_DMA%dC%d failed\n",
830 controllerIdx, channelIdx);
831 }
832 }
833 }
834 }
835
836 /* Create /proc/dma/channels and /proc/dma/devices */
837
838 gDmaDir = create_proc_entry("dma", S_IFDIR | S_IRUGO | S_IXUGO, NULL);
839
840 if (gDmaDir == NULL) {
841 printk(KERN_ERR "Unable to create /proc/dma\n");
842 } else {
843 create_proc_read_entry("channels", 0, gDmaDir,
844 dma_proc_read_channels, NULL);
845 create_proc_read_entry("devices", 0, gDmaDir,
846 dma_proc_read_devices, NULL);
847 create_proc_read_entry("mem-type", 0, gDmaDir,
848 dma_proc_read_mem_type, NULL);
849 }
850
851out:
852
853 up(&gDMA.lock);
854
855 return rc;
856}
857
858/****************************************************************************/
859/**
860* Reserves a channel for use with @a dev. If the device is setup to use
861* a shared channel, then this function will block until a free channel
862* becomes available.
863*
864* @return
865* >= 0 - A valid DMA Handle.
866* -EBUSY - Device is currently being used.
867* -ENODEV - Device handed in is invalid.
868*/
869/****************************************************************************/
870
871#if (DMA_DEBUG_TRACK_RESERVATION)
872DMA_Handle_t dma_request_channel_dbg
873 (DMA_Device_t dev, const char *fileName, int lineNum)
874#else
875DMA_Handle_t dma_request_channel(DMA_Device_t dev)
876#endif
877{
878 DMA_Handle_t handle;
879 DMA_DeviceAttribute_t *devAttr;
880 DMA_Channel_t *channel;
881 int controllerIdx;
882 int controllerIdx2;
883 int channelIdx;
884
885 if (down_interruptible(&gDMA.lock) < 0) {
886 return -ERESTARTSYS;
887 }
888
889 if ((dev < 0) || (dev >= DMA_NUM_DEVICE_ENTRIES)) {
890 handle = -ENODEV;
891 goto out;
892 }
893 devAttr = &DMA_gDeviceAttribute[dev];
894
895#if (DMA_DEBUG_TRACK_RESERVATION)
896 {
897 char *s;
898
899 s = strrchr(fileName, '/');
900 if (s != NULL) {
901 fileName = s + 1;
902 }
903 }
904#endif
905 if ((devAttr->flags & DMA_DEVICE_FLAG_IN_USE) != 0) {
906 /* This device has already been requested and not been freed */
907
908 printk(KERN_ERR "%s: device %s is already requested\n",
909 __func__, devAttr->name);
910 handle = -EBUSY;
911 goto out;
912 }
913
914 if ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) != 0) {
915 /* This device has a dedicated channel. */
916
917 channel =
918 &gDMA.controller[devAttr->dedicatedController].
919 channel[devAttr->dedicatedChannel];
920 if ((channel->flags & DMA_CHANNEL_FLAG_IN_USE) != 0) {
921 handle = -EBUSY;
922 goto out;
923 }
924
925 channel->flags |= DMA_CHANNEL_FLAG_IN_USE;
926 devAttr->flags |= DMA_DEVICE_FLAG_IN_USE;
927
928#if (DMA_DEBUG_TRACK_RESERVATION)
929 channel->fileName = fileName;
930 channel->lineNum = lineNum;
931#endif
932 handle =
933 MAKE_HANDLE(devAttr->dedicatedController,
934 devAttr->dedicatedChannel);
935 goto out;
936 }
937
938 /* This device needs to use one of the shared channels. */
939
940 handle = DMA_INVALID_HANDLE;
941 while (handle == DMA_INVALID_HANDLE) {
942 /* Scan through the shared channels and see if one is available */
943
944 for (controllerIdx2 = 0; controllerIdx2 < DMA_NUM_CONTROLLERS;
945 controllerIdx2++) {
946 /* Check to see if we should try on controller 1 first. */
947
948 controllerIdx = controllerIdx2;
949 if ((devAttr->
950 flags & DMA_DEVICE_FLAG_ALLOC_DMA1_FIRST) != 0) {
951 controllerIdx = 1 - controllerIdx;
952 }
953
954 /* See if the device is available on the controller being tested */
955
956 if ((devAttr->
957 flags & (DMA_DEVICE_FLAG_ON_DMA0 << controllerIdx))
958 != 0) {
959 for (channelIdx = 0;
960 channelIdx < DMA_NUM_CHANNELS;
961 channelIdx++) {
962 channel =
963 &gDMA.controller[controllerIdx].
964 channel[channelIdx];
965
966 if (((channel->
967 flags &
968 DMA_CHANNEL_FLAG_IS_DEDICATED) ==
969 0)
970 &&
971 ((channel->
972 flags & DMA_CHANNEL_FLAG_IN_USE)
973 == 0)) {
974 if (((channel->
975 flags &
976 DMA_CHANNEL_FLAG_LARGE_FIFO)
977 != 0)
978 &&
979 ((devAttr->
980 flags &
981 DMA_DEVICE_FLAG_ALLOW_LARGE_FIFO)
982 == 0)) {
983 /* This channel is a large fifo - don't tie it up */
984 /* with devices that we don't want using it. */
985
986 continue;
987 }
988
989 channel->flags |=
990 DMA_CHANNEL_FLAG_IN_USE;
991 channel->devType = dev;
992 devAttr->flags |=
993 DMA_DEVICE_FLAG_IN_USE;
994
995#if (DMA_DEBUG_TRACK_RESERVATION)
996 channel->fileName = fileName;
997 channel->lineNum = lineNum;
998#endif
999 handle =
1000 MAKE_HANDLE(controllerIdx,
1001 channelIdx);
1002
1003 /* Now that we've reserved the channel - we can go ahead and configure it */
1004
1005 if (ConfigChannel(handle) != 0) {
1006 handle = -EIO;
1007 printk(KERN_ERR
1008 "dma_request_channel: ConfigChannel failed\n");
1009 }
1010 goto out;
1011 }
1012 }
1013 }
1014 }
1015
1016 /* No channels are currently available. Let's wait for one to free up. */
1017
1018 {
1019 DEFINE_WAIT(wait);
1020
1021 prepare_to_wait(&gDMA.freeChannelQ, &wait,
1022 TASK_INTERRUPTIBLE);
1023 up(&gDMA.lock);
1024 schedule();
1025 finish_wait(&gDMA.freeChannelQ, &wait);
1026
1027 if (signal_pending(current)) {
1028 /* We don't currently hold gDMA.lock, so we return directly */
1029
1030 return -ERESTARTSYS;
1031 }
1032 }
1033
1034 if (down_interruptible(&gDMA.lock)) {
1035 return -ERESTARTSYS;
1036 }
1037 }
1038
1039out:
1040 up(&gDMA.lock);
1041
1042 return handle;
1043}
1044
1045/* Create both _dbg and non _dbg functions for modules. */
1046
1047#if (DMA_DEBUG_TRACK_RESERVATION)
1048#undef dma_request_channel
1049DMA_Handle_t dma_request_channel(DMA_Device_t dev)
1050{
1051 return dma_request_channel_dbg(dev, __FILE__, __LINE__);
1052}
1053
1054EXPORT_SYMBOL(dma_request_channel_dbg);
1055#endif
1056EXPORT_SYMBOL(dma_request_channel);
1057
1058/****************************************************************************/
1059/**
1060* Frees a previously allocated DMA Handle.
1061*/
1062/****************************************************************************/
1063
1064int dma_free_channel(DMA_Handle_t handle /* DMA handle. */
1065 ) {
1066 int rc = 0;
1067 DMA_Channel_t *channel;
1068 DMA_DeviceAttribute_t *devAttr;
1069
1070 if (down_interruptible(&gDMA.lock) < 0) {
1071 return -ERESTARTSYS;
1072 }
1073
1074 channel = HandleToChannel(handle);
1075 if (channel == NULL) {
1076 rc = -EINVAL;
1077 goto out;
1078 }
1079
1080 devAttr = &DMA_gDeviceAttribute[channel->devType];
1081
1082 if ((channel->flags & DMA_CHANNEL_FLAG_IS_DEDICATED) == 0) {
1083 channel->lastDevType = channel->devType;
1084 channel->devType = DMA_DEVICE_NONE;
1085 }
1086 channel->flags &= ~DMA_CHANNEL_FLAG_IN_USE;
1087 devAttr->flags &= ~DMA_DEVICE_FLAG_IN_USE;
1088
1089out:
1090 up(&gDMA.lock);
1091
1092 wake_up_interruptible(&gDMA.freeChannelQ);
1093
1094 return rc;
1095}
1096
1097EXPORT_SYMBOL(dma_free_channel);
1098
1099/****************************************************************************/
1100/**
1101* Determines if a given device has been configured as using a shared
1102* channel.
1103*
1104* @return
1105* 0 Device uses a dedicated channel
1106* > zero Device uses a shared channel
1107* < zero Error code
1108*/
1109/****************************************************************************/
1110
1111int dma_device_is_channel_shared(DMA_Device_t device /* Device to check. */
1112 ) {
1113 DMA_DeviceAttribute_t *devAttr;
1114
1115 if (!IsDeviceValid(device)) {
1116 return -ENODEV;
1117 }
1118 devAttr = &DMA_gDeviceAttribute[device];
1119
1120 return ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) == 0);
1121}
1122
1123EXPORT_SYMBOL(dma_device_is_channel_shared);
1124
1125/****************************************************************************/
1126/**
1127* Allocates buffers for the descriptors. This is normally done automatically
1128* but needs to be done explicitly when initiating a dma from interrupt
1129* context.
1130*
1131* @return
1132* 0 Descriptors were allocated successfully
1133* -EINVAL Invalid device type for this kind of transfer
1134* (i.e. the device is _MEM_TO_DEV and not _DEV_TO_MEM)
1135* -ENOMEM Memory exhausted
1136*/
1137/****************************************************************************/
1138
1139int dma_alloc_descriptors(DMA_Handle_t handle, /* DMA Handle */
1140 dmacHw_TRANSFER_TYPE_e transferType, /* Type of transfer being performed */
1141 dma_addr_t srcData, /* Place to get data to write to device */
1142 dma_addr_t dstData, /* Pointer to device data address */
1143 size_t numBytes /* Number of bytes to transfer to the device */
1144 ) {
1145 DMA_Channel_t *channel;
1146 DMA_DeviceAttribute_t *devAttr;
1147 int numDescriptors;
1148 size_t ringBytesRequired;
1149 int rc = 0;
1150
1151 channel = HandleToChannel(handle);
1152 if (channel == NULL) {
1153 return -ENODEV;
1154 }
1155
1156 devAttr = &DMA_gDeviceAttribute[channel->devType];
1157
1158 if (devAttr->config.transferType != transferType) {
1159 return -EINVAL;
1160 }
1161
1162 /* Figure out how many descriptors we need. */
1163
1164 /* printk("srcData: 0x%08x dstData: 0x%08x, numBytes: %d\n", */
1165 /* srcData, dstData, numBytes); */
1166
1167 numDescriptors = dmacHw_calculateDescriptorCount(&devAttr->config,
1168 (void *)srcData,
1169 (void *)dstData,
1170 numBytes);
1171 if (numDescriptors < 0) {
1172 printk(KERN_ERR "%s: dmacHw_calculateDescriptorCount failed\n",
1173 __func__);
1174 return -EINVAL;
1175 }
1176
1177 /* Check to see if we can reuse the existing descriptor ring, or if we need to allocate */
1178 /* a new one. */
1179
1180 ringBytesRequired = dmacHw_descriptorLen(numDescriptors);
1181
1182 /* printk("ringBytesRequired: %d\n", ringBytesRequired); */
1183
1184 if (ringBytesRequired > devAttr->ring.bytesAllocated) {
1185 /* Make sure that this code path is never taken from interrupt context. */
1186 /* It's OK for an interrupt to initiate a DMA transfer, but the descriptor */
1187 /* allocation needs to have already been done. */
1188
1189 might_sleep();
1190
1191 /* Free the old descriptor ring and allocate a new one. */
1192
1193 dma_free_descriptor_ring(&devAttr->ring);
1194
1195 /* And allocate a new one. */
1196
1197 rc =
1198 dma_alloc_descriptor_ring(&devAttr->ring,
1199 numDescriptors);
1200 if (rc < 0) {
1201 printk(KERN_ERR
1202 "%s: dma_alloc_descriptor_ring(%d) failed\n",
1203 __func__, numDescriptors);
1204 return rc;
1205 }
1206 /* Setup the descriptor for this transfer */
1207
1208 if (dmacHw_initDescriptor(devAttr->ring.virtAddr,
1209 devAttr->ring.physAddr,
1210 devAttr->ring.bytesAllocated,
1211 numDescriptors) < 0) {
1212 printk(KERN_ERR "%s: dmacHw_initDescriptor failed\n",
1213 __func__);
1214 return -EINVAL;
1215 }
1216 } else {
1217 /* We've already got enough ring buffer allocated. All we need to do is reset */
1218 /* any control information, just in case the previous DMA was stopped. */
1219
1220 dmacHw_resetDescriptorControl(devAttr->ring.virtAddr);
1221 }
1222
1223 /* dma_alloc/free both set the prevSrc/DstData to 0. If they happen to be the same */
1224 /* as last time, then we don't need to call setDataDescriptor again. */
1225
1226 if (dmacHw_setDataDescriptor(&devAttr->config,
1227 devAttr->ring.virtAddr,
1228 (void *)srcData,
1229 (void *)dstData, numBytes) < 0) {
1230 printk(KERN_ERR "%s: dmacHw_setDataDescriptor failed\n",
1231 __func__);
1232 return -EINVAL;
1233 }
1234
1235 /* Remember the critical information for this transfer so that we can eliminate */
1236 /* another call to dma_alloc_descriptors if the caller reuses the same buffers */
1237
1238 devAttr->prevSrcData = srcData;
1239 devAttr->prevDstData = dstData;
1240 devAttr->prevNumBytes = numBytes;
1241
1242 return 0;
1243}
1244
1245EXPORT_SYMBOL(dma_alloc_descriptors);
1246
1247/****************************************************************************/
1248/**
1249* Allocates and sets up descriptors for a double buffered circular buffer.
1250*
1251* This is primarily intended to be used for things like the ingress samples
1252* from a microphone.
1253*
1254* @return
1255* > 0 Number of descriptors actually allocated.
1256* -EINVAL Invalid device type for this kind of transfer
1257* (i.e. the device is _MEM_TO_DEV and not _DEV_TO_MEM)
1258* -ENOMEM Memory exhausted
1259*/
1260/****************************************************************************/
1261
1262int dma_alloc_double_dst_descriptors(DMA_Handle_t handle, /* DMA Handle */
1263 dma_addr_t srcData, /* Physical address of source data */
1264 dma_addr_t dstData1, /* Physical address of first destination buffer */
1265 dma_addr_t dstData2, /* Physical address of second destination buffer */
1266 size_t numBytes /* Number of bytes in each destination buffer */
1267 ) {
1268 DMA_Channel_t *channel;
1269 DMA_DeviceAttribute_t *devAttr;
1270 int numDst1Descriptors;
1271 int numDst2Descriptors;
1272 int numDescriptors;
1273 size_t ringBytesRequired;
1274 int rc = 0;
1275
1276 channel = HandleToChannel(handle);
1277 if (channel == NULL) {
1278 return -ENODEV;
1279 }
1280
1281 devAttr = &DMA_gDeviceAttribute[channel->devType];
1282
1283 /* Figure out how many descriptors we need. */
1284
1285 /* printk("srcData: 0x%08x dstData: 0x%08x, numBytes: %d\n", */
1286 /* srcData, dstData, numBytes); */
1287
1288 numDst1Descriptors =
1289 dmacHw_calculateDescriptorCount(&devAttr->config, (void *)srcData,
1290 (void *)dstData1, numBytes);
1291 if (numDst1Descriptors < 0) {
1292 return -EINVAL;
1293 }
1294 numDst2Descriptors =
1295 dmacHw_calculateDescriptorCount(&devAttr->config, (void *)srcData,
1296 (void *)dstData2, numBytes);
1297 if (numDst2Descriptors < 0) {
1298 return -EINVAL;
1299 }
1300 numDescriptors = numDst1Descriptors + numDst2Descriptors;
1301 /* printk("numDescriptors: %d\n", numDescriptors); */
1302
1303 /* Check to see if we can reuse the existing descriptor ring, or if we need to allocate */
1304 /* a new one. */
1305
1306 ringBytesRequired = dmacHw_descriptorLen(numDescriptors);
1307
1308 /* printk("ringBytesRequired: %d\n", ringBytesRequired); */
1309
1310 if (ringBytesRequired > devAttr->ring.bytesAllocated) {
1311 /* Make sure that this code path is never taken from interrupt context. */
1312 /* It's OK for an interrupt to initiate a DMA transfer, but the descriptor */
1313 /* allocation needs to have already been done. */
1314
1315 might_sleep();
1316
1317 /* Free the old descriptor ring and allocate a new one. */
1318
1319 dma_free_descriptor_ring(&devAttr->ring);
1320
1321 /* And allocate a new one. */
1322
1323 rc =
1324 dma_alloc_descriptor_ring(&devAttr->ring,
1325 numDescriptors);
1326 if (rc < 0) {
1327 printk(KERN_ERR
1328 "%s: dma_alloc_descriptor_ring(%d) failed\n",
1329 __func__, ringBytesRequired);
1330 return rc;
1331 }
1332 }
1333
1334 /* Setup the descriptor for this transfer. Since this function is used with */
1335 /* CONTINUOUS DMA operations, we need to reinitialize every time, otherwise */
1336 /* setDataDescriptor will keep trying to append onto the end. */
1337
1338 if (dmacHw_initDescriptor(devAttr->ring.virtAddr,
1339 devAttr->ring.physAddr,
1340 devAttr->ring.bytesAllocated,
1341 numDescriptors) < 0) {
1342 printk(KERN_ERR "%s: dmacHw_initDescriptor failed\n", __func__);
1343 return -EINVAL;
1344 }
1345
1346 /* dma_alloc/free both set the prevSrc/DstData to 0. If they happen to be the same */
1347 /* as last time, then we don't need to call setDataDescriptor again. */
1348
1349 if (dmacHw_setDataDescriptor(&devAttr->config,
1350 devAttr->ring.virtAddr,
1351 (void *)srcData,
1352 (void *)dstData1, numBytes) < 0) {
1353 printk(KERN_ERR "%s: dmacHw_setDataDescriptor 1 failed\n",
1354 __func__);
1355 return -EINVAL;
1356 }
1357 if (dmacHw_setDataDescriptor(&devAttr->config,
1358 devAttr->ring.virtAddr,
1359 (void *)srcData,
1360 (void *)dstData2, numBytes) < 0) {
1361 printk(KERN_ERR "%s: dmacHw_setDataDescriptor 2 failed\n",
1362 __func__);
1363 return -EINVAL;
1364 }
1365
1366 /* You should use dma_start_transfer rather than dma_transfer_xxx so we don't */
1367 /* try to make the 'prev' variables right. */
1368
1369 devAttr->prevSrcData = 0;
1370 devAttr->prevDstData = 0;
1371 devAttr->prevNumBytes = 0;
1372
1373 return numDescriptors;
1374}
1375
1376EXPORT_SYMBOL(dma_alloc_double_dst_descriptors);
1377
1378/****************************************************************************/
1379/**
1380* Initiates a transfer when the descriptors have already been setup.
1381*
1382* This is a special case, and normally, the dma_transfer_xxx functions should
1383* be used.
1384*
1385* @return
1386* 0 Transfer was started successfully
1387* -ENODEV Invalid handle
1388*/
1389/****************************************************************************/
1390
1391int dma_start_transfer(DMA_Handle_t handle)
1392{
1393 DMA_Channel_t *channel;
1394 DMA_DeviceAttribute_t *devAttr;
1395
1396 channel = HandleToChannel(handle);
1397 if (channel == NULL) {
1398 return -ENODEV;
1399 }
1400 devAttr = &DMA_gDeviceAttribute[channel->devType];
1401
1402 dmacHw_initiateTransfer(channel->dmacHwHandle, &devAttr->config,
1403 devAttr->ring.virtAddr);
1404
1405 /* Since we got this far, everything went successfully */
1406
1407 return 0;
1408}
1409
1410EXPORT_SYMBOL(dma_start_transfer);
1411
1412/****************************************************************************/
1413/**
1414* Stops a previously started DMA transfer.
1415*
1416* @return
1417* 0 Transfer was stopped successfully
1418* -ENODEV Invalid handle
1419*/
1420/****************************************************************************/
1421
1422int dma_stop_transfer(DMA_Handle_t handle)
1423{
1424 DMA_Channel_t *channel;
1425
1426 channel = HandleToChannel(handle);
1427 if (channel == NULL) {
1428 return -ENODEV;
1429 }
1430
1431 dmacHw_stopTransfer(channel->dmacHwHandle);
1432
1433 return 0;
1434}
1435
1436EXPORT_SYMBOL(dma_stop_transfer);
1437
1438/****************************************************************************/
1439/**
1440* Waits for a DMA to complete by polling. This function is only intended
1441* to be used for testing. Interrupts should be used for most DMA operations.
1442*/
1443/****************************************************************************/
1444
1445int dma_wait_transfer_done(DMA_Handle_t handle)
1446{
1447 DMA_Channel_t *channel;
1448 dmacHw_TRANSFER_STATUS_e status;
1449
1450 channel = HandleToChannel(handle);
1451 if (channel == NULL) {
1452 return -ENODEV;
1453 }
1454
1455 while ((status =
1456 dmacHw_transferCompleted(channel->dmacHwHandle)) ==
1457 dmacHw_TRANSFER_STATUS_BUSY) {
1458 ;
1459 }
1460
1461 if (status == dmacHw_TRANSFER_STATUS_ERROR) {
1462 printk(KERN_ERR "%s: DMA transfer failed\n", __func__);
1463 return -EIO;
1464 }
1465 return 0;
1466}
1467
1468EXPORT_SYMBOL(dma_wait_transfer_done);
1469
1470/****************************************************************************/
1471/**
1472* Initiates a DMA, allocating the descriptors as required.
1473*
1474* @return
1475* 0 Transfer was started successfully
1476* -EINVAL Invalid device type for this kind of transfer
1477* (i.e. the device is _DEV_TO_MEM and not _MEM_TO_DEV)
1478*/
1479/****************************************************************************/
1480
1481int dma_transfer(DMA_Handle_t handle, /* DMA Handle */
1482 dmacHw_TRANSFER_TYPE_e transferType, /* Type of transfer being performed */
1483 dma_addr_t srcData, /* Place to get data to write to device */
1484 dma_addr_t dstData, /* Pointer to device data address */
1485 size_t numBytes /* Number of bytes to transfer to the device */
1486 ) {
1487 DMA_Channel_t *channel;
1488 DMA_DeviceAttribute_t *devAttr;
1489 int rc = 0;
1490
1491 channel = HandleToChannel(handle);
1492 if (channel == NULL) {
1493 return -ENODEV;
1494 }
1495
1496 devAttr = &DMA_gDeviceAttribute[channel->devType];
1497
1498 if (devAttr->config.transferType != transferType) {
1499 return -EINVAL;
1500 }
1501
1502 /* We keep track of the information about the previous request for this */
1503 /* device, and if the attributes match, then we can use the descriptors we setup */
1504 /* the last time, and not have to reinitialize everything. */
1505
1506 {
1507 rc =
1508 dma_alloc_descriptors(handle, transferType, srcData,
1509 dstData, numBytes);
1510 if (rc != 0) {
1511 return rc;
1512 }
1513 }
1514
1515 /* And kick off the transfer */
1516
1517 devAttr->numBytes = numBytes;
1518 devAttr->transferStartTime = timer_get_tick_count();
1519
1520 dmacHw_initiateTransfer(channel->dmacHwHandle, &devAttr->config,
1521 devAttr->ring.virtAddr);
1522
1523 /* Since we got this far, everything went successfully */
1524
1525 return 0;
1526}
1527
1528EXPORT_SYMBOL(dma_transfer);
1529
1530/****************************************************************************/
1531/**
1532* Set the callback function which will be called when a transfer completes.
1533* If a NULL callback function is set, then no callback will occur.
1534*
1535* @note @a devHandler will be called from IRQ context.
1536*
1537* @return
1538* 0 - Success
1539* -ENODEV - Device handed in is invalid.
1540*/
1541/****************************************************************************/
1542
1543int dma_set_device_handler(DMA_Device_t dev, /* Device to set the callback for. */
1544 DMA_DeviceHandler_t devHandler, /* Function to call when the DMA completes */
1545 void *userData /* Pointer which will be passed to devHandler. */
1546 ) {
1547 DMA_DeviceAttribute_t *devAttr;
1548 unsigned long flags;
1549
1550 if (!IsDeviceValid(dev)) {
1551 return -ENODEV;
1552 }
1553 devAttr = &DMA_gDeviceAttribute[dev];
1554
1555 local_irq_save(flags);
1556
1557 devAttr->userData = userData;
1558 devAttr->devHandler = devHandler;
1559
1560 local_irq_restore(flags);
1561
1562 return 0;
1563}
1564
1565EXPORT_SYMBOL(dma_set_device_handler);
1566
1567/****************************************************************************/
1568/**
1569* Initializes a memory mapping structure
1570*/
1571/****************************************************************************/
1572
1573int dma_init_mem_map(DMA_MemMap_t *memMap)
1574{
1575 memset(memMap, 0, sizeof(*memMap));
1576
1577 init_MUTEX(&memMap->lock);
1578
1579 return 0;
1580}
1581
1582EXPORT_SYMBOL(dma_init_mem_map);
1583
1584/****************************************************************************/
1585/**
1586* Releases any memory currently being held by a memory mapping structure.
1587*/
1588/****************************************************************************/
1589
1590int dma_term_mem_map(DMA_MemMap_t *memMap)
1591{
1592 down(&memMap->lock); /* Just being paranoid */
1593
1594 /* Free up any allocated memory */
1595
1596 up(&memMap->lock);
1597 memset(memMap, 0, sizeof(*memMap));
1598
1599 return 0;
1600}
1601
1602EXPORT_SYMBOL(dma_term_mem_map);
1603
1604/****************************************************************************/
1605/**
1606* Looks at a memory address and categorizes it.
1607*
1608* @return One of the values from the DMA_MemType_t enumeration.
1609*/
1610/****************************************************************************/
1611
1612DMA_MemType_t dma_mem_type(void *addr)
1613{
1614 unsigned long addrVal = (unsigned long)addr;
1615
1616 if (addrVal >= VMALLOC_END) {
1617 /* NOTE: DMA virtual memory space starts at 0xFFxxxxxx */
1618
1619 /* dma_alloc_xxx pages are physically and virtually contiguous */
1620
1621 return DMA_MEM_TYPE_DMA;
1622 }
1623
1624 /* Technically, we could add one more classification. Addresses between VMALLOC_END */
1625 /* and the beginning of the DMA virtual address could be considered to be I/O space. */
1626 /* Right now, nobody cares about this particular classification, so we ignore it. */
1627
1628 if (is_vmalloc_addr(addr)) {
1629 /* Address comes from the vmalloc'd region. Pages are virtually */
1630 /* contiguous but NOT physically contiguous */
1631
1632 return DMA_MEM_TYPE_VMALLOC;
1633 }
1634
1635 if (addrVal >= PAGE_OFFSET) {
1636 /* PAGE_OFFSET is typically 0xC0000000 */
1637
1638 /* kmalloc'd pages are physically contiguous */
1639
1640 return DMA_MEM_TYPE_KMALLOC;
1641 }
1642
1643 return DMA_MEM_TYPE_USER;
1644}
1645
1646EXPORT_SYMBOL(dma_mem_type);
1647
1648/****************************************************************************/
1649/**
1650* Looks at a memory address and determines if we support DMA'ing to/from
1651* that type of memory.
1652*
1653* @return boolean -
1654* return value != 0 means dma supported
1655* return value == 0 means dma not supported
1656*/
1657/****************************************************************************/
1658
1659int dma_mem_supports_dma(void *addr)
1660{
1661 DMA_MemType_t memType = dma_mem_type(addr);
1662
1663 return (memType == DMA_MEM_TYPE_DMA)
1664#if ALLOW_MAP_OF_KMALLOC_MEMORY
1665 || (memType == DMA_MEM_TYPE_KMALLOC)
1666#endif
1667 || (memType == DMA_MEM_TYPE_USER);
1668}
1669
1670EXPORT_SYMBOL(dma_mem_supports_dma);
1671
1672/****************************************************************************/
1673/**
1674* Maps in a memory region such that it can be used for performing a DMA.
1675*
1676* @return
1677*/
1678/****************************************************************************/
1679
1680int dma_map_start(DMA_MemMap_t *memMap, /* Stores state information about the map */
1681 enum dma_data_direction dir /* Direction that the mapping will be going */
1682 ) {
1683 int rc;
1684
1685 down(&memMap->lock);
1686
1687 DMA_MAP_PRINT("memMap: %p\n", memMap);
1688
1689 if (memMap->inUse) {
1690 printk(KERN_ERR "%s: memory map %p is already being used\n",
1691 __func__, memMap);
1692 rc = -EBUSY;
1693 goto out;
1694 }
1695
1696 memMap->inUse = 1;
1697 memMap->dir = dir;
1698 memMap->numRegionsUsed = 0;
1699
1700 rc = 0;
1701
1702out:
1703
1704 DMA_MAP_PRINT("returning %d", rc);
1705
1706 up(&memMap->lock);
1707
1708 return rc;
1709}
1710
1711EXPORT_SYMBOL(dma_map_start);
1712
1713/****************************************************************************/
1714/**
1715* Adds a segment of memory to a memory map. Each segment is both
1716* physically and virtually contiguous.
1717*
1718* @return 0 on success, error code otherwise.
1719*/
1720/****************************************************************************/
1721
1722static int dma_map_add_segment(DMA_MemMap_t *memMap, /* Stores state information about the map */
1723 DMA_Region_t *region, /* Region that the segment belongs to */
1724 void *virtAddr, /* Virtual address of the segment being added */
1725 dma_addr_t physAddr, /* Physical address of the segment being added */
1726 size_t numBytes /* Number of bytes of the segment being added */
1727 ) {
1728 DMA_Segment_t *segment;
1729
1730 DMA_MAP_PRINT("memMap:%p va:%p pa:0x%x #:%d\n", memMap, virtAddr,
1731 physAddr, numBytes);
1732
1733 /* Sanity check */
1734
1735 if (((unsigned long)virtAddr < (unsigned long)region->virtAddr)
1736 || (((unsigned long)virtAddr + numBytes)) >
1737 ((unsigned long)region->virtAddr + region->numBytes)) {
1738 printk(KERN_ERR
1739 "%s: virtAddr %p is outside region @ %p len: %d\n",
1740 __func__, virtAddr, region->virtAddr, region->numBytes);
1741 return -EINVAL;
1742 }
1743
1744 if (region->numSegmentsUsed > 0) {
1745 /* Check to see if this segment is physically contiguous with the previous one */
1746
1747 segment = &region->segment[region->numSegmentsUsed - 1];
1748
1749 if ((segment->physAddr + segment->numBytes) == physAddr) {
1750 /* It is - just add on to the end */
1751
1752 DMA_MAP_PRINT("appending %d bytes to last segment\n",
1753 numBytes);
1754
1755 segment->numBytes += numBytes;
1756
1757 return 0;
1758 }
1759 }
1760
1761 /* Reallocate to hold more segments, if required. */
1762
1763 if (region->numSegmentsUsed >= region->numSegmentsAllocated) {
1764 DMA_Segment_t *newSegment;
1765 size_t oldSize =
1766 region->numSegmentsAllocated * sizeof(*newSegment);
1767 int newAlloc = region->numSegmentsAllocated + 4;
1768 size_t newSize = newAlloc * sizeof(*newSegment);
1769
1770 newSegment = kmalloc(newSize, GFP_KERNEL);
1771 if (newSegment == NULL) {
1772 return -ENOMEM;
1773 }
1774 memcpy(newSegment, region->segment, oldSize);
1775 memset(&((uint8_t *) newSegment)[oldSize], 0,
1776 newSize - oldSize);
1777 kfree(region->segment);
1778
1779 region->numSegmentsAllocated = newAlloc;
1780 region->segment = newSegment;
1781 }
1782
1783 segment = &region->segment[region->numSegmentsUsed];
1784 region->numSegmentsUsed++;
1785
1786 segment->virtAddr = virtAddr;
1787 segment->physAddr = physAddr;
1788 segment->numBytes = numBytes;
1789
1790 DMA_MAP_PRINT("returning success\n");
1791
1792 return 0;
1793}
1794
1795/****************************************************************************/
1796/**
1797* Adds a region of memory to a memory map. Each region is virtually
1798* contiguous, but not necessarily physically contiguous.
1799*
1800* @return 0 on success, error code otherwise.
1801*/
1802/****************************************************************************/
1803
1804int dma_map_add_region(DMA_MemMap_t *memMap, /* Stores state information about the map */
1805 void *mem, /* Virtual address that we want to get a map of */
1806 size_t numBytes /* Number of bytes being mapped */
1807 ) {
1808 unsigned long addr = (unsigned long)mem;
1809 unsigned int offset;
1810 int rc = 0;
1811 DMA_Region_t *region;
1812 dma_addr_t physAddr;
1813
1814 down(&memMap->lock);
1815
1816 DMA_MAP_PRINT("memMap:%p va:%p #:%d\n", memMap, mem, numBytes);
1817
1818 if (!memMap->inUse) {
1819 printk(KERN_ERR "%s: Make sure you call dma_map_start first\n",
1820 __func__);
1821 rc = -EINVAL;
1822 goto out;
1823 }
1824
1825 /* Reallocate to hold more regions. */
1826
1827 if (memMap->numRegionsUsed >= memMap->numRegionsAllocated) {
1828 DMA_Region_t *newRegion;
1829 size_t oldSize =
1830 memMap->numRegionsAllocated * sizeof(*newRegion);
1831 int newAlloc = memMap->numRegionsAllocated + 4;
1832 size_t newSize = newAlloc * sizeof(*newRegion);
1833
1834 newRegion = kmalloc(newSize, GFP_KERNEL);
1835 if (newRegion == NULL) {
1836 rc = -ENOMEM;
1837 goto out;
1838 }
1839 memcpy(newRegion, memMap->region, oldSize);
1840 memset(&((uint8_t *) newRegion)[oldSize], 0, newSize - oldSize);
1841
1842 kfree(memMap->region);
1843
1844 memMap->numRegionsAllocated = newAlloc;
1845 memMap->region = newRegion;
1846 }
1847
1848 region = &memMap->region[memMap->numRegionsUsed];
1849 memMap->numRegionsUsed++;
1850
1851 offset = addr & ~PAGE_MASK;
1852
1853 region->memType = dma_mem_type(mem);
1854 region->virtAddr = mem;
1855 region->numBytes = numBytes;
1856 region->numSegmentsUsed = 0;
1857 region->numLockedPages = 0;
1858 region->lockedPages = NULL;
1859
1860 switch (region->memType) {
1861 case DMA_MEM_TYPE_VMALLOC:
1862 {
1863 atomic_inc(&gDmaStatMemTypeVmalloc);
1864
1865 /* printk(KERN_ERR "%s: vmalloc'd pages are not supported\n", __func__); */
1866
1867 /* vmalloc'd pages are not physically contiguous */
1868
1869 rc = -EINVAL;
1870 break;
1871 }
1872
1873 case DMA_MEM_TYPE_KMALLOC:
1874 {
1875 atomic_inc(&gDmaStatMemTypeKmalloc);
1876
1877 /* kmalloc'd pages are physically contiguous, so they'll have exactly */
1878 /* one segment */
1879
1880#if ALLOW_MAP_OF_KMALLOC_MEMORY
1881 physAddr =
1882 dma_map_single(NULL, mem, numBytes, memMap->dir);
1883 rc = dma_map_add_segment(memMap, region, mem, physAddr,
1884 numBytes);
1885#else
1886 rc = -EINVAL;
1887#endif
1888 break;
1889 }
1890
1891 case DMA_MEM_TYPE_DMA:
1892 {
1893 /* dma_alloc_xxx pages are physically contiguous */
1894
1895 atomic_inc(&gDmaStatMemTypeCoherent);
1896
1897 physAddr = (vmalloc_to_pfn(mem) << PAGE_SHIFT) + offset;
1898
1899 dma_sync_single_for_cpu(NULL, physAddr, numBytes,
1900 memMap->dir);
1901 rc = dma_map_add_segment(memMap, region, mem, physAddr,
1902 numBytes);
1903 break;
1904 }
1905
1906 case DMA_MEM_TYPE_USER:
1907 {
1908 size_t firstPageOffset;
1909 size_t firstPageSize;
1910 struct page **pages;
1911 struct task_struct *userTask;
1912
1913 atomic_inc(&gDmaStatMemTypeUser);
1914
1915#if 1
1916 /* If the pages are user pages, then the dma_mem_map_set_user_task function */
1917 /* must have been previously called. */
1918
1919 if (memMap->userTask == NULL) {
1920 printk(KERN_ERR
1921 "%s: must call dma_mem_map_set_user_task when using user-mode memory\n",
1922 __func__);
1923 return -EINVAL;
1924 }
1925
1926 /* User pages need to be locked. */
1927
1928 firstPageOffset =
1929 (unsigned long)region->virtAddr & (PAGE_SIZE - 1);
1930 firstPageSize = PAGE_SIZE - firstPageOffset;
1931
1932 region->numLockedPages = (firstPageOffset
1933 + region->numBytes +
1934 PAGE_SIZE - 1) / PAGE_SIZE;
1935 pages =
1936 kmalloc(region->numLockedPages *
1937 sizeof(struct page *), GFP_KERNEL);
1938
1939 if (pages == NULL) {
1940 region->numLockedPages = 0;
1941 return -ENOMEM;
1942 }
1943
1944 userTask = memMap->userTask;
1945
1946 down_read(&userTask->mm->mmap_sem);
1947 rc = get_user_pages(userTask, /* task */
1948 userTask->mm, /* mm */
1949 (unsigned long)region->virtAddr, /* start */
1950 region->numLockedPages, /* len */
1951 memMap->dir == DMA_FROM_DEVICE, /* write */
1952 0, /* force */
1953 pages, /* pages (array of pointers to page) */
1954 NULL); /* vmas */
1955 up_read(&userTask->mm->mmap_sem);
1956
1957 if (rc != region->numLockedPages) {
1958 kfree(pages);
1959 region->numLockedPages = 0;
1960
1961 if (rc >= 0) {
1962 rc = -EINVAL;
1963 }
1964 } else {
1965 uint8_t *virtAddr = region->virtAddr;
1966 size_t bytesRemaining;
1967 int pageIdx;
1968
1969 rc = 0; /* Since get_user_pages returns +ve number */
1970
1971 region->lockedPages = pages;
1972
1973 /* We've locked the user pages. Now we need to walk them and figure */
1974 /* out the physical addresses. */
1975
1976 /* The first page may be partial */
1977
1978 dma_map_add_segment(memMap,
1979 region,
1980 virtAddr,
1981 PFN_PHYS(page_to_pfn
1982 (pages[0])) +
1983 firstPageOffset,
1984 firstPageSize);
1985
1986 virtAddr += firstPageSize;
1987 bytesRemaining =
1988 region->numBytes - firstPageSize;
1989
1990 for (pageIdx = 1;
1991 pageIdx < region->numLockedPages;
1992 pageIdx++) {
1993 size_t bytesThisPage =
1994 (bytesRemaining >
1995 PAGE_SIZE ? PAGE_SIZE :
1996 bytesRemaining);
1997
1998 DMA_MAP_PRINT
1999 ("pageIdx:%d pages[pageIdx]=%p pfn=%u phys=%u\n",
2000 pageIdx, pages[pageIdx],
2001 page_to_pfn(pages[pageIdx]),
2002 PFN_PHYS(page_to_pfn
2003 (pages[pageIdx])));
2004
2005 dma_map_add_segment(memMap,
2006 region,
2007 virtAddr,
2008 PFN_PHYS(page_to_pfn
2009 (pages
2010 [pageIdx])),
2011 bytesThisPage);
2012
2013 virtAddr += bytesThisPage;
2014 bytesRemaining -= bytesThisPage;
2015 }
2016 }
2017#else
2018 printk(KERN_ERR
2019 "%s: User mode pages are not yet supported\n",
2020 __func__);
2021
2022 /* user pages are not physically contiguous */
2023
2024 rc = -EINVAL;
2025#endif
2026 break;
2027 }
2028
2029 default:
2030 {
2031 printk(KERN_ERR "%s: Unsupported memory type: %d\n",
2032 __func__, region->memType);
2033
2034 rc = -EINVAL;
2035 break;
2036 }
2037 }
2038
2039 if (rc != 0) {
2040 memMap->numRegionsUsed--;
2041 }
2042
2043out:
2044
2045 DMA_MAP_PRINT("returning %d\n", rc);
2046
2047 up(&memMap->lock);
2048
2049 return rc;
2050}
2051
2052EXPORT_SYMBOL(dma_map_add_segment);
2053
2054/****************************************************************************/
2055/**
2056* Maps in a memory region such that it can be used for performing a DMA.
2057*
2058* @return 0 on success, error code otherwise.
2059*/
2060/****************************************************************************/
2061
2062int dma_map_mem(DMA_MemMap_t *memMap, /* Stores state information about the map */
2063 void *mem, /* Virtual address that we want to get a map of */
2064 size_t numBytes, /* Number of bytes being mapped */
2065 enum dma_data_direction dir /* Direction that the mapping will be going */
2066 ) {
2067 int rc;
2068
2069 rc = dma_map_start(memMap, dir);
2070 if (rc == 0) {
2071 rc = dma_map_add_region(memMap, mem, numBytes);
2072 if (rc < 0) {
2073 /* Since the add fails, this function will fail, and the caller won't */
2074 /* call unmap, so we need to do it here. */
2075
2076 dma_unmap(memMap, 0);
2077 }
2078 }
2079
2080 return rc;
2081}
2082
2083EXPORT_SYMBOL(dma_map_mem);
2084
2085/****************************************************************************/
2086/**
2087* Setup a descriptor ring for a given memory map.
2088*
2089* It is assumed that the descriptor ring has already been initialized, and
2090* this routine will only reallocate a new descriptor ring if the existing
2091* one is too small.
2092*
2093* @return 0 on success, error code otherwise.
2094*/
2095/****************************************************************************/
2096
2097int dma_map_create_descriptor_ring(DMA_Device_t dev, /* DMA device (where the ring is stored) */
2098 DMA_MemMap_t *memMap, /* Memory map that will be used */
2099 dma_addr_t devPhysAddr /* Physical address of device */
2100 ) {
2101 int rc;
2102 int numDescriptors;
2103 DMA_DeviceAttribute_t *devAttr;
2104 DMA_Region_t *region;
2105 DMA_Segment_t *segment;
2106 dma_addr_t srcPhysAddr;
2107 dma_addr_t dstPhysAddr;
2108 int regionIdx;
2109 int segmentIdx;
2110
2111 devAttr = &DMA_gDeviceAttribute[dev];
2112
2113 down(&memMap->lock);
2114
2115 /* Figure out how many descriptors we need */
2116
2117 numDescriptors = 0;
2118 for (regionIdx = 0; regionIdx < memMap->numRegionsUsed; regionIdx++) {
2119 region = &memMap->region[regionIdx];
2120
2121 for (segmentIdx = 0; segmentIdx < region->numSegmentsUsed;
2122 segmentIdx++) {
2123 segment = &region->segment[segmentIdx];
2124
2125 if (memMap->dir == DMA_TO_DEVICE) {
2126 srcPhysAddr = segment->physAddr;
2127 dstPhysAddr = devPhysAddr;
2128 } else {
2129 srcPhysAddr = devPhysAddr;
2130 dstPhysAddr = segment->physAddr;
2131 }
2132
2133 rc =
2134 dma_calculate_descriptor_count(dev, srcPhysAddr,
2135 dstPhysAddr,
2136 segment->
2137 numBytes);
2138 if (rc < 0) {
2139 printk(KERN_ERR
2140 "%s: dma_calculate_descriptor_count failed: %d\n",
2141 __func__, rc);
2142 goto out;
2143 }
2144 numDescriptors += rc;
2145 }
2146 }
2147
2148 /* Adjust the size of the ring, if it isn't big enough */
2149
2150 if (numDescriptors > devAttr->ring.descriptorsAllocated) {
2151 dma_free_descriptor_ring(&devAttr->ring);
2152 rc =
2153 dma_alloc_descriptor_ring(&devAttr->ring,
2154 numDescriptors);
2155 if (rc < 0) {
2156 printk(KERN_ERR
2157 "%s: dma_alloc_descriptor_ring failed: %d\n",
2158 __func__, rc);
2159 goto out;
2160 }
2161 } else {
2162 rc =
2163 dma_init_descriptor_ring(&devAttr->ring,
2164 numDescriptors);
2165 if (rc < 0) {
2166 printk(KERN_ERR
2167 "%s: dma_init_descriptor_ring failed: %d\n",
2168 __func__, rc);
2169 goto out;
2170 }
2171 }
2172
2173 /* Populate the descriptors */
2174
2175 for (regionIdx = 0; regionIdx < memMap->numRegionsUsed; regionIdx++) {
2176 region = &memMap->region[regionIdx];
2177
2178 for (segmentIdx = 0; segmentIdx < region->numSegmentsUsed;
2179 segmentIdx++) {
2180 segment = &region->segment[segmentIdx];
2181
2182 if (memMap->dir == DMA_TO_DEVICE) {
2183 srcPhysAddr = segment->physAddr;
2184 dstPhysAddr = devPhysAddr;
2185 } else {
2186 srcPhysAddr = devPhysAddr;
2187 dstPhysAddr = segment->physAddr;
2188 }
2189
2190 rc =
2191 dma_add_descriptors(&devAttr->ring, dev,
2192 srcPhysAddr, dstPhysAddr,
2193 segment->numBytes);
2194 if (rc < 0) {
2195 printk(KERN_ERR
2196 "%s: dma_add_descriptors failed: %d\n",
2197 __func__, rc);
2198 goto out;
2199 }
2200 }
2201 }
2202
2203 rc = 0;
2204
2205out:
2206
2207 up(&memMap->lock);
2208 return rc;
2209}
2210
2211EXPORT_SYMBOL(dma_map_create_descriptor_ring);
2212
2213/****************************************************************************/
2214/**
2215* Maps in a memory region such that it can be used for performing a DMA.
2216*
2217* @return
2218*/
2219/****************************************************************************/
2220
2221int dma_unmap(DMA_MemMap_t *memMap, /* Stores state information about the map */
2222 int dirtied /* non-zero if any of the pages were modified */
2223 ) {
2224 int regionIdx;
2225 int segmentIdx;
2226 DMA_Region_t *region;
2227 DMA_Segment_t *segment;
2228
2229 for (regionIdx = 0; regionIdx < memMap->numRegionsUsed; regionIdx++) {
2230 region = &memMap->region[regionIdx];
2231
2232 for (segmentIdx = 0; segmentIdx < region->numSegmentsUsed;
2233 segmentIdx++) {
2234 segment = &region->segment[segmentIdx];
2235
2236 switch (region->memType) {
2237 case DMA_MEM_TYPE_VMALLOC:
2238 {
2239 printk(KERN_ERR
2240 "%s: vmalloc'd pages are not yet supported\n",
2241 __func__);
2242 return -EINVAL;
2243 }
2244
2245 case DMA_MEM_TYPE_KMALLOC:
2246 {
2247#if ALLOW_MAP_OF_KMALLOC_MEMORY
2248 dma_unmap_single(NULL,
2249 segment->physAddr,
2250 segment->numBytes,
2251 memMap->dir);
2252#endif
2253 break;
2254 }
2255
2256 case DMA_MEM_TYPE_DMA:
2257 {
2258 dma_sync_single_for_cpu(NULL,
2259 segment->
2260 physAddr,
2261 segment->
2262 numBytes,
2263 memMap->dir);
2264 break;
2265 }
2266
2267 case DMA_MEM_TYPE_USER:
2268 {
2269 /* Nothing to do here. */
2270
2271 break;
2272 }
2273
2274 default:
2275 {
2276 printk(KERN_ERR
2277 "%s: Unsupported memory type: %d\n",
2278 __func__, region->memType);
2279 return -EINVAL;
2280 }
2281 }
2282
2283 segment->virtAddr = NULL;
2284 segment->physAddr = 0;
2285 segment->numBytes = 0;
2286 }
2287
2288 if (region->numLockedPages > 0) {
2289 int pageIdx;
2290
2291 /* Some user pages were locked. We need to go and unlock them now. */
2292
2293 for (pageIdx = 0; pageIdx < region->numLockedPages;
2294 pageIdx++) {
2295 struct page *page =
2296 region->lockedPages[pageIdx];
2297
2298 if (memMap->dir == DMA_FROM_DEVICE) {
2299 SetPageDirty(page);
2300 }
2301 page_cache_release(page);
2302 }
2303 kfree(region->lockedPages);
2304 region->numLockedPages = 0;
2305 region->lockedPages = NULL;
2306 }
2307
2308 region->memType = DMA_MEM_TYPE_NONE;
2309 region->virtAddr = NULL;
2310 region->numBytes = 0;
2311 region->numSegmentsUsed = 0;
2312 }
2313 memMap->userTask = NULL;
2314 memMap->numRegionsUsed = 0;
2315 memMap->inUse = 0;
2316
2317 up(&memMap->lock);
2318
2319 return 0;
2320}
2321
2322EXPORT_SYMBOL(dma_unmap);