Merge remote-tracking branch 'spi/fix/atmel' into spi-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / include / asm / mcpm.h
CommitLineData
e8db288e
NP
1/*
2 * arch/arm/include/asm/mcpm.h
3 *
4 * Created by: Nicolas Pitre, April 2012
5 * Copyright: (C) 2012-2013 Linaro Limited
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#ifndef MCPM_H
13#define MCPM_H
14
15/*
16 * Maximum number of possible clusters / CPUs per cluster.
17 *
18 * This should be sufficient for quite a while, while keeping the
19 * (assembly) code simpler. When this starts to grow then we'll have
20 * to consider dynamic allocation.
21 */
22#define MAX_CPUS_PER_CLUSTER 4
23#define MAX_NR_CLUSTERS 2
24
25#ifndef __ASSEMBLY__
26
7fe31d28
DM
27#include <linux/types.h>
28#include <asm/cacheflush.h>
29
e8db288e
NP
30/*
31 * Platform specific code should use this symbol to set up secondary
32 * entry location for processors to use when released from reset.
33 */
34extern void mcpm_entry_point(void);
35
36/*
37 * This is used to indicate where the given CPU from given cluster should
38 * branch once it is ready to re-enter the kernel using ptr, or NULL if it
39 * should be gated. A gated CPU is held in a WFE loop until its vector
40 * becomes non NULL.
41 */
42void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr);
43
7c2b8605
NP
44/*
45 * CPU/cluster power operations API for higher subsystems to use.
46 */
47
48/**
49 * mcpm_cpu_power_up - make given CPU in given cluster runable
50 *
51 * @cpu: CPU number within given cluster
52 * @cluster: cluster number for the CPU
53 *
54 * The identified CPU is brought out of reset. If the cluster was powered
55 * down then it is brought up as well, taking care not to let the other CPUs
56 * in the cluster run, and ensuring appropriate cluster setup.
57 *
58 * Caller must ensure the appropriate entry vector is initialized with
59 * mcpm_set_entry_vector() prior to calling this.
60 *
61 * This must be called in a sleepable context. However, the implementation
62 * is strongly encouraged to return early and let the operation happen
63 * asynchronously, especially when significant delays are expected.
64 *
65 * If the operation cannot be performed then an error code is returned.
66 */
67int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster);
68
69/**
70 * mcpm_cpu_power_down - power the calling CPU down
71 *
72 * The calling CPU is powered down.
73 *
74 * If this CPU is found to be the "last man standing" in the cluster
75 * then the cluster is prepared for power-down too.
76 *
77 * This must be called with interrupts disabled.
78 *
79 * This does not return. Re-entry in the kernel is expected via
80 * mcpm_entry_point.
81 */
82void mcpm_cpu_power_down(void);
83
84/**
85 * mcpm_cpu_suspend - bring the calling CPU in a suspended state
86 *
87 * @expected_residency: duration in microseconds the CPU is expected
88 * to remain suspended, or 0 if unknown/infinity.
89 *
90 * The calling CPU is suspended. The expected residency argument is used
91 * as a hint by the platform specific backend to implement the appropriate
92 * sleep state level according to the knowledge it has on wake-up latency
93 * for the given hardware.
94 *
95 * If this CPU is found to be the "last man standing" in the cluster
96 * then the cluster may be prepared for power-down too, if the expected
97 * residency makes it worthwhile.
98 *
99 * This must be called with interrupts disabled.
100 *
101 * This does not return. Re-entry in the kernel is expected via
102 * mcpm_entry_point.
103 */
104void mcpm_cpu_suspend(u64 expected_residency);
105
106/**
107 * mcpm_cpu_powered_up - housekeeping workafter a CPU has been powered up
108 *
109 * This lets the platform specific backend code perform needed housekeeping
110 * work. This must be called by the newly activated CPU as soon as it is
111 * fully operational in kernel space, before it enables interrupts.
112 *
113 * If the operation cannot be performed then an error code is returned.
114 */
115int mcpm_cpu_powered_up(void);
116
117/*
118 * Platform specific methods used in the implementation of the above API.
119 */
120struct mcpm_platform_ops {
121 int (*power_up)(unsigned int cpu, unsigned int cluster);
122 void (*power_down)(void);
123 void (*suspend)(u64);
124 void (*powered_up)(void);
125};
126
127/**
128 * mcpm_platform_register - register platform specific power methods
129 *
130 * @ops: mcpm_platform_ops structure to register
131 *
132 * An error is returned if the registration has been done previously.
133 */
134int __init mcpm_platform_register(const struct mcpm_platform_ops *ops);
135
7fe31d28
DM
136/* Synchronisation structures for coordinating safe cluster setup/teardown: */
137
138/*
139 * When modifying this structure, make sure you update the MCPM_SYNC_ defines
140 * to match.
141 */
142struct mcpm_sync_struct {
143 /* individual CPU states */
144 struct {
145 s8 cpu __aligned(__CACHE_WRITEBACK_GRANULE);
146 } cpus[MAX_CPUS_PER_CLUSTER];
147
148 /* cluster state */
149 s8 cluster __aligned(__CACHE_WRITEBACK_GRANULE);
150
151 /* inbound-side state */
152 s8 inbound __aligned(__CACHE_WRITEBACK_GRANULE);
153};
154
155struct sync_struct {
156 struct mcpm_sync_struct clusters[MAX_NR_CLUSTERS];
157};
158
159extern unsigned long sync_phys; /* physical address of *mcpm_sync */
160
161void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster);
162void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster);
163void __mcpm_outbound_leave_critical(unsigned int cluster, int state);
164bool __mcpm_outbound_enter_critical(unsigned int this_cpu, unsigned int cluster);
165int __mcpm_cluster_state(unsigned int cluster);
166
167int __init mcpm_sync_init(
168 void (*power_up_setup)(unsigned int affinity_level));
169
a7eb7c6f
NP
170void __init mcpm_smp_set_ops(void);
171
7fe31d28
DM
172#else
173
174/*
175 * asm-offsets.h causes trouble when included in .c files, and cacheflush.h
176 * cannot be included in asm files. Let's work around the conflict like this.
177 */
178#include <asm/asm-offsets.h>
179#define __CACHE_WRITEBACK_GRANULE CACHE_WRITEBACK_GRANULE
180
e8db288e 181#endif /* ! __ASSEMBLY__ */
7fe31d28
DM
182
183/* Definitions for mcpm_sync_struct */
184#define CPU_DOWN 0x11
185#define CPU_COMING_UP 0x12
186#define CPU_UP 0x13
187#define CPU_GOING_DOWN 0x14
188
189#define CLUSTER_DOWN 0x21
190#define CLUSTER_UP 0x22
191#define CLUSTER_GOING_DOWN 0x23
192
193#define INBOUND_NOT_COMING_UP 0x31
194#define INBOUND_COMING_UP 0x32
195
196/*
197 * Offsets for the mcpm_sync_struct members, for use in asm.
198 * We don't want to make them global to the kernel via asm-offsets.c.
199 */
200#define MCPM_SYNC_CLUSTER_CPUS 0
201#define MCPM_SYNC_CPU_SIZE __CACHE_WRITEBACK_GRANULE
202#define MCPM_SYNC_CLUSTER_CLUSTER \
203 (MCPM_SYNC_CLUSTER_CPUS + MCPM_SYNC_CPU_SIZE * MAX_CPUS_PER_CLUSTER)
204#define MCPM_SYNC_CLUSTER_INBOUND \
205 (MCPM_SYNC_CLUSTER_CLUSTER + __CACHE_WRITEBACK_GRANULE)
206#define MCPM_SYNC_CLUSTER_SIZE \
207 (MCPM_SYNC_CLUSTER_INBOUND + __CACHE_WRITEBACK_GRANULE)
208
e8db288e 209#endif