lguest: get more serious about wmb() in example Launcher code
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / Documentation / lguest / lguest.c
CommitLineData
f938d2c8 1/*P:100 This is the Launcher code, a simple program which lays out the
a6bd8e13
RR
2 * "physical" memory for the new Guest by mapping the kernel image and
3 * the virtual devices, then opens /dev/lguest to tell the kernel
4 * about the Guest and control it. :*/
8ca47e00
RR
5#define _LARGEFILE64_SOURCE
6#define _GNU_SOURCE
7#include <stdio.h>
8#include <string.h>
9#include <unistd.h>
10#include <err.h>
11#include <stdint.h>
12#include <stdlib.h>
13#include <elf.h>
14#include <sys/mman.h>
6649bb7a 15#include <sys/param.h>
8ca47e00
RR
16#include <sys/types.h>
17#include <sys/stat.h>
18#include <sys/wait.h>
19#include <fcntl.h>
20#include <stdbool.h>
21#include <errno.h>
22#include <ctype.h>
23#include <sys/socket.h>
24#include <sys/ioctl.h>
25#include <sys/time.h>
26#include <time.h>
27#include <netinet/in.h>
28#include <net/if.h>
29#include <linux/sockios.h>
30#include <linux/if_tun.h>
31#include <sys/uio.h>
32#include <termios.h>
33#include <getopt.h>
34#include <zlib.h>
17cbca2b
RR
35#include <assert.h>
36#include <sched.h>
a586d4f6
RR
37#include <limits.h>
38#include <stddef.h>
a161883a 39#include <signal.h>
b45d8cb0 40#include "linux/lguest_launcher.h"
17cbca2b
RR
41#include "linux/virtio_config.h"
42#include "linux/virtio_net.h"
43#include "linux/virtio_blk.h"
44#include "linux/virtio_console.h"
28fd6d7f 45#include "linux/virtio_rng.h"
17cbca2b 46#include "linux/virtio_ring.h"
d5d02d6d 47#include "asm/bootparam.h"
a6bd8e13 48/*L:110 We can ignore the 39 include files we need for this program, but I do
db24e8c2
RR
49 * want to draw attention to the use of kernel-style types.
50 *
51 * As Linus said, "C is a Spartan language, and so should your naming be." I
52 * like these abbreviations, so we define them here. Note that u64 is always
53 * unsigned long long, which works on all Linux systems: this means that we can
54 * use %llu in printf for any u64. */
55typedef unsigned long long u64;
56typedef uint32_t u32;
57typedef uint16_t u16;
58typedef uint8_t u8;
dde79789 59/*:*/
8ca47e00
RR
60
61#define PAGE_PRESENT 0x7 /* Present, RW, Execute */
62#define NET_PEERNUM 1
63#define BRIDGE_PFX "bridge:"
64#ifndef SIOCBRADDIF
65#define SIOCBRADDIF 0x89a2 /* add interface to bridge */
66#endif
3c6b5bfa
RR
67/* We can have up to 256 pages for devices. */
68#define DEVICE_PAGES 256
0f0c4fab
RR
69/* This will occupy 3 pages: it must be a power of 2. */
70#define VIRTQUEUE_NUM 256
8ca47e00 71
dde79789
RR
72/*L:120 verbose is both a global flag and a macro. The C preprocessor allows
73 * this, and although I wouldn't recommend it, it works quite nicely here. */
8ca47e00
RR
74static bool verbose;
75#define verbose(args...) \
76 do { if (verbose) printf(args); } while(0)
dde79789
RR
77/*:*/
78
8c79873d
RR
79/* File descriptors for the Waker. */
80struct {
81 int pipe[2];
8c79873d
RR
82} waker_fds;
83
3c6b5bfa
RR
84/* The pointer to the start of guest memory. */
85static void *guest_base;
86/* The maximum guest physical address allowed, and maximum possible. */
87static unsigned long guest_limit, guest_max;
a161883a
RR
88/* The pipe for signal hander to write to. */
89static int timeoutpipe[2];
aa124984 90static unsigned int timeout_usec = 500;
56739c80
RR
91/* The /dev/lguest file descriptor. */
92static int lguest_fd;
8ca47e00 93
e3283fa0
GOC
94/* a per-cpu variable indicating whose vcpu is currently running */
95static unsigned int __thread cpu_id;
96
dde79789 97/* This is our list of devices. */
8ca47e00
RR
98struct device_list
99{
dde79789
RR
100 /* Summary information about the devices in our list: ready to pass to
101 * select() to ask which need servicing.*/
8ca47e00
RR
102 fd_set infds;
103 int max_infd;
104
17cbca2b
RR
105 /* Counter to assign interrupt numbers. */
106 unsigned int next_irq;
107
108 /* Counter to print out convenient device numbers. */
109 unsigned int device_num;
110
dde79789 111 /* The descriptor page for the devices. */
17cbca2b
RR
112 u8 *descpage;
113
dde79789 114 /* A single linked list of devices. */
8ca47e00 115 struct device *dev;
a586d4f6
RR
116 /* And a pointer to the last device for easy append and also for
117 * configuration appending. */
118 struct device *lastdev;
8ca47e00
RR
119};
120
17cbca2b
RR
121/* The list of Guest devices, based on command line arguments. */
122static struct device_list devices;
123
dde79789 124/* The device structure describes a single device. */
8ca47e00
RR
125struct device
126{
dde79789 127 /* The linked-list pointer. */
8ca47e00 128 struct device *next;
17cbca2b 129
713b15b3 130 /* The device's descriptor, as mapped into the Guest. */
8ca47e00 131 struct lguest_device_desc *desc;
17cbca2b 132
713b15b3
RR
133 /* We can't trust desc values once Guest has booted: we use these. */
134 unsigned int feature_len;
135 unsigned int num_vq;
136
17cbca2b
RR
137 /* The name of this device, for --verbose. */
138 const char *name;
8ca47e00 139
dde79789
RR
140 /* If handle_input is set, it wants to be called when this file
141 * descriptor is ready. */
8ca47e00 142 int fd;
56739c80 143 bool (*handle_input)(struct device *me);
8ca47e00 144
17cbca2b
RR
145 /* Any queues attached to this device */
146 struct virtqueue *vq;
8ca47e00 147
a007a751
RR
148 /* Handle status being finalized (ie. feature bits stable). */
149 void (*ready)(struct device *me);
150
8ca47e00
RR
151 /* Device-specific data. */
152 void *priv;
153};
154
17cbca2b
RR
155/* The virtqueue structure describes a queue attached to a device. */
156struct virtqueue
157{
158 struct virtqueue *next;
159
160 /* Which device owns me. */
161 struct device *dev;
162
163 /* The configuration for this queue. */
164 struct lguest_vqconfig config;
165
166 /* The actual ring of buffers. */
167 struct vring vring;
168
169 /* Last available index we saw. */
170 u16 last_avail_idx;
171
a161883a 172 /* The routine to call when the Guest pings us, or timeout. */
56739c80 173 void (*handle_output)(struct virtqueue *me, bool timeout);
20887611
RR
174
175 /* Outstanding buffers */
176 unsigned int inflight;
a161883a
RR
177
178 /* Is this blocked awaiting a timer? */
179 bool blocked;
17cbca2b
RR
180};
181
ec04b13f
BR
182/* Remember the arguments to the program so we can "reboot" */
183static char **main_args;
184
f7027c63
RR
185/* We have to be careful with barriers: our devices are all run in separate
186 * threads and so we need to make sure that changes visible to the Guest happen
187 * in precise order. */
188#define wmb() __asm__ __volatile__("" : : : "memory")
17cbca2b
RR
189
190/* Convert an iovec element to the given type.
191 *
192 * This is a fairly ugly trick: we need to know the size of the type and
193 * alignment requirement to check the pointer is kosher. It's also nice to
194 * have the name of the type in case we report failure.
195 *
196 * Typing those three things all the time is cumbersome and error prone, so we
197 * have a macro which sets them all up and passes to the real function. */
198#define convert(iov, type) \
199 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
200
201static void *_convert(struct iovec *iov, size_t size, size_t align,
202 const char *name)
203{
204 if (iov->iov_len != size)
205 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
206 if ((unsigned long)iov->iov_base % align != 0)
207 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
208 return iov->iov_base;
209}
210
b5111790
RR
211/* Wrapper for the last available index. Makes it easier to change. */
212#define lg_last_avail(vq) ((vq)->last_avail_idx)
213
17cbca2b
RR
214/* The virtio configuration space is defined to be little-endian. x86 is
215 * little-endian too, but it's nice to be explicit so we have these helpers. */
216#define cpu_to_le16(v16) (v16)
217#define cpu_to_le32(v32) (v32)
218#define cpu_to_le64(v64) (v64)
219#define le16_to_cpu(v16) (v16)
220#define le32_to_cpu(v32) (v32)
a586d4f6 221#define le64_to_cpu(v64) (v64)
17cbca2b 222
28fd6d7f
RR
223/* Is this iovec empty? */
224static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
225{
226 unsigned int i;
227
228 for (i = 0; i < num_iov; i++)
229 if (iov[i].iov_len)
230 return false;
231 return true;
232}
233
234/* Take len bytes from the front of this iovec. */
235static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
236{
237 unsigned int i;
238
239 for (i = 0; i < num_iov; i++) {
240 unsigned int used;
241
242 used = iov[i].iov_len < len ? iov[i].iov_len : len;
243 iov[i].iov_base += used;
244 iov[i].iov_len -= used;
245 len -= used;
246 }
247 assert(len == 0);
248}
249
6e5aa7ef
RR
250/* The device virtqueue descriptors are followed by feature bitmasks. */
251static u8 *get_feature_bits(struct device *dev)
252{
253 return (u8 *)(dev->desc + 1)
713b15b3 254 + dev->num_vq * sizeof(struct lguest_vqconfig);
6e5aa7ef
RR
255}
256
3c6b5bfa
RR
257/*L:100 The Launcher code itself takes us out into userspace, that scary place
258 * where pointers run wild and free! Unfortunately, like most userspace
259 * programs, it's quite boring (which is why everyone likes to hack on the
260 * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
261 * will get you through this section. Or, maybe not.
262 *
263 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
264 * memory and stores it in "guest_base". In other words, Guest physical ==
265 * Launcher virtual with an offset.
266 *
267 * This can be tough to get your head around, but usually it just means that we
268 * use these trivial conversion functions when the Guest gives us it's
269 * "physical" addresses: */
270static void *from_guest_phys(unsigned long addr)
271{
272 return guest_base + addr;
273}
274
275static unsigned long to_guest_phys(const void *addr)
276{
277 return (addr - guest_base);
278}
279
dde79789
RR
280/*L:130
281 * Loading the Kernel.
282 *
283 * We start with couple of simple helper routines. open_or_die() avoids
284 * error-checking code cluttering the callers: */
8ca47e00
RR
285static int open_or_die(const char *name, int flags)
286{
287 int fd = open(name, flags);
288 if (fd < 0)
289 err(1, "Failed to open %s", name);
290 return fd;
291}
292
3c6b5bfa
RR
293/* map_zeroed_pages() takes a number of pages. */
294static void *map_zeroed_pages(unsigned int num)
8ca47e00 295{
3c6b5bfa
RR
296 int fd = open_or_die("/dev/zero", O_RDONLY);
297 void *addr;
8ca47e00 298
dde79789 299 /* We use a private mapping (ie. if we write to the page, it will be
3c6b5bfa
RR
300 * copied). */
301 addr = mmap(NULL, getpagesize() * num,
302 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
303 if (addr == MAP_FAILED)
304 err(1, "Mmaping %u pages of /dev/zero", num);
34bdaab4 305 close(fd);
3c6b5bfa
RR
306
307 return addr;
308}
309
310/* Get some more pages for a device. */
311static void *get_pages(unsigned int num)
312{
313 void *addr = from_guest_phys(guest_limit);
314
315 guest_limit += num * getpagesize();
316 if (guest_limit > guest_max)
317 errx(1, "Not enough memory for devices");
318 return addr;
8ca47e00
RR
319}
320
6649bb7a
RM
321/* This routine is used to load the kernel or initrd. It tries mmap, but if
322 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
323 * it falls back to reading the memory in. */
324static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
325{
326 ssize_t r;
327
328 /* We map writable even though for some segments are marked read-only.
329 * The kernel really wants to be writable: it patches its own
330 * instructions.
331 *
332 * MAP_PRIVATE means that the page won't be copied until a write is
333 * done to it. This allows us to share untouched memory between
334 * Guests. */
335 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
336 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
337 return;
338
339 /* pread does a seek and a read in one shot: saves a few lines. */
340 r = pread(fd, addr, len, offset);
341 if (r != len)
342 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
343}
344
dde79789
RR
345/* This routine takes an open vmlinux image, which is in ELF, and maps it into
346 * the Guest memory. ELF = Embedded Linking Format, which is the format used
347 * by all modern binaries on Linux including the kernel.
348 *
349 * The ELF headers give *two* addresses: a physical address, and a virtual
47436aa4
RR
350 * address. We use the physical address; the Guest will map itself to the
351 * virtual address.
dde79789
RR
352 *
353 * We return the starting address. */
47436aa4 354static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
8ca47e00 355{
8ca47e00
RR
356 Elf32_Phdr phdr[ehdr->e_phnum];
357 unsigned int i;
8ca47e00 358
dde79789
RR
359 /* Sanity checks on the main ELF header: an x86 executable with a
360 * reasonable number of correctly-sized program headers. */
8ca47e00
RR
361 if (ehdr->e_type != ET_EXEC
362 || ehdr->e_machine != EM_386
363 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
364 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
365 errx(1, "Malformed elf header");
366
dde79789
RR
367 /* An ELF executable contains an ELF header and a number of "program"
368 * headers which indicate which parts ("segments") of the program to
369 * load where. */
370
371 /* We read in all the program headers at once: */
8ca47e00
RR
372 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
373 err(1, "Seeking to program headers");
374 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
375 err(1, "Reading program headers");
376
dde79789 377 /* Try all the headers: there are usually only three. A read-only one,
a6bd8e13 378 * a read-write one, and a "note" section which we don't load. */
8ca47e00 379 for (i = 0; i < ehdr->e_phnum; i++) {
dde79789 380 /* If this isn't a loadable segment, we ignore it */
8ca47e00
RR
381 if (phdr[i].p_type != PT_LOAD)
382 continue;
383
384 verbose("Section %i: size %i addr %p\n",
385 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
386
6649bb7a 387 /* We map this section of the file at its physical address. */
3c6b5bfa 388 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
6649bb7a 389 phdr[i].p_offset, phdr[i].p_filesz);
8ca47e00
RR
390 }
391
814a0e5c
RR
392 /* The entry point is given in the ELF header. */
393 return ehdr->e_entry;
8ca47e00
RR
394}
395
dde79789 396/*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
5bbf89fc
RR
397 * supposed to jump into it and it will unpack itself. We used to have to
398 * perform some hairy magic because the unpacking code scared me.
dde79789 399 *
5bbf89fc
RR
400 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
401 * a small patch to jump over the tricky bits in the Guest, so now we just read
402 * the funky header so we know where in the file to load, and away we go! */
47436aa4 403static unsigned long load_bzimage(int fd)
8ca47e00 404{
43d33b21 405 struct boot_params boot;
5bbf89fc
RR
406 int r;
407 /* Modern bzImages get loaded at 1M. */
408 void *p = from_guest_phys(0x100000);
409
410 /* Go back to the start of the file and read the header. It should be
71cced6e 411 * a Linux boot header (see Documentation/x86/i386/boot.txt) */
5bbf89fc 412 lseek(fd, 0, SEEK_SET);
43d33b21 413 read(fd, &boot, sizeof(boot));
5bbf89fc 414
43d33b21
RR
415 /* Inside the setup_hdr, we expect the magic "HdrS" */
416 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
5bbf89fc
RR
417 errx(1, "This doesn't look like a bzImage to me");
418
43d33b21
RR
419 /* Skip over the extra sectors of the header. */
420 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
5bbf89fc
RR
421
422 /* Now read everything into memory. in nice big chunks. */
423 while ((r = read(fd, p, 65536)) > 0)
424 p += r;
425
43d33b21
RR
426 /* Finally, code32_start tells us where to enter the kernel. */
427 return boot.hdr.code32_start;
8ca47e00
RR
428}
429
dde79789 430/*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
e1e72965
RR
431 * come wrapped up in the self-decompressing "bzImage" format. With a little
432 * work, we can load those, too. */
47436aa4 433static unsigned long load_kernel(int fd)
8ca47e00
RR
434{
435 Elf32_Ehdr hdr;
436
dde79789 437 /* Read in the first few bytes. */
8ca47e00
RR
438 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
439 err(1, "Reading kernel");
440
dde79789 441 /* If it's an ELF file, it starts with "\177ELF" */
8ca47e00 442 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
47436aa4 443 return map_elf(fd, &hdr);
8ca47e00 444
a6bd8e13 445 /* Otherwise we assume it's a bzImage, and try to load it. */
47436aa4 446 return load_bzimage(fd);
8ca47e00
RR
447}
448
dde79789
RR
449/* This is a trivial little helper to align pages. Andi Kleen hated it because
450 * it calls getpagesize() twice: "it's dumb code."
451 *
452 * Kernel guys get really het up about optimization, even when it's not
453 * necessary. I leave this code as a reaction against that. */
8ca47e00
RR
454static inline unsigned long page_align(unsigned long addr)
455{
dde79789 456 /* Add upwards and truncate downwards. */
8ca47e00
RR
457 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
458}
459
dde79789
RR
460/*L:180 An "initial ram disk" is a disk image loaded into memory along with
461 * the kernel which the kernel can use to boot from without needing any
462 * drivers. Most distributions now use this as standard: the initrd contains
463 * the code to load the appropriate driver modules for the current machine.
464 *
465 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
466 * kernels. He sent me this (and tells me when I break it). */
8ca47e00
RR
467static unsigned long load_initrd(const char *name, unsigned long mem)
468{
469 int ifd;
470 struct stat st;
471 unsigned long len;
8ca47e00
RR
472
473 ifd = open_or_die(name, O_RDONLY);
dde79789 474 /* fstat() is needed to get the file size. */
8ca47e00
RR
475 if (fstat(ifd, &st) < 0)
476 err(1, "fstat() on initrd '%s'", name);
477
6649bb7a
RM
478 /* We map the initrd at the top of memory, but mmap wants it to be
479 * page-aligned, so we round the size up for that. */
8ca47e00 480 len = page_align(st.st_size);
3c6b5bfa 481 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
dde79789
RR
482 /* Once a file is mapped, you can close the file descriptor. It's a
483 * little odd, but quite useful. */
8ca47e00 484 close(ifd);
6649bb7a 485 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
dde79789
RR
486
487 /* We return the initrd size. */
8ca47e00
RR
488 return len;
489}
e1e72965 490/*:*/
8ca47e00 491
dde79789
RR
492/* Simple routine to roll all the commandline arguments together with spaces
493 * between them. */
8ca47e00
RR
494static void concat(char *dst, char *args[])
495{
496 unsigned int i, len = 0;
497
498 for (i = 0; args[i]; i++) {
1ef36fa6
PB
499 if (i) {
500 strcat(dst+len, " ");
501 len++;
502 }
8ca47e00 503 strcpy(dst+len, args[i]);
1ef36fa6 504 len += strlen(args[i]);
8ca47e00
RR
505 }
506 /* In case it's empty. */
507 dst[len] = '\0';
508}
509
e1e72965
RR
510/*L:185 This is where we actually tell the kernel to initialize the Guest. We
511 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
58a24566
MZ
512 * the base of Guest "physical" memory, the top physical page to allow and the
513 * entry point for the Guest. */
56739c80 514static void tell_kernel(unsigned long start)
8ca47e00 515{
511801dc
JS
516 unsigned long args[] = { LHREQ_INITIALIZE,
517 (unsigned long)guest_base,
58a24566 518 guest_limit / getpagesize(), start };
3c6b5bfa
RR
519 verbose("Guest: %p - %p (%#lx)\n",
520 guest_base, guest_base + guest_limit, guest_limit);
56739c80
RR
521 lguest_fd = open_or_die("/dev/lguest", O_RDWR);
522 if (write(lguest_fd, args, sizeof(args)) < 0)
8ca47e00 523 err(1, "Writing to /dev/lguest");
8ca47e00 524}
dde79789 525/*:*/
8ca47e00 526
17cbca2b 527static void add_device_fd(int fd)
8ca47e00 528{
17cbca2b
RR
529 FD_SET(fd, &devices.infds);
530 if (fd > devices.max_infd)
531 devices.max_infd = fd;
8ca47e00
RR
532}
533
dde79789
RR
534/*L:200
535 * The Waker.
536 *
e1e72965
RR
537 * With console, block and network devices, we can have lots of input which we
538 * need to process. We could try to tell the kernel what file descriptors to
539 * watch, but handing a file descriptor mask through to the kernel is fairly
540 * icky.
dde79789 541 *
8c79873d 542 * Instead, we clone off a thread which watches the file descriptors and writes
e1e72965
RR
543 * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
544 * stop running the Guest. This causes the Launcher to return from the
dde79789
RR
545 * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
546 * the LHREQ_BREAK and wake us up again.
547 *
548 * This, of course, is merely a different *kind* of icky.
8c79873d
RR
549 *
550 * Given my well-known antipathy to threads, I'd prefer to use processes. But
551 * it's easier to share Guest memory with threads, and trivial to share the
552 * devices.infds as the Launcher changes it.
dde79789 553 */
8c79873d 554static int waker(void *unused)
8ca47e00 555{
8c79873d
RR
556 /* Close the write end of the pipe: only the Launcher has it open. */
557 close(waker_fds.pipe[1]);
8ca47e00
RR
558
559 for (;;) {
17cbca2b 560 fd_set rfds = devices.infds;
511801dc 561 unsigned long args[] = { LHREQ_BREAK, 1 };
8c79873d
RR
562 unsigned int maxfd = devices.max_infd;
563
564 /* We also listen to the pipe from the Launcher. */
565 FD_SET(waker_fds.pipe[0], &rfds);
566 if (waker_fds.pipe[0] > maxfd)
567 maxfd = waker_fds.pipe[0];
8ca47e00 568
dde79789 569 /* Wait until input is ready from one of the devices. */
8c79873d
RR
570 select(maxfd+1, &rfds, NULL, NULL, NULL);
571
572 /* Message from Launcher? */
573 if (FD_ISSET(waker_fds.pipe[0], &rfds)) {
574 char c;
575 /* If this fails, then assume Launcher has exited.
576 * Don't do anything on exit: we're just a thread! */
577 if (read(waker_fds.pipe[0], &c, 1) != 1)
578 _exit(0);
579 continue;
580 }
581
582 /* Send LHREQ_BREAK command to snap the Launcher out of it. */
56739c80 583 pwrite(lguest_fd, args, sizeof(args), cpu_id);
8ca47e00 584 }
8c79873d 585 return 0;
8ca47e00
RR
586}
587
dde79789 588/* This routine just sets up a pipe to the Waker process. */
56739c80 589static void setup_waker(void)
8c79873d
RR
590{
591 /* This pipe is closed when Launcher dies, telling Waker. */
592 if (pipe(waker_fds.pipe) != 0)
593 err(1, "Creating pipe for Waker");
8ca47e00 594
8c79873d
RR
595 if (clone(waker, malloc(4096) + 4096, CLONE_VM | SIGCHLD, NULL) == -1)
596 err(1, "Creating Waker");
8ca47e00
RR
597}
598
e1e72965 599/*
dde79789
RR
600 * Device Handling.
601 *
e1e72965 602 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
dde79789 603 * We need to make sure it's not trying to reach into the Launcher itself, so
e1e72965 604 * we have a convenient routine which checks it and exits with an error message
dde79789
RR
605 * if something funny is going on:
606 */
8ca47e00
RR
607static void *_check_pointer(unsigned long addr, unsigned int size,
608 unsigned int line)
609{
dde79789
RR
610 /* We have to separately check addr and addr+size, because size could
611 * be huge and addr + size might wrap around. */
3c6b5bfa 612 if (addr >= guest_limit || addr + size >= guest_limit)
17cbca2b 613 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
dde79789
RR
614 /* We return a pointer for the caller's convenience, now we know it's
615 * safe to use. */
3c6b5bfa 616 return from_guest_phys(addr);
8ca47e00 617}
dde79789 618/* A macro which transparently hands the line number to the real function. */
8ca47e00
RR
619#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
620
e1e72965
RR
621/* Each buffer in the virtqueues is actually a chain of descriptors. This
622 * function returns the next descriptor in the chain, or vq->vring.num if we're
623 * at the end. */
17cbca2b
RR
624static unsigned next_desc(struct virtqueue *vq, unsigned int i)
625{
626 unsigned int next;
627
628 /* If this descriptor says it doesn't chain, we're done. */
629 if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
630 return vq->vring.num;
631
632 /* Check they're not leading us off end of descriptors. */
633 next = vq->vring.desc[i].next;
634 /* Make sure compiler knows to grab that: we don't want it changing! */
635 wmb();
636
637 if (next >= vq->vring.num)
638 errx(1, "Desc next is %u", next);
639
640 return next;
641}
642
643/* This looks in the virtqueue and for the first available buffer, and converts
644 * it to an iovec for convenient access. Since descriptors consist of some
645 * number of output then some number of input descriptors, it's actually two
646 * iovecs, but we pack them into one and note how many of each there were.
647 *
648 * This function returns the descriptor number found, or vq->vring.num (which
649 * is never a valid descriptor number) if none was found. */
650static unsigned get_vq_desc(struct virtqueue *vq,
651 struct iovec iov[],
652 unsigned int *out_num, unsigned int *in_num)
653{
654 unsigned int i, head;
b5111790 655 u16 last_avail;
17cbca2b
RR
656
657 /* Check it isn't doing very strange things with descriptor numbers. */
b5111790
RR
658 last_avail = lg_last_avail(vq);
659 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
17cbca2b 660 errx(1, "Guest moved used index from %u to %u",
b5111790 661 last_avail, vq->vring.avail->idx);
17cbca2b
RR
662
663 /* If there's nothing new since last we looked, return invalid. */
b5111790 664 if (vq->vring.avail->idx == last_avail)
17cbca2b
RR
665 return vq->vring.num;
666
667 /* Grab the next descriptor number they're advertising, and increment
668 * the index we've seen. */
b5111790
RR
669 head = vq->vring.avail->ring[last_avail % vq->vring.num];
670 lg_last_avail(vq)++;
17cbca2b
RR
671
672 /* If their number is silly, that's a fatal mistake. */
673 if (head >= vq->vring.num)
674 errx(1, "Guest says index %u is available", head);
675
676 /* When we start there are none of either input nor output. */
677 *out_num = *in_num = 0;
678
679 i = head;
680 do {
681 /* Grab the first descriptor, and check it's OK. */
682 iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
683 iov[*out_num + *in_num].iov_base
684 = check_pointer(vq->vring.desc[i].addr,
685 vq->vring.desc[i].len);
686 /* If this is an input descriptor, increment that count. */
687 if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
688 (*in_num)++;
689 else {
690 /* If it's an output descriptor, they're all supposed
691 * to come before any input descriptors. */
692 if (*in_num)
693 errx(1, "Descriptor has out after in");
694 (*out_num)++;
695 }
696
697 /* If we've got too many, that implies a descriptor loop. */
698 if (*out_num + *in_num > vq->vring.num)
699 errx(1, "Looped descriptor");
700 } while ((i = next_desc(vq, i)) != vq->vring.num);
dde79789 701
20887611 702 vq->inflight++;
17cbca2b 703 return head;
8ca47e00
RR
704}
705
e1e72965 706/* After we've used one of their buffers, we tell them about it. We'll then
17cbca2b
RR
707 * want to send them an interrupt, using trigger_irq(). */
708static void add_used(struct virtqueue *vq, unsigned int head, int len)
8ca47e00 709{
17cbca2b
RR
710 struct vring_used_elem *used;
711
e1e72965
RR
712 /* The virtqueue contains a ring of used buffers. Get a pointer to the
713 * next entry in that used ring. */
17cbca2b
RR
714 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
715 used->id = head;
716 used->len = len;
717 /* Make sure buffer is written before we update index. */
718 wmb();
719 vq->vring.used->idx++;
20887611 720 vq->inflight--;
8ca47e00
RR
721}
722
17cbca2b 723/* This actually sends the interrupt for this virtqueue */
56739c80 724static void trigger_irq(struct virtqueue *vq)
8ca47e00 725{
17cbca2b
RR
726 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
727
20887611
RR
728 /* If they don't want an interrupt, don't send one, unless empty. */
729 if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
730 && vq->inflight)
17cbca2b
RR
731 return;
732
733 /* Send the Guest an interrupt tell them we used something up. */
56739c80 734 if (write(lguest_fd, buf, sizeof(buf)) != 0)
17cbca2b 735 err(1, "Triggering irq %i", vq->config.irq);
8ca47e00
RR
736}
737
17cbca2b 738/* And here's the combo meal deal. Supersize me! */
56739c80 739static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
8ca47e00 740{
17cbca2b 741 add_used(vq, head, len);
56739c80 742 trigger_irq(vq);
8ca47e00
RR
743}
744
e1e72965
RR
745/*
746 * The Console
747 *
748 * Here is the input terminal setting we save, and the routine to restore them
749 * on exit so the user gets their terminal back. */
8ca47e00
RR
750static struct termios orig_term;
751static void restore_term(void)
752{
753 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
754}
755
dde79789 756/* We associate some data with the console for our exit hack. */
8ca47e00
RR
757struct console_abort
758{
dde79789 759 /* How many times have they hit ^C? */
8ca47e00 760 int count;
dde79789 761 /* When did they start? */
8ca47e00
RR
762 struct timeval start;
763};
764
dde79789 765/* This is the routine which handles console input (ie. stdin). */
56739c80 766static bool handle_console_input(struct device *dev)
8ca47e00 767{
8ca47e00 768 int len;
17cbca2b
RR
769 unsigned int head, in_num, out_num;
770 struct iovec iov[dev->vq->vring.num];
8ca47e00
RR
771 struct console_abort *abort = dev->priv;
772
17cbca2b
RR
773 /* First we need a console buffer from the Guests's input virtqueue. */
774 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
56ae43df
RR
775
776 /* If they're not ready for input, stop listening to this file
777 * descriptor. We'll start again once they add an input buffer. */
778 if (head == dev->vq->vring.num)
779 return false;
780
781 if (out_num)
17cbca2b 782 errx(1, "Output buffers in console in queue?");
8ca47e00 783
dde79789
RR
784 /* This is why we convert to iovecs: the readv() call uses them, and so
785 * it reads straight into the Guest's buffer. */
17cbca2b 786 len = readv(dev->fd, iov, in_num);
8ca47e00 787 if (len <= 0) {
dde79789 788 /* This implies that the console is closed, is /dev/null, or
17cbca2b 789 * something went terribly wrong. */
8ca47e00 790 warnx("Failed to get console input, ignoring console.");
56ae43df 791 /* Put the input terminal back. */
17cbca2b 792 restore_term();
56ae43df
RR
793 /* Remove callback from input vq, so it doesn't restart us. */
794 dev->vq->handle_output = NULL;
795 /* Stop listening to this fd: don't call us again. */
17cbca2b 796 return false;
8ca47e00
RR
797 }
798
56ae43df 799 /* Tell the Guest about the new input. */
56739c80 800 add_used_and_trigger(dev->vq, head, len);
8ca47e00 801
dde79789
RR
802 /* Three ^C within one second? Exit.
803 *
804 * This is such a hack, but works surprisingly well. Each ^C has to be
805 * in a buffer by itself, so they can't be too fast. But we check that
806 * we get three within about a second, so they can't be too slow. */
8ca47e00
RR
807 if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
808 if (!abort->count++)
809 gettimeofday(&abort->start, NULL);
810 else if (abort->count == 3) {
811 struct timeval now;
812 gettimeofday(&now, NULL);
813 if (now.tv_sec <= abort->start.tv_sec+1) {
511801dc 814 unsigned long args[] = { LHREQ_BREAK, 0 };
dde79789
RR
815 /* Close the fd so Waker will know it has to
816 * exit. */
8c79873d
RR
817 close(waker_fds.pipe[1]);
818 /* Just in case Waker is blocked in BREAK, send
dde79789 819 * unbreak now. */
56739c80 820 write(lguest_fd, args, sizeof(args));
8ca47e00
RR
821 exit(2);
822 }
823 abort->count = 0;
824 }
825 } else
dde79789 826 /* Any other key resets the abort counter. */
8ca47e00
RR
827 abort->count = 0;
828
dde79789 829 /* Everything went OK! */
8ca47e00
RR
830 return true;
831}
832
17cbca2b
RR
833/* Handling output for console is simple: we just get all the output buffers
834 * and write them to stdout. */
56739c80 835static void handle_console_output(struct virtqueue *vq, bool timeout)
8ca47e00 836{
17cbca2b
RR
837 unsigned int head, out, in;
838 int len;
839 struct iovec iov[vq->vring.num];
840
841 /* Keep getting output buffers from the Guest until we run out. */
842 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
843 if (in)
844 errx(1, "Input buffers in output queue?");
845 len = writev(STDOUT_FILENO, iov, out);
56739c80 846 add_used_and_trigger(vq, head, len);
17cbca2b 847 }
8ca47e00
RR
848}
849
1dc3e3bc
RR
850/* This is called when we no longer want to hear about Guest changes to a
851 * virtqueue. This is more efficient in high-traffic cases, but it means we
852 * have to set a timer to check if any more changes have occurred. */
a161883a
RR
853static void block_vq(struct virtqueue *vq)
854{
855 struct itimerval itm;
856
857 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
858 vq->blocked = true;
859
860 itm.it_interval.tv_sec = 0;
861 itm.it_interval.tv_usec = 0;
862 itm.it_value.tv_sec = 0;
aa124984 863 itm.it_value.tv_usec = timeout_usec;
a161883a
RR
864
865 setitimer(ITIMER_REAL, &itm, NULL);
866}
867
e1e72965
RR
868/*
869 * The Network
870 *
871 * Handling output for network is also simple: we get all the output buffers
17cbca2b 872 * and write them (ignoring the first element) to this device's file descriptor
a6bd8e13
RR
873 * (/dev/net/tun).
874 */
56739c80 875static void handle_net_output(struct virtqueue *vq, bool timeout)
8ca47e00 876{
a161883a 877 unsigned int head, out, in, num = 0;
17cbca2b
RR
878 int len;
879 struct iovec iov[vq->vring.num];
aa124984 880 static int last_timeout_num;
17cbca2b
RR
881
882 /* Keep getting output buffers from the Guest until we run out. */
883 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
884 if (in)
885 errx(1, "Input buffers in output queue?");
398f187d
RR
886 len = writev(vq->dev->fd, iov, out);
887 if (len < 0)
888 err(1, "Writing network packet to tun");
56739c80 889 add_used_and_trigger(vq, head, len);
a161883a 890 num++;
17cbca2b 891 }
a161883a
RR
892
893 /* Block further kicks and set up a timer if we saw anything. */
894 if (!timeout && num)
895 block_vq(vq);
aa124984 896
1dc3e3bc
RR
897 /* We never quite know how long should we wait before we check the
898 * queue again for more packets. We start at 500 microseconds, and if
899 * we get fewer packets than last time, we assume we made the timeout
900 * too small and increase it by 10 microseconds. Otherwise, we drop it
901 * by one microsecond every time. It seems to work well enough. */
aa124984
RR
902 if (timeout) {
903 if (num < last_timeout_num)
904 timeout_usec += 10;
905 else if (timeout_usec > 1)
906 timeout_usec--;
907 last_timeout_num = num;
908 }
8ca47e00
RR
909}
910
17cbca2b
RR
911/* This is where we handle a packet coming in from the tun device to our
912 * Guest. */
56739c80 913static bool handle_tun_input(struct device *dev)
8ca47e00 914{
17cbca2b 915 unsigned int head, in_num, out_num;
8ca47e00 916 int len;
17cbca2b 917 struct iovec iov[dev->vq->vring.num];
8ca47e00 918
17cbca2b
RR
919 /* First we need a network buffer from the Guests's recv virtqueue. */
920 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
921 if (head == dev->vq->vring.num) {
dde79789 922 /* Now, it's expected that if we try to send a packet too
17cbca2b
RR
923 * early, the Guest won't be ready yet. Wait until the device
924 * status says it's ready. */
925 /* FIXME: Actually want DRIVER_ACTIVE here. */
5dae785a
RR
926
927 /* Now tell it we want to know if new things appear. */
928 dev->vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
929 wmb();
930
56ae43df
RR
931 /* We'll turn this back on if input buffers are registered. */
932 return false;
17cbca2b
RR
933 } else if (out_num)
934 errx(1, "Output buffers in network recv queue?");
935
dde79789 936 /* Read the packet from the device directly into the Guest's buffer. */
398f187d 937 len = readv(dev->fd, iov, in_num);
8ca47e00
RR
938 if (len <= 0)
939 err(1, "reading network");
dde79789 940
56ae43df 941 /* Tell the Guest about the new packet. */
56739c80 942 add_used_and_trigger(dev->vq, head, len);
17cbca2b 943
8ca47e00 944 verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
17cbca2b
RR
945 ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
946 head != dev->vq->vring.num ? "sent" : "discarded");
947
dde79789 948 /* All good. */
8ca47e00
RR
949 return true;
950}
951
e1e72965
RR
952/*L:215 This is the callback attached to the network and console input
953 * virtqueues: it ensures we try again, in case we stopped console or net
56ae43df 954 * delivery because Guest didn't have any buffers. */
56739c80 955static void enable_fd(struct virtqueue *vq, bool timeout)
56ae43df
RR
956{
957 add_device_fd(vq->dev->fd);
8c79873d
RR
958 /* Snap the Waker out of its select loop. */
959 write(waker_fds.pipe[1], "", 1);
56ae43df
RR
960}
961
56739c80 962static void net_enable_fd(struct virtqueue *vq, bool timeout)
5dae785a
RR
963{
964 /* We don't need to know again when Guest refills receive buffer. */
965 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
56739c80 966 enable_fd(vq, timeout);
5dae785a
RR
967}
968
a007a751
RR
969/* When the Guest tells us they updated the status field, we handle it. */
970static void update_device_status(struct device *dev)
6e5aa7ef
RR
971{
972 struct virtqueue *vq;
973
a007a751
RR
974 /* This is a reset. */
975 if (dev->desc->status == 0) {
976 verbose("Resetting device %s\n", dev->name);
6e5aa7ef 977
a007a751 978 /* Clear any features they've acked. */
713b15b3
RR
979 memset(get_feature_bits(dev) + dev->feature_len, 0,
980 dev->feature_len);
6e5aa7ef 981
a007a751
RR
982 /* Zero out the virtqueues. */
983 for (vq = dev->vq; vq; vq = vq->next) {
984 memset(vq->vring.desc, 0,
2966af73 985 vring_size(vq->config.num, LGUEST_VRING_ALIGN));
b5111790 986 lg_last_avail(vq) = 0;
a007a751
RR
987 }
988 } else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
989 warnx("Device %s configuration FAILED", dev->name);
990 } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
991 unsigned int i;
992
993 verbose("Device %s OK: offered", dev->name);
713b15b3 994 for (i = 0; i < dev->feature_len; i++)
32c68e5c 995 verbose(" %02x", get_feature_bits(dev)[i]);
a007a751 996 verbose(", accepted");
713b15b3 997 for (i = 0; i < dev->feature_len; i++)
32c68e5c 998 verbose(" %02x", get_feature_bits(dev)
713b15b3 999 [dev->feature_len+i]);
a007a751
RR
1000
1001 if (dev->ready)
1002 dev->ready(dev);
6e5aa7ef
RR
1003 }
1004}
1005
17cbca2b 1006/* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
56739c80 1007static void handle_output(unsigned long addr)
8ca47e00
RR
1008{
1009 struct device *i;
17cbca2b
RR
1010 struct virtqueue *vq;
1011
6e5aa7ef 1012 /* Check each device and virtqueue. */
17cbca2b 1013 for (i = devices.dev; i; i = i->next) {
a007a751 1014 /* Notifications to device descriptors update device status. */
6e5aa7ef 1015 if (from_guest_phys(addr) == i->desc) {
a007a751 1016 update_device_status(i);
6e5aa7ef
RR
1017 return;
1018 }
1019
1020 /* Notifications to virtqueues mean output has occurred. */
17cbca2b 1021 for (vq = i->vq; vq; vq = vq->next) {
6e5aa7ef
RR
1022 if (vq->config.pfn != addr/getpagesize())
1023 continue;
1024
1025 /* Guest should acknowledge (and set features!) before
1026 * using the device. */
1027 if (i->desc->status == 0) {
1028 warnx("%s gave early output", i->name);
17cbca2b
RR
1029 return;
1030 }
6e5aa7ef
RR
1031
1032 if (strcmp(vq->dev->name, "console") != 0)
1033 verbose("Output to %s\n", vq->dev->name);
1034 if (vq->handle_output)
56739c80 1035 vq->handle_output(vq, false);
6e5aa7ef 1036 return;
8ca47e00
RR
1037 }
1038 }
dde79789 1039
17cbca2b
RR
1040 /* Early console write is done using notify on a nul-terminated string
1041 * in Guest memory. */
1042 if (addr >= guest_limit)
1043 errx(1, "Bad NOTIFY %#lx", addr);
1044
1045 write(STDOUT_FILENO, from_guest_phys(addr),
1046 strnlen(from_guest_phys(addr), guest_limit - addr));
8ca47e00
RR
1047}
1048
56739c80 1049static void handle_timeout(void)
a161883a
RR
1050{
1051 char buf[32];
1052 struct device *i;
1053 struct virtqueue *vq;
1054
1055 /* Clear the pipe */
1056 read(timeoutpipe[0], buf, sizeof(buf));
1057
1058 /* Check each device and virtqueue: flush blocked ones. */
1059 for (i = devices.dev; i; i = i->next) {
1060 for (vq = i->vq; vq; vq = vq->next) {
1061 if (!vq->blocked)
1062 continue;
1063
1064 vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
1065 vq->blocked = false;
1066 if (vq->handle_output)
56739c80 1067 vq->handle_output(vq, true);
a161883a
RR
1068 }
1069 }
1070}
1071
e1e72965 1072/* This is called when the Waker wakes us up: check for incoming file
dde79789 1073 * descriptors. */
56739c80 1074static void handle_input(void)
8ca47e00 1075{
dde79789 1076 /* select() wants a zeroed timeval to mean "don't wait". */
8ca47e00
RR
1077 struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
1078
1079 for (;;) {
1080 struct device *i;
17cbca2b 1081 fd_set fds = devices.infds;
a161883a 1082 int num;
8ca47e00 1083
a161883a
RR
1084 num = select(devices.max_infd+1, &fds, NULL, NULL, &poll);
1085 /* Could get interrupted */
1086 if (num < 0)
1087 continue;
dde79789 1088 /* If nothing is ready, we're done. */
a161883a 1089 if (num == 0)
8ca47e00
RR
1090 break;
1091
a6bd8e13
RR
1092 /* Otherwise, call the device(s) which have readable file
1093 * descriptors and a method of handling them. */
17cbca2b 1094 for (i = devices.dev; i; i = i->next) {
8ca47e00 1095 if (i->handle_input && FD_ISSET(i->fd, &fds)) {
56739c80 1096 if (i->handle_input(i))
56ae43df
RR
1097 continue;
1098
dde79789 1099 /* If handle_input() returns false, it means we
56ae43df
RR
1100 * should no longer service it. Networking and
1101 * console do this when there's no input
1102 * buffers to deliver into. Console also uses
a6bd8e13 1103 * it when it discovers that stdin is closed. */
56ae43df 1104 FD_CLR(i->fd, &devices.infds);
8ca47e00
RR
1105 }
1106 }
a161883a
RR
1107
1108 /* Is this the timeout fd? */
1109 if (FD_ISSET(timeoutpipe[0], &fds))
56739c80 1110 handle_timeout();
8ca47e00
RR
1111 }
1112}
1113
dde79789
RR
1114/*L:190
1115 * Device Setup
1116 *
1117 * All devices need a descriptor so the Guest knows it exists, and a "struct
1118 * device" so the Launcher can keep track of it. We have common helper
a6bd8e13
RR
1119 * routines to allocate and manage them.
1120 */
8ca47e00 1121
a586d4f6
RR
1122/* The layout of the device page is a "struct lguest_device_desc" followed by a
1123 * number of virtqueue descriptors, then two sets of feature bits, then an
1124 * array of configuration bytes. This routine returns the configuration
1125 * pointer. */
1126static u8 *device_config(const struct device *dev)
1127{
1128 return (void *)(dev->desc + 1)
713b15b3
RR
1129 + dev->num_vq * sizeof(struct lguest_vqconfig)
1130 + dev->feature_len * 2;
17cbca2b
RR
1131}
1132
a586d4f6
RR
1133/* This routine allocates a new "struct lguest_device_desc" from descriptor
1134 * table page just above the Guest's normal memory. It returns a pointer to
1135 * that descriptor. */
1136static struct lguest_device_desc *new_dev_desc(u16 type)
17cbca2b 1137{
a586d4f6
RR
1138 struct lguest_device_desc d = { .type = type };
1139 void *p;
17cbca2b 1140
a586d4f6
RR
1141 /* Figure out where the next device config is, based on the last one. */
1142 if (devices.lastdev)
1143 p = device_config(devices.lastdev)
1144 + devices.lastdev->desc->config_len;
1145 else
1146 p = devices.descpage;
17cbca2b 1147
a586d4f6
RR
1148 /* We only have one page for all the descriptors. */
1149 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1150 errx(1, "Too many devices");
17cbca2b 1151
a586d4f6
RR
1152 /* p might not be aligned, so we memcpy in. */
1153 return memcpy(p, &d, sizeof(d));
17cbca2b
RR
1154}
1155
a586d4f6
RR
1156/* Each device descriptor is followed by the description of its virtqueues. We
1157 * specify how many descriptors the virtqueue is to have. */
17cbca2b 1158static void add_virtqueue(struct device *dev, unsigned int num_descs,
56739c80 1159 void (*handle_output)(struct virtqueue *, bool))
17cbca2b
RR
1160{
1161 unsigned int pages;
1162 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1163 void *p;
1164
a6bd8e13 1165 /* First we need some memory for this virtqueue. */
2966af73 1166 pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
42b36cc0 1167 / getpagesize();
17cbca2b
RR
1168 p = get_pages(pages);
1169
d1c856e0
RR
1170 /* Initialize the virtqueue */
1171 vq->next = NULL;
1172 vq->last_avail_idx = 0;
1173 vq->dev = dev;
20887611 1174 vq->inflight = 0;
a161883a 1175 vq->blocked = false;
d1c856e0 1176
17cbca2b
RR
1177 /* Initialize the configuration. */
1178 vq->config.num = num_descs;
1179 vq->config.irq = devices.next_irq++;
1180 vq->config.pfn = to_guest_phys(p) / getpagesize();
1181
1182 /* Initialize the vring. */
2966af73 1183 vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
17cbca2b 1184
a586d4f6
RR
1185 /* Append virtqueue to this device's descriptor. We use
1186 * device_config() to get the end of the device's current virtqueues;
1187 * we check that we haven't added any config or feature information
1188 * yet, otherwise we'd be overwriting them. */
1189 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1190 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
713b15b3 1191 dev->num_vq++;
a586d4f6
RR
1192 dev->desc->num_vq++;
1193
1194 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
17cbca2b
RR
1195
1196 /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1197 * second. */
1198 for (i = &dev->vq; *i; i = &(*i)->next);
1199 *i = vq;
1200
e1e72965
RR
1201 /* Set the routine to call when the Guest does something to this
1202 * virtqueue. */
17cbca2b 1203 vq->handle_output = handle_output;
e1e72965 1204
426e3e0a
RR
1205 /* As an optimization, set the advisory "Don't Notify Me" flag if we
1206 * don't have a handler */
17cbca2b
RR
1207 if (!handle_output)
1208 vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
8ca47e00
RR
1209}
1210
6e5aa7ef 1211/* The first half of the feature bitmask is for us to advertise features. The
a6bd8e13 1212 * second half is for the Guest to accept features. */
a586d4f6
RR
1213static void add_feature(struct device *dev, unsigned bit)
1214{
6e5aa7ef 1215 u8 *features = get_feature_bits(dev);
a586d4f6
RR
1216
1217 /* We can't extend the feature bits once we've added config bytes */
1218 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1219 assert(dev->desc->config_len == 0);
713b15b3 1220 dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
a586d4f6
RR
1221 }
1222
a586d4f6
RR
1223 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1224}
1225
1226/* This routine sets the configuration fields for an existing device's
1227 * descriptor. It only works for the last device, but that's OK because that's
1228 * how we use it. */
1229static void set_config(struct device *dev, unsigned len, const void *conf)
1230{
1231 /* Check we haven't overflowed our single page. */
1232 if (device_config(dev) + len > devices.descpage + getpagesize())
1233 errx(1, "Too many devices");
1234
1235 /* Copy in the config information, and store the length. */
1236 memcpy(device_config(dev), conf, len);
1237 dev->desc->config_len = len;
1238}
1239
17cbca2b 1240/* This routine does all the creation and setup of a new device, including
a6bd8e13
RR
1241 * calling new_dev_desc() to allocate the descriptor and device memory.
1242 *
1243 * See what I mean about userspace being boring? */
17cbca2b 1244static struct device *new_device(const char *name, u16 type, int fd,
56739c80 1245 bool (*handle_input)(struct device *))
8ca47e00
RR
1246{
1247 struct device *dev = malloc(sizeof(*dev));
1248
dde79789 1249 /* Now we populate the fields one at a time. */
8ca47e00 1250 dev->fd = fd;
dde79789
RR
1251 /* If we have an input handler for this file descriptor, then we add it
1252 * to the device_list's fdset and maxfd. */
8ca47e00 1253 if (handle_input)
17cbca2b
RR
1254 add_device_fd(dev->fd);
1255 dev->desc = new_dev_desc(type);
8ca47e00 1256 dev->handle_input = handle_input;
17cbca2b 1257 dev->name = name;
d1c856e0 1258 dev->vq = NULL;
a007a751 1259 dev->ready = NULL;
713b15b3
RR
1260 dev->feature_len = 0;
1261 dev->num_vq = 0;
a586d4f6
RR
1262
1263 /* Append to device list. Prepending to a single-linked list is
1264 * easier, but the user expects the devices to be arranged on the bus
1265 * in command-line order. The first network device on the command line
1266 * is eth0, the first block device /dev/vda, etc. */
1267 if (devices.lastdev)
1268 devices.lastdev->next = dev;
1269 else
1270 devices.dev = dev;
1271 devices.lastdev = dev;
1272
8ca47e00
RR
1273 return dev;
1274}
1275
dde79789
RR
1276/* Our first setup routine is the console. It's a fairly simple device, but
1277 * UNIX tty handling makes it uglier than it could be. */
17cbca2b 1278static void setup_console(void)
8ca47e00
RR
1279{
1280 struct device *dev;
1281
dde79789 1282 /* If we can save the initial standard input settings... */
8ca47e00
RR
1283 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1284 struct termios term = orig_term;
dde79789
RR
1285 /* Then we turn off echo, line buffering and ^C etc. We want a
1286 * raw input stream to the Guest. */
8ca47e00
RR
1287 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1288 tcsetattr(STDIN_FILENO, TCSANOW, &term);
dde79789
RR
1289 /* If we exit gracefully, the original settings will be
1290 * restored so the user can see what they're typing. */
8ca47e00
RR
1291 atexit(restore_term);
1292 }
1293
17cbca2b
RR
1294 dev = new_device("console", VIRTIO_ID_CONSOLE,
1295 STDIN_FILENO, handle_console_input);
dde79789 1296 /* We store the console state in dev->priv, and initialize it. */
8ca47e00
RR
1297 dev->priv = malloc(sizeof(struct console_abort));
1298 ((struct console_abort *)dev->priv)->count = 0;
8ca47e00 1299
56ae43df
RR
1300 /* The console needs two virtqueues: the input then the output. When
1301 * they put something the input queue, we make sure we're listening to
1302 * stdin. When they put something in the output queue, we write it to
e1e72965 1303 * stdout. */
56ae43df 1304 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
17cbca2b
RR
1305 add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
1306
1307 verbose("device %u: console\n", devices.device_num++);
8ca47e00 1308}
17cbca2b 1309/*:*/
8ca47e00 1310
a161883a
RR
1311static void timeout_alarm(int sig)
1312{
1313 write(timeoutpipe[1], "", 1);
1314}
1315
1316static void setup_timeout(void)
1317{
1318 if (pipe(timeoutpipe) != 0)
1319 err(1, "Creating timeout pipe");
1320
1321 if (fcntl(timeoutpipe[1], F_SETFL,
1322 fcntl(timeoutpipe[1], F_GETFL) | O_NONBLOCK) != 0)
1323 err(1, "Making timeout pipe nonblocking");
1324
1325 add_device_fd(timeoutpipe[0]);
1326 signal(SIGALRM, timeout_alarm);
1327}
1328
17cbca2b
RR
1329/*M:010 Inter-guest networking is an interesting area. Simplest is to have a
1330 * --sharenet=<name> option which opens or creates a named pipe. This can be
1331 * used to send packets to another guest in a 1:1 manner.
dde79789 1332 *
17cbca2b
RR
1333 * More sopisticated is to use one of the tools developed for project like UML
1334 * to do networking.
dde79789 1335 *
17cbca2b
RR
1336 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1337 * completely generic ("here's my vring, attach to your vring") and would work
1338 * for any traffic. Of course, namespace and permissions issues need to be
1339 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1340 * multiple inter-guest channels behind one interface, although it would
1341 * require some manner of hotplugging new virtio channels.
1342 *
1343 * Finally, we could implement a virtio network switch in the kernel. :*/
8ca47e00
RR
1344
1345static u32 str2ip(const char *ipaddr)
1346{
dec6a2be 1347 unsigned int b[4];
8ca47e00 1348
dec6a2be
MM
1349 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1350 errx(1, "Failed to parse IP address '%s'", ipaddr);
1351 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1352}
1353
1354static void str2mac(const char *macaddr, unsigned char mac[6])
1355{
1356 unsigned int m[6];
1357 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1358 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1359 errx(1, "Failed to parse mac address '%s'", macaddr);
1360 mac[0] = m[0];
1361 mac[1] = m[1];
1362 mac[2] = m[2];
1363 mac[3] = m[3];
1364 mac[4] = m[4];
1365 mac[5] = m[5];
8ca47e00
RR
1366}
1367
dde79789
RR
1368/* This code is "adapted" from libbridge: it attaches the Host end of the
1369 * network device to the bridge device specified by the command line.
1370 *
1371 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1372 * dislike bridging), and I just try not to break it. */
8ca47e00
RR
1373static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1374{
1375 int ifidx;
1376 struct ifreq ifr;
1377
1378 if (!*br_name)
1379 errx(1, "must specify bridge name");
1380
1381 ifidx = if_nametoindex(if_name);
1382 if (!ifidx)
1383 errx(1, "interface %s does not exist!", if_name);
1384
1385 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
dec6a2be 1386 ifr.ifr_name[IFNAMSIZ-1] = '\0';
8ca47e00
RR
1387 ifr.ifr_ifindex = ifidx;
1388 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1389 err(1, "can't add %s to bridge %s", if_name, br_name);
1390}
1391
dde79789
RR
1392/* This sets up the Host end of the network device with an IP address, brings
1393 * it up so packets will flow, the copies the MAC address into the hwaddr
17cbca2b 1394 * pointer. */
dec6a2be 1395static void configure_device(int fd, const char *tapif, u32 ipaddr)
8ca47e00
RR
1396{
1397 struct ifreq ifr;
1398 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1399
1400 memset(&ifr, 0, sizeof(ifr));
dec6a2be
MM
1401 strcpy(ifr.ifr_name, tapif);
1402
1403 /* Don't read these incantations. Just cut & paste them like I did! */
8ca47e00
RR
1404 sin->sin_family = AF_INET;
1405 sin->sin_addr.s_addr = htonl(ipaddr);
1406 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
dec6a2be 1407 err(1, "Setting %s interface address", tapif);
8ca47e00
RR
1408 ifr.ifr_flags = IFF_UP;
1409 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
dec6a2be
MM
1410 err(1, "Bringing interface %s up", tapif);
1411}
1412
dec6a2be 1413static int get_tun_device(char tapif[IFNAMSIZ])
8ca47e00 1414{
8ca47e00 1415 struct ifreq ifr;
dec6a2be
MM
1416 int netfd;
1417
1418 /* Start with this zeroed. Messy but sure. */
1419 memset(&ifr, 0, sizeof(ifr));
8ca47e00 1420
dde79789
RR
1421 /* We open the /dev/net/tun device and tell it we want a tap device. A
1422 * tap device is like a tun device, only somehow different. To tell
1423 * the truth, I completely blundered my way through this code, but it
1424 * works now! */
8ca47e00 1425 netfd = open_or_die("/dev/net/tun", O_RDWR);
398f187d 1426 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
8ca47e00
RR
1427 strcpy(ifr.ifr_name, "tap%d");
1428 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1429 err(1, "configuring /dev/net/tun");
dec6a2be 1430
398f187d
RR
1431 if (ioctl(netfd, TUNSETOFFLOAD,
1432 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1433 err(1, "Could not set features for tun device");
1434
dde79789
RR
1435 /* We don't need checksums calculated for packets coming in this
1436 * device: trust us! */
8ca47e00
RR
1437 ioctl(netfd, TUNSETNOCSUM, 1);
1438
dec6a2be
MM
1439 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1440 return netfd;
1441}
1442
1443/*L:195 Our network is a Host<->Guest network. This can either use bridging or
1444 * routing, but the principle is the same: it uses the "tun" device to inject
1445 * packets into the Host as if they came in from a normal network card. We
1446 * just shunt packets between the Guest and the tun device. */
1447static void setup_tun_net(char *arg)
1448{
1449 struct device *dev;
1450 int netfd, ipfd;
1451 u32 ip = INADDR_ANY;
1452 bool bridging = false;
1453 char tapif[IFNAMSIZ], *p;
1454 struct virtio_net_config conf;
1455
1456 netfd = get_tun_device(tapif);
1457
17cbca2b
RR
1458 /* First we create a new network device. */
1459 dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
dde79789 1460
56ae43df
RR
1461 /* Network devices need a receive and a send queue, just like
1462 * console. */
5dae785a 1463 add_virtqueue(dev, VIRTQUEUE_NUM, net_enable_fd);
17cbca2b 1464 add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
8ca47e00 1465
dde79789
RR
1466 /* We need a socket to perform the magic network ioctls to bring up the
1467 * tap interface, connect to the bridge etc. Any socket will do! */
8ca47e00
RR
1468 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1469 if (ipfd < 0)
1470 err(1, "opening IP socket");
1471
dde79789 1472 /* If the command line was --tunnet=bridge:<name> do bridging. */
8ca47e00 1473 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
dec6a2be
MM
1474 arg += strlen(BRIDGE_PFX);
1475 bridging = true;
1476 }
1477
1478 /* A mac address may follow the bridge name or IP address */
1479 p = strchr(arg, ':');
1480 if (p) {
1481 str2mac(p+1, conf.mac);
40c42076 1482 add_feature(dev, VIRTIO_NET_F_MAC);
dec6a2be 1483 *p = '\0';
dec6a2be
MM
1484 }
1485
1486 /* arg is now either an IP address or a bridge name */
1487 if (bridging)
1488 add_to_bridge(ipfd, tapif, arg);
1489 else
8ca47e00
RR
1490 ip = str2ip(arg);
1491
dec6a2be
MM
1492 /* Set up the tun device. */
1493 configure_device(ipfd, tapif, ip);
8ca47e00 1494
20887611 1495 add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
398f187d
RR
1496 /* Expect Guest to handle everything except UFO */
1497 add_feature(dev, VIRTIO_NET_F_CSUM);
1498 add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
398f187d
RR
1499 add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1500 add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1501 add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1502 add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1503 add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1504 add_feature(dev, VIRTIO_NET_F_HOST_ECN);
a586d4f6 1505 set_config(dev, sizeof(conf), &conf);
8ca47e00 1506
a586d4f6 1507 /* We don't need the socket any more; setup is done. */
8ca47e00
RR
1508 close(ipfd);
1509
dec6a2be
MM
1510 devices.device_num++;
1511
1512 if (bridging)
1513 verbose("device %u: tun %s attached to bridge: %s\n",
1514 devices.device_num, tapif, arg);
1515 else
1516 verbose("device %u: tun %s: %s\n",
1517 devices.device_num, tapif, arg);
8ca47e00 1518}
17cbca2b 1519
e1e72965
RR
1520/* Our block (disk) device should be really simple: the Guest asks for a block
1521 * number and we read or write that position in the file. Unfortunately, that
1522 * was amazingly slow: the Guest waits until the read is finished before
1523 * running anything else, even if it could have been doing useful work.
17cbca2b 1524 *
e1e72965
RR
1525 * We could use async I/O, except it's reputed to suck so hard that characters
1526 * actually go missing from your code when you try to use it.
17cbca2b
RR
1527 *
1528 * So we farm the I/O out to thread, and communicate with it via a pipe. */
1529
e1e72965 1530/* This hangs off device->priv. */
17cbca2b
RR
1531struct vblk_info
1532{
1533 /* The size of the file. */
1534 off64_t len;
1535
1536 /* The file descriptor for the file. */
1537 int fd;
1538
1539 /* IO thread listens on this file descriptor [0]. */
1540 int workpipe[2];
1541
1542 /* IO thread writes to this file descriptor to mark it done, then
1543 * Launcher triggers interrupt to Guest. */
1544 int done_fd;
1545};
1546
e1e72965
RR
1547/*L:210
1548 * The Disk
1549 *
1550 * Remember that the block device is handled by a separate I/O thread. We head
1551 * straight into the core of that thread here:
1552 */
17cbca2b
RR
1553static bool service_io(struct device *dev)
1554{
1555 struct vblk_info *vblk = dev->priv;
1556 unsigned int head, out_num, in_num, wlen;
1557 int ret;
cb38fa23 1558 u8 *in;
17cbca2b
RR
1559 struct virtio_blk_outhdr *out;
1560 struct iovec iov[dev->vq->vring.num];
1561 off64_t off;
1562
e1e72965 1563 /* See if there's a request waiting. If not, nothing to do. */
17cbca2b
RR
1564 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1565 if (head == dev->vq->vring.num)
1566 return false;
1567
e1e72965
RR
1568 /* Every block request should contain at least one output buffer
1569 * (detailing the location on disk and the type of request) and one
1570 * input buffer (to hold the result). */
17cbca2b
RR
1571 if (out_num == 0 || in_num == 0)
1572 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1573 head, out_num, in_num);
1574
1575 out = convert(&iov[0], struct virtio_blk_outhdr);
cb38fa23 1576 in = convert(&iov[out_num+in_num-1], u8);
17cbca2b
RR
1577 off = out->sector * 512;
1578
e1e72965
RR
1579 /* The block device implements "barriers", where the Guest indicates
1580 * that it wants all previous writes to occur before this write. We
1581 * don't have a way of asking our kernel to do a barrier, so we just
1582 * synchronize all the data in the file. Pretty poor, no? */
17cbca2b
RR
1583 if (out->type & VIRTIO_BLK_T_BARRIER)
1584 fdatasync(vblk->fd);
1585
e1e72965
RR
1586 /* In general the virtio block driver is allowed to try SCSI commands.
1587 * It'd be nice if we supported eject, for example, but we don't. */
17cbca2b
RR
1588 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1589 fprintf(stderr, "Scsi commands unsupported\n");
cb38fa23 1590 *in = VIRTIO_BLK_S_UNSUPP;
1200e646 1591 wlen = sizeof(*in);
17cbca2b
RR
1592 } else if (out->type & VIRTIO_BLK_T_OUT) {
1593 /* Write */
1594
1595 /* Move to the right location in the block file. This can fail
1596 * if they try to write past end. */
1597 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1598 err(1, "Bad seek to sector %llu", out->sector);
1599
1600 ret = writev(vblk->fd, iov+1, out_num-1);
1601 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1602
1603 /* Grr... Now we know how long the descriptor they sent was, we
1604 * make sure they didn't try to write over the end of the block
1605 * file (possibly extending it). */
1606 if (ret > 0 && off + ret > vblk->len) {
1607 /* Trim it back to the correct length */
1608 ftruncate64(vblk->fd, vblk->len);
1609 /* Die, bad Guest, die. */
1610 errx(1, "Write past end %llu+%u", off, ret);
1611 }
1200e646 1612 wlen = sizeof(*in);
cb38fa23 1613 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
17cbca2b
RR
1614 } else {
1615 /* Read */
1616
1617 /* Move to the right location in the block file. This can fail
1618 * if they try to read past end. */
1619 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1620 err(1, "Bad seek to sector %llu", out->sector);
1621
1622 ret = readv(vblk->fd, iov+1, in_num-1);
1623 verbose("READ from sector %llu: %i\n", out->sector, ret);
1624 if (ret >= 0) {
1200e646 1625 wlen = sizeof(*in) + ret;
cb38fa23 1626 *in = VIRTIO_BLK_S_OK;
17cbca2b 1627 } else {
1200e646 1628 wlen = sizeof(*in);
cb38fa23 1629 *in = VIRTIO_BLK_S_IOERR;
17cbca2b
RR
1630 }
1631 }
1632
d1881d31
RR
1633 /* OK, so we noted that it was pretty poor to use an fdatasync as a
1634 * barrier. But Christoph Hellwig points out that we need a sync
1635 * *afterwards* as well: "Barriers specify no reordering to the front
1636 * or the back." And Jens Axboe confirmed it, so here we are: */
1637 if (out->type & VIRTIO_BLK_T_BARRIER)
1638 fdatasync(vblk->fd);
1639
17cbca2b
RR
1640 /* We can't trigger an IRQ, because we're not the Launcher. It does
1641 * that when we tell it we're done. */
1642 add_used(dev->vq, head, wlen);
1643 return true;
1644}
1645
1646/* This is the thread which actually services the I/O. */
1647static int io_thread(void *_dev)
1648{
1649 struct device *dev = _dev;
1650 struct vblk_info *vblk = dev->priv;
1651 char c;
1652
1653 /* Close other side of workpipe so we get 0 read when main dies. */
1654 close(vblk->workpipe[1]);
1655 /* Close the other side of the done_fd pipe. */
1656 close(dev->fd);
1657
1658 /* When this read fails, it means Launcher died, so we follow. */
1659 while (read(vblk->workpipe[0], &c, 1) == 1) {
e1e72965 1660 /* We acknowledge each request immediately to reduce latency,
17cbca2b 1661 * rather than waiting until we've done them all. I haven't
a6bd8e13
RR
1662 * measured to see if it makes any difference.
1663 *
1664 * That would be an interesting test, wouldn't it? You could
1665 * also try having more than one I/O thread. */
17cbca2b
RR
1666 while (service_io(dev))
1667 write(vblk->done_fd, &c, 1);
1668 }
1669 return 0;
1670}
1671
e1e72965 1672/* Now we've seen the I/O thread, we return to the Launcher to see what happens
a6bd8e13 1673 * when that thread tells us it's completed some I/O. */
56739c80 1674static bool handle_io_finish(struct device *dev)
17cbca2b
RR
1675{
1676 char c;
1677
e1e72965
RR
1678 /* If the I/O thread died, presumably it printed the error, so we
1679 * simply exit. */
17cbca2b
RR
1680 if (read(dev->fd, &c, 1) != 1)
1681 exit(1);
1682
1683 /* It did some work, so trigger the irq. */
56739c80 1684 trigger_irq(dev->vq);
17cbca2b
RR
1685 return true;
1686}
1687
e1e72965 1688/* When the Guest submits some I/O, we just need to wake the I/O thread. */
56739c80 1689static void handle_virtblk_output(struct virtqueue *vq, bool timeout)
17cbca2b
RR
1690{
1691 struct vblk_info *vblk = vq->dev->priv;
1692 char c = 0;
1693
1694 /* Wake up I/O thread and tell it to go to work! */
1695 if (write(vblk->workpipe[1], &c, 1) != 1)
1696 /* Presumably it indicated why it died. */
1697 exit(1);
1698}
1699
e1e72965 1700/*L:198 This actually sets up a virtual block device. */
17cbca2b
RR
1701static void setup_block_file(const char *filename)
1702{
1703 int p[2];
1704 struct device *dev;
1705 struct vblk_info *vblk;
1706 void *stack;
a586d4f6 1707 struct virtio_blk_config conf;
17cbca2b
RR
1708
1709 /* This is the pipe the I/O thread will use to tell us I/O is done. */
1710 pipe(p);
1711
1712 /* The device responds to return from I/O thread. */
1713 dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
1714
e1e72965 1715 /* The device has one virtqueue, where the Guest places requests. */
17cbca2b
RR
1716 add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
1717
1718 /* Allocate the room for our own bookkeeping */
1719 vblk = dev->priv = malloc(sizeof(*vblk));
1720
1721 /* First we open the file and store the length. */
1722 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1723 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1724
a586d4f6
RR
1725 /* We support barriers. */
1726 add_feature(dev, VIRTIO_BLK_F_BARRIER);
1727
17cbca2b 1728 /* Tell Guest how many sectors this device has. */
a586d4f6 1729 conf.capacity = cpu_to_le64(vblk->len / 512);
17cbca2b
RR
1730
1731 /* Tell Guest not to put in too many descriptors at once: two are used
1732 * for the in and out elements. */
a586d4f6
RR
1733 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1734 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1735
1736 set_config(dev, sizeof(conf), &conf);
17cbca2b
RR
1737
1738 /* The I/O thread writes to this end of the pipe when done. */
1739 vblk->done_fd = p[1];
1740
e1e72965
RR
1741 /* This is the second pipe, which is how we tell the I/O thread about
1742 * more work. */
17cbca2b
RR
1743 pipe(vblk->workpipe);
1744
a6bd8e13
RR
1745 /* Create stack for thread and run it. Since stack grows upwards, we
1746 * point the stack pointer to the end of this region. */
17cbca2b 1747 stack = malloc(32768);
ec04b13f
BR
1748 /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
1749 * becoming a zombie. */
a6bd8e13 1750 if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
17cbca2b
RR
1751 err(1, "Creating clone");
1752
1753 /* We don't need to keep the I/O thread's end of the pipes open. */
1754 close(vblk->done_fd);
1755 close(vblk->workpipe[0]);
1756
1757 verbose("device %u: virtblock %llu sectors\n",
a586d4f6 1758 devices.device_num, le64_to_cpu(conf.capacity));
17cbca2b 1759}
28fd6d7f
RR
1760
1761/* Our random number generator device reads from /dev/random into the Guest's
1762 * input buffers. The usual case is that the Guest doesn't want random numbers
1763 * and so has no buffers although /dev/random is still readable, whereas
1764 * console is the reverse.
1765 *
1766 * The same logic applies, however. */
56739c80 1767static bool handle_rng_input(struct device *dev)
28fd6d7f
RR
1768{
1769 int len;
1770 unsigned int head, in_num, out_num, totlen = 0;
1771 struct iovec iov[dev->vq->vring.num];
1772
1773 /* First we need a buffer from the Guests's virtqueue. */
1774 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1775
1776 /* If they're not ready for input, stop listening to this file
1777 * descriptor. We'll start again once they add an input buffer. */
1778 if (head == dev->vq->vring.num)
1779 return false;
1780
1781 if (out_num)
1782 errx(1, "Output buffers in rng?");
1783
1784 /* This is why we convert to iovecs: the readv() call uses them, and so
1785 * it reads straight into the Guest's buffer. We loop to make sure we
1786 * fill it. */
1787 while (!iov_empty(iov, in_num)) {
1788 len = readv(dev->fd, iov, in_num);
1789 if (len <= 0)
1790 err(1, "Read from /dev/random gave %i", len);
1791 iov_consume(iov, in_num, len);
1792 totlen += len;
1793 }
1794
1795 /* Tell the Guest about the new input. */
56739c80 1796 add_used_and_trigger(dev->vq, head, totlen);
28fd6d7f
RR
1797
1798 /* Everything went OK! */
1799 return true;
1800}
1801
1802/* And this creates a "hardware" random number device for the Guest. */
1803static void setup_rng(void)
1804{
1805 struct device *dev;
1806 int fd;
1807
1808 fd = open_or_die("/dev/random", O_RDONLY);
1809
1810 /* The device responds to return from I/O thread. */
1811 dev = new_device("rng", VIRTIO_ID_RNG, fd, handle_rng_input);
1812
1813 /* The device has one virtqueue, where the Guest places inbufs. */
1814 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1815
1816 verbose("device %u: rng\n", devices.device_num++);
1817}
a6bd8e13 1818/* That's the end of device setup. */
ec04b13f 1819
a6bd8e13 1820/*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
ec04b13f
BR
1821static void __attribute__((noreturn)) restart_guest(void)
1822{
1823 unsigned int i;
1824
8c79873d
RR
1825 /* Since we don't track all open fds, we simply close everything beyond
1826 * stderr. */
ec04b13f
BR
1827 for (i = 3; i < FD_SETSIZE; i++)
1828 close(i);
8c79873d
RR
1829
1830 /* The exec automatically gets rid of the I/O and Waker threads. */
ec04b13f
BR
1831 execv(main_args[0], main_args);
1832 err(1, "Could not exec %s", main_args[0]);
1833}
8ca47e00 1834
a6bd8e13 1835/*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
dde79789 1836 * its input and output, and finally, lays it to rest. */
56739c80 1837static void __attribute__((noreturn)) run_guest(void)
8ca47e00
RR
1838{
1839 for (;;) {
511801dc 1840 unsigned long args[] = { LHREQ_BREAK, 0 };
17cbca2b 1841 unsigned long notify_addr;
8ca47e00
RR
1842 int readval;
1843
1844 /* We read from the /dev/lguest device to run the Guest. */
e3283fa0
GOC
1845 readval = pread(lguest_fd, &notify_addr,
1846 sizeof(notify_addr), cpu_id);
8ca47e00 1847
17cbca2b
RR
1848 /* One unsigned long means the Guest did HCALL_NOTIFY */
1849 if (readval == sizeof(notify_addr)) {
1850 verbose("Notify on address %#lx\n", notify_addr);
56739c80 1851 handle_output(notify_addr);
8ca47e00 1852 continue;
dde79789 1853 /* ENOENT means the Guest died. Reading tells us why. */
8ca47e00
RR
1854 } else if (errno == ENOENT) {
1855 char reason[1024] = { 0 };
e3283fa0 1856 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
8ca47e00 1857 errx(1, "%s", reason);
ec04b13f
BR
1858 /* ERESTART means that we need to reboot the guest */
1859 } else if (errno == ERESTART) {
1860 restart_guest();
a161883a 1861 /* EAGAIN means a signal (timeout).
dde79789 1862 * Anything else means a bug or incompatible change. */
8ca47e00
RR
1863 } else if (errno != EAGAIN)
1864 err(1, "Running guest failed");
dde79789 1865
e3283fa0
GOC
1866 /* Only service input on thread for CPU 0. */
1867 if (cpu_id != 0)
1868 continue;
1869
e1e72965 1870 /* Service input, then unset the BREAK to release the Waker. */
56739c80 1871 handle_input();
e3283fa0 1872 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
8ca47e00
RR
1873 err(1, "Resetting break");
1874 }
1875}
a6bd8e13 1876/*L:240
e1e72965
RR
1877 * This is the end of the Launcher. The good news: we are over halfway
1878 * through! The bad news: the most fiendish part of the code still lies ahead
1879 * of us.
dde79789 1880 *
e1e72965
RR
1881 * Are you ready? Take a deep breath and join me in the core of the Host, in
1882 * "make Host".
1883 :*/
8ca47e00
RR
1884
1885static struct option opts[] = {
1886 { "verbose", 0, NULL, 'v' },
8ca47e00
RR
1887 { "tunnet", 1, NULL, 't' },
1888 { "block", 1, NULL, 'b' },
28fd6d7f 1889 { "rng", 0, NULL, 'r' },
8ca47e00
RR
1890 { "initrd", 1, NULL, 'i' },
1891 { NULL },
1892};
1893static void usage(void)
1894{
1895 errx(1, "Usage: lguest [--verbose] "
dec6a2be 1896 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
8ca47e00
RR
1897 "|--block=<filename>|--initrd=<filename>]...\n"
1898 "<mem-in-mb> vmlinux [args...]");
1899}
1900
3c6b5bfa 1901/*L:105 The main routine is where the real work begins: */
8ca47e00
RR
1902int main(int argc, char *argv[])
1903{
47436aa4
RR
1904 /* Memory, top-level pagetable, code startpoint and size of the
1905 * (optional) initrd. */
58a24566 1906 unsigned long mem = 0, start, initrd_size = 0;
56739c80
RR
1907 /* Two temporaries. */
1908 int i, c;
3c6b5bfa 1909 /* The boot information for the Guest. */
43d33b21 1910 struct boot_params *boot;
dde79789 1911 /* If they specify an initrd file to load. */
8ca47e00
RR
1912 const char *initrd_name = NULL;
1913
ec04b13f
BR
1914 /* Save the args: we "reboot" by execing ourselves again. */
1915 main_args = argv;
1916 /* We don't "wait" for the children, so prevent them from becoming
1917 * zombies. */
1918 signal(SIGCHLD, SIG_IGN);
1919
dde79789
RR
1920 /* First we initialize the device list. Since console and network
1921 * device receive input from a file descriptor, we keep an fdset
1922 * (infds) and the maximum fd number (max_infd) with the head of the
a586d4f6 1923 * list. We also keep a pointer to the last device. Finally, we keep
a6bd8e13
RR
1924 * the next interrupt number to use for devices (1: remember that 0 is
1925 * used by the timer). */
17cbca2b
RR
1926 FD_ZERO(&devices.infds);
1927 devices.max_infd = -1;
a586d4f6 1928 devices.lastdev = NULL;
17cbca2b 1929 devices.next_irq = 1;
8ca47e00 1930
e3283fa0 1931 cpu_id = 0;
dde79789
RR
1932 /* We need to know how much memory so we can set up the device
1933 * descriptor and memory pages for the devices as we parse the command
1934 * line. So we quickly look through the arguments to find the amount
1935 * of memory now. */
6570c459
RR
1936 for (i = 1; i < argc; i++) {
1937 if (argv[i][0] != '-') {
3c6b5bfa
RR
1938 mem = atoi(argv[i]) * 1024 * 1024;
1939 /* We start by mapping anonymous pages over all of
1940 * guest-physical memory range. This fills it with 0,
1941 * and ensures that the Guest won't be killed when it
1942 * tries to access it. */
1943 guest_base = map_zeroed_pages(mem / getpagesize()
1944 + DEVICE_PAGES);
1945 guest_limit = mem;
1946 guest_max = mem + DEVICE_PAGES*getpagesize();
17cbca2b 1947 devices.descpage = get_pages(1);
6570c459
RR
1948 break;
1949 }
1950 }
dde79789
RR
1951
1952 /* The options are fairly straight-forward */
8ca47e00
RR
1953 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1954 switch (c) {
1955 case 'v':
1956 verbose = true;
1957 break;
8ca47e00 1958 case 't':
17cbca2b 1959 setup_tun_net(optarg);
8ca47e00
RR
1960 break;
1961 case 'b':
17cbca2b 1962 setup_block_file(optarg);
8ca47e00 1963 break;
28fd6d7f
RR
1964 case 'r':
1965 setup_rng();
1966 break;
8ca47e00
RR
1967 case 'i':
1968 initrd_name = optarg;
1969 break;
1970 default:
1971 warnx("Unknown argument %s", argv[optind]);
1972 usage();
1973 }
1974 }
dde79789
RR
1975 /* After the other arguments we expect memory and kernel image name,
1976 * followed by command line arguments for the kernel. */
8ca47e00
RR
1977 if (optind + 2 > argc)
1978 usage();
1979
3c6b5bfa
RR
1980 verbose("Guest base is at %p\n", guest_base);
1981
dde79789 1982 /* We always have a console device */
17cbca2b 1983 setup_console();
8ca47e00 1984
a161883a
RR
1985 /* We can timeout waiting for Guest network transmit. */
1986 setup_timeout();
1987
8ca47e00 1988 /* Now we load the kernel */
47436aa4 1989 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
8ca47e00 1990
3c6b5bfa
RR
1991 /* Boot information is stashed at physical address 0 */
1992 boot = from_guest_phys(0);
1993
dde79789 1994 /* Map the initrd image if requested (at top of physical memory) */
8ca47e00
RR
1995 if (initrd_name) {
1996 initrd_size = load_initrd(initrd_name, mem);
dde79789
RR
1997 /* These are the location in the Linux boot header where the
1998 * start and size of the initrd are expected to be found. */
43d33b21
RR
1999 boot->hdr.ramdisk_image = mem - initrd_size;
2000 boot->hdr.ramdisk_size = initrd_size;
dde79789 2001 /* The bootloader type 0xFF means "unknown"; that's OK. */
43d33b21 2002 boot->hdr.type_of_loader = 0xFF;
8ca47e00
RR
2003 }
2004
dde79789
RR
2005 /* The Linux boot header contains an "E820" memory map: ours is a
2006 * simple, single region. */
43d33b21
RR
2007 boot->e820_entries = 1;
2008 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
dde79789 2009 /* The boot header contains a command line pointer: we put the command
43d33b21
RR
2010 * line after the boot header. */
2011 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
e1e72965 2012 /* We use a simple helper to copy the arguments separated by spaces. */
43d33b21 2013 concat((char *)(boot + 1), argv+optind+2);
dde79789 2014
814a0e5c 2015 /* Boot protocol version: 2.07 supports the fields for lguest. */
43d33b21 2016 boot->hdr.version = 0x207;
814a0e5c
RR
2017
2018 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
43d33b21 2019 boot->hdr.hardware_subarch = 1;
814a0e5c 2020
43d33b21
RR
2021 /* Tell the entry path not to try to reload segment registers. */
2022 boot->hdr.loadflags |= KEEP_SEGMENTS;
8ca47e00 2023
dde79789
RR
2024 /* We tell the kernel to initialize the Guest: this returns the open
2025 * /dev/lguest file descriptor. */
56739c80 2026 tell_kernel(start);
dde79789 2027
8c79873d
RR
2028 /* We clone off a thread, which wakes the Launcher whenever one of the
2029 * input file descriptors needs attention. We call this the Waker, and
2030 * we'll cover it in a moment. */
56739c80 2031 setup_waker();
8ca47e00 2032
dde79789 2033 /* Finally, run the Guest. This doesn't return. */
56739c80 2034 run_guest();
8ca47e00 2035}
f56a384e
RR
2036/*:*/
2037
2038/*M:999
2039 * Mastery is done: you now know everything I do.
2040 *
2041 * But surely you have seen code, features and bugs in your wanderings which
2042 * you now yearn to attack? That is the real game, and I look forward to you
2043 * patching and forking lguest into the Your-Name-Here-visor.
2044 *
2045 * Farewell, and good coding!
2046 * Rusty Russell.
2047 */