Merge tag 'v3.10.108' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
4b9e9796 71#include <linux/reciprocal_div.h>
5ffc02a1 72#include <net/dst.h>
1da177e4
LT
73#include <net/tcp.h>
74#include <net/inet_common.h>
75#include <linux/ipsec.h>
76#include <asm/unaligned.h>
1a2449a8 77#include <net/netdma.h>
1da177e4 78
ab32ea5d
BH
79int sysctl_tcp_timestamps __read_mostly = 1;
80int sysctl_tcp_window_scaling __read_mostly = 1;
81int sysctl_tcp_sack __read_mostly = 1;
82int sysctl_tcp_fack __read_mostly = 1;
83int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
4bc2f18b 84EXPORT_SYMBOL(sysctl_tcp_reordering);
ab32ea5d
BH
85int sysctl_tcp_dsack __read_mostly = 1;
86int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 87int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 88EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 89
282f23c6 90/* rfc5961 challenge ack rate limiting */
4b9e9796 91int sysctl_tcp_challenge_ack_limit = 1000;
282f23c6 92
ab32ea5d
BH
93int sysctl_tcp_stdurg __read_mostly;
94int sysctl_tcp_rfc1337 __read_mostly;
95int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 96int sysctl_tcp_frto __read_mostly = 2;
1da177e4 97
7e380175
AP
98int sysctl_tcp_thin_dupack __read_mostly;
99
ab32ea5d 100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
6ba8a3b1 101int sysctl_tcp_early_retrans __read_mostly = 3;
6fa3eb70 102int sysctl_tcp_default_init_rwnd __read_mostly = TCP_DEFAULT_INIT_RCVWND;
1da177e4 103
1da177e4
LT
104#define FLAG_DATA 0x01 /* Incoming frame contained data. */
105#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
106#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
107#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
108#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
109#define FLAG_DATA_SACKED 0x20 /* New SACK. */
110#define FLAG_ECE 0x40 /* ECE in this ACK */
1da177e4 111#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 112#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 113#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 114#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
01c577c9 115#define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
cadbd031 116#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 117#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
1da177e4
LT
118
119#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
122#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
123
1da177e4 124#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 125#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 126
e905a9ed 127/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 128 * real world.
e905a9ed 129 */
056834d9 130static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 131{
463c84b9 132 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 133 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 134 unsigned int len;
1da177e4 135
e905a9ed 136 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
137
138 /* skb->len may jitter because of SACKs, even if peer
139 * sends good full-sized frames.
140 */
056834d9 141 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
142 if (len >= icsk->icsk_ack.rcv_mss) {
143 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
144 } else {
145 /* Otherwise, we make more careful check taking into account,
146 * that SACKs block is variable.
147 *
148 * "len" is invariant segment length, including TCP header.
149 */
9c70220b 150 len += skb->data - skb_transport_header(skb);
bee7ca9e 151 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
152 /* If PSH is not set, packet should be
153 * full sized, provided peer TCP is not badly broken.
154 * This observation (if it is correct 8)) allows
155 * to handle super-low mtu links fairly.
156 */
157 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 158 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
159 /* Subtract also invariant (if peer is RFC compliant),
160 * tcp header plus fixed timestamp option length.
161 * Resulting "len" is MSS free of SACK jitter.
162 */
463c84b9
ACM
163 len -= tcp_sk(sk)->tcp_header_len;
164 icsk->icsk_ack.last_seg_size = len;
1da177e4 165 if (len == lss) {
463c84b9 166 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
167 return;
168 }
169 }
1ef9696c
AK
170 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 172 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
173 }
174}
175
463c84b9 176static void tcp_incr_quickack(struct sock *sk)
1da177e4 177{
463c84b9 178 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 179 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 180
056834d9
IJ
181 if (quickacks == 0)
182 quickacks = 2;
463c84b9
ACM
183 if (quickacks > icsk->icsk_ack.quick)
184 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
185}
186
1b9f4092 187static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 188{
463c84b9
ACM
189 struct inet_connection_sock *icsk = inet_csk(sk);
190 tcp_incr_quickack(sk);
191 icsk->icsk_ack.pingpong = 0;
192 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
193}
194
195/* Send ACKs quickly, if "quick" count is not exhausted
196 * and the session is not interactive.
197 */
198
a2a385d6 199static inline bool tcp_in_quickack_mode(const struct sock *sk)
1da177e4 200{
463c84b9 201 const struct inet_connection_sock *icsk = inet_csk(sk);
a2a385d6 202
463c84b9 203 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
204}
205
bdf1ee5d
IJ
206static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
207{
056834d9 208 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
209 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
210}
211
cf533ea5 212static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
213{
214 if (tcp_hdr(skb)->cwr)
215 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216}
217
218static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
219{
220 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
221}
222
7a269ffa 223static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 224{
7a269ffa
ED
225 if (!(tp->ecn_flags & TCP_ECN_OK))
226 return;
227
b82d1bb4 228 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 229 case INET_ECN_NOT_ECT:
bdf1ee5d 230 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
231 * and we already seen ECT on a previous segment,
232 * it is probably a retransmit.
233 */
234 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 235 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
236 break;
237 case INET_ECN_CE:
aae06bf5
ED
238 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
239 /* Better not delay acks, sender can have a very low cwnd */
240 tcp_enter_quickack_mode((struct sock *)tp);
241 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
242 }
7a269ffa
ED
243 /* fallinto */
244 default:
245 tp->ecn_flags |= TCP_ECN_SEEN;
bdf1ee5d
IJ
246 }
247}
248
cf533ea5 249static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 250{
056834d9 251 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
252 tp->ecn_flags &= ~TCP_ECN_OK;
253}
254
cf533ea5 255static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 256{
056834d9 257 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
258 tp->ecn_flags &= ~TCP_ECN_OK;
259}
260
a2a385d6 261static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 262{
056834d9 263 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
264 return true;
265 return false;
bdf1ee5d
IJ
266}
267
1da177e4
LT
268/* Buffer size and advertised window tuning.
269 *
270 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
271 */
272
273static void tcp_fixup_sndbuf(struct sock *sk)
274{
87fb4b7b 275 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
1da177e4 276
06a59ecb
ED
277 sndmem *= TCP_INIT_CWND;
278 if (sk->sk_sndbuf < sndmem)
279 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
280}
281
282/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
283 *
284 * All tcp_full_space() is split to two parts: "network" buffer, allocated
285 * forward and advertised in receiver window (tp->rcv_wnd) and
286 * "application buffer", required to isolate scheduling/application
287 * latencies from network.
288 * window_clamp is maximal advertised window. It can be less than
289 * tcp_full_space(), in this case tcp_full_space() - window_clamp
290 * is reserved for "application" buffer. The less window_clamp is
291 * the smoother our behaviour from viewpoint of network, but the lower
292 * throughput and the higher sensitivity of the connection to losses. 8)
293 *
294 * rcv_ssthresh is more strict window_clamp used at "slow start"
295 * phase to predict further behaviour of this connection.
296 * It is used for two goals:
297 * - to enforce header prediction at sender, even when application
298 * requires some significant "application buffer". It is check #1.
299 * - to prevent pruning of receive queue because of misprediction
300 * of receiver window. Check #2.
301 *
302 * The scheme does not work when sender sends good segments opening
caa20d9a 303 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
304 * in common situations. Otherwise, we have to rely on queue collapsing.
305 */
306
307/* Slow part of check#2. */
9e412ba7 308static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 309{
9e412ba7 310 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 311 /* Optimize this! */
dfd4f0ae
ED
312 int truesize = tcp_win_from_space(skb->truesize) >> 1;
313 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
314
315 while (tp->rcv_ssthresh <= window) {
316 if (truesize <= skb->len)
463c84b9 317 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
318
319 truesize >>= 1;
320 window >>= 1;
321 }
322 return 0;
323}
324
cf533ea5 325static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 326{
9e412ba7
IJ
327 struct tcp_sock *tp = tcp_sk(sk);
328
1da177e4
LT
329 /* Check #1 */
330 if (tp->rcv_ssthresh < tp->window_clamp &&
331 (int)tp->rcv_ssthresh < tcp_space(sk) &&
180d8cd9 332 !sk_under_memory_pressure(sk)) {
1da177e4
LT
333 int incr;
334
335 /* Check #2. Increase window, if skb with such overhead
336 * will fit to rcvbuf in future.
337 */
338 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 339 incr = 2 * tp->advmss;
1da177e4 340 else
9e412ba7 341 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
342
343 if (incr) {
4d846f02 344 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
345 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
346 tp->window_clamp);
463c84b9 347 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
348 }
349 }
350}
351
352/* 3. Tuning rcvbuf, when connection enters established state. */
353
354static void tcp_fixup_rcvbuf(struct sock *sk)
355{
e9266a02 356 u32 mss = tcp_sk(sk)->advmss;
6fa3eb70 357 u32 icwnd = sysctl_tcp_default_init_rwnd;
e9266a02 358 int rcvmem;
1da177e4 359
e9266a02
ED
360 /* Limit to 10 segments if mss <= 1460,
361 * or 14600/mss segments, with a minimum of two segments.
1da177e4 362 */
e9266a02 363 if (mss > 1460)
6fa3eb70 364 icwnd = max_t(u32, (1460 * icwnd) / mss, 2);
e9266a02
ED
365
366 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
367 while (tcp_win_from_space(rcvmem) < mss)
1da177e4 368 rcvmem += 128;
e9266a02
ED
369
370 rcvmem *= icwnd;
371
372 if (sk->sk_rcvbuf < rcvmem)
373 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
374}
375
caa20d9a 376/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
377 * established state.
378 */
10467163 379void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
380{
381 struct tcp_sock *tp = tcp_sk(sk);
382 int maxwin;
383
384 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
385 tcp_fixup_rcvbuf(sk);
386 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
387 tcp_fixup_sndbuf(sk);
388
389 tp->rcvq_space.space = tp->rcv_wnd;
390
391 maxwin = tcp_full_space(sk);
392
393 if (tp->window_clamp >= maxwin) {
394 tp->window_clamp = maxwin;
395
396 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
397 tp->window_clamp = max(maxwin -
398 (maxwin >> sysctl_tcp_app_win),
399 4 * tp->advmss);
400 }
401
402 /* Force reservation of one segment. */
403 if (sysctl_tcp_app_win &&
404 tp->window_clamp > 2 * tp->advmss &&
405 tp->window_clamp + tp->advmss > maxwin)
406 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
407
408 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
409 tp->snd_cwnd_stamp = tcp_time_stamp;
410}
411
1da177e4 412/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 413static void tcp_clamp_window(struct sock *sk)
1da177e4 414{
9e412ba7 415 struct tcp_sock *tp = tcp_sk(sk);
6687e988 416 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 417
6687e988 418 icsk->icsk_ack.quick = 0;
1da177e4 419
326f36e9
JH
420 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
421 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
180d8cd9
GC
422 !sk_under_memory_pressure(sk) &&
423 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
424 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
425 sysctl_tcp_rmem[2]);
1da177e4 426 }
326f36e9 427 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 428 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
429}
430
40efc6fa
SH
431/* Initialize RCV_MSS value.
432 * RCV_MSS is an our guess about MSS used by the peer.
433 * We haven't any direct information about the MSS.
434 * It's better to underestimate the RCV_MSS rather than overestimate.
435 * Overestimations make us ACKing less frequently than needed.
436 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
437 */
438void tcp_initialize_rcv_mss(struct sock *sk)
439{
cf533ea5 440 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
441 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
442
056834d9 443 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 444 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
445 hint = max(hint, TCP_MIN_MSS);
446
447 inet_csk(sk)->icsk_ack.rcv_mss = hint;
448}
4bc2f18b 449EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 450
1da177e4
LT
451/* Receiver "autotuning" code.
452 *
453 * The algorithm for RTT estimation w/o timestamps is based on
454 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 455 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
456 *
457 * More detail on this code can be found at
631dd1a8 458 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
459 * though this reference is out of date. A new paper
460 * is pending.
461 */
462static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
463{
464 u32 new_sample = tp->rcv_rtt_est.rtt;
465 long m = sample;
466
467 if (m == 0)
468 m = 1;
469
470 if (new_sample != 0) {
471 /* If we sample in larger samples in the non-timestamp
472 * case, we could grossly overestimate the RTT especially
473 * with chatty applications or bulk transfer apps which
474 * are stalled on filesystem I/O.
475 *
476 * Also, since we are only going for a minimum in the
31f34269 477 * non-timestamp case, we do not smooth things out
caa20d9a 478 * else with timestamps disabled convergence takes too
1da177e4
LT
479 * long.
480 */
481 if (!win_dep) {
482 m -= (new_sample >> 3);
483 new_sample += m;
18a223e0
NC
484 } else {
485 m <<= 3;
486 if (m < new_sample)
487 new_sample = m;
488 }
1da177e4 489 } else {
caa20d9a 490 /* No previous measure. */
1da177e4
LT
491 new_sample = m << 3;
492 }
493
494 if (tp->rcv_rtt_est.rtt != new_sample)
495 tp->rcv_rtt_est.rtt = new_sample;
496}
497
498static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
499{
500 if (tp->rcv_rtt_est.time == 0)
501 goto new_measure;
502 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
503 return;
651913ce 504 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
1da177e4
LT
505
506new_measure:
507 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
508 tp->rcv_rtt_est.time = tcp_time_stamp;
509}
510
056834d9
IJ
511static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
512 const struct sk_buff *skb)
1da177e4 513{
463c84b9 514 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
515 if (tp->rx_opt.rcv_tsecr &&
516 (TCP_SKB_CB(skb)->end_seq -
463c84b9 517 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
518 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
519}
520
521/*
522 * This function should be called every time data is copied to user space.
523 * It calculates the appropriate TCP receive buffer space.
524 */
525void tcp_rcv_space_adjust(struct sock *sk)
526{
527 struct tcp_sock *tp = tcp_sk(sk);
528 int time;
529 int space;
e905a9ed 530
1da177e4
LT
531 if (tp->rcvq_space.time == 0)
532 goto new_measure;
e905a9ed 533
1da177e4 534 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 535 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 536 return;
e905a9ed 537
1da177e4
LT
538 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
539
540 space = max(tp->rcvq_space.space, space);
541
542 if (tp->rcvq_space.space != space) {
543 int rcvmem;
544
545 tp->rcvq_space.space = space;
546
6fcf9412
JH
547 if (sysctl_tcp_moderate_rcvbuf &&
548 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
549 int new_clamp = space;
550
551 /* Receive space grows, normalize in order to
552 * take into account packet headers and sk_buff
553 * structure overhead.
554 */
555 space /= tp->advmss;
556 if (!space)
557 space = 1;
87fb4b7b 558 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
1da177e4
LT
559 while (tcp_win_from_space(rcvmem) < tp->advmss)
560 rcvmem += 128;
561 space *= rcvmem;
562 space = min(space, sysctl_tcp_rmem[2]);
563 if (space > sk->sk_rcvbuf) {
564 sk->sk_rcvbuf = space;
565
566 /* Make the window clamp follow along. */
567 tp->window_clamp = new_clamp;
568 }
569 }
570 }
e905a9ed 571
1da177e4
LT
572new_measure:
573 tp->rcvq_space.seq = tp->copied_seq;
574 tp->rcvq_space.time = tcp_time_stamp;
575}
576
577/* There is something which you must keep in mind when you analyze the
578 * behavior of the tp->ato delayed ack timeout interval. When a
579 * connection starts up, we want to ack as quickly as possible. The
580 * problem is that "good" TCP's do slow start at the beginning of data
581 * transmission. The means that until we send the first few ACK's the
582 * sender will sit on his end and only queue most of his data, because
583 * he can only send snd_cwnd unacked packets at any given time. For
584 * each ACK we send, he increments snd_cwnd and transmits more of his
585 * queue. -DaveM
586 */
9e412ba7 587static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 588{
9e412ba7 589 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 590 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
591 u32 now;
592
463c84b9 593 inet_csk_schedule_ack(sk);
1da177e4 594
463c84b9 595 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
596
597 tcp_rcv_rtt_measure(tp);
e905a9ed 598
1da177e4
LT
599 now = tcp_time_stamp;
600
463c84b9 601 if (!icsk->icsk_ack.ato) {
1da177e4
LT
602 /* The _first_ data packet received, initialize
603 * delayed ACK engine.
604 */
463c84b9
ACM
605 tcp_incr_quickack(sk);
606 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 607 } else {
463c84b9 608 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 609
056834d9 610 if (m <= TCP_ATO_MIN / 2) {
1da177e4 611 /* The fastest case is the first. */
463c84b9
ACM
612 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
613 } else if (m < icsk->icsk_ack.ato) {
614 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
615 if (icsk->icsk_ack.ato > icsk->icsk_rto)
616 icsk->icsk_ack.ato = icsk->icsk_rto;
617 } else if (m > icsk->icsk_rto) {
caa20d9a 618 /* Too long gap. Apparently sender failed to
1da177e4
LT
619 * restart window, so that we send ACKs quickly.
620 */
463c84b9 621 tcp_incr_quickack(sk);
3ab224be 622 sk_mem_reclaim(sk);
1da177e4
LT
623 }
624 }
463c84b9 625 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
626
627 TCP_ECN_check_ce(tp, skb);
628
629 if (skb->len >= 128)
9e412ba7 630 tcp_grow_window(sk, skb);
1da177e4
LT
631}
632
1da177e4
LT
633/* Called to compute a smoothed rtt estimate. The data fed to this
634 * routine either comes from timestamps, or from segments that were
635 * known _not_ to have been retransmitted [see Karn/Partridge
636 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
637 * piece by Van Jacobson.
638 * NOTE: the next three routines used to be one big routine.
639 * To save cycles in the RFC 1323 implementation it was better to break
640 * it up into three procedures. -- erics
641 */
2d2abbab 642static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 643{
6687e988 644 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
645 long m = mrtt; /* RTT */
646
1da177e4
LT
647 /* The following amusing code comes from Jacobson's
648 * article in SIGCOMM '88. Note that rtt and mdev
649 * are scaled versions of rtt and mean deviation.
e905a9ed 650 * This is designed to be as fast as possible
1da177e4
LT
651 * m stands for "measurement".
652 *
653 * On a 1990 paper the rto value is changed to:
654 * RTO = rtt + 4 * mdev
655 *
656 * Funny. This algorithm seems to be very broken.
657 * These formulae increase RTO, when it should be decreased, increase
31f34269 658 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
659 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
660 * does not matter how to _calculate_ it. Seems, it was trap
661 * that VJ failed to avoid. 8)
662 */
2de979bd 663 if (m == 0)
1da177e4
LT
664 m = 1;
665 if (tp->srtt != 0) {
666 m -= (tp->srtt >> 3); /* m is now error in rtt est */
667 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
668 if (m < 0) {
669 m = -m; /* m is now abs(error) */
670 m -= (tp->mdev >> 2); /* similar update on mdev */
671 /* This is similar to one of Eifel findings.
672 * Eifel blocks mdev updates when rtt decreases.
673 * This solution is a bit different: we use finer gain
674 * for mdev in this case (alpha*beta).
675 * Like Eifel it also prevents growth of rto,
676 * but also it limits too fast rto decreases,
677 * happening in pure Eifel.
678 */
679 if (m > 0)
680 m >>= 3;
681 } else {
682 m -= (tp->mdev >> 2); /* similar update on mdev */
683 }
684 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
685 if (tp->mdev > tp->mdev_max) {
686 tp->mdev_max = tp->mdev;
687 if (tp->mdev_max > tp->rttvar)
688 tp->rttvar = tp->mdev_max;
689 }
690 if (after(tp->snd_una, tp->rtt_seq)) {
691 if (tp->mdev_max < tp->rttvar)
056834d9 692 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
1da177e4 693 tp->rtt_seq = tp->snd_nxt;
05bb1fad 694 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
695 }
696 } else {
697 /* no previous measure. */
056834d9
IJ
698 tp->srtt = m << 3; /* take the measured time to be rtt */
699 tp->mdev = m << 1; /* make sure rto = 3*rtt */
05bb1fad 700 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
701 tp->rtt_seq = tp->snd_nxt;
702 }
1da177e4
LT
703}
704
5e25ba50
ED
705/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
706 * Note: TCP stack does not yet implement pacing.
707 * FQ packet scheduler can be used to implement cheap but effective
708 * TCP pacing, to smooth the burst on large writes when packets
709 * in flight is significantly lower than cwnd (or rwin)
710 */
711static void tcp_update_pacing_rate(struct sock *sk)
712{
713 const struct tcp_sock *tp = tcp_sk(sk);
714 u64 rate;
715
716 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
717 rate = (u64)tp->mss_cache * 2 * (HZ << 3);
718
719 rate *= max(tp->snd_cwnd, tp->packets_out);
720
721 /* Correction for small srtt : minimum srtt being 8 (1 jiffy << 3),
722 * be conservative and assume srtt = 1 (125 us instead of 1.25 ms)
723 * We probably need usec resolution in the future.
724 * Note: This also takes care of possible srtt=0 case,
725 * when tcp_rtt_estimator() was not yet called.
726 */
727 if (tp->srtt > 8 + 2)
728 do_div(rate, tp->srtt);
729
730 sk->sk_pacing_rate = min_t(u64, rate, ~0U);
731}
732
1da177e4
LT
733/* Calculate rto without backoff. This is the second half of Van Jacobson's
734 * routine referred to above.
735 */
4aabd8ef 736void tcp_set_rto(struct sock *sk)
1da177e4 737{
463c84b9 738 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
739 /* Old crap is replaced with new one. 8)
740 *
741 * More seriously:
742 * 1. If rtt variance happened to be less 50msec, it is hallucination.
743 * It cannot be less due to utterly erratic ACK generation made
744 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
745 * to do with delayed acks, because at cwnd>2 true delack timeout
746 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 747 * ACKs in some circumstances.
1da177e4 748 */
f1ecd5d9 749 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
750
751 /* 2. Fixups made earlier cannot be right.
752 * If we do not estimate RTO correctly without them,
753 * all the algo is pure shit and should be replaced
caa20d9a 754 * with correct one. It is exactly, which we pretend to do.
1da177e4 755 */
1da177e4 756
ee6aac59
IJ
757 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
758 * guarantees that rto is higher.
759 */
f1ecd5d9 760 tcp_bound_rto(sk);
1da177e4
LT
761}
762
cf533ea5 763__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
764{
765 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
766
22b71c8f 767 if (!cwnd)
442b9635 768 cwnd = TCP_INIT_CWND;
1da177e4
LT
769 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
770}
771
e60402d0
IJ
772/*
773 * Packet counting of FACK is based on in-order assumptions, therefore TCP
774 * disables it when reordering is detected
775 */
4aabd8ef 776void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 777{
85cc391c
IJ
778 /* RFC3517 uses different metric in lost marker => reset on change */
779 if (tcp_is_fack(tp))
780 tp->lost_skb_hint = NULL;
ab56222a 781 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
782}
783
564262c1 784/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
785static void tcp_dsack_seen(struct tcp_sock *tp)
786{
ab56222a 787 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
788}
789
6687e988
ACM
790static void tcp_update_reordering(struct sock *sk, const int metric,
791 const int ts)
1da177e4 792{
6687e988 793 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 794 if (metric > tp->reordering) {
40b215e5
PE
795 int mib_idx;
796
1da177e4
LT
797 tp->reordering = min(TCP_MAX_REORDERING, metric);
798
799 /* This exciting event is worth to be remembered. 8) */
800 if (ts)
40b215e5 801 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 802 else if (tcp_is_reno(tp))
40b215e5 803 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 804 else if (tcp_is_fack(tp))
40b215e5 805 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 806 else
40b215e5
PE
807 mib_idx = LINUX_MIB_TCPSACKREORDER;
808
de0744af 809 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4 810#if FASTRETRANS_DEBUG > 1
91df42be
JP
811 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
812 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
813 tp->reordering,
814 tp->fackets_out,
815 tp->sacked_out,
816 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 817#endif
e60402d0 818 tcp_disable_fack(tp);
1da177e4 819 }
eed530b6
YC
820
821 if (metric > 0)
822 tcp_disable_early_retrans(tp);
1da177e4
LT
823}
824
006f582c 825/* This must be called before lost_out is incremented */
c8c213f2
IJ
826static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
827{
006f582c 828 if ((tp->retransmit_skb_hint == NULL) ||
c8c213f2
IJ
829 before(TCP_SKB_CB(skb)->seq,
830 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
831 tp->retransmit_skb_hint = skb;
832
833 if (!tp->lost_out ||
834 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
835 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
836}
837
41ea36e3
IJ
838static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
839{
840 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
841 tcp_verify_retransmit_hint(tp, skb);
842
843 tp->lost_out += tcp_skb_pcount(skb);
844 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
845 }
846}
847
e1aa680f
IJ
848static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
849 struct sk_buff *skb)
006f582c
IJ
850{
851 tcp_verify_retransmit_hint(tp, skb);
852
853 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
854 tp->lost_out += tcp_skb_pcount(skb);
855 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
856 }
857}
858
1da177e4
LT
859/* This procedure tags the retransmission queue when SACKs arrive.
860 *
861 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
862 * Packets in queue with these bits set are counted in variables
863 * sacked_out, retrans_out and lost_out, correspondingly.
864 *
865 * Valid combinations are:
866 * Tag InFlight Description
867 * 0 1 - orig segment is in flight.
868 * S 0 - nothing flies, orig reached receiver.
869 * L 0 - nothing flies, orig lost by net.
870 * R 2 - both orig and retransmit are in flight.
871 * L|R 1 - orig is lost, retransmit is in flight.
872 * S|R 1 - orig reached receiver, retrans is still in flight.
873 * (L|S|R is logically valid, it could occur when L|R is sacked,
874 * but it is equivalent to plain S and code short-curcuits it to S.
875 * L|S is logically invalid, it would mean -1 packet in flight 8))
876 *
877 * These 6 states form finite state machine, controlled by the following events:
878 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
879 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 880 * 3. Loss detection event of two flavors:
1da177e4
LT
881 * A. Scoreboard estimator decided the packet is lost.
882 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
883 * A''. Its FACK modification, head until snd.fack is lost.
884 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
885 * segment was retransmitted.
886 * 4. D-SACK added new rule: D-SACK changes any tag to S.
887 *
888 * It is pleasant to note, that state diagram turns out to be commutative,
889 * so that we are allowed not to be bothered by order of our actions,
890 * when multiple events arrive simultaneously. (see the function below).
891 *
892 * Reordering detection.
893 * --------------------
894 * Reordering metric is maximal distance, which a packet can be displaced
895 * in packet stream. With SACKs we can estimate it:
896 *
897 * 1. SACK fills old hole and the corresponding segment was not
898 * ever retransmitted -> reordering. Alas, we cannot use it
899 * when segment was retransmitted.
900 * 2. The last flaw is solved with D-SACK. D-SACK arrives
901 * for retransmitted and already SACKed segment -> reordering..
902 * Both of these heuristics are not used in Loss state, when we cannot
903 * account for retransmits accurately.
5b3c9882
IJ
904 *
905 * SACK block validation.
906 * ----------------------
907 *
908 * SACK block range validation checks that the received SACK block fits to
909 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
910 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
911 * it means that the receiver is rather inconsistent with itself reporting
912 * SACK reneging when it should advance SND.UNA. Such SACK block this is
913 * perfectly valid, however, in light of RFC2018 which explicitly states
914 * that "SACK block MUST reflect the newest segment. Even if the newest
915 * segment is going to be discarded ...", not that it looks very clever
916 * in case of head skb. Due to potentional receiver driven attacks, we
917 * choose to avoid immediate execution of a walk in write queue due to
918 * reneging and defer head skb's loss recovery to standard loss recovery
919 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
920 *
921 * Implements also blockage to start_seq wrap-around. Problem lies in the
922 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
923 * there's no guarantee that it will be before snd_nxt (n). The problem
924 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
925 * wrap (s_w):
926 *
927 * <- outs wnd -> <- wrapzone ->
928 * u e n u_w e_w s n_w
929 * | | | | | | |
930 * |<------------+------+----- TCP seqno space --------------+---------->|
931 * ...-- <2^31 ->| |<--------...
932 * ...---- >2^31 ------>| |<--------...
933 *
934 * Current code wouldn't be vulnerable but it's better still to discard such
935 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
936 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
937 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
938 * equal to the ideal case (infinite seqno space without wrap caused issues).
939 *
940 * With D-SACK the lower bound is extended to cover sequence space below
941 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 942 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
943 * for the normal SACK blocks, explained above). But there all simplicity
944 * ends, TCP might receive valid D-SACKs below that. As long as they reside
945 * fully below undo_marker they do not affect behavior in anyway and can
946 * therefore be safely ignored. In rare cases (which are more or less
947 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
948 * fragmentation and packet reordering past skb's retransmission. To consider
949 * them correctly, the acceptable range must be extended even more though
950 * the exact amount is rather hard to quantify. However, tp->max_window can
951 * be used as an exaggerated estimate.
1da177e4 952 */
a2a385d6
ED
953static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
954 u32 start_seq, u32 end_seq)
5b3c9882
IJ
955{
956 /* Too far in future, or reversed (interpretation is ambiguous) */
957 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 958 return false;
5b3c9882
IJ
959
960 /* Nasty start_seq wrap-around check (see comments above) */
961 if (!before(start_seq, tp->snd_nxt))
a2a385d6 962 return false;
5b3c9882 963
564262c1 964 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
965 * start_seq == snd_una is non-sensical (see comments above)
966 */
967 if (after(start_seq, tp->snd_una))
a2a385d6 968 return true;
5b3c9882
IJ
969
970 if (!is_dsack || !tp->undo_marker)
a2a385d6 971 return false;
5b3c9882
IJ
972
973 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 974 if (after(end_seq, tp->snd_una))
a2a385d6 975 return false;
5b3c9882
IJ
976
977 if (!before(start_seq, tp->undo_marker))
a2a385d6 978 return true;
5b3c9882
IJ
979
980 /* Too old */
981 if (!after(end_seq, tp->undo_marker))
a2a385d6 982 return false;
5b3c9882
IJ
983
984 /* Undo_marker boundary crossing (overestimates a lot). Known already:
985 * start_seq < undo_marker and end_seq >= undo_marker.
986 */
987 return !before(start_seq, end_seq - tp->max_window);
988}
989
1c1e87ed 990/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
974c1236 991 * Event "B". Later note: FACK people cheated me again 8), we have to account
1c1e87ed 992 * for reordering! Ugly, but should help.
f785a8e2
IJ
993 *
994 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
995 * less than what is now known to be received by the other end (derived from
9f58f3b7
IJ
996 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
997 * retransmitted skbs to avoid some costly processing per ACKs.
1c1e87ed 998 */
407ef1de 999static void tcp_mark_lost_retrans(struct sock *sk)
1c1e87ed 1000{
9f58f3b7 1001 const struct inet_connection_sock *icsk = inet_csk(sk);
1c1e87ed
IJ
1002 struct tcp_sock *tp = tcp_sk(sk);
1003 struct sk_buff *skb;
f785a8e2 1004 int cnt = 0;
df2e014b 1005 u32 new_low_seq = tp->snd_nxt;
6859d494 1006 u32 received_upto = tcp_highest_sack_seq(tp);
9f58f3b7
IJ
1007
1008 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1009 !after(received_upto, tp->lost_retrans_low) ||
1010 icsk->icsk_ca_state != TCP_CA_Recovery)
407ef1de 1011 return;
1c1e87ed
IJ
1012
1013 tcp_for_write_queue(skb, sk) {
1014 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1015
1016 if (skb == tcp_send_head(sk))
1017 break;
f785a8e2 1018 if (cnt == tp->retrans_out)
1c1e87ed
IJ
1019 break;
1020 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1021 continue;
1022
f785a8e2
IJ
1023 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1024 continue;
1025
d0af4160
IJ
1026 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1027 * constraint here (see above) but figuring out that at
1028 * least tp->reordering SACK blocks reside between ack_seq
1029 * and received_upto is not easy task to do cheaply with
1030 * the available datastructures.
1031 *
1032 * Whether FACK should check here for tp->reordering segs
1033 * in-between one could argue for either way (it would be
1034 * rather simple to implement as we could count fack_count
1035 * during the walk and do tp->fackets_out - fack_count).
1036 */
1037 if (after(received_upto, ack_seq)) {
1c1e87ed
IJ
1038 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1039 tp->retrans_out -= tcp_skb_pcount(skb);
1040
006f582c 1041 tcp_skb_mark_lost_uncond_verify(tp, skb);
de0744af 1042 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
f785a8e2 1043 } else {
df2e014b 1044 if (before(ack_seq, new_low_seq))
b08d6cb2 1045 new_low_seq = ack_seq;
f785a8e2 1046 cnt += tcp_skb_pcount(skb);
1c1e87ed
IJ
1047 }
1048 }
b08d6cb2
IJ
1049
1050 if (tp->retrans_out)
1051 tp->lost_retrans_low = new_low_seq;
1c1e87ed 1052}
5b3c9882 1053
a2a385d6
ED
1054static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1055 struct tcp_sack_block_wire *sp, int num_sacks,
1056 u32 prior_snd_una)
d06e021d 1057{
1ed83465 1058 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1059 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1060 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1061 bool dup_sack = false;
d06e021d
DM
1062
1063 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1064 dup_sack = true;
e60402d0 1065 tcp_dsack_seen(tp);
de0744af 1066 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1067 } else if (num_sacks > 1) {
d3e2ce3b
HH
1068 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1069 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1070
1071 if (!after(end_seq_0, end_seq_1) &&
1072 !before(start_seq_0, start_seq_1)) {
a2a385d6 1073 dup_sack = true;
e60402d0 1074 tcp_dsack_seen(tp);
de0744af
PE
1075 NET_INC_STATS_BH(sock_net(sk),
1076 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1077 }
1078 }
1079
1080 /* D-SACK for already forgotten data... Do dumb counting. */
76fd3c89 1081 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1082 !after(end_seq_0, prior_snd_una) &&
1083 after(end_seq_0, tp->undo_marker))
1084 tp->undo_retrans--;
1085
1086 return dup_sack;
1087}
1088
a1197f5a
IJ
1089struct tcp_sacktag_state {
1090 int reord;
1091 int fack_count;
1092 int flag;
1093};
1094
d1935942
IJ
1095/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1096 * the incoming SACK may not exactly match but we can find smaller MSS
1097 * aligned portion of it that matches. Therefore we might need to fragment
1098 * which may fail and creates some hassle (caller must handle error case
1099 * returns).
832d11c5
IJ
1100 *
1101 * FIXME: this could be merged to shift decision code
d1935942 1102 */
0f79efdc 1103static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1104 u32 start_seq, u32 end_seq)
d1935942 1105{
a2a385d6
ED
1106 int err;
1107 bool in_sack;
d1935942 1108 unsigned int pkt_len;
adb92db8 1109 unsigned int mss;
d1935942
IJ
1110
1111 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1112 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1113
1114 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1115 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1116 mss = tcp_skb_mss(skb);
d1935942
IJ
1117 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1118
adb92db8 1119 if (!in_sack) {
d1935942 1120 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1121 if (pkt_len < mss)
1122 pkt_len = mss;
1123 } else {
d1935942 1124 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1125 if (pkt_len < mss)
1126 return -EINVAL;
1127 }
1128
1129 /* Round if necessary so that SACKs cover only full MSSes
1130 * and/or the remaining small portion (if present)
1131 */
1132 if (pkt_len > mss) {
1133 unsigned int new_len = (pkt_len / mss) * mss;
1134 if (!in_sack && new_len < pkt_len) {
1135 new_len += mss;
856443cb 1136 if (new_len >= skb->len)
adb92db8
IJ
1137 return 0;
1138 }
1139 pkt_len = new_len;
1140 }
1141 err = tcp_fragment(sk, skb, pkt_len, mss);
d1935942
IJ
1142 if (err < 0)
1143 return err;
1144 }
1145
1146 return in_sack;
1147}
1148
cc9a672e
NC
1149/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1150static u8 tcp_sacktag_one(struct sock *sk,
1151 struct tcp_sacktag_state *state, u8 sacked,
1152 u32 start_seq, u32 end_seq,
a2a385d6 1153 bool dup_sack, int pcount)
9e10c47c 1154{
6859d494 1155 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1156 int fack_count = state->fack_count;
9e10c47c
IJ
1157
1158 /* Account D-SACK for retransmitted packet. */
1159 if (dup_sack && (sacked & TCPCB_RETRANS)) {
76fd3c89 1160 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1161 after(end_seq, tp->undo_marker))
9e10c47c 1162 tp->undo_retrans--;
ede9f3b1 1163 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1164 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1165 }
1166
1167 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1168 if (!after(end_seq, tp->snd_una))
a1197f5a 1169 return sacked;
9e10c47c
IJ
1170
1171 if (!(sacked & TCPCB_SACKED_ACKED)) {
1172 if (sacked & TCPCB_SACKED_RETRANS) {
1173 /* If the segment is not tagged as lost,
1174 * we do not clear RETRANS, believing
1175 * that retransmission is still in flight.
1176 */
1177 if (sacked & TCPCB_LOST) {
a1197f5a 1178 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1179 tp->lost_out -= pcount;
1180 tp->retrans_out -= pcount;
9e10c47c
IJ
1181 }
1182 } else {
1183 if (!(sacked & TCPCB_RETRANS)) {
1184 /* New sack for not retransmitted frame,
1185 * which was in hole. It is reordering.
1186 */
cc9a672e 1187 if (before(start_seq,
9e10c47c 1188 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1189 state->reord = min(fack_count,
1190 state->reord);
e33099f9
YC
1191 if (!after(end_seq, tp->high_seq))
1192 state->flag |= FLAG_ORIG_SACK_ACKED;
9e10c47c
IJ
1193 }
1194
1195 if (sacked & TCPCB_LOST) {
a1197f5a 1196 sacked &= ~TCPCB_LOST;
f58b22fd 1197 tp->lost_out -= pcount;
9e10c47c
IJ
1198 }
1199 }
1200
a1197f5a
IJ
1201 sacked |= TCPCB_SACKED_ACKED;
1202 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1203 tp->sacked_out += pcount;
9e10c47c 1204
f58b22fd 1205 fack_count += pcount;
9e10c47c
IJ
1206
1207 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1208 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
cc9a672e 1209 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1210 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1211
1212 if (fack_count > tp->fackets_out)
1213 tp->fackets_out = fack_count;
9e10c47c
IJ
1214 }
1215
1216 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1217 * frames and clear it. undo_retrans is decreased above, L|R frames
1218 * are accounted above as well.
1219 */
a1197f5a
IJ
1220 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1221 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1222 tp->retrans_out -= pcount;
9e10c47c
IJ
1223 }
1224
a1197f5a 1225 return sacked;
9e10c47c
IJ
1226}
1227
daef52ba
NC
1228/* Shift newly-SACKed bytes from this skb to the immediately previous
1229 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1230 */
a2a385d6
ED
1231static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1232 struct tcp_sacktag_state *state,
1233 unsigned int pcount, int shifted, int mss,
1234 bool dup_sack)
832d11c5
IJ
1235{
1236 struct tcp_sock *tp = tcp_sk(sk);
50133161 1237 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1238 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1239 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1240
1241 BUG_ON(!pcount);
1242
4c90d3b3
NC
1243 /* Adjust counters and hints for the newly sacked sequence
1244 * range but discard the return value since prev is already
1245 * marked. We must tag the range first because the seq
1246 * advancement below implicitly advances
1247 * tcp_highest_sack_seq() when skb is highest_sack.
1248 */
1249 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1250 start_seq, end_seq, dup_sack, pcount);
1251
1252 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1253 tp->lost_cnt_hint += pcount;
1254
832d11c5
IJ
1255 TCP_SKB_CB(prev)->end_seq += shifted;
1256 TCP_SKB_CB(skb)->seq += shifted;
1257
1258 skb_shinfo(prev)->gso_segs += pcount;
1259 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1260 skb_shinfo(skb)->gso_segs -= pcount;
1261
1262 /* When we're adding to gso_segs == 1, gso_size will be zero,
1263 * in theory this shouldn't be necessary but as long as DSACK
1264 * code can come after this skb later on it's better to keep
1265 * setting gso_size to something.
1266 */
1267 if (!skb_shinfo(prev)->gso_size) {
1268 skb_shinfo(prev)->gso_size = mss;
c9af6db4 1269 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
832d11c5
IJ
1270 }
1271
1272 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1273 if (skb_shinfo(skb)->gso_segs <= 1) {
1274 skb_shinfo(skb)->gso_size = 0;
c9af6db4 1275 skb_shinfo(skb)->gso_type = 0;
832d11c5
IJ
1276 }
1277
832d11c5
IJ
1278 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1279 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1280
832d11c5
IJ
1281 if (skb->len > 0) {
1282 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1283 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1284 return false;
832d11c5
IJ
1285 }
1286
1287 /* Whole SKB was eaten :-) */
1288
92ee76b6
IJ
1289 if (skb == tp->retransmit_skb_hint)
1290 tp->retransmit_skb_hint = prev;
1291 if (skb == tp->scoreboard_skb_hint)
1292 tp->scoreboard_skb_hint = prev;
1293 if (skb == tp->lost_skb_hint) {
1294 tp->lost_skb_hint = prev;
1295 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1296 }
1297
a50b0399
ED
1298 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1299 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1300 TCP_SKB_CB(prev)->end_seq++;
1301
832d11c5
IJ
1302 if (skb == tcp_highest_sack(sk))
1303 tcp_advance_highest_sack(sk, skb);
1304
1305 tcp_unlink_write_queue(skb, sk);
1306 sk_wmem_free_skb(sk, skb);
1307
111cc8b9
IJ
1308 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1309
a2a385d6 1310 return true;
832d11c5
IJ
1311}
1312
1313/* I wish gso_size would have a bit more sane initialization than
1314 * something-or-zero which complicates things
1315 */
cf533ea5 1316static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1317{
775ffabf 1318 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1319}
1320
1321/* Shifting pages past head area doesn't work */
cf533ea5 1322static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1323{
1324 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1325}
1326
1327/* Try collapsing SACK blocks spanning across multiple skbs to a single
1328 * skb.
1329 */
1330static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1331 struct tcp_sacktag_state *state,
832d11c5 1332 u32 start_seq, u32 end_seq,
a2a385d6 1333 bool dup_sack)
832d11c5
IJ
1334{
1335 struct tcp_sock *tp = tcp_sk(sk);
1336 struct sk_buff *prev;
1337 int mss;
1338 int pcount = 0;
1339 int len;
1340 int in_sack;
1341
1342 if (!sk_can_gso(sk))
1343 goto fallback;
1344
1345 /* Normally R but no L won't result in plain S */
1346 if (!dup_sack &&
9969ca5f 1347 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1348 goto fallback;
1349 if (!skb_can_shift(skb))
1350 goto fallback;
1351 /* This frame is about to be dropped (was ACKed). */
1352 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1353 goto fallback;
1354
1355 /* Can only happen with delayed DSACK + discard craziness */
1356 if (unlikely(skb == tcp_write_queue_head(sk)))
1357 goto fallback;
1358 prev = tcp_write_queue_prev(sk, skb);
1359
1360 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1361 goto fallback;
1362
1363 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1364 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1365
1366 if (in_sack) {
1367 len = skb->len;
1368 pcount = tcp_skb_pcount(skb);
775ffabf 1369 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1370
1371 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1372 * drop this restriction as unnecessary
1373 */
775ffabf 1374 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1375 goto fallback;
1376 } else {
1377 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1378 goto noop;
1379 /* CHECKME: This is non-MSS split case only?, this will
1380 * cause skipped skbs due to advancing loop btw, original
1381 * has that feature too
1382 */
1383 if (tcp_skb_pcount(skb) <= 1)
1384 goto noop;
1385
1386 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1387 if (!in_sack) {
1388 /* TODO: head merge to next could be attempted here
1389 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1390 * though it might not be worth of the additional hassle
1391 *
1392 * ...we can probably just fallback to what was done
1393 * previously. We could try merging non-SACKed ones
1394 * as well but it probably isn't going to buy off
1395 * because later SACKs might again split them, and
1396 * it would make skb timestamp tracking considerably
1397 * harder problem.
1398 */
1399 goto fallback;
1400 }
1401
1402 len = end_seq - TCP_SKB_CB(skb)->seq;
1403 BUG_ON(len < 0);
1404 BUG_ON(len > skb->len);
1405
1406 /* MSS boundaries should be honoured or else pcount will
1407 * severely break even though it makes things bit trickier.
1408 * Optimize common case to avoid most of the divides
1409 */
1410 mss = tcp_skb_mss(skb);
1411
1412 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1413 * drop this restriction as unnecessary
1414 */
775ffabf 1415 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1416 goto fallback;
1417
1418 if (len == mss) {
1419 pcount = 1;
1420 } else if (len < mss) {
1421 goto noop;
1422 } else {
1423 pcount = len / mss;
1424 len = pcount * mss;
1425 }
1426 }
1427
4648dc97
NC
1428 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1429 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1430 goto fallback;
1431
832d11c5
IJ
1432 if (!skb_shift(prev, skb, len))
1433 goto fallback;
9ec06ff5 1434 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1435 goto out;
1436
1437 /* Hole filled allows collapsing with the next as well, this is very
1438 * useful when hole on every nth skb pattern happens
1439 */
1440 if (prev == tcp_write_queue_tail(sk))
1441 goto out;
1442 skb = tcp_write_queue_next(sk, prev);
1443
f0bc52f3
IJ
1444 if (!skb_can_shift(skb) ||
1445 (skb == tcp_send_head(sk)) ||
1446 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1447 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1448 goto out;
1449
1450 len = skb->len;
1451 if (skb_shift(prev, skb, len)) {
1452 pcount += tcp_skb_pcount(skb);
9ec06ff5 1453 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1454 }
1455
1456out:
a1197f5a 1457 state->fack_count += pcount;
832d11c5
IJ
1458 return prev;
1459
1460noop:
1461 return skb;
1462
1463fallback:
111cc8b9 1464 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1465 return NULL;
1466}
1467
68f8353b
IJ
1468static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1469 struct tcp_sack_block *next_dup,
a1197f5a 1470 struct tcp_sacktag_state *state,
68f8353b 1471 u32 start_seq, u32 end_seq,
a2a385d6 1472 bool dup_sack_in)
68f8353b 1473{
832d11c5
IJ
1474 struct tcp_sock *tp = tcp_sk(sk);
1475 struct sk_buff *tmp;
1476
68f8353b
IJ
1477 tcp_for_write_queue_from(skb, sk) {
1478 int in_sack = 0;
a2a385d6 1479 bool dup_sack = dup_sack_in;
68f8353b
IJ
1480
1481 if (skb == tcp_send_head(sk))
1482 break;
1483
1484 /* queue is in-order => we can short-circuit the walk early */
1485 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1486 break;
1487
1488 if ((next_dup != NULL) &&
1489 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1490 in_sack = tcp_match_skb_to_sack(sk, skb,
1491 next_dup->start_seq,
1492 next_dup->end_seq);
1493 if (in_sack > 0)
a2a385d6 1494 dup_sack = true;
68f8353b
IJ
1495 }
1496
832d11c5
IJ
1497 /* skb reference here is a bit tricky to get right, since
1498 * shifting can eat and free both this skb and the next,
1499 * so not even _safe variant of the loop is enough.
1500 */
1501 if (in_sack <= 0) {
a1197f5a
IJ
1502 tmp = tcp_shift_skb_data(sk, skb, state,
1503 start_seq, end_seq, dup_sack);
832d11c5
IJ
1504 if (tmp != NULL) {
1505 if (tmp != skb) {
1506 skb = tmp;
1507 continue;
1508 }
1509
1510 in_sack = 0;
1511 } else {
1512 in_sack = tcp_match_skb_to_sack(sk, skb,
1513 start_seq,
1514 end_seq);
1515 }
1516 }
1517
68f8353b
IJ
1518 if (unlikely(in_sack < 0))
1519 break;
1520
832d11c5 1521 if (in_sack) {
cc9a672e
NC
1522 TCP_SKB_CB(skb)->sacked =
1523 tcp_sacktag_one(sk,
1524 state,
1525 TCP_SKB_CB(skb)->sacked,
1526 TCP_SKB_CB(skb)->seq,
1527 TCP_SKB_CB(skb)->end_seq,
1528 dup_sack,
1529 tcp_skb_pcount(skb));
68f8353b 1530
832d11c5
IJ
1531 if (!before(TCP_SKB_CB(skb)->seq,
1532 tcp_highest_sack_seq(tp)))
1533 tcp_advance_highest_sack(sk, skb);
1534 }
1535
a1197f5a 1536 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1537 }
1538 return skb;
1539}
1540
1541/* Avoid all extra work that is being done by sacktag while walking in
1542 * a normal way
1543 */
1544static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1545 struct tcp_sacktag_state *state,
1546 u32 skip_to_seq)
68f8353b
IJ
1547{
1548 tcp_for_write_queue_from(skb, sk) {
1549 if (skb == tcp_send_head(sk))
1550 break;
1551
e8bae275 1552 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1553 break;
d152a7d8 1554
a1197f5a 1555 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1556 }
1557 return skb;
1558}
1559
1560static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1561 struct sock *sk,
1562 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1563 struct tcp_sacktag_state *state,
1564 u32 skip_to_seq)
68f8353b
IJ
1565{
1566 if (next_dup == NULL)
1567 return skb;
1568
1569 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1570 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1571 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1572 next_dup->start_seq, next_dup->end_seq,
1573 1);
68f8353b
IJ
1574 }
1575
1576 return skb;
1577}
1578
cf533ea5 1579static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1580{
1581 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1582}
1583
1da177e4 1584static int
cf533ea5 1585tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
056834d9 1586 u32 prior_snd_una)
1da177e4
LT
1587{
1588 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1589 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1590 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1591 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1592 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b 1593 struct tcp_sack_block *cache;
a1197f5a 1594 struct tcp_sacktag_state state;
68f8353b 1595 struct sk_buff *skb;
4389dded 1596 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1597 int used_sacks;
a2a385d6 1598 bool found_dup_sack = false;
68f8353b 1599 int i, j;
fda03fbb 1600 int first_sack_index;
1da177e4 1601
a1197f5a
IJ
1602 state.flag = 0;
1603 state.reord = tp->packets_out;
1604
d738cd8f 1605 if (!tp->sacked_out) {
de83c058
IJ
1606 if (WARN_ON(tp->fackets_out))
1607 tp->fackets_out = 0;
6859d494 1608 tcp_highest_sack_reset(sk);
d738cd8f 1609 }
1da177e4 1610
1ed83465 1611 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1612 num_sacks, prior_snd_una);
1613 if (found_dup_sack)
a1197f5a 1614 state.flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1615
1616 /* Eliminate too old ACKs, but take into
1617 * account more or less fresh ones, they can
1618 * contain valid SACK info.
1619 */
1620 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1621 return 0;
1622