Merge tag 'v3.10.107' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
ab1842f1 64#include <linux/hugetlb.h>
6fa3eb70 65#include <linux/freezer.h>
b488893a 66
4732efbe 67#include <asm/futex.h>
1da177e4 68
c87e2837
IM
69#include "rtmutex_common.h"
70
f26c70a4 71#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 72int __read_mostly futex_cmpxchg_enabled;
f26c70a4 73#endif
a0c1e907 74
1da177e4
LT
75#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
76
b41277dc
DH
77/*
78 * Futex flags used to encode options to functions and preserve them across
79 * restarts.
80 */
81#define FLAGS_SHARED 0x01
82#define FLAGS_CLOCKRT 0x02
83#define FLAGS_HAS_TIMEOUT 0x04
84
c87e2837
IM
85/*
86 * Priority Inheritance state:
87 */
88struct futex_pi_state {
89 /*
90 * list of 'owned' pi_state instances - these have to be
91 * cleaned up in do_exit() if the task exits prematurely:
92 */
93 struct list_head list;
94
95 /*
96 * The PI object:
97 */
98 struct rt_mutex pi_mutex;
99
100 struct task_struct *owner;
101 atomic_t refcount;
102
103 union futex_key key;
104};
105
d8d88fbb
DH
106/**
107 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 108 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
109 * @task: the task waiting on the futex
110 * @lock_ptr: the hash bucket lock
111 * @key: the key the futex is hashed on
112 * @pi_state: optional priority inheritance state
113 * @rt_waiter: rt_waiter storage for use with requeue_pi
114 * @requeue_pi_key: the requeue_pi target futex key
115 * @bitset: bitset for the optional bitmasked wakeup
116 *
117 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
118 * we can wake only the relevant ones (hashed queues may be shared).
119 *
120 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 121 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 122 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
123 * the second.
124 *
125 * PI futexes are typically woken before they are removed from the hash list via
126 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
127 */
128struct futex_q {
ec92d082 129 struct plist_node list;
1da177e4 130
d8d88fbb 131 struct task_struct *task;
1da177e4 132 spinlock_t *lock_ptr;
1da177e4 133 union futex_key key;
c87e2837 134 struct futex_pi_state *pi_state;
52400ba9 135 struct rt_mutex_waiter *rt_waiter;
84bc4af5 136 union futex_key *requeue_pi_key;
cd689985 137 u32 bitset;
1da177e4
LT
138};
139
5bdb05f9
DH
140static const struct futex_q futex_q_init = {
141 /* list gets initialized in queue_me()*/
142 .key = FUTEX_KEY_INIT,
143 .bitset = FUTEX_BITSET_MATCH_ANY
144};
145
1da177e4 146/*
b2d0994b
DH
147 * Hash buckets are shared by all the futex_keys that hash to the same
148 * location. Each key may have multiple futex_q structures, one for each task
149 * waiting on a futex.
1da177e4
LT
150 */
151struct futex_hash_bucket {
ec92d082
PP
152 spinlock_t lock;
153 struct plist_head chain;
1da177e4
LT
154};
155
156static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
157
1da177e4
LT
158/*
159 * We hash on the keys returned from get_futex_key (see below).
160 */
161static struct futex_hash_bucket *hash_futex(union futex_key *key)
162{
163 u32 hash = jhash2((u32*)&key->both.word,
164 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
165 key->both.offset);
166 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
167}
168
169/*
170 * Return 1 if two futex_keys are equal, 0 otherwise.
171 */
172static inline int match_futex(union futex_key *key1, union futex_key *key2)
173{
2bc87203
DH
174 return (key1 && key2
175 && key1->both.word == key2->both.word
1da177e4
LT
176 && key1->both.ptr == key2->both.ptr
177 && key1->both.offset == key2->both.offset);
178}
179
38d47c1b
PZ
180/*
181 * Take a reference to the resource addressed by a key.
182 * Can be called while holding spinlocks.
183 *
184 */
185static void get_futex_key_refs(union futex_key *key)
186{
187 if (!key->both.ptr)
188 return;
189
190 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
191 case FUT_OFF_INODE:
7de9c6ee 192 ihold(key->shared.inode);
38d47c1b
PZ
193 break;
194 case FUT_OFF_MMSHARED:
195 atomic_inc(&key->private.mm->mm_count);
196 break;
197 }
198}
199
200/*
201 * Drop a reference to the resource addressed by a key.
202 * The hash bucket spinlock must not be held.
203 */
204static void drop_futex_key_refs(union futex_key *key)
205{
90621c40
DH
206 if (!key->both.ptr) {
207 /* If we're here then we tried to put a key we failed to get */
208 WARN_ON_ONCE(1);
38d47c1b 209 return;
90621c40 210 }
38d47c1b
PZ
211
212 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
213 case FUT_OFF_INODE:
214 iput(key->shared.inode);
215 break;
216 case FUT_OFF_MMSHARED:
217 mmdrop(key->private.mm);
218 break;
219 }
220}
221
34f01cc1 222/**
d96ee56c
DH
223 * get_futex_key() - Get parameters which are the keys for a futex
224 * @uaddr: virtual address of the futex
225 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
226 * @key: address where result is stored.
9ea71503
SB
227 * @rw: mapping needs to be read/write (values: VERIFY_READ,
228 * VERIFY_WRITE)
34f01cc1 229 *
6c23cbbd
RD
230 * Return: a negative error code or 0
231 *
34f01cc1 232 * The key words are stored in *key on success.
1da177e4 233 *
6131ffaa 234 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
235 * offset_within_page). For private mappings, it's (uaddr, current->mm).
236 * We can usually work out the index without swapping in the page.
237 *
b2d0994b 238 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 239 */
64d1304a 240static int
9ea71503 241get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 242{
e2970f2f 243 unsigned long address = (unsigned long)uaddr;
1da177e4 244 struct mm_struct *mm = current->mm;
a5b338f2 245 struct page *page, *page_head;
9ea71503 246 int err, ro = 0;
1da177e4
LT
247
248 /*
249 * The futex address must be "naturally" aligned.
250 */
e2970f2f 251 key->both.offset = address % PAGE_SIZE;
34f01cc1 252 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 253 return -EINVAL;
e2970f2f 254 address -= key->both.offset;
1da177e4 255
34f01cc1
ED
256 /*
257 * PROCESS_PRIVATE futexes are fast.
258 * As the mm cannot disappear under us and the 'key' only needs
259 * virtual address, we dont even have to find the underlying vma.
260 * Note : We do have to check 'uaddr' is a valid user address,
261 * but access_ok() should be faster than find_vma()
262 */
263 if (!fshared) {
7485d0d3 264 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
34f01cc1
ED
265 return -EFAULT;
266 key->private.mm = mm;
267 key->private.address = address;
42569c39 268 get_futex_key_refs(key);
34f01cc1
ED
269 return 0;
270 }
1da177e4 271
38d47c1b 272again:
7485d0d3 273 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
274 /*
275 * If write access is not required (eg. FUTEX_WAIT), try
276 * and get read-only access.
277 */
278 if (err == -EFAULT && rw == VERIFY_READ) {
279 err = get_user_pages_fast(address, 1, 0, &page);
280 ro = 1;
281 }
38d47c1b
PZ
282 if (err < 0)
283 return err;
9ea71503
SB
284 else
285 err = 0;
38d47c1b 286
a5b338f2
AA
287#ifdef CONFIG_TRANSPARENT_HUGEPAGE
288 page_head = page;
289 if (unlikely(PageTail(page))) {
38d47c1b 290 put_page(page);
a5b338f2
AA
291 /* serialize against __split_huge_page_splitting() */
292 local_irq_disable();
13bb709c 293 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
a5b338f2
AA
294 page_head = compound_head(page);
295 /*
296 * page_head is valid pointer but we must pin
297 * it before taking the PG_lock and/or
298 * PG_compound_lock. The moment we re-enable
299 * irqs __split_huge_page_splitting() can
300 * return and the head page can be freed from
301 * under us. We can't take the PG_lock and/or
302 * PG_compound_lock on a page that could be
303 * freed from under us.
304 */
305 if (page != page_head) {
306 get_page(page_head);
307 put_page(page);
308 }
309 local_irq_enable();
310 } else {
311 local_irq_enable();
312 goto again;
313 }
314 }
315#else
316 page_head = compound_head(page);
317 if (page != page_head) {
318 get_page(page_head);
319 put_page(page);
320 }
321#endif
322
323 lock_page(page_head);
e6780f72
HD
324
325 /*
326 * If page_head->mapping is NULL, then it cannot be a PageAnon
327 * page; but it might be the ZERO_PAGE or in the gate area or
328 * in a special mapping (all cases which we are happy to fail);
329 * or it may have been a good file page when get_user_pages_fast
330 * found it, but truncated or holepunched or subjected to
331 * invalidate_complete_page2 before we got the page lock (also
332 * cases which we are happy to fail). And we hold a reference,
333 * so refcount care in invalidate_complete_page's remove_mapping
334 * prevents drop_caches from setting mapping to NULL beneath us.
335 *
336 * The case we do have to guard against is when memory pressure made
337 * shmem_writepage move it from filecache to swapcache beneath us:
338 * an unlikely race, but we do need to retry for page_head->mapping.
339 */
a5b338f2 340 if (!page_head->mapping) {
e6780f72 341 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
342 unlock_page(page_head);
343 put_page(page_head);
e6780f72
HD
344 if (shmem_swizzled)
345 goto again;
346 return -EFAULT;
38d47c1b 347 }
1da177e4
LT
348
349 /*
350 * Private mappings are handled in a simple way.
351 *
352 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
353 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 354 * the object not the particular process.
1da177e4 355 */
a5b338f2 356 if (PageAnon(page_head)) {
9ea71503
SB
357 /*
358 * A RO anonymous page will never change and thus doesn't make
359 * sense for futex operations.
360 */
361 if (ro) {
362 err = -EFAULT;
363 goto out;
364 }
365
38d47c1b 366 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 367 key->private.mm = mm;
e2970f2f 368 key->private.address = address;
38d47c1b
PZ
369 } else {
370 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2 371 key->shared.inode = page_head->mapping->host;
ab1842f1 372 key->shared.pgoff = basepage_index(page);
1da177e4
LT
373 }
374
38d47c1b 375 get_futex_key_refs(key);
1da177e4 376
9ea71503 377out:
a5b338f2
AA
378 unlock_page(page_head);
379 put_page(page_head);
9ea71503 380 return err;
1da177e4
LT
381}
382
ae791a2d 383static inline void put_futex_key(union futex_key *key)
1da177e4 384{
38d47c1b 385 drop_futex_key_refs(key);
1da177e4
LT
386}
387
d96ee56c
DH
388/**
389 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
390 * @uaddr: pointer to faulting user space address
391 *
392 * Slow path to fixup the fault we just took in the atomic write
393 * access to @uaddr.
394 *
fb62db2b 395 * We have no generic implementation of a non-destructive write to the
d0725992
TG
396 * user address. We know that we faulted in the atomic pagefault
397 * disabled section so we can as well avoid the #PF overhead by
398 * calling get_user_pages() right away.
399 */
400static int fault_in_user_writeable(u32 __user *uaddr)
401{
722d0172
AK
402 struct mm_struct *mm = current->mm;
403 int ret;
404
405 down_read(&mm->mmap_sem);
2efaca92
BH
406 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
407 FAULT_FLAG_WRITE);
722d0172
AK
408 up_read(&mm->mmap_sem);
409
d0725992
TG
410 return ret < 0 ? ret : 0;
411}
412
4b1c486b
DH
413/**
414 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
415 * @hb: the hash bucket the futex_q's reside in
416 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
417 *
418 * Must be called with the hb lock held.
419 */
420static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
421 union futex_key *key)
422{
423 struct futex_q *this;
424
425 plist_for_each_entry(this, &hb->chain, list) {
426 if (match_futex(&this->key, key))
427 return this;
428 }
429 return NULL;
430}
431
37a9d912
ML
432static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
433 u32 uval, u32 newval)
36cf3b5c 434{
37a9d912 435 int ret;
36cf3b5c
TG
436
437 pagefault_disable();
37a9d912 438 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
439 pagefault_enable();
440
37a9d912 441 return ret;
36cf3b5c
TG
442}
443
444static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
445{
446 int ret;
447
a866374a 448 pagefault_disable();
e2970f2f 449 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 450 pagefault_enable();
1da177e4
LT
451
452 return ret ? -EFAULT : 0;
453}
454
c87e2837
IM
455
456/*
457 * PI code:
458 */
459static int refill_pi_state_cache(void)
460{
461 struct futex_pi_state *pi_state;
462
463 if (likely(current->pi_state_cache))
464 return 0;
465
4668edc3 466 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
467
468 if (!pi_state)
469 return -ENOMEM;
470
c87e2837
IM
471 INIT_LIST_HEAD(&pi_state->list);
472 /* pi_mutex gets initialized later */
473 pi_state->owner = NULL;
474 atomic_set(&pi_state->refcount, 1);
38d47c1b 475 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
476
477 current->pi_state_cache = pi_state;
478
479 return 0;
480}
481
482static struct futex_pi_state * alloc_pi_state(void)
483{
484 struct futex_pi_state *pi_state = current->pi_state_cache;
485
486 WARN_ON(!pi_state);
487 current->pi_state_cache = NULL;
488
489 return pi_state;
490}
491
492static void free_pi_state(struct futex_pi_state *pi_state)
493{
494 if (!atomic_dec_and_test(&pi_state->refcount))
495 return;
496
497 /*
498 * If pi_state->owner is NULL, the owner is most probably dying
499 * and has cleaned up the pi_state already
500 */
501 if (pi_state->owner) {
1d615482 502 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 503 list_del_init(&pi_state->list);
1d615482 504 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
505
506 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
507 }
508
509 if (current->pi_state_cache)
510 kfree(pi_state);
511 else {
512 /*
513 * pi_state->list is already empty.
514 * clear pi_state->owner.
515 * refcount is at 0 - put it back to 1.
516 */
517 pi_state->owner = NULL;
518 atomic_set(&pi_state->refcount, 1);
519 current->pi_state_cache = pi_state;
520 }
521}
522
523/*
524 * Look up the task based on what TID userspace gave us.
525 * We dont trust it.
526 */
527static struct task_struct * futex_find_get_task(pid_t pid)
528{
529 struct task_struct *p;
530
d359b549 531 rcu_read_lock();
228ebcbe 532 p = find_task_by_vpid(pid);
7a0ea09a
MH
533 if (p)
534 get_task_struct(p);
a06381fe 535
d359b549 536 rcu_read_unlock();
c87e2837
IM
537
538 return p;
539}
540
541/*
542 * This task is holding PI mutexes at exit time => bad.
543 * Kernel cleans up PI-state, but userspace is likely hosed.
544 * (Robust-futex cleanup is separate and might save the day for userspace.)
545 */
546void exit_pi_state_list(struct task_struct *curr)
547{
c87e2837
IM
548 struct list_head *next, *head = &curr->pi_state_list;
549 struct futex_pi_state *pi_state;
627371d7 550 struct futex_hash_bucket *hb;
38d47c1b 551 union futex_key key = FUTEX_KEY_INIT;
c87e2837 552
a0c1e907
TG
553 if (!futex_cmpxchg_enabled)
554 return;
c87e2837
IM
555 /*
556 * We are a ZOMBIE and nobody can enqueue itself on
557 * pi_state_list anymore, but we have to be careful
627371d7 558 * versus waiters unqueueing themselves:
c87e2837 559 */
1d615482 560 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
561 while (!list_empty(head)) {
562
563 next = head->next;
564 pi_state = list_entry(next, struct futex_pi_state, list);
565 key = pi_state->key;
627371d7 566 hb = hash_futex(&key);
1d615482 567 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 568
c87e2837
IM
569 spin_lock(&hb->lock);
570
1d615482 571 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
572 /*
573 * We dropped the pi-lock, so re-check whether this
574 * task still owns the PI-state:
575 */
c87e2837
IM
576 if (head->next != next) {
577 spin_unlock(&hb->lock);
578 continue;
579 }
580
c87e2837 581 WARN_ON(pi_state->owner != curr);
627371d7
IM
582 WARN_ON(list_empty(&pi_state->list));
583 list_del_init(&pi_state->list);
c87e2837 584 pi_state->owner = NULL;
1d615482 585 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
586
587 rt_mutex_unlock(&pi_state->pi_mutex);
588
589 spin_unlock(&hb->lock);
590
1d615482 591 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 592 }
1d615482 593 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
594}
595
efccdcdb
TG
596/*
597 * We need to check the following states:
598 *
599 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
600 *
601 * [1] NULL | --- | --- | 0 | 0/1 | Valid
602 * [2] NULL | --- | --- | >0 | 0/1 | Valid
603 *
604 * [3] Found | NULL | -- | Any | 0/1 | Invalid
605 *
606 * [4] Found | Found | NULL | 0 | 1 | Valid
607 * [5] Found | Found | NULL | >0 | 1 | Invalid
608 *
609 * [6] Found | Found | task | 0 | 1 | Valid
610 *
611 * [7] Found | Found | NULL | Any | 0 | Invalid
612 *
613 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
614 * [9] Found | Found | task | 0 | 0 | Invalid
615 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
616 *
617 * [1] Indicates that the kernel can acquire the futex atomically. We
618 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
619 *
620 * [2] Valid, if TID does not belong to a kernel thread. If no matching
621 * thread is found then it indicates that the owner TID has died.
622 *
623 * [3] Invalid. The waiter is queued on a non PI futex
624 *
625 * [4] Valid state after exit_robust_list(), which sets the user space
626 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
627 *
628 * [5] The user space value got manipulated between exit_robust_list()
629 * and exit_pi_state_list()
630 *
631 * [6] Valid state after exit_pi_state_list() which sets the new owner in
632 * the pi_state but cannot access the user space value.
633 *
634 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
635 *
636 * [8] Owner and user space value match
637 *
638 * [9] There is no transient state which sets the user space TID to 0
639 * except exit_robust_list(), but this is indicated by the
640 * FUTEX_OWNER_DIED bit. See [4]
641 *
642 * [10] There is no transient state which leaves owner and user space
643 * TID out of sync.
644 */
c87e2837 645static int
d0aa7a70 646lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
efccdcdb 647 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
648{
649 struct futex_pi_state *pi_state = NULL;
650 struct futex_q *this, *next;
ec92d082 651 struct plist_head *head;
c87e2837 652 struct task_struct *p;
778e9a9c 653 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
654
655 head = &hb->chain;
656
ec92d082 657 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 658 if (match_futex(&this->key, key)) {
c87e2837 659 /*
efccdcdb
TG
660 * Sanity check the waiter before increasing
661 * the refcount and attaching to it.
c87e2837
IM
662 */
663 pi_state = this->pi_state;
06a9ec29 664 /*
efccdcdb
TG
665 * Userspace might have messed up non-PI and
666 * PI futexes [3]
06a9ec29
TG
667 */
668 if (unlikely(!pi_state))
669 return -EINVAL;
670
627371d7 671 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a
TG
672
673 /*
efccdcdb 674 * Handle the owner died case:
59647b6a 675 */
efccdcdb 676 if (uval & FUTEX_OWNER_DIED) {
59647b6a 677 /*
efccdcdb
TG
678 * exit_pi_state_list sets owner to NULL and
679 * wakes the topmost waiter. The task which
680 * acquires the pi_state->rt_mutex will fixup
681 * owner.
59647b6a 682 */
efccdcdb
TG
683 if (!pi_state->owner) {
684 /*
685 * No pi state owner, but the user
686 * space TID is not 0. Inconsistent
687 * state. [5]
688 */
689 if (pid)
690 return -EINVAL;
691 /*
692 * Take a ref on the state and
693 * return. [4]
694 */
695 goto out_state;
696 }
697
698 /*
699 * If TID is 0, then either the dying owner
700 * has not yet executed exit_pi_state_list()
701 * or some waiter acquired the rtmutex in the
702 * pi state, but did not yet fixup the TID in
703 * user space.
704 *
705 * Take a ref on the state and return. [6]
706 */
707 if (!pid)
708 goto out_state;
709 } else {
710 /*
711 * If the owner died bit is not set,
712 * then the pi_state must have an
713 * owner. [7]
714 */
715 if (!pi_state->owner)
59647b6a
TG
716 return -EINVAL;
717 }
627371d7 718
cabef9fe 719 /*
efccdcdb
TG
720 * Bail out if user space manipulated the
721 * futex value. If pi state exists then the
722 * owner TID must be the same as the user
723 * space TID. [9/10]
cabef9fe 724 */
efccdcdb
TG
725 if (pid != task_pid_vnr(pi_state->owner))
726 return -EINVAL;
cabef9fe 727
efccdcdb 728 out_state:
c87e2837 729 atomic_inc(&pi_state->refcount);
d0aa7a70 730 *ps = pi_state;
c87e2837
IM
731 return 0;
732 }
733 }
734
735 /*
e3f2ddea 736 * We are the first waiter - try to look up the real owner and attach
efccdcdb 737 * the new pi_state to it, but bail out when TID = 0 [1]
c87e2837 738 */
778e9a9c 739 if (!pid)
e3f2ddea 740 return -ESRCH;
c87e2837 741 p = futex_find_get_task(pid);
7a0ea09a
MH
742 if (!p)
743 return -ESRCH;
778e9a9c 744
452d7fea
TG
745 if (!p->mm) {
746 put_task_struct(p);
747 return -EPERM;
748 }
749
778e9a9c
AK
750 /*
751 * We need to look at the task state flags to figure out,
752 * whether the task is exiting. To protect against the do_exit
753 * change of the task flags, we do this protected by
754 * p->pi_lock:
755 */
1d615482 756 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
757 if (unlikely(p->flags & PF_EXITING)) {
758 /*
759 * The task is on the way out. When PF_EXITPIDONE is
760 * set, we know that the task has finished the
761 * cleanup:
762 */
763 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
764
1d615482 765 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
766 put_task_struct(p);
767 return ret;
768 }
c87e2837 769
efccdcdb
TG
770 /*
771 * No existing pi state. First waiter. [2]
772 */
c87e2837
IM
773 pi_state = alloc_pi_state();
774
775 /*
776 * Initialize the pi_mutex in locked state and make 'p'
777 * the owner of it:
778 */
779 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
780
781 /* Store the key for possible exit cleanups: */
d0aa7a70 782 pi_state->key = *key;
c87e2837 783
627371d7 784 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
785 list_add(&pi_state->list, &p->pi_state_list);
786 pi_state->owner = p;
1d615482 787 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
788
789 put_task_struct(p);
790
d0aa7a70 791 *ps = pi_state;
c87e2837
IM
792
793 return 0;
794}
795
1a52084d 796/**
d96ee56c 797 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
798 * @uaddr: the pi futex user address
799 * @hb: the pi futex hash bucket
800 * @key: the futex key associated with uaddr and hb
801 * @ps: the pi_state pointer where we store the result of the
802 * lookup
803 * @task: the task to perform the atomic lock work for. This will
804 * be "current" except in the case of requeue pi.
805 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 806 *
6c23cbbd
RD
807 * Return:
808 * 0 - ready to wait;
809 * 1 - acquired the lock;
1a52084d
DH
810 * <0 - error
811 *
812 * The hb->lock and futex_key refs shall be held by the caller.
813 */
814static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
815 union futex_key *key,
816 struct futex_pi_state **ps,
bab5bc9e 817 struct task_struct *task, int set_waiters)
1a52084d 818{
59fa6245 819 int lock_taken, ret, force_take = 0;
c0c9ed15 820 u32 uval, newval, curval, vpid = task_pid_vnr(task);
1a52084d
DH
821
822retry:
823 ret = lock_taken = 0;
824
825 /*
826 * To avoid races, we attempt to take the lock here again
827 * (by doing a 0 -> TID atomic cmpxchg), while holding all
828 * the locks. It will most likely not succeed.
829 */
c0c9ed15 830 newval = vpid;
bab5bc9e
DH
831 if (set_waiters)
832 newval |= FUTEX_WAITERS;
1a52084d 833
37a9d912 834 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
1a52084d
DH
835 return -EFAULT;
836
837 /*
838 * Detect deadlocks.
839 */
c0c9ed15 840 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
841 return -EDEADLK;
842
843 /*
63d6ad59 844 * Surprise - we got the lock, but we do not trust user space at all.
1a52084d 845 */
63d6ad59
TG
846 if (unlikely(!curval)) {
847 /*
848 * We verify whether there is kernel state for this
849 * futex. If not, we can safely assume, that the 0 ->
850 * TID transition is correct. If state exists, we do
851 * not bother to fixup the user space state as it was
852 * corrupted already.
853 */
854 return futex_top_waiter(hb, key) ? -EINVAL : 1;
855 }
1a52084d
DH
856
857 uval = curval;
858
859 /*
860 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
861 * to wake at the next unlock.
862 */
863 newval = curval | FUTEX_WAITERS;
864
865 /*
59fa6245 866 * Should we force take the futex? See below.
1a52084d 867 */
59fa6245
TG
868 if (unlikely(force_take)) {
869 /*
870 * Keep the OWNER_DIED and the WAITERS bit and set the
871 * new TID value.
872 */
c0c9ed15 873 newval = (curval & ~FUTEX_TID_MASK) | vpid;
59fa6245 874 force_take = 0;
1a52084d
DH
875 lock_taken = 1;
876 }
877
37a9d912 878 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1a52084d
DH
879 return -EFAULT;
880 if (unlikely(curval != uval))
881 goto retry;
882
883 /*
59fa6245 884 * We took the lock due to forced take over.
1a52084d
DH
885 */
886 if (unlikely(lock_taken))
887 return 1;
888
889 /*
890 * We dont have the lock. Look up the PI state (or create it if
891 * we are the first waiter):
892 */
efccdcdb 893 ret = lookup_pi_state(uval, hb, key, ps);
1a52084d
DH
894
895 if (unlikely(ret)) {
896 switch (ret) {
897 case -ESRCH:
898 /*
59fa6245
TG
899 * We failed to find an owner for this
900 * futex. So we have no pi_state to block
901 * on. This can happen in two cases:
902 *
903 * 1) The owner died
904 * 2) A stale FUTEX_WAITERS bit
905 *
906 * Re-read the futex value.
1a52084d
DH
907 */
908 if (get_futex_value_locked(&curval, uaddr))
909 return -EFAULT;
910
911 /*
59fa6245
TG
912 * If the owner died or we have a stale
913 * WAITERS bit the owner TID in the user space
914 * futex is 0.
1a52084d 915 */
59fa6245
TG
916 if (!(curval & FUTEX_TID_MASK)) {
917 force_take = 1;
1a52084d
DH
918 goto retry;
919 }
920 default:
921 break;
922 }
923 }
924
925 return ret;
926}
927
2e12978a
LJ
928/**
929 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
930 * @q: The futex_q to unqueue
931 *
932 * The q->lock_ptr must not be NULL and must be held by the caller.
933 */
934static void __unqueue_futex(struct futex_q *q)
935{
936 struct futex_hash_bucket *hb;
937
29096202
SR
938 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
939 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
940 return;
941
942 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
943 plist_del(&q->list, &hb->chain);
944}
945
1da177e4
LT
946/*
947 * The hash bucket lock must be held when this is called.
948 * Afterwards, the futex_q must not be accessed.
949 */
950static void wake_futex(struct futex_q *q)
951{
f1a11e05
TG
952 struct task_struct *p = q->task;
953
aa10990e
DH
954 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
955 return;
956
1da177e4 957 /*
f1a11e05 958 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
959 * a non-futex wake up happens on another CPU then the task
960 * might exit and p would dereference a non-existing task
f1a11e05
TG
961 * struct. Prevent this by holding a reference on p across the
962 * wake up.
1da177e4 963 */
f1a11e05
TG
964 get_task_struct(p);
965
2e12978a 966 __unqueue_futex(q);
1da177e4 967 /*
f1a11e05
TG
968 * The waiting task can free the futex_q as soon as
969 * q->lock_ptr = NULL is written, without taking any locks. A
970 * memory barrier is required here to prevent the following
971 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 972 */
ccdea2f8 973 smp_wmb();
1da177e4 974 q->lock_ptr = NULL;
f1a11e05
TG
975
976 wake_up_state(p, TASK_NORMAL);
977 put_task_struct(p);
1da177e4
LT
978}
979
c87e2837
IM
980static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
981{
982 struct task_struct *new_owner;
983 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 984 u32 uninitialized_var(curval), newval;
9ad5dabd 985 int ret = 0;
c87e2837
IM
986
987 if (!pi_state)
988 return -EINVAL;
989
51246bfd
TG
990 /*
991 * If current does not own the pi_state then the futex is
992 * inconsistent and user space fiddled with the futex value.
993 */
994 if (pi_state->owner != current)
995 return -EINVAL;
996
d209d74d 997 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
998 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
999
1000 /*
f123c98e
SR
1001 * It is possible that the next waiter (the one that brought
1002 * this owner to the kernel) timed out and is no longer
1003 * waiting on the lock.
c87e2837
IM
1004 */
1005 if (!new_owner)
1006 new_owner = this->task;
1007
1008 /*
9ad5dabd
TG
1009 * We pass it to the next owner. The WAITERS bit is always
1010 * kept enabled while there is PI state around. We cleanup the
1011 * owner died bit, because we are the owner.
c87e2837 1012 */
9ad5dabd 1013 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1014
9ad5dabd
TG
1015 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1016 ret = -EFAULT;
1017 else if (curval != uval)
1018 ret = -EINVAL;
1019 if (ret) {
1020 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1021 return ret;
e3f2ddea 1022 }
c87e2837 1023
1d615482 1024 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
1025 WARN_ON(list_empty(&pi_state->list));
1026 list_del_init(&pi_state->list);
1d615482 1027 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 1028
1d615482 1029 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 1030 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1031 list_add(&pi_state->list, &new_owner->pi_state_list);
1032 pi_state->owner = new_owner;
1d615482 1033 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 1034
d209d74d 1035 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1036 rt_mutex_unlock(&pi_state->pi_mutex);
1037
1038 return 0;
1039}
1040
1041static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1042{
7cfdaf38 1043 u32 uninitialized_var(oldval);
c87e2837
IM
1044
1045 /*
1046 * There is no waiter, so we unlock the futex. The owner died
1047 * bit has not to be preserved here. We are the owner:
1048 */
37a9d912
ML
1049 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1050 return -EFAULT;
c87e2837
IM
1051 if (oldval != uval)
1052 return -EAGAIN;
1053
1054 return 0;
1055}
1056
8b8f319f
IM
1057/*
1058 * Express the locking dependencies for lockdep:
1059 */
1060static inline void
1061double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1062{
1063 if (hb1 <= hb2) {
1064 spin_lock(&hb1->lock);
1065 if (hb1 < hb2)
1066 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1067 } else { /* hb1 > hb2 */
1068 spin_lock(&hb2->lock);
1069 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1070 }
1071}
1072
5eb3dc62
DH
1073static inline void
1074double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1075{
f061d351 1076 spin_unlock(&hb1->lock);
88f502fe
IM
1077 if (hb1 != hb2)
1078 spin_unlock(&hb2->lock);
5eb3dc62
DH
1079}
1080
1da177e4 1081/*
b2d0994b 1082 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1083 */
b41277dc
DH
1084static int
1085futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1086{
e2970f2f 1087 struct futex_hash_bucket *hb;
1da177e4 1088 struct futex_q *this, *next;
ec92d082 1089 struct plist_head *head;
38d47c1b 1090 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
1091 int ret;
1092
cd689985
TG
1093 if (!bitset)
1094 return -EINVAL;
1095
9ea71503 1096 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1097 if (unlikely(ret != 0))
1098 goto out;
1099
e2970f2f
IM
1100 hb = hash_futex(&key);
1101 spin_lock(&hb->lock);
1102 head = &hb->chain;
1da177e4 1103
ec92d082 1104 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 1105 if (match_futex (&this->key, &key)) {
52400ba9 1106 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1107 ret = -EINVAL;
1108 break;
1109 }
cd689985
TG
1110
1111 /* Check if one of the bits is set in both bitsets */
1112 if (!(this->bitset & bitset))
1113 continue;
1114
1da177e4
LT
1115 wake_futex(this);
1116 if (++ret >= nr_wake)
1117 break;
1118 }
1119 }
1120
e2970f2f 1121 spin_unlock(&hb->lock);
ae791a2d 1122 put_futex_key(&key);
42d35d48 1123out:
1da177e4
LT
1124 return ret;
1125}
1126
4732efbe
JJ
1127/*
1128 * Wake up all waiters hashed on the physical page that is mapped
1129 * to this virtual address:
1130 */
e2970f2f 1131static int
b41277dc 1132futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1133 int nr_wake, int nr_wake2, int op)
4732efbe 1134{
38d47c1b 1135 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1136 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1137 struct plist_head *head;
4732efbe 1138 struct futex_q *this, *next;
e4dc5b7a 1139 int ret, op_ret;
4732efbe 1140
e4dc5b7a 1141retry:
9ea71503 1142 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1143 if (unlikely(ret != 0))
1144 goto out;
9ea71503 1145 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1146 if (unlikely(ret != 0))
42d35d48 1147 goto out_put_key1;
4732efbe 1148
e2970f2f
IM
1149 hb1 = hash_futex(&key1);
1150 hb2 = hash_futex(&key2);
4732efbe 1151
e4dc5b7a 1152retry_private:
eaaea803 1153 double_lock_hb(hb1, hb2);
e2970f2f 1154 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1155 if (unlikely(op_ret < 0)) {
4732efbe 1156
5eb3dc62 1157 double_unlock_hb(hb1, hb2);
4732efbe 1158
7ee1dd3f 1159#ifndef CONFIG_MMU
e2970f2f
IM
1160 /*
1161 * we don't get EFAULT from MMU faults if we don't have an MMU,
1162 * but we might get them from range checking
1163 */
7ee1dd3f 1164 ret = op_ret;
42d35d48 1165 goto out_put_keys;
7ee1dd3f
DH
1166#endif
1167
796f8d9b
DG
1168 if (unlikely(op_ret != -EFAULT)) {
1169 ret = op_ret;
42d35d48 1170 goto out_put_keys;
796f8d9b
DG
1171 }
1172
d0725992 1173 ret = fault_in_user_writeable(uaddr2);
4732efbe 1174 if (ret)
de87fcc1 1175 goto out_put_keys;
4732efbe 1176
b41277dc 1177 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1178 goto retry_private;
1179
ae791a2d
TG
1180 put_futex_key(&key2);
1181 put_futex_key(&key1);
e4dc5b7a 1182 goto retry;
4732efbe
JJ
1183 }
1184
e2970f2f 1185 head = &hb1->chain;
4732efbe 1186
ec92d082 1187 plist_for_each_entry_safe(this, next, head, list) {
4732efbe 1188 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1189 if (this->pi_state || this->rt_waiter) {
1190 ret = -EINVAL;
1191 goto out_unlock;
1192 }
4732efbe
JJ
1193 wake_futex(this);
1194 if (++ret >= nr_wake)
1195 break;
1196 }
1197 }
1198
1199 if (op_ret > 0) {
e2970f2f 1200 head = &hb2->chain;
4732efbe
JJ
1201
1202 op_ret = 0;
ec92d082 1203 plist_for_each_entry_safe(this, next, head, list) {
4732efbe 1204 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1205 if (this->pi_state || this->rt_waiter) {
1206 ret = -EINVAL;
1207 goto out_unlock;
1208 }
4732efbe
JJ
1209 wake_futex(this);
1210 if (++op_ret >= nr_wake2)
1211 break;
1212 }
1213 }
1214 ret += op_ret;
1215 }
1216
aa10990e 1217out_unlock:
5eb3dc62 1218 double_unlock_hb(hb1, hb2);
42d35d48 1219out_put_keys:
ae791a2d 1220 put_futex_key(&key2);
42d35d48 1221out_put_key1:
ae791a2d 1222 put_futex_key(&key1);
42d35d48 1223out:
4732efbe
JJ
1224 return ret;
1225}
1226
9121e478
DH
1227/**
1228 * requeue_futex() - Requeue a futex_q from one hb to another
1229 * @q: the futex_q to requeue
1230 * @hb1: the source hash_bucket
1231 * @hb2: the target hash_bucket
1232 * @key2: the new key for the requeued futex_q
1233 */
1234static inline
1235void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1236 struct futex_hash_bucket *hb2, union futex_key *key2)
1237{
1238
1239 /*
1240 * If key1 and key2 hash to the same bucket, no need to
1241 * requeue.
1242 */
1243 if (likely(&hb1->chain != &hb2->chain)) {
1244 plist_del(&q->list, &hb1->chain);
1245 plist_add(&q->list, &hb2->chain);
1246 q->lock_ptr = &hb2->lock;
9121e478
DH
1247 }
1248 get_futex_key_refs(key2);
1249 q->key = *key2;
1250}
1251
52400ba9
DH
1252/**
1253 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1254 * @q: the futex_q
1255 * @key: the key of the requeue target futex
1256 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1257 *
1258 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1259 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1260 * to the requeue target futex so the waiter can detect the wakeup on the right
1261 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1262 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1263 * to protect access to the pi_state to fixup the owner later. Must be called
1264 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1265 */
1266static inline
beda2c7e
DH
1267void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1268 struct futex_hash_bucket *hb)
52400ba9 1269{
52400ba9
DH
1270 get_futex_key_refs(key);
1271 q->key = *key;
1272
2e12978a 1273 __unqueue_futex(q);
52400ba9
DH
1274
1275 WARN_ON(!q->rt_waiter);
1276 q->rt_waiter = NULL;
1277
beda2c7e 1278 q->lock_ptr = &hb->lock;
beda2c7e 1279
f1a11e05 1280 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1281}
1282
1283/**
1284 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1285 * @pifutex: the user address of the to futex
1286 * @hb1: the from futex hash bucket, must be locked by the caller
1287 * @hb2: the to futex hash bucket, must be locked by the caller
1288 * @key1: the from futex key
1289 * @key2: the to futex key
1290 * @ps: address to store the pi_state pointer
1291 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1292 *
1293 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1294 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1295 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1296 * hb1 and hb2 must be held by the caller.
52400ba9 1297 *
6c23cbbd
RD
1298 * Return:
1299 * 0 - failed to acquire the lock atomically;
cabef9fe 1300 * >0 - acquired the lock, return value is vpid of the top_waiter
52400ba9
DH
1301 * <0 - error
1302 */
1303static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1304 struct futex_hash_bucket *hb1,
1305 struct futex_hash_bucket *hb2,
1306 union futex_key *key1, union futex_key *key2,
bab5bc9e 1307 struct futex_pi_state **ps, int set_waiters)
52400ba9 1308{
bab5bc9e 1309 struct futex_q *top_waiter = NULL;
52400ba9 1310 u32 curval;
cabef9fe 1311 int ret, vpid;
52400ba9
DH
1312
1313 if (get_futex_value_locked(&curval, pifutex))
1314 return -EFAULT;
1315
bab5bc9e
DH
1316 /*
1317 * Find the top_waiter and determine if there are additional waiters.
1318 * If the caller intends to requeue more than 1 waiter to pifutex,
1319 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1320 * as we have means to handle the possible fault. If not, don't set
1321 * the bit unecessarily as it will force the subsequent unlock to enter
1322 * the kernel.
1323 */
52400ba9
DH
1324 top_waiter = futex_top_waiter(hb1, key1);
1325
1326 /* There are no waiters, nothing for us to do. */
1327 if (!top_waiter)
1328 return 0;
1329
84bc4af5
DH
1330 /* Ensure we requeue to the expected futex. */
1331 if (!match_futex(top_waiter->requeue_pi_key, key2))
1332 return -EINVAL;
1333
52400ba9 1334 /*
bab5bc9e
DH
1335 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1336 * the contended case or if set_waiters is 1. The pi_state is returned
1337 * in ps in contended cases.
52400ba9 1338 */
cabef9fe 1339 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1340 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1341 set_waiters);
cabef9fe 1342 if (ret == 1) {
beda2c7e 1343 requeue_pi_wake_futex(top_waiter, key2, hb2);
cabef9fe
TG
1344 return vpid;
1345 }
52400ba9
DH
1346 return ret;
1347}
1348
1349/**
1350 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1351 * @uaddr1: source futex user address
b41277dc 1352 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1353 * @uaddr2: target futex user address
1354 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1355 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1356 * @cmpval: @uaddr1 expected value (or %NULL)
1357 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1358 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1359 *
1360 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1361 * uaddr2 atomically on behalf of the top waiter.
1362 *
6c23cbbd
RD
1363 * Return:
1364 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1365 * <0 - on error
1da177e4 1366 */
b41277dc
DH
1367static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1368 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1369 u32 *cmpval, int requeue_pi)
1da177e4 1370{
38d47c1b 1371 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1372 int drop_count = 0, task_count = 0, ret;
1373 struct futex_pi_state *pi_state = NULL;
e2970f2f 1374 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1375 struct plist_head *head1;
1da177e4 1376 struct futex_q *this, *next;
52400ba9
DH
1377
1378 if (requeue_pi) {
b58623fb
TG
1379 /*
1380 * Requeue PI only works on two distinct uaddrs. This
1381 * check is only valid for private futexes. See below.
1382 */
1383 if (uaddr1 == uaddr2)
1384 return -EINVAL;
1385
52400ba9
DH
1386 /*
1387 * requeue_pi requires a pi_state, try to allocate it now
1388 * without any locks in case it fails.
1389 */
1390 if (refill_pi_state_cache())
1391 return -ENOMEM;
1392 /*
1393 * requeue_pi must wake as many tasks as it can, up to nr_wake
1394 * + nr_requeue, since it acquires the rt_mutex prior to
1395 * returning to userspace, so as to not leave the rt_mutex with
1396 * waiters and no owner. However, second and third wake-ups
1397 * cannot be predicted as they involve race conditions with the
1398 * first wake and a fault while looking up the pi_state. Both
1399 * pthread_cond_signal() and pthread_cond_broadcast() should
1400 * use nr_wake=1.
1401 */
1402 if (nr_wake != 1)
1403 return -EINVAL;
1404 }
1da177e4 1405
42d35d48 1406retry:
52400ba9
DH
1407 if (pi_state != NULL) {
1408 /*
1409 * We will have to lookup the pi_state again, so free this one
1410 * to keep the accounting correct.
1411 */
1412 free_pi_state(pi_state);
1413 pi_state = NULL;
1414 }
1415
9ea71503 1416 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1417 if (unlikely(ret != 0))
1418 goto out;
9ea71503
SB
1419 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1420 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1421 if (unlikely(ret != 0))
42d35d48 1422 goto out_put_key1;
1da177e4 1423
b58623fb
TG
1424 /*
1425 * The check above which compares uaddrs is not sufficient for
1426 * shared futexes. We need to compare the keys:
1427 */
1428 if (requeue_pi && match_futex(&key1, &key2)) {
1429 ret = -EINVAL;
1430 goto out_put_keys;
1431 }
1432
e2970f2f
IM
1433 hb1 = hash_futex(&key1);
1434 hb2 = hash_futex(&key2);
1da177e4 1435
e4dc5b7a 1436retry_private:
8b8f319f 1437 double_lock_hb(hb1, hb2);
1da177e4 1438
e2970f2f
IM
1439 if (likely(cmpval != NULL)) {
1440 u32 curval;
1da177e4 1441
e2970f2f 1442 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1443
1444 if (unlikely(ret)) {
5eb3dc62 1445 double_unlock_hb(hb1, hb2);
1da177e4 1446
e2970f2f 1447 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1448 if (ret)
1449 goto out_put_keys;
1da177e4 1450
b41277dc 1451 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1452 goto retry_private;
1da177e4 1453
ae791a2d
TG
1454 put_futex_key(&key2);
1455 put_futex_key(&key1);
e4dc5b7a 1456 goto retry;
1da177e4 1457 }
e2970f2f 1458 if (curval != *cmpval) {
1da177e4
LT
1459 ret = -EAGAIN;
1460 goto out_unlock;
1461 }
1462 }
1463
52400ba9 1464 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1465 /*
1466 * Attempt to acquire uaddr2 and wake the top waiter. If we
1467 * intend to requeue waiters, force setting the FUTEX_WAITERS
1468 * bit. We force this here where we are able to easily handle
1469 * faults rather in the requeue loop below.
1470 */
52400ba9 1471 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1472 &key2, &pi_state, nr_requeue);
52400ba9
DH
1473
1474 /*
1475 * At this point the top_waiter has either taken uaddr2 or is
1476 * waiting on it. If the former, then the pi_state will not
1477 * exist yet, look it up one more time to ensure we have a
cabef9fe
TG
1478 * reference to it. If the lock was taken, ret contains the
1479 * vpid of the top waiter task.
52400ba9 1480 */
cabef9fe 1481 if (ret > 0) {
52400ba9 1482 WARN_ON(pi_state);
89061d3d 1483 drop_count++;
52400ba9 1484 task_count++;
cabef9fe
TG
1485 /*
1486 * If we acquired the lock, then the user
1487 * space value of uaddr2 should be vpid. It
1488 * cannot be changed by the top waiter as it
1489 * is blocked on hb2 lock if it tries to do
1490 * so. If something fiddled with it behind our
1491 * back the pi state lookup might unearth
1492 * it. So we rather use the known value than
1493 * rereading and handing potential crap to
1494 * lookup_pi_state.
1495 */
efccdcdb 1496 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
52400ba9
DH
1497 }
1498
1499 switch (ret) {
1500 case 0:
1501 break;
1502 case -EFAULT:
1503 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1504 put_futex_key(&key2);
1505 put_futex_key(&key1);
d0725992 1506 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1507 if (!ret)
1508 goto retry;
1509 goto out;
1510 case -EAGAIN:
1511 /* The owner was exiting, try again. */
1512 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1513 put_futex_key(&key2);
1514 put_futex_key(&key1);
52400ba9
DH
1515 cond_resched();
1516 goto retry;
1517 default:
1518 goto out_unlock;
1519 }
1520 }
1521
e2970f2f 1522 head1 = &hb1->chain;
ec92d082 1523 plist_for_each_entry_safe(this, next, head1, list) {
52400ba9
DH
1524 if (task_count - nr_wake >= nr_requeue)
1525 break;
1526
1527 if (!match_futex(&this->key, &key1))
1da177e4 1528 continue;
52400ba9 1529
392741e0
DH
1530 /*
1531 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1532 * be paired with each other and no other futex ops.
aa10990e
DH
1533 *
1534 * We should never be requeueing a futex_q with a pi_state,
1535 * which is awaiting a futex_unlock_pi().
392741e0
DH
1536 */
1537 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1538 (!requeue_pi && this->rt_waiter) ||
1539 this->pi_state) {
392741e0
DH
1540 ret = -EINVAL;
1541 break;
1542 }
52400ba9
DH
1543
1544 /*
1545 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1546 * lock, we already woke the top_waiter. If not, it will be
1547 * woken by futex_unlock_pi().
1548 */
1549 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1550 wake_futex(this);
52400ba9
DH
1551 continue;
1552 }
1da177e4 1553
84bc4af5
DH
1554 /* Ensure we requeue to the expected futex for requeue_pi. */
1555 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1556 ret = -EINVAL;
1557 break;
1558 }
1559
52400ba9
DH
1560 /*
1561 * Requeue nr_requeue waiters and possibly one more in the case
1562 * of requeue_pi if we couldn't acquire the lock atomically.
1563 */
1564 if (requeue_pi) {
1565 /* Prepare the waiter to take the rt_mutex. */
1566 atomic_inc(&pi_state->refcount);
1567 this->pi_state = pi_state;
1568 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1569 this->rt_waiter,
1570 this->task, 1);
1571 if (ret == 1) {
1572 /* We got the lock. */
beda2c7e 1573 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1574 drop_count++;
52400ba9
DH
1575 continue;
1576 } else if (ret) {
1577 /* -EDEADLK */
1578 this->pi_state = NULL;
1579 free_pi_state(pi_state);
1580 goto out_unlock;
1581 }
1da177e4 1582 }
52400ba9
DH
1583 requeue_futex(this, hb1, hb2, &key2);
1584 drop_count++;
1da177e4
LT
1585 }
1586
1587out_unlock:
5eb3dc62 1588 double_unlock_hb(hb1, hb2);
1da177e4 1589
cd84a42f
DH
1590 /*
1591 * drop_futex_key_refs() must be called outside the spinlocks. During
1592 * the requeue we moved futex_q's from the hash bucket at key1 to the
1593 * one at key2 and updated their key pointer. We no longer need to
1594 * hold the references to key1.
1595 */
1da177e4 1596 while (--drop_count >= 0)
9adef58b 1597 drop_futex_key_refs(&key1);
1da177e4 1598
42d35d48 1599out_put_keys:
ae791a2d 1600 put_futex_key(&key2);
42d35d48 1601out_put_key1:
ae791a2d 1602 put_futex_key(&key1);
42d35d48 1603out:
52400ba9
DH
1604 if (pi_state != NULL)
1605 free_pi_state(pi_state);
1606 return ret ? ret : task_count;
1da177e4
LT
1607}
1608
1609/* The key must be already stored in q->key. */
82af7aca 1610static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1611 __acquires(&hb->lock)
1da177e4 1612{
e2970f2f 1613 struct futex_hash_bucket *hb;
1da177e4 1614
e2970f2f
IM
1615 hb = hash_futex(&q->key);
1616 q->lock_ptr = &hb->lock;
1da177e4 1617
e2970f2f
IM
1618 spin_lock(&hb->lock);
1619 return hb;
1da177e4
LT
1620}
1621
d40d65c8
DH
1622static inline void
1623queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1624 __releases(&hb->lock)
d40d65c8
DH
1625{
1626 spin_unlock(&hb->lock);
d40d65c8
DH
1627}
1628
1629/**
1630 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1631 * @q: The futex_q to enqueue
1632 * @hb: The destination hash bucket
1633 *
1634 * The hb->lock must be held by the caller, and is released here. A call to
1635 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1636 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1637 * or nothing if the unqueue is done as part of the wake process and the unqueue
1638 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1639 * an example).
1640 */
82af7aca 1641static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1642 __releases(&hb->lock)
1da177e4 1643{
ec92d082
PP
1644 int prio;
1645
1646 /*
1647 * The priority used to register this element is
1648 * - either the real thread-priority for the real-time threads
1649 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1650 * - or MAX_RT_PRIO for non-RT threads.
1651 * Thus, all RT-threads are woken first in priority order, and
1652 * the others are woken last, in FIFO order.
1653 */
1654 prio = min(current->normal_prio, MAX_RT_PRIO);
1655
1656 plist_node_init(&q->list, prio);
ec92d082 1657 plist_add(&q->list, &hb->chain);
c87e2837 1658 q->task = current;
e2970f2f 1659 spin_unlock(&hb->lock);
1da177e4
LT
1660}
1661
d40d65c8
DH
1662/**
1663 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1664 * @q: The futex_q to unqueue
1665 *
1666 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1667 * be paired with exactly one earlier call to queue_me().
1668 *
6c23cbbd
RD
1669 * Return:
1670 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 1671 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1672 */
1da177e4
LT
1673static int unqueue_me(struct futex_q *q)
1674{
1da177e4 1675 spinlock_t *lock_ptr;
e2970f2f 1676 int ret = 0;
1da177e4
LT
1677
1678 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1679retry:
1da177e4 1680 lock_ptr = q->lock_ptr;
e91467ec 1681 barrier();
c80544dc 1682 if (lock_ptr != NULL) {
1da177e4
LT
1683 spin_lock(lock_ptr);
1684 /*
1685 * q->lock_ptr can change between reading it and
1686 * spin_lock(), causing us to take the wrong lock. This
1687 * corrects the race condition.
1688 *
1689 * Reasoning goes like this: if we have the wrong lock,
1690 * q->lock_ptr must have changed (maybe several times)
1691 * between reading it and the spin_lock(). It can
1692 * change again after the spin_lock() but only if it was
1693 * already changed before the spin_lock(). It cannot,
1694 * however, change back to the original value. Therefore
1695 * we can detect whether we acquired the correct lock.
1696 */
1697 if (unlikely(lock_ptr != q->lock_ptr)) {
1698 spin_unlock(lock_ptr);
1699 goto retry;
1700 }
2e12978a 1701 __unqueue_futex(q);
c87e2837
IM
1702
1703 BUG_ON(q->pi_state);
1704
1da177e4
LT
1705 spin_unlock(lock_ptr);
1706 ret = 1;
1707 }
1708
9adef58b 1709 drop_futex_key_refs(&q->key);
1da177e4
LT
1710 return ret;
1711}
1712
c87e2837
IM
1713/*
1714 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1715 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1716 * and dropped here.
c87e2837 1717 */
d0aa7a70 1718static void unqueue_me_pi(struct futex_q *q)
15e408cd 1719 __releases(q->lock_ptr)
c87e2837 1720{
2e12978a 1721 __unqueue_futex(q);
c87e2837
IM
1722
1723 BUG_ON(!q->pi_state);
1724 free_pi_state(q->pi_state);
1725 q->pi_state = NULL;
1726
d0aa7a70 1727 spin_unlock(q->lock_ptr);
c87e2837
IM
1728}
1729
d0aa7a70 1730/*
cdf71a10 1731 * Fixup the pi_state owner with the new owner.
d0aa7a70 1732 *
778e9a9c
AK
1733 * Must be called with hash bucket lock held and mm->sem held for non
1734 * private futexes.
d0aa7a70 1735 */
778e9a9c 1736static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1737 struct task_struct *newowner)
d0aa7a70 1738{
cdf71a10 1739 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1740 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1741 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 1742 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 1743 int ret;
d0aa7a70
PP
1744
1745 /* Owner died? */
1b7558e4
TG
1746 if (!pi_state->owner)
1747 newtid |= FUTEX_OWNER_DIED;
1748
1749 /*
1750 * We are here either because we stole the rtmutex from the
8161239a
LJ
1751 * previous highest priority waiter or we are the highest priority
1752 * waiter but failed to get the rtmutex the first time.
1753 * We have to replace the newowner TID in the user space variable.
1754 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 1755 *
b2d0994b
DH
1756 * Note: We write the user space value _before_ changing the pi_state
1757 * because we can fault here. Imagine swapped out pages or a fork
1758 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1759 *
1760 * Modifying pi_state _before_ the user space value would
1761 * leave the pi_state in an inconsistent state when we fault
1762 * here, because we need to drop the hash bucket lock to
1763 * handle the fault. This might be observed in the PID check
1764 * in lookup_pi_state.
1765 */
1766retry:
1767 if (get_futex_value_locked(&uval, uaddr))
1768 goto handle_fault;
1769
1770 while (1) {
1771 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1772
37a9d912 1773 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
1774 goto handle_fault;
1775 if (curval == uval)
1776 break;
1777 uval = curval;
1778 }
1779
1780 /*
1781 * We fixed up user space. Now we need to fix the pi_state
1782 * itself.
1783 */
d0aa7a70 1784 if (pi_state->owner != NULL) {
1d615482 1785 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1786 WARN_ON(list_empty(&pi_state->list));
1787 list_del_init(&pi_state->list);
1d615482 1788 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1789 }
d0aa7a70 1790
cdf71a10 1791 pi_state->owner = newowner;
d0aa7a70 1792
1d615482 1793 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1794 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1795 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1796 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1797 return 0;
d0aa7a70 1798
d0aa7a70 1799 /*
1b7558e4 1800 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
1801 * lock here. That gives the other task (either the highest priority
1802 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
1803 * chance to try the fixup of the pi_state. So once we are
1804 * back from handling the fault we need to check the pi_state
1805 * after reacquiring the hash bucket lock and before trying to
1806 * do another fixup. When the fixup has been done already we
1807 * simply return.
d0aa7a70 1808 */
1b7558e4
TG
1809handle_fault:
1810 spin_unlock(q->lock_ptr);
778e9a9c 1811
d0725992 1812 ret = fault_in_user_writeable(uaddr);
778e9a9c 1813
1b7558e4 1814 spin_lock(q->lock_ptr);
778e9a9c 1815
1b7558e4
TG
1816 /*
1817 * Check if someone else fixed it for us:
1818 */
1819 if (pi_state->owner != oldowner)
1820 return 0;
1821
1822 if (ret)
1823 return ret;
1824
1825 goto retry;
d0aa7a70
PP
1826}
1827
72c1bbf3 1828static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1829
dd973998
DH
1830/**
1831 * fixup_owner() - Post lock pi_state and corner case management
1832 * @uaddr: user address of the futex
dd973998
DH
1833 * @q: futex_q (contains pi_state and access to the rt_mutex)
1834 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1835 *
1836 * After attempting to lock an rt_mutex, this function is called to cleanup
1837 * the pi_state owner as well as handle race conditions that may allow us to
1838 * acquire the lock. Must be called with the hb lock held.
1839 *
6c23cbbd
RD
1840 * Return:
1841 * 1 - success, lock taken;
1842 * 0 - success, lock not taken;
dd973998
DH
1843 * <0 - on error (-EFAULT)
1844 */
ae791a2d 1845static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
1846{
1847 struct task_struct *owner;
1848 int ret = 0;
1849
1850 if (locked) {
1851 /*
1852 * Got the lock. We might not be the anticipated owner if we
1853 * did a lock-steal - fix up the PI-state in that case:
1854 */
1855 if (q->pi_state->owner != current)
ae791a2d 1856 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
1857 goto out;
1858 }
1859
1860 /*
1861 * Catch the rare case, where the lock was released when we were on the
1862 * way back before we locked the hash bucket.
1863 */
1864 if (q->pi_state->owner == current) {
1865 /*
1866 * Try to get the rt_mutex now. This might fail as some other
1867 * task acquired the rt_mutex after we removed ourself from the
1868 * rt_mutex waiters list.
1869 */
1870 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1871 locked = 1;
1872 goto out;
1873 }
1874
1875 /*
1876 * pi_state is incorrect, some other task did a lock steal and
1877 * we returned due to timeout or signal without taking the
8161239a 1878 * rt_mutex. Too late.
dd973998 1879 */
8161239a 1880 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 1881 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
1882 if (!owner)
1883 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1884 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 1885 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
1886 goto out;
1887 }
1888
1889 /*
1890 * Paranoia check. If we did not take the lock, then we should not be
8161239a 1891 * the owner of the rt_mutex.
dd973998
DH
1892 */
1893 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1894 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1895 "pi-state %p\n", ret,
1896 q->pi_state->pi_mutex.owner,
1897 q->pi_state->owner);
1898
1899out:
1900 return ret ? ret : locked;
1901}
1902
ca5f9524
DH
1903/**
1904 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1905 * @hb: the futex hash bucket, must be locked by the caller
1906 * @q: the futex_q to queue up on
1907 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1908 */
1909static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1910 struct hrtimer_sleeper *timeout)
ca5f9524 1911{
9beba3c5
DH
1912 /*
1913 * The task state is guaranteed to be set before another task can
1914 * wake it. set_current_state() is implemented using set_mb() and
1915 * queue_me() calls spin_unlock() upon completion, both serializing
1916 * access to the hash list and forcing another memory barrier.
1917 */
f1a11e05 1918 set_current_state(TASK_INTERRUPTIBLE);
0729e196 1919 queue_me(q, hb);
ca5f9524
DH
1920
1921 /* Arm the timer */
1922 if (timeout) {
1923 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1924 if (!hrtimer_active(&timeout->timer))
1925 timeout->task = NULL;
1926 }
1927
1928 /*
0729e196
DH
1929 * If we have been removed from the hash list, then another task
1930 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
1931 */
1932 if (likely(!plist_node_empty(&q->list))) {
1933 /*
1934 * If the timer has already expired, current will already be
1935 * flagged for rescheduling. Only call schedule if there
1936 * is no timeout, or if it has yet to expire.
1937 */
1938 if (!timeout || timeout->task)
6fa3eb70 1939 freezable_schedule();
ca5f9524
DH
1940 }
1941 __set_current_state(TASK_RUNNING);
1942}
1943
f801073f
DH
1944/**
1945 * futex_wait_setup() - Prepare to wait on a futex
1946 * @uaddr: the futex userspace address
1947 * @val: the expected value
b41277dc 1948 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
1949 * @q: the associated futex_q
1950 * @hb: storage for hash_bucket pointer to be returned to caller
1951 *
1952 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1953 * compare it with the expected value. Handle atomic faults internally.
1954 * Return with the hb lock held and a q.key reference on success, and unlocked
1955 * with no q.key reference on failure.
1956 *
6c23cbbd
RD
1957 * Return:
1958 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 1959 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 1960 */
b41277dc 1961static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 1962 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 1963{
e2970f2f
IM
1964 u32 uval;
1965 int ret;
1da177e4 1966
1da177e4 1967 /*
b2d0994b 1968 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1969 * Order is important:
1970 *
1971 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1972 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1973 *
1974 * The basic logical guarantee of a futex is that it blocks ONLY
1975 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
1976 * any cond. If we locked the hash-bucket after testing *uaddr, that
1977 * would open a race condition where we could block indefinitely with
1da177e4
LT
1978 * cond(var) false, which would violate the guarantee.
1979 *
8fe8f545
ML
1980 * On the other hand, we insert q and release the hash-bucket only
1981 * after testing *uaddr. This guarantees that futex_wait() will NOT
1982 * absorb a wakeup if *uaddr does not match the desired values
1983 * while the syscall executes.
1da177e4 1984 */
f801073f 1985retry:
9ea71503 1986 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 1987 if (unlikely(ret != 0))
a5a2a0c7 1988 return ret;
f801073f
DH
1989
1990retry_private:
1991 *hb = queue_lock(q);
1992
e2970f2f 1993 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 1994
f801073f
DH
1995 if (ret) {
1996 queue_unlock(q, *hb);
1da177e4 1997
e2970f2f 1998 ret = get_user(uval, uaddr);
e4dc5b7a 1999 if (ret)
f801073f 2000 goto out;
1da177e4 2001
b41277dc 2002 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2003 goto retry_private;
2004
ae791a2d 2005 put_futex_key(&q->key);
e4dc5b7a 2006 goto retry;
1da177e4 2007 }
ca5f9524 2008
f801073f
DH
2009 if (uval != val) {
2010 queue_unlock(q, *hb);
2011 ret = -EWOULDBLOCK;
2fff78c7 2012 }
1da177e4 2013
f801073f
DH
2014out:
2015 if (ret)
ae791a2d 2016 put_futex_key(&q->key);
f801073f
DH
2017 return ret;
2018}
2019
b41277dc
DH
2020static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2021 ktime_t *abs_time, u32 bitset)
f801073f
DH
2022{
2023 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2024 struct restart_block *restart;
2025 struct futex_hash_bucket *hb;
5bdb05f9 2026 struct futex_q q = futex_q_init;
f801073f
DH
2027 int ret;
2028
2029 if (!bitset)
2030 return -EINVAL;
f801073f
DH
2031 q.bitset = bitset;
2032
2033 if (abs_time) {
2034 to = &timeout;
2035
b41277dc
DH
2036 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2037 CLOCK_REALTIME : CLOCK_MONOTONIC,
2038 HRTIMER_MODE_ABS);
f801073f
DH
2039 hrtimer_init_sleeper(to, current);
2040 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2041 current->timer_slack_ns);
2042 }
2043
d58e6576 2044retry:
7ada876a
DH
2045 /*
2046 * Prepare to wait on uaddr. On success, holds hb lock and increments
2047 * q.key refs.
2048 */
b41277dc 2049 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2050 if (ret)
2051 goto out;
2052
ca5f9524 2053 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2054 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2055
2056 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2057 ret = 0;
7ada876a 2058 /* unqueue_me() drops q.key ref */
1da177e4 2059 if (!unqueue_me(&q))
7ada876a 2060 goto out;
2fff78c7 2061 ret = -ETIMEDOUT;
ca5f9524 2062 if (to && !to->task)
7ada876a 2063 goto out;
72c1bbf3 2064
e2970f2f 2065 /*
d58e6576
TG
2066 * We expect signal_pending(current), but we might be the
2067 * victim of a spurious wakeup as well.
e2970f2f 2068 */
7ada876a 2069 if (!signal_pending(current))
d58e6576 2070 goto retry;
d58e6576 2071
2fff78c7 2072 ret = -ERESTARTSYS;
c19384b5 2073 if (!abs_time)
7ada876a 2074 goto out;
1da177e4 2075
2fff78c7
PZ
2076 restart = &current_thread_info()->restart_block;
2077 restart->fn = futex_wait_restart;
a3c74c52 2078 restart->futex.uaddr = uaddr;
2fff78c7
PZ
2079 restart->futex.val = val;
2080 restart->futex.time = abs_time->tv64;
2081 restart->futex.bitset = bitset;
0cd9c649 2082 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2083
2fff78c7
PZ
2084 ret = -ERESTART_RESTARTBLOCK;
2085
42d35d48 2086out:
ca5f9524
DH
2087 if (to) {
2088 hrtimer_cancel(&to->timer);
2089 destroy_hrtimer_on_stack(&to->timer);
2090 }
c87e2837
IM
2091 return ret;
2092}
2093
72c1bbf3
NP
2094
2095static long futex_wait_restart(struct restart_block *restart)
2096{
a3c74c52 2097 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2098 ktime_t t, *tp = NULL;
72c1bbf3 2099
a72188d8
DH
2100 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2101 t.tv64 = restart->futex.time;
2102 tp = &t;
2103 }
72c1bbf3 2104 restart->fn = do_no_restart_syscall;
b41277dc
DH
2105
2106 return (long)futex_wait(uaddr, restart->futex.flags,
2107 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2108}
2109
2110
c87e2837
IM
2111/*
2112 * Userspace tried a 0 -> TID atomic transition of the futex value
2113 * and failed. The kernel side here does the whole locking operation:
2114 * if there are waiters then it will block, it does PI, etc. (Due to
2115 * races the kernel might see a 0 value of the futex too.)
2116 */
b41277dc
DH
2117static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2118 ktime_t *time, int trylock)
c87e2837 2119{
c5780e97 2120 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 2121 struct futex_hash_bucket *hb;
5bdb05f9 2122 struct futex_q q = futex_q_init;
dd973998 2123 int res, ret;
c87e2837
IM
2124
2125 if (refill_pi_state_cache())
2126 return -ENOMEM;
2127
c19384b5 2128 if (time) {
c5780e97 2129 to = &timeout;
237fc6e7
TG
2130 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2131 HRTIMER_MODE_ABS);
c5780e97 2132 hrtimer_init_sleeper(to, current);
cc584b21 2133 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2134 }
2135
42d35d48 2136retry:
9ea71503 2137 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2138 if (unlikely(ret != 0))
42d35d48 2139 goto out;
c87e2837 2140
e4dc5b7a 2141retry_private:
82af7aca 2142 hb = queue_lock(&q);
c87e2837 2143
bab5bc9e 2144 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2145 if (unlikely(ret)) {
778e9a9c 2146 switch (ret) {
1a52084d
DH
2147 case 1:
2148 /* We got the lock. */
2149 ret = 0;
2150 goto out_unlock_put_key;
2151 case -EFAULT:
2152 goto uaddr_faulted;
778e9a9c
AK
2153 case -EAGAIN:
2154 /*
2155 * Task is exiting and we just wait for the
2156 * exit to complete.
2157 */
2158 queue_unlock(&q, hb);
ae791a2d 2159 put_futex_key(&q.key);
778e9a9c
AK
2160 cond_resched();
2161 goto retry;
778e9a9c 2162 default:
42d35d48 2163 goto out_unlock_put_key;
c87e2837 2164 }
c87e2837
IM
2165 }
2166
2167 /*
2168 * Only actually queue now that the atomic ops are done:
2169 */
82af7aca 2170 queue_me(&q, hb);
c87e2837 2171
c87e2837
IM
2172 WARN_ON(!q.pi_state);
2173 /*
2174 * Block on the PI mutex:
2175 */
2176 if (!trylock)
2177 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2178 else {
2179 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2180 /* Fixup the trylock return value: */
2181 ret = ret ? 0 : -EWOULDBLOCK;
2182 }
2183
a99e4e41 2184 spin_lock(q.lock_ptr);
dd973998
DH
2185 /*
2186 * Fixup the pi_state owner and possibly acquire the lock if we
2187 * haven't already.
2188 */
ae791a2d 2189 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2190 /*
2191 * If fixup_owner() returned an error, proprogate that. If it acquired
2192 * the lock, clear our -ETIMEDOUT or -EINTR.
2193 */
2194 if (res)
2195 ret = (res < 0) ? res : 0;
c87e2837 2196
e8f6386c 2197 /*
dd973998
DH
2198 * If fixup_owner() faulted and was unable to handle the fault, unlock
2199 * it and return the fault to userspace.
e8f6386c
DH
2200 */
2201 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2202 rt_mutex_unlock(&q.pi_state->pi_mutex);
2203
778e9a9c
AK
2204 /* Unqueue and drop the lock */
2205 unqueue_me_pi(&q);
c87e2837 2206
5ecb01cf 2207 goto out_put_key;
c87e2837 2208
42d35d48 2209out_unlock_put_key:
c87e2837
IM
2210 queue_unlock(&q, hb);
2211
42d35d48 2212out_put_key:
ae791a2d 2213 put_futex_key(&q.key);
42d35d48 2214out:
237fc6e7
TG
2215 if (to)
2216 destroy_hrtimer_on_stack(&to->timer);
dd973998 2217 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2218
42d35d48 2219uaddr_faulted:
778e9a9c
AK
2220 queue_unlock(&q, hb);
2221
d0725992 2222 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2223 if (ret)
2224 goto out_put_key;
c87e2837 2225
b41277dc 2226 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2227 goto retry_private;
2228
ae791a2d 2229 put_futex_key(&q.key);
e4dc5b7a 2230 goto retry;
c87e2837
IM
2231}
2232
c87e2837
IM
2233/*
2234 * Userspace attempted a TID -> 0 atomic transition, and failed.
2235 * This is the in-kernel slowpath: we look up the PI state (if any),
2236 * and do the rt-mutex unlock.
2237 */
b41277dc 2238static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837
IM
2239{
2240 struct futex_hash_bucket *hb;
2241 struct futex_q *this, *next;
ec92d082 2242 struct plist_head *head;
38d47c1b 2243 union futex_key key = FUTEX_KEY_INIT;
c0c9ed15 2244 u32 uval, vpid = task_pid_vnr(current);
e4dc5b7a 2245 int ret;
c87e2837
IM
2246
2247retry:
2248 if (get_user(uval, uaddr))
2249 return -EFAULT;
2250 /*
2251 * We release only a lock we actually own:
2252 */
c0c9ed15 2253 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2254 return -EPERM;
c87e2837 2255
9ea71503 2256 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
c87e2837
IM
2257 if (unlikely(ret != 0))
2258 goto out;
2259
2260 hb = hash_futex(&key);
2261 spin_lock(&hb->lock);
2262
c87e2837
IM
2263 /*
2264 * To avoid races, try to do the TID -> 0 atomic transition
2265 * again. If it succeeds then we can return without waking
9ad5dabd
TG
2266 * anyone else up. We only try this if neither the waiters nor
2267 * the owner died bit are set.
c87e2837 2268 */
9ad5dabd 2269 if (!(uval & ~FUTEX_TID_MASK) &&
37a9d912 2270 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
c87e2837
IM
2271 goto pi_faulted;
2272 /*
2273 * Rare case: we managed to release the lock atomically,
2274 * no need to wake anyone else up:
2275 */
c0c9ed15 2276 if (unlikely(uval == vpid))
c87e2837
IM
2277 goto out_unlock;
2278
2279 /*
2280 * Ok, other tasks may need to be woken up - check waiters
2281 * and do the wakeup if necessary:
2282 */
2283 head = &hb->chain;
2284
ec92d082 2285 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
2286 if (!match_futex (&this->key, &key))
2287 continue;
2288 ret = wake_futex_pi(uaddr, uval, this);
2289 /*
2290 * The atomic access to the futex value
2291 * generated a pagefault, so retry the
2292 * user-access and the wakeup:
2293 */
2294 if (ret == -EFAULT)
2295 goto pi_faulted;
2296 goto out_unlock;
2297 }
2298 /*
2299 * No waiters - kernel unlocks the futex:
2300 */
9ad5dabd
TG
2301 ret = unlock_futex_pi(uaddr, uval);
2302 if (ret == -EFAULT)
2303 goto pi_faulted;
c87e2837
IM
2304
2305out_unlock:
2306 spin_unlock(&hb->lock);
ae791a2d 2307 put_futex_key(&key);
c87e2837 2308
42d35d48 2309out:
c87e2837
IM
2310 return ret;
2311
2312pi_faulted:
778e9a9c 2313 spin_unlock(&hb->lock);
ae791a2d 2314 put_futex_key(&key);
c87e2837 2315
d0725992 2316 ret = fault_in_user_writeable(uaddr);
b5686363 2317 if (!ret)
c87e2837
IM
2318 goto retry;
2319
1da177e4
LT
2320 return ret;
2321}
2322
52400ba9
DH
2323/**
2324 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2325 * @hb: the hash_bucket futex_q was original enqueued on
2326 * @q: the futex_q woken while waiting to be requeued
2327 * @key2: the futex_key of the requeue target futex
2328 * @timeout: the timeout associated with the wait (NULL if none)
2329 *
2330 * Detect if the task was woken on the initial futex as opposed to the requeue
2331 * target futex. If so, determine if it was a timeout or a signal that caused
2332 * the wakeup and return the appropriate error code to the caller. Must be
2333 * called with the hb lock held.
2334 *
6c23cbbd
RD
2335 * Return:
2336 * 0 = no early wakeup detected;
2337 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2338 */
2339static inline
2340int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2341 struct futex_q *q, union futex_key *key2,
2342 struct hrtimer_sleeper *timeout)
2343{
2344 int ret = 0;
2345
2346 /*
2347 * With the hb lock held, we avoid races while we process the wakeup.
2348 * We only need to hold hb (and not hb2) to ensure atomicity as the
2349 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2350 * It can't be requeued from uaddr2 to something else since we don't
2351 * support a PI aware source futex for requeue.
2352 */
2353 if (!match_futex(&q->key, key2)) {
2354 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2355 /*
2356 * We were woken prior to requeue by a timeout or a signal.
2357 * Unqueue the futex_q and determine which it was.
2358 */
2e12978a 2359 plist_del(&q->list, &hb->chain);
52400ba9 2360
d58e6576 2361 /* Handle spurious wakeups gracefully */
11df6ddd 2362 ret = -EWOULDBLOCK;
52400ba9
DH
2363 if (timeout && !timeout->task)
2364 ret = -ETIMEDOUT;
d58e6576 2365 else if (signal_pending(current))
1c840c14 2366 ret = -ERESTARTNOINTR;
52400ba9
DH
2367 }
2368 return ret;
2369}
2370
2371/**
2372 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2373 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2374 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2375 * the same type, no requeueing from private to shared, etc.
2376 * @val: the expected value of uaddr
2377 * @abs_time: absolute timeout
56ec1607 2378 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2379 * @uaddr2: the pi futex we will take prior to returning to user-space
2380 *
2381 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2382 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2383 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2384 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2385 * without one, the pi logic would not know which task to boost/deboost, if
2386 * there was a need to.
52400ba9
DH
2387 *
2388 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2389 * via the following--
52400ba9 2390 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2391 * 2) wakeup on uaddr2 after a requeue
2392 * 3) signal
2393 * 4) timeout
52400ba9 2394 *
cc6db4e6 2395 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2396 *
2397 * If 2, we may then block on trying to take the rt_mutex and return via:
2398 * 5) successful lock
2399 * 6) signal
2400 * 7) timeout
2401 * 8) other lock acquisition failure
2402 *
cc6db4e6 2403 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2404 *
2405 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2406 *
6c23cbbd
RD
2407 * Return:
2408 * 0 - On success;
52400ba9
DH
2409 * <0 - On error
2410 */
b41277dc 2411static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2412 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2413 u32 __user *uaddr2)
52400ba9
DH
2414{
2415 struct hrtimer_sleeper timeout, *to = NULL;
2416 struct rt_mutex_waiter rt_waiter;
52400ba9 2417 struct futex_hash_bucket *hb;
5bdb05f9
DH
2418 union futex_key key2 = FUTEX_KEY_INIT;
2419 struct futex_q q = futex_q_init;
52400ba9 2420 int res, ret;
52400ba9 2421
6f7b0a2a
DH
2422 if (uaddr == uaddr2)
2423 return -EINVAL;
2424
52400ba9
DH
2425 if (!bitset)
2426 return -EINVAL;
2427
2428 if (abs_time) {
2429 to = &timeout;
b41277dc
DH
2430 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2431 CLOCK_REALTIME : CLOCK_MONOTONIC,
2432 HRTIMER_MODE_ABS);
52400ba9
DH
2433 hrtimer_init_sleeper(to, current);
2434 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2435 current->timer_slack_ns);
2436 }
2437
2438 /*
2439 * The waiter is allocated on our stack, manipulated by the requeue
2440 * code while we sleep on uaddr.
2441 */
2442 debug_rt_mutex_init_waiter(&rt_waiter);
2443 rt_waiter.task = NULL;
2444
9ea71503 2445 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2446 if (unlikely(ret != 0))
2447 goto out;
2448
84bc4af5
DH
2449 q.bitset = bitset;
2450 q.rt_waiter = &rt_waiter;
2451 q.requeue_pi_key = &key2;
2452
7ada876a
DH
2453 /*
2454 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2455 * count.
2456 */
b41277dc 2457 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2458 if (ret)
2459 goto out_key2;
52400ba9 2460
b58623fb
TG
2461 /*
2462 * The check above which compares uaddrs is not sufficient for
2463 * shared futexes. We need to compare the keys:
2464 */
2465 if (match_futex(&q.key, &key2)) {
2466 ret = -EINVAL;
2467 goto out_put_keys;
2468 }
2469
52400ba9 2470 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2471 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2472
2473 spin_lock(&hb->lock);
2474 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2475 spin_unlock(&hb->lock);
2476 if (ret)
2477 goto out_put_keys;
2478
2479 /*
2480 * In order for us to be here, we know our q.key == key2, and since
2481 * we took the hb->lock above, we also know that futex_requeue() has
2482 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2483 * race with the atomic proxy lock acquisition by the requeue code. The
2484 * futex_requeue dropped our key1 reference and incremented our key2
2485 * reference count.
52400ba9
DH
2486 */
2487
2488 /* Check if the requeue code acquired the second futex for us. */
2489 if (!q.rt_waiter) {
2490 /*
2491 * Got the lock. We might not be the anticipated owner if we
2492 * did a lock-steal - fix up the PI-state in that case.
2493 */
2494 if (q.pi_state && (q.pi_state->owner != current)) {
2495 spin_lock(q.lock_ptr);
ae791a2d 2496 ret = fixup_pi_state_owner(uaddr2, &q, current);
4401c71d
PZ
2497 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current)
2498 rt_mutex_unlock(&q.pi_state->pi_mutex);
a8957067
TG
2499 /*
2500 * Drop the reference to the pi state which
2501 * the requeue_pi() code acquired for us.
2502 */
2503 free_pi_state(q.pi_state);
52400ba9
DH
2504 spin_unlock(q.lock_ptr);
2505 }
2506 } else {
8f4a52d2
PZ
2507 struct rt_mutex *pi_mutex;
2508
52400ba9
DH
2509 /*
2510 * We have been woken up by futex_unlock_pi(), a timeout, or a
2511 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2512 * the pi_state.
2513 */
f27071cb 2514 WARN_ON(!q.pi_state);
52400ba9
DH
2515 pi_mutex = &q.pi_state->pi_mutex;
2516 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2517 debug_rt_mutex_free_waiter(&rt_waiter);
2518
2519 spin_lock(q.lock_ptr);
2520 /*
2521 * Fixup the pi_state owner and possibly acquire the lock if we
2522 * haven't already.
2523 */
ae791a2d 2524 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2525 /*
2526 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2527 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2528 */
2529 if (res)
2530 ret = (res < 0) ? res : 0;
2531
8f4a52d2
PZ
2532 /*
2533 * If fixup_pi_state_owner() faulted and was unable to handle
2534 * the fault, unlock the rt_mutex and return the fault to
2535 * userspace.
2536 */
2537 if (ret && rt_mutex_owner(pi_mutex) == current)
2538 rt_mutex_unlock(pi_mutex);
2539
52400ba9
DH
2540 /* Unqueue and drop the lock. */
2541 unqueue_me_pi(&q);
2542 }
2543
8f4a52d2 2544 if (ret == -EINTR) {
52400ba9 2545 /*
cc6db4e6
DH
2546 * We've already been requeued, but cannot restart by calling
2547 * futex_lock_pi() directly. We could restart this syscall, but
2548 * it would detect that the user space "val" changed and return
2549 * -EWOULDBLOCK. Save the overhead of the restart and return
2550 * -EWOULDBLOCK directly.
52400ba9 2551 */
2070887f 2552 ret = -EWOULDBLOCK;
52400ba9
DH
2553 }
2554
2555out_put_keys:
ae791a2d 2556 put_futex_key(&q.key);
c8b15a70 2557out_key2:
ae791a2d 2558 put_futex_key(&key2);
52400ba9
DH
2559
2560out:
2561 if (to) {
2562 hrtimer_cancel(&to->timer);
2563 destroy_hrtimer_on_stack(&to->timer);
2564 }
2565 return ret;
2566}
2567
0771dfef
IM
2568/*
2569 * Support for robust futexes: the kernel cleans up held futexes at
2570 * thread exit time.
2571 *
2572 * Implementation: user-space maintains a per-thread list of locks it
2573 * is holding. Upon do_exit(), the kernel carefully walks this list,
2574 * and marks all locks that are owned by this thread with the
c87e2837 2575 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2576 * always manipulated with the lock held, so the list is private and
2577 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2578 * field, to allow the kernel to clean up if the thread dies after
2579 * acquiring the lock, but just before it could have added itself to
2580 * the list. There can only be one such pending lock.
2581 */
2582
2583/**
d96ee56c
DH
2584 * sys_set_robust_list() - Set the robust-futex list head of a task
2585 * @head: pointer to the list-head
2586 * @len: length of the list-head, as userspace expects
0771dfef 2587 */
836f92ad
HC
2588SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2589 size_t, len)
0771dfef 2590{
a0c1e907
TG
2591 if (!futex_cmpxchg_enabled)
2592 return -ENOSYS;
0771dfef
IM
2593 /*
2594 * The kernel knows only one size for now:
2595 */
2596 if (unlikely(len != sizeof(*head)))
2597 return -EINVAL;
2598
2599 current->robust_list = head;
2600
2601 return 0;
2602}
2603
2604/**
d96ee56c
DH
2605 * sys_get_robust_list() - Get the robust-futex list head of a task
2606 * @pid: pid of the process [zero for current task]
2607 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2608 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2609 */
836f92ad
HC
2610SYSCALL_DEFINE3(get_robust_list, int, pid,
2611 struct robust_list_head __user * __user *, head_ptr,
2612 size_t __user *, len_ptr)
0771dfef 2613{
ba46df98 2614 struct robust_list_head __user *head;
0771dfef 2615 unsigned long ret;
bdbb776f 2616 struct task_struct *p;
0771dfef 2617
a0c1e907
TG
2618 if (!futex_cmpxchg_enabled)
2619 return -ENOSYS;
2620
bdbb776f
KC
2621 rcu_read_lock();
2622
2623 ret = -ESRCH;
0771dfef 2624 if (!pid)
bdbb776f 2625 p = current;
0771dfef 2626 else {
228ebcbe 2627 p = find_task_by_vpid(pid);
0771dfef
IM
2628 if (!p)
2629 goto err_unlock;
0771dfef
IM
2630 }
2631
bdbb776f 2632 ret = -EPERM;
414f6fbc 2633 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
2634 goto err_unlock;
2635
2636 head = p->robust_list;
2637 rcu_read_unlock();
2638
0771dfef
IM
2639 if (put_user(sizeof(*head), len_ptr))
2640 return -EFAULT;
2641 return put_user(head, head_ptr);
2642
2643err_unlock:
aaa2a97e 2644 rcu_read_unlock();
0771dfef
IM
2645
2646 return ret;
2647}
2648
2649/*
2650 * Process a futex-list entry, check whether it's owned by the
2651 * dying task, and do notification if so:
2652 */
e3f2ddea 2653int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2654{
7cfdaf38 2655 u32 uval, uninitialized_var(nval), mval;
0771dfef 2656
8f17d3a5
IM
2657retry:
2658 if (get_user(uval, uaddr))
0771dfef
IM
2659 return -1;
2660
b488893a 2661 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2662 /*
2663 * Ok, this dying thread is truly holding a futex
2664 * of interest. Set the OWNER_DIED bit atomically
2665 * via cmpxchg, and if the value had FUTEX_WAITERS
2666 * set, wake up a waiter (if any). (We have to do a
2667 * futex_wake() even if OWNER_DIED is already set -
2668 * to handle the rare but possible case of recursive
2669 * thread-death.) The rest of the cleanup is done in
2670 * userspace.
2671 */
e3f2ddea 2672 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2673 /*
2674 * We are not holding a lock here, but we want to have
2675 * the pagefault_disable/enable() protection because
2676 * we want to handle the fault gracefully. If the
2677 * access fails we try to fault in the futex with R/W
2678 * verification via get_user_pages. get_user() above
2679 * does not guarantee R/W access. If that fails we
2680 * give up and leave the futex locked.
2681 */
2682 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2683 if (fault_in_user_writeable(uaddr))
2684 return -1;
2685 goto retry;
2686 }
c87e2837 2687 if (nval != uval)
8f17d3a5 2688 goto retry;
0771dfef 2689
e3f2ddea
IM
2690 /*
2691 * Wake robust non-PI futexes here. The wakeup of
2692 * PI futexes happens in exit_pi_state():
2693 */
36cf3b5c 2694 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2695 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2696 }
2697 return 0;
2698}
2699
e3f2ddea
IM
2700/*
2701 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2702 */
2703static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2704 struct robust_list __user * __user *head,
1dcc41bb 2705 unsigned int *pi)
e3f2ddea
IM
2706{
2707 unsigned long uentry;
2708
ba46df98 2709 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2710 return -EFAULT;
2711
ba46df98 2712 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2713 *pi = uentry & 1;
2714
2715 return 0;
2716}
2717
0771dfef
IM
2718/*
2719 * Walk curr->robust_list (very carefully, it's a userspace list!)
2720 * and mark any locks found there dead, and notify any waiters.
2721 *
2722 * We silently return on any sign of list-walking problem.
2723 */
2724void exit_robust_list(struct task_struct *curr)
2725{
2726 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2727 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2728 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2729 unsigned int uninitialized_var(next_pi);
0771dfef 2730 unsigned long futex_offset;
9f96cb1e 2731 int rc;
0771dfef 2732
a0c1e907
TG
2733 if (!futex_cmpxchg_enabled)
2734 return;
2735
0771dfef
IM
2736 /*
2737 * Fetch the list head (which was registered earlier, via
2738 * sys_set_robust_list()):
2739 */
e3f2ddea 2740 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2741 return;
2742 /*
2743 * Fetch the relative futex offset:
2744 */
2745 if (get_user(futex_offset, &head->futex_offset))
2746 return;
2747 /*
2748 * Fetch any possibly pending lock-add first, and handle it
2749 * if it exists:
2750 */
e3f2ddea 2751 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2752 return;
e3f2ddea 2753
9f96cb1e 2754 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2755 while (entry != &head->list) {
9f96cb1e
MS
2756 /*
2757 * Fetch the next entry in the list before calling
2758 * handle_futex_death:
2759 */
2760 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2761 /*
2762 * A pending lock might already be on the list, so
c87e2837 2763 * don't process it twice:
0771dfef
IM
2764 */
2765 if (entry != pending)
ba46df98 2766 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2767 curr, pi))
0771dfef 2768 return;
9f96cb1e 2769 if (rc)
0771dfef 2770 return;
9f96cb1e
MS
2771 entry = next_entry;
2772 pi = next_pi;
0771dfef
IM
2773 /*
2774 * Avoid excessively long or circular lists:
2775 */
2776 if (!--limit)
2777 break;
2778
2779 cond_resched();
2780 }
9f96cb1e
MS
2781
2782 if (pending)
2783 handle_futex_death((void __user *)pending + futex_offset,
2784 curr, pip);
0771dfef
IM
2785}
2786
c19384b5 2787long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2788 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2789{
81b40539 2790 int cmd = op & FUTEX_CMD_MASK;
b41277dc 2791 unsigned int flags = 0;
34f01cc1
ED
2792
2793 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2794 flags |= FLAGS_SHARED;
1da177e4 2795
b41277dc
DH
2796 if (op & FUTEX_CLOCK_REALTIME) {
2797 flags |= FLAGS_CLOCKRT;
2798 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2799 return -ENOSYS;
2800 }
1da177e4 2801
59263b51
TG
2802 switch (cmd) {
2803 case FUTEX_LOCK_PI:
2804 case FUTEX_UNLOCK_PI:
2805 case FUTEX_TRYLOCK_PI:
2806 case FUTEX_WAIT_REQUEUE_PI:
2807 case FUTEX_CMP_REQUEUE_PI:
2808 if (!futex_cmpxchg_enabled)
2809 return -ENOSYS;
2810 }
2811
34f01cc1 2812 switch (cmd) {
1da177e4 2813 case FUTEX_WAIT:
cd689985
TG
2814 val3 = FUTEX_BITSET_MATCH_ANY;
2815 case FUTEX_WAIT_BITSET:
81b40539 2816 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 2817 case FUTEX_WAKE:
cd689985
TG
2818 val3 = FUTEX_BITSET_MATCH_ANY;
2819 case FUTEX_WAKE_BITSET:
81b40539 2820 return futex_wake(uaddr, flags, val, val3);
1da177e4 2821 case FUTEX_REQUEUE:
81b40539 2822 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 2823 case FUTEX_CMP_REQUEUE:
81b40539 2824 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 2825 case FUTEX_WAKE_OP:
81b40539 2826 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 2827 case FUTEX_LOCK_PI:
81b40539 2828 return futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837 2829 case FUTEX_UNLOCK_PI:
81b40539 2830 return futex_unlock_pi(uaddr, flags);
c87e2837 2831 case FUTEX_TRYLOCK_PI:
81b40539 2832 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
52400ba9
DH
2833 case FUTEX_WAIT_REQUEUE_PI:
2834 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
2835 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2836 uaddr2);
52400ba9 2837 case FUTEX_CMP_REQUEUE_PI:
81b40539 2838 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 2839 }
81b40539 2840 return -ENOSYS;
1da177e4
LT
2841}
2842
2843
17da2bd9
HC
2844SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2845 struct timespec __user *, utime, u32 __user *, uaddr2,
2846 u32, val3)
1da177e4 2847{
c19384b5
PP
2848 struct timespec ts;
2849 ktime_t t, *tp = NULL;
e2970f2f 2850 u32 val2 = 0;
34f01cc1 2851 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2852
cd689985 2853 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2854 cmd == FUTEX_WAIT_BITSET ||
2855 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2856 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2857 return -EFAULT;
c19384b5 2858 if (!timespec_valid(&ts))
9741ef96 2859 return -EINVAL;
c19384b5
PP
2860
2861 t = timespec_to_ktime(ts);
34f01cc1 2862 if (cmd == FUTEX_WAIT)
5a7780e7 2863 t = ktime_add_safe(ktime_get(), t);
c19384b5 2864 tp = &t;
1da177e4
LT
2865 }
2866 /*
52400ba9 2867 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2868 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2869 */
f54f0986 2870 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2871 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2872 val2 = (u32) (unsigned long) utime;
1da177e4 2873
c19384b5 2874 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2875}
2876
f26c70a4 2877static void __init futex_detect_cmpxchg(void)
1da177e4 2878{
f26c70a4 2879#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 2880 u32 curval;
95362fa9 2881
a0c1e907
TG
2882 /*
2883 * This will fail and we want it. Some arch implementations do
2884 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2885 * functionality. We want to know that before we call in any
2886 * of the complex code paths. Also we want to prevent
2887 * registration of robust lists in that case. NULL is
2888 * guaranteed to fault and we get -EFAULT on functional
fb62db2b 2889 * implementation, the non-functional ones will return
a0c1e907
TG
2890 * -ENOSYS.
2891 */
37a9d912 2892 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
a0c1e907 2893 futex_cmpxchg_enabled = 1;
f26c70a4
HC
2894#endif
2895}
2896
2897static int __init futex_init(void)
2898{
2899 int i;
2900
2901 futex_detect_cmpxchg();
a0c1e907 2902
3e4ab747 2903 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
732375c6 2904 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
2905 spin_lock_init(&futex_queues[i].lock);
2906 }
2907
1da177e4
LT
2908 return 0;
2909}
bbd20686 2910core_initcall(futex_init);