xfs: Convert to new freezing code
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
1da177e4
LT
20#include "xfs_log.h"
21#include "xfs_sb.h"
a844f451 22#include "xfs_ag.h"
1da177e4 23#include "xfs_trans.h"
1da177e4
LT
24#include "xfs_mount.h"
25#include "xfs_bmap_btree.h"
1da177e4 26#include "xfs_alloc.h"
1da177e4
LT
27#include "xfs_dinode.h"
28#include "xfs_inode.h"
fd3200be 29#include "xfs_inode_item.h"
dda35b8f 30#include "xfs_bmap.h"
1da177e4 31#include "xfs_error.h"
739bfb2a 32#include "xfs_vnodeops.h"
f999a5bf 33#include "xfs_da_btree.h"
ddcd856d 34#include "xfs_ioctl.h"
dda35b8f 35#include "xfs_trace.h"
1da177e4
LT
36
37#include <linux/dcache.h>
2fe17c10 38#include <linux/falloc.h>
1da177e4 39
f0f37e2f 40static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 41
487f84f3
DC
42/*
43 * Locking primitives for read and write IO paths to ensure we consistently use
44 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
45 */
46static inline void
47xfs_rw_ilock(
48 struct xfs_inode *ip,
49 int type)
50{
51 if (type & XFS_IOLOCK_EXCL)
52 mutex_lock(&VFS_I(ip)->i_mutex);
53 xfs_ilock(ip, type);
54}
55
56static inline void
57xfs_rw_iunlock(
58 struct xfs_inode *ip,
59 int type)
60{
61 xfs_iunlock(ip, type);
62 if (type & XFS_IOLOCK_EXCL)
63 mutex_unlock(&VFS_I(ip)->i_mutex);
64}
65
66static inline void
67xfs_rw_ilock_demote(
68 struct xfs_inode *ip,
69 int type)
70{
71 xfs_ilock_demote(ip, type);
72 if (type & XFS_IOLOCK_EXCL)
73 mutex_unlock(&VFS_I(ip)->i_mutex);
74}
75
dda35b8f
CH
76/*
77 * xfs_iozero
78 *
79 * xfs_iozero clears the specified range of buffer supplied,
80 * and marks all the affected blocks as valid and modified. If
81 * an affected block is not allocated, it will be allocated. If
82 * an affected block is not completely overwritten, and is not
83 * valid before the operation, it will be read from disk before
84 * being partially zeroed.
85 */
86STATIC int
87xfs_iozero(
88 struct xfs_inode *ip, /* inode */
89 loff_t pos, /* offset in file */
90 size_t count) /* size of data to zero */
91{
92 struct page *page;
93 struct address_space *mapping;
94 int status;
95
96 mapping = VFS_I(ip)->i_mapping;
97 do {
98 unsigned offset, bytes;
99 void *fsdata;
100
101 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
102 bytes = PAGE_CACHE_SIZE - offset;
103 if (bytes > count)
104 bytes = count;
105
106 status = pagecache_write_begin(NULL, mapping, pos, bytes,
107 AOP_FLAG_UNINTERRUPTIBLE,
108 &page, &fsdata);
109 if (status)
110 break;
111
112 zero_user(page, offset, bytes);
113
114 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
115 page, fsdata);
116 WARN_ON(status <= 0); /* can't return less than zero! */
117 pos += bytes;
118 count -= bytes;
119 status = 0;
120 } while (count);
121
122 return (-status);
123}
124
1da2f2db
CH
125/*
126 * Fsync operations on directories are much simpler than on regular files,
127 * as there is no file data to flush, and thus also no need for explicit
128 * cache flush operations, and there are no non-transaction metadata updates
129 * on directories either.
130 */
131STATIC int
132xfs_dir_fsync(
133 struct file *file,
134 loff_t start,
135 loff_t end,
136 int datasync)
137{
138 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
139 struct xfs_mount *mp = ip->i_mount;
140 xfs_lsn_t lsn = 0;
141
142 trace_xfs_dir_fsync(ip);
143
144 xfs_ilock(ip, XFS_ILOCK_SHARED);
145 if (xfs_ipincount(ip))
146 lsn = ip->i_itemp->ili_last_lsn;
147 xfs_iunlock(ip, XFS_ILOCK_SHARED);
148
149 if (!lsn)
150 return 0;
151 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
152}
153
fd3200be
CH
154STATIC int
155xfs_file_fsync(
156 struct file *file,
02c24a82
JB
157 loff_t start,
158 loff_t end,
fd3200be
CH
159 int datasync)
160{
7ea80859
CH
161 struct inode *inode = file->f_mapping->host;
162 struct xfs_inode *ip = XFS_I(inode);
a27a263b 163 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
164 int error = 0;
165 int log_flushed = 0;
b1037058 166 xfs_lsn_t lsn = 0;
fd3200be 167
cca28fb8 168 trace_xfs_file_fsync(ip);
fd3200be 169
02c24a82
JB
170 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
171 if (error)
172 return error;
173
a27a263b 174 if (XFS_FORCED_SHUTDOWN(mp))
fd3200be
CH
175 return -XFS_ERROR(EIO);
176
177 xfs_iflags_clear(ip, XFS_ITRUNCATED);
178
a27a263b
CH
179 if (mp->m_flags & XFS_MOUNT_BARRIER) {
180 /*
181 * If we have an RT and/or log subvolume we need to make sure
182 * to flush the write cache the device used for file data
183 * first. This is to ensure newly written file data make
184 * it to disk before logging the new inode size in case of
185 * an extending write.
186 */
187 if (XFS_IS_REALTIME_INODE(ip))
188 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
189 else if (mp->m_logdev_targp != mp->m_ddev_targp)
190 xfs_blkdev_issue_flush(mp->m_ddev_targp);
191 }
192
fd3200be 193 /*
8a9c9980
CH
194 * All metadata updates are logged, which means that we just have
195 * to flush the log up to the latest LSN that touched the inode.
fd3200be
CH
196 */
197 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
198 if (xfs_ipincount(ip)) {
199 if (!datasync ||
200 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
201 lsn = ip->i_itemp->ili_last_lsn;
202 }
8a9c9980 203 xfs_iunlock(ip, XFS_ILOCK_SHARED);
fd3200be 204
8a9c9980 205 if (lsn)
b1037058
CH
206 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
207
a27a263b
CH
208 /*
209 * If we only have a single device, and the log force about was
210 * a no-op we might have to flush the data device cache here.
211 * This can only happen for fdatasync/O_DSYNC if we were overwriting
212 * an already allocated file and thus do not have any metadata to
213 * commit.
214 */
215 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
216 mp->m_logdev_targp == mp->m_ddev_targp &&
217 !XFS_IS_REALTIME_INODE(ip) &&
218 !log_flushed)
219 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be
CH
220
221 return -error;
222}
223
00258e36
CH
224STATIC ssize_t
225xfs_file_aio_read(
dda35b8f
CH
226 struct kiocb *iocb,
227 const struct iovec *iovp,
00258e36
CH
228 unsigned long nr_segs,
229 loff_t pos)
dda35b8f
CH
230{
231 struct file *file = iocb->ki_filp;
232 struct inode *inode = file->f_mapping->host;
00258e36
CH
233 struct xfs_inode *ip = XFS_I(inode);
234 struct xfs_mount *mp = ip->i_mount;
dda35b8f
CH
235 size_t size = 0;
236 ssize_t ret = 0;
00258e36 237 int ioflags = 0;
dda35b8f
CH
238 xfs_fsize_t n;
239 unsigned long seg;
240
dda35b8f
CH
241 XFS_STATS_INC(xs_read_calls);
242
00258e36
CH
243 BUG_ON(iocb->ki_pos != pos);
244
245 if (unlikely(file->f_flags & O_DIRECT))
246 ioflags |= IO_ISDIRECT;
247 if (file->f_mode & FMODE_NOCMTIME)
248 ioflags |= IO_INVIS;
249
dda35b8f 250 /* START copy & waste from filemap.c */
00258e36 251 for (seg = 0; seg < nr_segs; seg++) {
dda35b8f
CH
252 const struct iovec *iv = &iovp[seg];
253
254 /*
255 * If any segment has a negative length, or the cumulative
256 * length ever wraps negative then return -EINVAL.
257 */
258 size += iv->iov_len;
259 if (unlikely((ssize_t)(size|iv->iov_len) < 0))
260 return XFS_ERROR(-EINVAL);
261 }
262 /* END copy & waste from filemap.c */
263
264 if (unlikely(ioflags & IO_ISDIRECT)) {
265 xfs_buftarg_t *target =
266 XFS_IS_REALTIME_INODE(ip) ?
267 mp->m_rtdev_targp : mp->m_ddev_targp;
00258e36 268 if ((iocb->ki_pos & target->bt_smask) ||
dda35b8f 269 (size & target->bt_smask)) {
ce7ae151 270 if (iocb->ki_pos == i_size_read(inode))
00258e36 271 return 0;
dda35b8f
CH
272 return -XFS_ERROR(EINVAL);
273 }
274 }
275
00258e36
CH
276 n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
277 if (n <= 0 || size == 0)
dda35b8f
CH
278 return 0;
279
280 if (n < size)
281 size = n;
282
283 if (XFS_FORCED_SHUTDOWN(mp))
284 return -EIO;
285
0c38a251
DC
286 /*
287 * Locking is a bit tricky here. If we take an exclusive lock
288 * for direct IO, we effectively serialise all new concurrent
289 * read IO to this file and block it behind IO that is currently in
290 * progress because IO in progress holds the IO lock shared. We only
291 * need to hold the lock exclusive to blow away the page cache, so
292 * only take lock exclusively if the page cache needs invalidation.
293 * This allows the normal direct IO case of no page cache pages to
294 * proceeed concurrently without serialisation.
295 */
296 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
297 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
298 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
487f84f3
DC
299 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
300
00258e36
CH
301 if (inode->i_mapping->nrpages) {
302 ret = -xfs_flushinval_pages(ip,
303 (iocb->ki_pos & PAGE_CACHE_MASK),
304 -1, FI_REMAPF_LOCKED);
487f84f3
DC
305 if (ret) {
306 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
307 return ret;
308 }
00258e36 309 }
487f84f3 310 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
0c38a251 311 }
dda35b8f 312
00258e36 313 trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
dda35b8f 314
00258e36 315 ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
dda35b8f
CH
316 if (ret > 0)
317 XFS_STATS_ADD(xs_read_bytes, ret);
318
487f84f3 319 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
320 return ret;
321}
322
00258e36
CH
323STATIC ssize_t
324xfs_file_splice_read(
dda35b8f
CH
325 struct file *infilp,
326 loff_t *ppos,
327 struct pipe_inode_info *pipe,
328 size_t count,
00258e36 329 unsigned int flags)
dda35b8f 330{
00258e36 331 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
00258e36 332 int ioflags = 0;
dda35b8f
CH
333 ssize_t ret;
334
335 XFS_STATS_INC(xs_read_calls);
00258e36
CH
336
337 if (infilp->f_mode & FMODE_NOCMTIME)
338 ioflags |= IO_INVIS;
339
dda35b8f
CH
340 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
341 return -EIO;
342
487f84f3 343 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
dda35b8f 344
dda35b8f
CH
345 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
346
347 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
348 if (ret > 0)
349 XFS_STATS_ADD(xs_read_bytes, ret);
350
487f84f3 351 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
352 return ret;
353}
354
487f84f3
DC
355/*
356 * xfs_file_splice_write() does not use xfs_rw_ilock() because
357 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
358 * couuld cause lock inversions between the aio_write path and the splice path
359 * if someone is doing concurrent splice(2) based writes and write(2) based
360 * writes to the same inode. The only real way to fix this is to re-implement
361 * the generic code here with correct locking orders.
362 */
00258e36
CH
363STATIC ssize_t
364xfs_file_splice_write(
dda35b8f
CH
365 struct pipe_inode_info *pipe,
366 struct file *outfilp,
367 loff_t *ppos,
368 size_t count,
00258e36 369 unsigned int flags)
dda35b8f 370{
dda35b8f 371 struct inode *inode = outfilp->f_mapping->host;
00258e36 372 struct xfs_inode *ip = XFS_I(inode);
00258e36
CH
373 int ioflags = 0;
374 ssize_t ret;
dda35b8f
CH
375
376 XFS_STATS_INC(xs_write_calls);
00258e36
CH
377
378 if (outfilp->f_mode & FMODE_NOCMTIME)
379 ioflags |= IO_INVIS;
380
dda35b8f
CH
381 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
382 return -EIO;
383
384 xfs_ilock(ip, XFS_IOLOCK_EXCL);
385
dda35b8f
CH
386 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
387
388 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
ce7ae151
CH
389 if (ret > 0)
390 XFS_STATS_ADD(xs_write_bytes, ret);
dda35b8f 391
dda35b8f
CH
392 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
393 return ret;
394}
395
396/*
193aec10
CH
397 * This routine is called to handle zeroing any space in the last block of the
398 * file that is beyond the EOF. We do this since the size is being increased
399 * without writing anything to that block and we don't want to read the
400 * garbage on the disk.
dda35b8f
CH
401 */
402STATIC int /* error (positive) */
403xfs_zero_last_block(
193aec10
CH
404 struct xfs_inode *ip,
405 xfs_fsize_t offset,
406 xfs_fsize_t isize)
dda35b8f 407{
193aec10
CH
408 struct xfs_mount *mp = ip->i_mount;
409 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
410 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
411 int zero_len;
412 int nimaps = 1;
413 int error = 0;
414 struct xfs_bmbt_irec imap;
dda35b8f 415
193aec10 416 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202 417 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
193aec10 418 xfs_iunlock(ip, XFS_ILOCK_EXCL);
5c8ed202 419 if (error)
dda35b8f 420 return error;
193aec10 421
dda35b8f 422 ASSERT(nimaps > 0);
193aec10 423
dda35b8f
CH
424 /*
425 * If the block underlying isize is just a hole, then there
426 * is nothing to zero.
427 */
193aec10 428 if (imap.br_startblock == HOLESTARTBLOCK)
dda35b8f 429 return 0;
dda35b8f
CH
430
431 zero_len = mp->m_sb.sb_blocksize - zero_offset;
432 if (isize + zero_len > offset)
433 zero_len = offset - isize;
193aec10 434 return xfs_iozero(ip, isize, zero_len);
dda35b8f
CH
435}
436
437/*
193aec10
CH
438 * Zero any on disk space between the current EOF and the new, larger EOF.
439 *
440 * This handles the normal case of zeroing the remainder of the last block in
441 * the file and the unusual case of zeroing blocks out beyond the size of the
442 * file. This second case only happens with fixed size extents and when the
443 * system crashes before the inode size was updated but after blocks were
444 * allocated.
445 *
446 * Expects the iolock to be held exclusive, and will take the ilock internally.
dda35b8f 447 */
dda35b8f
CH
448int /* error (positive) */
449xfs_zero_eof(
193aec10
CH
450 struct xfs_inode *ip,
451 xfs_off_t offset, /* starting I/O offset */
452 xfs_fsize_t isize) /* current inode size */
dda35b8f 453{
193aec10
CH
454 struct xfs_mount *mp = ip->i_mount;
455 xfs_fileoff_t start_zero_fsb;
456 xfs_fileoff_t end_zero_fsb;
457 xfs_fileoff_t zero_count_fsb;
458 xfs_fileoff_t last_fsb;
459 xfs_fileoff_t zero_off;
460 xfs_fsize_t zero_len;
461 int nimaps;
462 int error = 0;
463 struct xfs_bmbt_irec imap;
464
465 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
dda35b8f
CH
466 ASSERT(offset > isize);
467
468 /*
469 * First handle zeroing the block on which isize resides.
193aec10 470 *
dda35b8f
CH
471 * We only zero a part of that block so it is handled specially.
472 */
193aec10
CH
473 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
474 error = xfs_zero_last_block(ip, offset, isize);
475 if (error)
476 return error;
dda35b8f
CH
477 }
478
479 /*
193aec10
CH
480 * Calculate the range between the new size and the old where blocks
481 * needing to be zeroed may exist.
482 *
483 * To get the block where the last byte in the file currently resides,
484 * we need to subtract one from the size and truncate back to a block
485 * boundary. We subtract 1 in case the size is exactly on a block
486 * boundary.
dda35b8f
CH
487 */
488 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
489 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
490 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
491 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
492 if (last_fsb == end_zero_fsb) {
493 /*
494 * The size was only incremented on its last block.
495 * We took care of that above, so just return.
496 */
497 return 0;
498 }
499
500 ASSERT(start_zero_fsb <= end_zero_fsb);
501 while (start_zero_fsb <= end_zero_fsb) {
502 nimaps = 1;
503 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
193aec10
CH
504
505 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202
DC
506 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
507 &imap, &nimaps, 0);
193aec10
CH
508 xfs_iunlock(ip, XFS_ILOCK_EXCL);
509 if (error)
dda35b8f 510 return error;
193aec10 511
dda35b8f
CH
512 ASSERT(nimaps > 0);
513
514 if (imap.br_state == XFS_EXT_UNWRITTEN ||
515 imap.br_startblock == HOLESTARTBLOCK) {
dda35b8f
CH
516 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
517 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
518 continue;
519 }
520
521 /*
522 * There are blocks we need to zero.
dda35b8f 523 */
dda35b8f
CH
524 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
525 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
526
527 if ((zero_off + zero_len) > offset)
528 zero_len = offset - zero_off;
529
530 error = xfs_iozero(ip, zero_off, zero_len);
193aec10
CH
531 if (error)
532 return error;
dda35b8f
CH
533
534 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
535 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
dda35b8f
CH
536 }
537
538 return 0;
dda35b8f
CH
539}
540
4d8d1581
DC
541/*
542 * Common pre-write limit and setup checks.
543 *
5bf1f262
CH
544 * Called with the iolocked held either shared and exclusive according to
545 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
546 * if called for a direct write beyond i_size.
4d8d1581
DC
547 */
548STATIC ssize_t
549xfs_file_aio_write_checks(
550 struct file *file,
551 loff_t *pos,
552 size_t *count,
553 int *iolock)
554{
555 struct inode *inode = file->f_mapping->host;
556 struct xfs_inode *ip = XFS_I(inode);
4d8d1581
DC
557 int error = 0;
558
7271d243 559restart:
4d8d1581 560 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
467f7899 561 if (error)
4d8d1581 562 return error;
4d8d1581 563
4d8d1581
DC
564 /*
565 * If the offset is beyond the size of the file, we need to zero any
566 * blocks that fall between the existing EOF and the start of this
2813d682 567 * write. If zeroing is needed and we are currently holding the
467f7899
CH
568 * iolock shared, we need to update it to exclusive which implies
569 * having to redo all checks before.
4d8d1581 570 */
2813d682 571 if (*pos > i_size_read(inode)) {
7271d243 572 if (*iolock == XFS_IOLOCK_SHARED) {
467f7899 573 xfs_rw_iunlock(ip, *iolock);
7271d243 574 *iolock = XFS_IOLOCK_EXCL;
467f7899 575 xfs_rw_ilock(ip, *iolock);
7271d243
DC
576 goto restart;
577 }
ce7ae151 578 error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
467f7899
CH
579 if (error)
580 return error;
7271d243 581 }
4d8d1581 582
8a9c9980
CH
583 /*
584 * Updating the timestamps will grab the ilock again from
585 * xfs_fs_dirty_inode, so we have to call it after dropping the
586 * lock above. Eventually we should look into a way to avoid
587 * the pointless lock roundtrip.
588 */
c3b2da31
JB
589 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
590 error = file_update_time(file);
591 if (error)
592 return error;
593 }
8a9c9980 594
4d8d1581
DC
595 /*
596 * If we're writing the file then make sure to clear the setuid and
597 * setgid bits if the process is not being run by root. This keeps
598 * people from modifying setuid and setgid binaries.
599 */
600 return file_remove_suid(file);
4d8d1581
DC
601}
602
f0d26e86
DC
603/*
604 * xfs_file_dio_aio_write - handle direct IO writes
605 *
606 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 607 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
608 * follow locking changes and looping.
609 *
eda77982
DC
610 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
611 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
612 * pages are flushed out.
613 *
614 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
615 * allowing them to be done in parallel with reads and other direct IO writes.
616 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
617 * needs to do sub-block zeroing and that requires serialisation against other
618 * direct IOs to the same block. In this case we need to serialise the
619 * submission of the unaligned IOs so that we don't get racing block zeroing in
620 * the dio layer. To avoid the problem with aio, we also need to wait for
621 * outstanding IOs to complete so that unwritten extent conversion is completed
622 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 623 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 624 *
f0d26e86
DC
625 * Returns with locks held indicated by @iolock and errors indicated by
626 * negative return values.
627 */
628STATIC ssize_t
629xfs_file_dio_aio_write(
630 struct kiocb *iocb,
631 const struct iovec *iovp,
632 unsigned long nr_segs,
633 loff_t pos,
d0606464 634 size_t ocount)
f0d26e86
DC
635{
636 struct file *file = iocb->ki_filp;
637 struct address_space *mapping = file->f_mapping;
638 struct inode *inode = mapping->host;
639 struct xfs_inode *ip = XFS_I(inode);
640 struct xfs_mount *mp = ip->i_mount;
641 ssize_t ret = 0;
f0d26e86 642 size_t count = ocount;
eda77982 643 int unaligned_io = 0;
d0606464 644 int iolock;
f0d26e86
DC
645 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
646 mp->m_rtdev_targp : mp->m_ddev_targp;
647
f0d26e86
DC
648 if ((pos & target->bt_smask) || (count & target->bt_smask))
649 return -XFS_ERROR(EINVAL);
650
eda77982
DC
651 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
652 unaligned_io = 1;
653
7271d243
DC
654 /*
655 * We don't need to take an exclusive lock unless there page cache needs
656 * to be invalidated or unaligned IO is being executed. We don't need to
657 * consider the EOF extension case here because
658 * xfs_file_aio_write_checks() will relock the inode as necessary for
659 * EOF zeroing cases and fill out the new inode size as appropriate.
660 */
661 if (unaligned_io || mapping->nrpages)
d0606464 662 iolock = XFS_IOLOCK_EXCL;
f0d26e86 663 else
d0606464
CH
664 iolock = XFS_IOLOCK_SHARED;
665 xfs_rw_ilock(ip, iolock);
c58cb165
CH
666
667 /*
668 * Recheck if there are cached pages that need invalidate after we got
669 * the iolock to protect against other threads adding new pages while
670 * we were waiting for the iolock.
671 */
d0606464
CH
672 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
673 xfs_rw_iunlock(ip, iolock);
674 iolock = XFS_IOLOCK_EXCL;
675 xfs_rw_ilock(ip, iolock);
c58cb165 676 }
f0d26e86 677
d0606464 678 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
4d8d1581 679 if (ret)
d0606464 680 goto out;
f0d26e86
DC
681
682 if (mapping->nrpages) {
f0d26e86
DC
683 ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
684 FI_REMAPF_LOCKED);
685 if (ret)
d0606464 686 goto out;
f0d26e86
DC
687 }
688
eda77982
DC
689 /*
690 * If we are doing unaligned IO, wait for all other IO to drain,
691 * otherwise demote the lock if we had to flush cached pages
692 */
693 if (unaligned_io)
4a06fd26 694 inode_dio_wait(inode);
d0606464 695 else if (iolock == XFS_IOLOCK_EXCL) {
f0d26e86 696 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 697 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
698 }
699
700 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
701 ret = generic_file_direct_write(iocb, iovp,
702 &nr_segs, pos, &iocb->ki_pos, count, ocount);
703
d0606464
CH
704out:
705 xfs_rw_iunlock(ip, iolock);
706
f0d26e86
DC
707 /* No fallback to buffered IO on errors for XFS. */
708 ASSERT(ret < 0 || ret == count);
709 return ret;
710}
711
00258e36 712STATIC ssize_t
637bbc75 713xfs_file_buffered_aio_write(
dda35b8f
CH
714 struct kiocb *iocb,
715 const struct iovec *iovp,
00258e36 716 unsigned long nr_segs,
637bbc75 717 loff_t pos,
d0606464 718 size_t ocount)
dda35b8f
CH
719{
720 struct file *file = iocb->ki_filp;
721 struct address_space *mapping = file->f_mapping;
722 struct inode *inode = mapping->host;
00258e36 723 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
724 ssize_t ret;
725 int enospc = 0;
d0606464 726 int iolock = XFS_IOLOCK_EXCL;
637bbc75 727 size_t count = ocount;
dda35b8f 728
d0606464 729 xfs_rw_ilock(ip, iolock);
dda35b8f 730
d0606464 731 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
4d8d1581 732 if (ret)
d0606464 733 goto out;
dda35b8f
CH
734
735 /* We can write back this queue in page reclaim */
736 current->backing_dev_info = mapping->backing_dev_info;
737
dda35b8f 738write_retry:
637bbc75
DC
739 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
740 ret = generic_file_buffered_write(iocb, iovp, nr_segs,
741 pos, &iocb->ki_pos, count, ret);
742 /*
743 * if we just got an ENOSPC, flush the inode now we aren't holding any
744 * page locks and retry *once*
745 */
746 if (ret == -ENOSPC && !enospc) {
637bbc75 747 enospc = 1;
d0606464
CH
748 ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
749 if (!ret)
750 goto write_retry;
dda35b8f 751 }
d0606464 752
dda35b8f 753 current->backing_dev_info = NULL;
d0606464
CH
754out:
755 xfs_rw_iunlock(ip, iolock);
637bbc75
DC
756 return ret;
757}
758
759STATIC ssize_t
760xfs_file_aio_write(
761 struct kiocb *iocb,
762 const struct iovec *iovp,
763 unsigned long nr_segs,
764 loff_t pos)
765{
766 struct file *file = iocb->ki_filp;
767 struct address_space *mapping = file->f_mapping;
768 struct inode *inode = mapping->host;
769 struct xfs_inode *ip = XFS_I(inode);
770 ssize_t ret;
637bbc75
DC
771 size_t ocount = 0;
772
773 XFS_STATS_INC(xs_write_calls);
774
775 BUG_ON(iocb->ki_pos != pos);
776
777 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
778 if (ret)
779 return ret;
780
781 if (ocount == 0)
782 return 0;
783
d9457dc0 784 sb_start_write(inode->i_sb);
637bbc75 785
d9457dc0
JK
786 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
787 ret = -EIO;
788 goto out;
789 }
637bbc75
DC
790
791 if (unlikely(file->f_flags & O_DIRECT))
d0606464 792 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
637bbc75
DC
793 else
794 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
d0606464 795 ocount);
dda35b8f 796
d0606464
CH
797 if (ret > 0) {
798 ssize_t err;
dda35b8f 799
d0606464 800 XFS_STATS_ADD(xs_write_bytes, ret);
dda35b8f 801
d0606464
CH
802 /* Handle various SYNC-type writes */
803 err = generic_write_sync(file, pos, ret);
804 if (err < 0)
805 ret = err;
dda35b8f
CH
806 }
807
d9457dc0
JK
808out:
809 sb_end_write(inode->i_sb);
a363f0c2 810 return ret;
dda35b8f
CH
811}
812
2fe17c10
CH
813STATIC long
814xfs_file_fallocate(
815 struct file *file,
816 int mode,
817 loff_t offset,
818 loff_t len)
819{
820 struct inode *inode = file->f_path.dentry->d_inode;
821 long error;
822 loff_t new_size = 0;
823 xfs_flock64_t bf;
824 xfs_inode_t *ip = XFS_I(inode);
825 int cmd = XFS_IOC_RESVSP;
82878897 826 int attr_flags = XFS_ATTR_NOLOCK;
2fe17c10
CH
827
828 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
829 return -EOPNOTSUPP;
830
831 bf.l_whence = 0;
832 bf.l_start = offset;
833 bf.l_len = len;
834
835 xfs_ilock(ip, XFS_IOLOCK_EXCL);
836
837 if (mode & FALLOC_FL_PUNCH_HOLE)
838 cmd = XFS_IOC_UNRESVSP;
839
840 /* check the new inode size is valid before allocating */
841 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
842 offset + len > i_size_read(inode)) {
843 new_size = offset + len;
844 error = inode_newsize_ok(inode, new_size);
845 if (error)
846 goto out_unlock;
847 }
848
82878897
DC
849 if (file->f_flags & O_DSYNC)
850 attr_flags |= XFS_ATTR_SYNC;
851
852 error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
2fe17c10
CH
853 if (error)
854 goto out_unlock;
855
856 /* Change file size if needed */
857 if (new_size) {
858 struct iattr iattr;
859
860 iattr.ia_valid = ATTR_SIZE;
861 iattr.ia_size = new_size;
c4ed4243 862 error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
2fe17c10
CH
863 }
864
865out_unlock:
866 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
867 return error;
868}
869
870
1da177e4 871STATIC int
3562fd45 872xfs_file_open(
1da177e4 873 struct inode *inode,
f999a5bf 874 struct file *file)
1da177e4 875{
f999a5bf 876 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 877 return -EFBIG;
f999a5bf
CH
878 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
879 return -EIO;
880 return 0;
881}
882
883STATIC int
884xfs_dir_open(
885 struct inode *inode,
886 struct file *file)
887{
888 struct xfs_inode *ip = XFS_I(inode);
889 int mode;
890 int error;
891
892 error = xfs_file_open(inode, file);
893 if (error)
894 return error;
895
896 /*
897 * If there are any blocks, read-ahead block 0 as we're almost
898 * certain to have the next operation be a read there.
899 */
900 mode = xfs_ilock_map_shared(ip);
901 if (ip->i_d.di_nextents > 0)
902 xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
903 xfs_iunlock(ip, mode);
904 return 0;
1da177e4
LT
905}
906
1da177e4 907STATIC int
3562fd45 908xfs_file_release(
1da177e4
LT
909 struct inode *inode,
910 struct file *filp)
911{
739bfb2a 912 return -xfs_release(XFS_I(inode));
1da177e4
LT
913}
914
1da177e4 915STATIC int
3562fd45 916xfs_file_readdir(
1da177e4
LT
917 struct file *filp,
918 void *dirent,
919 filldir_t filldir)
920{
051e7cd4 921 struct inode *inode = filp->f_path.dentry->d_inode;
739bfb2a 922 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
923 int error;
924 size_t bufsize;
925
926 /*
927 * The Linux API doesn't pass down the total size of the buffer
928 * we read into down to the filesystem. With the filldir concept
929 * it's not needed for correct information, but the XFS dir2 leaf
930 * code wants an estimate of the buffer size to calculate it's
931 * readahead window and size the buffers used for mapping to
932 * physical blocks.
933 *
934 * Try to give it an estimate that's good enough, maybe at some
935 * point we can change the ->readdir prototype to include the
a9cc799e 936 * buffer size. For now we use the current glibc buffer size.
051e7cd4 937 */
a9cc799e 938 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 939
739bfb2a 940 error = xfs_readdir(ip, dirent, bufsize,
051e7cd4
CH
941 (xfs_off_t *)&filp->f_pos, filldir);
942 if (error)
943 return -error;
944 return 0;
1da177e4
LT
945}
946
1da177e4 947STATIC int
3562fd45 948xfs_file_mmap(
1da177e4
LT
949 struct file *filp,
950 struct vm_area_struct *vma)
951{
3562fd45 952 vma->vm_ops = &xfs_file_vm_ops;
d0217ac0 953 vma->vm_flags |= VM_CAN_NONLINEAR;
6fac0cb4 954
fbc1462b 955 file_accessed(filp);
1da177e4
LT
956 return 0;
957}
958
4f57dbc6
DC
959/*
960 * mmap()d file has taken write protection fault and is being made
961 * writable. We can set the page state up correctly for a writable
962 * page, which means we can do correct delalloc accounting (ENOSPC
963 * checking!) and unwritten extent mapping.
964 */
965STATIC int
966xfs_vm_page_mkwrite(
967 struct vm_area_struct *vma,
c2ec175c 968 struct vm_fault *vmf)
4f57dbc6 969{
c2ec175c 970 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
4f57dbc6
DC
971}
972
3fe3e6b1
JL
973STATIC loff_t
974xfs_seek_data(
975 struct file *file,
976 loff_t start,
977 u32 type)
978{
979 struct inode *inode = file->f_mapping->host;
980 struct xfs_inode *ip = XFS_I(inode);
981 struct xfs_mount *mp = ip->i_mount;
982 struct xfs_bmbt_irec map[2];
983 int nmap = 2;
984 loff_t uninitialized_var(offset);
985 xfs_fsize_t isize;
986 xfs_fileoff_t fsbno;
987 xfs_filblks_t end;
988 uint lock;
989 int error;
990
991 lock = xfs_ilock_map_shared(ip);
992
993 isize = i_size_read(inode);
994 if (start >= isize) {
995 error = ENXIO;
996 goto out_unlock;
997 }
998
999 fsbno = XFS_B_TO_FSBT(mp, start);
1000
1001 /*
1002 * Try to read extents from the first block indicated
1003 * by fsbno to the end block of the file.
1004 */
1005 end = XFS_B_TO_FSB(mp, isize);
1006
1007 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1008 XFS_BMAPI_ENTIRE);
1009 if (error)
1010 goto out_unlock;
1011
1012 /*
1013 * Treat unwritten extent as data extent since it might
1014 * contains dirty data in page cache.
1015 */
1016 if (map[0].br_startblock != HOLESTARTBLOCK) {
1017 offset = max_t(loff_t, start,
1018 XFS_FSB_TO_B(mp, map[0].br_startoff));
1019 } else {
1020 if (nmap == 1) {
1021 error = ENXIO;
1022 goto out_unlock;
1023 }
1024
1025 offset = max_t(loff_t, start,
1026 XFS_FSB_TO_B(mp, map[1].br_startoff));
1027 }
1028
1029 if (offset != file->f_pos)
1030 file->f_pos = offset;
1031
1032out_unlock:
1033 xfs_iunlock_map_shared(ip, lock);
1034
1035 if (error)
1036 return -error;
1037 return offset;
1038}
1039
1040STATIC loff_t
1041xfs_seek_hole(
1042 struct file *file,
1043 loff_t start,
1044 u32 type)
1045{
1046 struct inode *inode = file->f_mapping->host;
1047 struct xfs_inode *ip = XFS_I(inode);
1048 struct xfs_mount *mp = ip->i_mount;
1049 loff_t uninitialized_var(offset);
1050 loff_t holeoff;
1051 xfs_fsize_t isize;
1052 xfs_fileoff_t fsbno;
1053 uint lock;
1054 int error;
1055
1056 if (XFS_FORCED_SHUTDOWN(mp))
1057 return -XFS_ERROR(EIO);
1058
1059 lock = xfs_ilock_map_shared(ip);
1060
1061 isize = i_size_read(inode);
1062 if (start >= isize) {
1063 error = ENXIO;
1064 goto out_unlock;
1065 }
1066
1067 fsbno = XFS_B_TO_FSBT(mp, start);
1068 error = xfs_bmap_first_unused(NULL, ip, 1, &fsbno, XFS_DATA_FORK);
1069 if (error)
1070 goto out_unlock;
1071
1072 holeoff = XFS_FSB_TO_B(mp, fsbno);
1073 if (holeoff <= start)
1074 offset = start;
1075 else {
1076 /*
1077 * xfs_bmap_first_unused() could return a value bigger than
1078 * isize if there are no more holes past the supplied offset.
1079 */
1080 offset = min_t(loff_t, holeoff, isize);
1081 }
1082
1083 if (offset != file->f_pos)
1084 file->f_pos = offset;
1085
1086out_unlock:
1087 xfs_iunlock_map_shared(ip, lock);
1088
1089 if (error)
1090 return -error;
1091 return offset;
1092}
1093
1094STATIC loff_t
1095xfs_file_llseek(
1096 struct file *file,
1097 loff_t offset,
1098 int origin)
1099{
1100 switch (origin) {
1101 case SEEK_END:
1102 case SEEK_CUR:
1103 case SEEK_SET:
1104 return generic_file_llseek(file, offset, origin);
1105 case SEEK_DATA:
1106 return xfs_seek_data(file, offset, origin);
1107 case SEEK_HOLE:
1108 return xfs_seek_hole(file, offset, origin);
1109 default:
1110 return -EINVAL;
1111 }
1112}
1113
4b6f5d20 1114const struct file_operations xfs_file_operations = {
3fe3e6b1 1115 .llseek = xfs_file_llseek,
1da177e4 1116 .read = do_sync_read,
bb3f724e 1117 .write = do_sync_write,
3562fd45
NS
1118 .aio_read = xfs_file_aio_read,
1119 .aio_write = xfs_file_aio_write,
1b895840
NS
1120 .splice_read = xfs_file_splice_read,
1121 .splice_write = xfs_file_splice_write,
3562fd45 1122 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1123#ifdef CONFIG_COMPAT
3562fd45 1124 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1125#endif
3562fd45
NS
1126 .mmap = xfs_file_mmap,
1127 .open = xfs_file_open,
1128 .release = xfs_file_release,
1129 .fsync = xfs_file_fsync,
2fe17c10 1130 .fallocate = xfs_file_fallocate,
1da177e4
LT
1131};
1132
4b6f5d20 1133const struct file_operations xfs_dir_file_operations = {
f999a5bf 1134 .open = xfs_dir_open,
1da177e4 1135 .read = generic_read_dir,
3562fd45 1136 .readdir = xfs_file_readdir,
59af1584 1137 .llseek = generic_file_llseek,
3562fd45 1138 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1139#ifdef CONFIG_COMPAT
3562fd45 1140 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1141#endif
1da2f2db 1142 .fsync = xfs_dir_fsync,
1da177e4
LT
1143};
1144
f0f37e2f 1145static const struct vm_operations_struct xfs_file_vm_ops = {
54cb8821 1146 .fault = filemap_fault,
4f57dbc6 1147 .page_mkwrite = xfs_vm_page_mkwrite,
6fac0cb4 1148};