Merge tag 'v3.10.107' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
1da177e4
LT
19#include "xfs_log.h"
20#include "xfs_sb.h"
a844f451 21#include "xfs_ag.h"
1da177e4 22#include "xfs_trans.h"
1da177e4
LT
23#include "xfs_mount.h"
24#include "xfs_bmap_btree.h"
1da177e4
LT
25#include "xfs_dinode.h"
26#include "xfs_inode.h"
281627df 27#include "xfs_inode_item.h"
a844f451 28#include "xfs_alloc.h"
1da177e4 29#include "xfs_error.h"
1da177e4 30#include "xfs_iomap.h"
739bfb2a 31#include "xfs_vnodeops.h"
0b1b213f 32#include "xfs_trace.h"
3ed3a434 33#include "xfs_bmap.h"
a27bb332 34#include <linux/aio.h>
5a0e3ad6 35#include <linux/gfp.h>
1da177e4 36#include <linux/mpage.h>
10ce4444 37#include <linux/pagevec.h>
1da177e4
LT
38#include <linux/writeback.h>
39
0b1b213f 40void
f51623b2
NS
41xfs_count_page_state(
42 struct page *page,
43 int *delalloc,
f51623b2
NS
44 int *unwritten)
45{
46 struct buffer_head *bh, *head;
47
20cb52eb 48 *delalloc = *unwritten = 0;
f51623b2
NS
49
50 bh = head = page_buffers(page);
51 do {
20cb52eb 52 if (buffer_unwritten(bh))
f51623b2
NS
53 (*unwritten) = 1;
54 else if (buffer_delay(bh))
55 (*delalloc) = 1;
56 } while ((bh = bh->b_this_page) != head);
57}
58
6214ed44
CH
59STATIC struct block_device *
60xfs_find_bdev_for_inode(
046f1685 61 struct inode *inode)
6214ed44 62{
046f1685 63 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
64 struct xfs_mount *mp = ip->i_mount;
65
71ddabb9 66 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
67 return mp->m_rtdev_targp->bt_bdev;
68 else
69 return mp->m_ddev_targp->bt_bdev;
70}
71
f6d6d4fc
CH
72/*
73 * We're now finished for good with this ioend structure.
74 * Update the page state via the associated buffer_heads,
75 * release holds on the inode and bio, and finally free
76 * up memory. Do not use the ioend after this.
77 */
0829c360
CH
78STATIC void
79xfs_destroy_ioend(
80 xfs_ioend_t *ioend)
81{
f6d6d4fc
CH
82 struct buffer_head *bh, *next;
83
84 for (bh = ioend->io_buffer_head; bh; bh = next) {
85 next = bh->b_private;
7d04a335 86 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 87 }
583fa586 88
c859cdd1 89 if (ioend->io_iocb) {
4b05d09c 90 inode_dio_done(ioend->io_inode);
04f658ee
CH
91 if (ioend->io_isasync) {
92 aio_complete(ioend->io_iocb, ioend->io_error ?
93 ioend->io_error : ioend->io_result, 0);
94 }
c859cdd1 95 }
4a06fd26 96
0829c360
CH
97 mempool_free(ioend, xfs_ioend_pool);
98}
99
fc0063c4
CH
100/*
101 * Fast and loose check if this write could update the on-disk inode size.
102 */
103static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
104{
105 return ioend->io_offset + ioend->io_size >
106 XFS_I(ioend->io_inode)->i_d.di_size;
107}
108
281627df
CH
109STATIC int
110xfs_setfilesize_trans_alloc(
111 struct xfs_ioend *ioend)
112{
113 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
114 struct xfs_trans *tp;
115 int error;
116
117 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
118
119 error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
120 if (error) {
121 xfs_trans_cancel(tp, 0);
122 return error;
123 }
124
125 ioend->io_append_trans = tp;
126
d9457dc0 127 /*
437a255a 128 * We may pass freeze protection with a transaction. So tell lockdep
d9457dc0
JK
129 * we released it.
130 */
131 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
132 1, _THIS_IP_);
281627df
CH
133 /*
134 * We hand off the transaction to the completion thread now, so
135 * clear the flag here.
136 */
137 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
138 return 0;
139}
140
ba87ea69 141/*
2813d682 142 * Update on-disk file size now that data has been written to disk.
ba87ea69 143 */
281627df 144STATIC int
ba87ea69 145xfs_setfilesize(
aa6bf01d 146 struct xfs_ioend *ioend)
ba87ea69 147{
aa6bf01d 148 struct xfs_inode *ip = XFS_I(ioend->io_inode);
281627df 149 struct xfs_trans *tp = ioend->io_append_trans;
ba87ea69 150 xfs_fsize_t isize;
ba87ea69 151
281627df 152 /*
437a255a
DC
153 * The transaction may have been allocated in the I/O submission thread,
154 * thus we need to mark ourselves as beeing in a transaction manually.
155 * Similarly for freeze protection.
281627df
CH
156 */
157 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
437a255a
DC
158 rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
159 0, 1, _THIS_IP_);
281627df 160
42be60ff
Z
161 /* we abort the update if there was an IO error */
162 if (ioend->io_error) {
163 xfs_trans_cancel(tp, 0);
164 return ioend->io_error;
165 }
166
aa6bf01d 167 xfs_ilock(ip, XFS_ILOCK_EXCL);
6923e686 168 isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
281627df
CH
169 if (!isize) {
170 xfs_iunlock(ip, XFS_ILOCK_EXCL);
171 xfs_trans_cancel(tp, 0);
172 return 0;
ba87ea69
LM
173 }
174
281627df
CH
175 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
176
177 ip->i_d.di_size = isize;
178 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
179 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
180
181 return xfs_trans_commit(tp, 0);
77d7a0c2
DC
182}
183
184/*
209fb87a 185 * Schedule IO completion handling on the final put of an ioend.
fc0063c4
CH
186 *
187 * If there is no work to do we might as well call it a day and free the
188 * ioend right now.
77d7a0c2
DC
189 */
190STATIC void
191xfs_finish_ioend(
209fb87a 192 struct xfs_ioend *ioend)
77d7a0c2
DC
193{
194 if (atomic_dec_and_test(&ioend->io_remaining)) {
aa6bf01d
CH
195 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
196
0d882a36 197 if (ioend->io_type == XFS_IO_UNWRITTEN)
aa6bf01d 198 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
437a255a
DC
199 else if (ioend->io_append_trans ||
200 (ioend->io_isdirect && xfs_ioend_is_append(ioend)))
aa6bf01d 201 queue_work(mp->m_data_workqueue, &ioend->io_work);
fc0063c4
CH
202 else
203 xfs_destroy_ioend(ioend);
77d7a0c2 204 }
ba87ea69
LM
205}
206
0829c360 207/*
5ec4fabb 208 * IO write completion.
f6d6d4fc
CH
209 */
210STATIC void
5ec4fabb 211xfs_end_io(
77d7a0c2 212 struct work_struct *work)
0829c360 213{
77d7a0c2
DC
214 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
215 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 216 int error = 0;
ba87ea69 217
04f658ee 218 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
810627d9 219 ioend->io_error = -EIO;
04f658ee
CH
220 goto done;
221 }
04f658ee 222
5ec4fabb
CH
223 /*
224 * For unwritten extents we need to issue transactions to convert a
225 * range to normal written extens after the data I/O has finished.
42be60ff
Z
226 * Detecting and handling completion IO errors is done individually
227 * for each case as different cleanup operations need to be performed
228 * on error.
5ec4fabb 229 */
0d882a36 230 if (ioend->io_type == XFS_IO_UNWRITTEN) {
42be60ff
Z
231 if (ioend->io_error)
232 goto done;
437a255a
DC
233 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
234 ioend->io_size);
235 } else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) {
281627df 236 /*
437a255a
DC
237 * For direct I/O we do not know if we need to allocate blocks
238 * or not so we can't preallocate an append transaction as that
239 * results in nested reservations and log space deadlocks. Hence
240 * allocate the transaction here. While this is sub-optimal and
241 * can block IO completion for some time, we're stuck with doing
242 * it this way until we can pass the ioend to the direct IO
243 * allocation callbacks and avoid nesting that way.
281627df 244 */
437a255a
DC
245 error = xfs_setfilesize_trans_alloc(ioend);
246 if (error)
04f658ee 247 goto done;
437a255a 248 error = xfs_setfilesize(ioend);
281627df
CH
249 } else if (ioend->io_append_trans) {
250 error = xfs_setfilesize(ioend);
84803fb7 251 } else {
281627df 252 ASSERT(!xfs_ioend_is_append(ioend));
5ec4fabb 253 }
ba87ea69 254
04f658ee 255done:
437a255a
DC
256 if (error)
257 ioend->io_error = -error;
aa6bf01d 258 xfs_destroy_ioend(ioend);
c626d174
DC
259}
260
209fb87a
CH
261/*
262 * Call IO completion handling in caller context on the final put of an ioend.
263 */
264STATIC void
265xfs_finish_ioend_sync(
266 struct xfs_ioend *ioend)
267{
268 if (atomic_dec_and_test(&ioend->io_remaining))
269 xfs_end_io(&ioend->io_work);
270}
271
0829c360
CH
272/*
273 * Allocate and initialise an IO completion structure.
274 * We need to track unwritten extent write completion here initially.
275 * We'll need to extend this for updating the ondisk inode size later
276 * (vs. incore size).
277 */
278STATIC xfs_ioend_t *
279xfs_alloc_ioend(
f6d6d4fc
CH
280 struct inode *inode,
281 unsigned int type)
0829c360
CH
282{
283 xfs_ioend_t *ioend;
284
285 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
286
287 /*
288 * Set the count to 1 initially, which will prevent an I/O
289 * completion callback from happening before we have started
290 * all the I/O from calling the completion routine too early.
291 */
292 atomic_set(&ioend->io_remaining, 1);
c859cdd1 293 ioend->io_isasync = 0;
281627df 294 ioend->io_isdirect = 0;
7d04a335 295 ioend->io_error = 0;
f6d6d4fc
CH
296 ioend->io_list = NULL;
297 ioend->io_type = type;
b677c210 298 ioend->io_inode = inode;
c1a073bd 299 ioend->io_buffer_head = NULL;
f6d6d4fc 300 ioend->io_buffer_tail = NULL;
0829c360
CH
301 ioend->io_offset = 0;
302 ioend->io_size = 0;
fb511f21
CH
303 ioend->io_iocb = NULL;
304 ioend->io_result = 0;
281627df 305 ioend->io_append_trans = NULL;
0829c360 306
5ec4fabb 307 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
308 return ioend;
309}
310
1da177e4
LT
311STATIC int
312xfs_map_blocks(
313 struct inode *inode,
314 loff_t offset,
207d0416 315 struct xfs_bmbt_irec *imap,
a206c817
CH
316 int type,
317 int nonblocking)
1da177e4 318{
a206c817
CH
319 struct xfs_inode *ip = XFS_I(inode);
320 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 321 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
322 xfs_fileoff_t offset_fsb, end_fsb;
323 int error = 0;
a206c817
CH
324 int bmapi_flags = XFS_BMAPI_ENTIRE;
325 int nimaps = 1;
326
327 if (XFS_FORCED_SHUTDOWN(mp))
328 return -XFS_ERROR(EIO);
329
0d882a36 330 if (type == XFS_IO_UNWRITTEN)
a206c817 331 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d
CH
332
333 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
334 if (nonblocking)
335 return -XFS_ERROR(EAGAIN);
336 xfs_ilock(ip, XFS_ILOCK_SHARED);
a206c817
CH
337 }
338
8ff2957d
CH
339 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
340 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 341 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 342
d2c28191
DC
343 if (offset + count > mp->m_super->s_maxbytes)
344 count = mp->m_super->s_maxbytes - offset;
a206c817
CH
345 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
346 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
347 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
348 imap, &nimaps, bmapi_flags);
8ff2957d 349 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 350
8ff2957d
CH
351 if (error)
352 return -XFS_ERROR(error);
a206c817 353
0d882a36 354 if (type == XFS_IO_DELALLOC &&
8ff2957d 355 (!nimaps || isnullstartblock(imap->br_startblock))) {
a206c817
CH
356 error = xfs_iomap_write_allocate(ip, offset, count, imap);
357 if (!error)
358 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
8ff2957d 359 return -XFS_ERROR(error);
a206c817
CH
360 }
361
8ff2957d 362#ifdef DEBUG
0d882a36 363 if (type == XFS_IO_UNWRITTEN) {
8ff2957d
CH
364 ASSERT(nimaps);
365 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
366 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
367 }
368#endif
369 if (nimaps)
370 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
371 return 0;
1da177e4
LT
372}
373
b8f82a4a 374STATIC int
558e6891 375xfs_imap_valid(
8699bb0a 376 struct inode *inode,
207d0416 377 struct xfs_bmbt_irec *imap,
558e6891 378 xfs_off_t offset)
1da177e4 379{
558e6891 380 offset >>= inode->i_blkbits;
8699bb0a 381
558e6891
CH
382 return offset >= imap->br_startoff &&
383 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
384}
385
f6d6d4fc
CH
386/*
387 * BIO completion handler for buffered IO.
388 */
782e3b3b 389STATIC void
f6d6d4fc
CH
390xfs_end_bio(
391 struct bio *bio,
f6d6d4fc
CH
392 int error)
393{
394 xfs_ioend_t *ioend = bio->bi_private;
395
f6d6d4fc 396 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 397 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
398
399 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
400 bio->bi_private = NULL;
401 bio->bi_end_io = NULL;
f6d6d4fc 402 bio_put(bio);
7d04a335 403
209fb87a 404 xfs_finish_ioend(ioend);
f6d6d4fc
CH
405}
406
407STATIC void
408xfs_submit_ioend_bio(
06342cf8
CH
409 struct writeback_control *wbc,
410 xfs_ioend_t *ioend,
411 struct bio *bio)
f6d6d4fc
CH
412{
413 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
414 bio->bi_private = ioend;
415 bio->bi_end_io = xfs_end_bio;
721a9602 416 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
f6d6d4fc
CH
417}
418
419STATIC struct bio *
420xfs_alloc_ioend_bio(
421 struct buffer_head *bh)
422{
f6d6d4fc 423 int nvecs = bio_get_nr_vecs(bh->b_bdev);
221cb251 424 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
f6d6d4fc
CH
425
426 ASSERT(bio->bi_private == NULL);
427 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
428 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
429 return bio;
430}
431
432STATIC void
433xfs_start_buffer_writeback(
434 struct buffer_head *bh)
435{
436 ASSERT(buffer_mapped(bh));
437 ASSERT(buffer_locked(bh));
438 ASSERT(!buffer_delay(bh));
439 ASSERT(!buffer_unwritten(bh));
440
441 mark_buffer_async_write(bh);
442 set_buffer_uptodate(bh);
443 clear_buffer_dirty(bh);
444}
445
446STATIC void
447xfs_start_page_writeback(
448 struct page *page,
f6d6d4fc
CH
449 int clear_dirty,
450 int buffers)
451{
452 ASSERT(PageLocked(page));
453 ASSERT(!PageWriteback(page));
f6d6d4fc 454 if (clear_dirty)
92132021
DC
455 clear_page_dirty_for_io(page);
456 set_page_writeback(page);
f6d6d4fc 457 unlock_page(page);
1f7decf6
FW
458 /* If no buffers on the page are to be written, finish it here */
459 if (!buffers)
f6d6d4fc 460 end_page_writeback(page);
f6d6d4fc
CH
461}
462
463static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
464{
465 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
466}
467
468/*
d88992f6
DC
469 * Submit all of the bios for all of the ioends we have saved up, covering the
470 * initial writepage page and also any probed pages.
471 *
472 * Because we may have multiple ioends spanning a page, we need to start
473 * writeback on all the buffers before we submit them for I/O. If we mark the
474 * buffers as we got, then we can end up with a page that only has buffers
475 * marked async write and I/O complete on can occur before we mark the other
476 * buffers async write.
477 *
478 * The end result of this is that we trip a bug in end_page_writeback() because
479 * we call it twice for the one page as the code in end_buffer_async_write()
480 * assumes that all buffers on the page are started at the same time.
481 *
482 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 483 * buffer_heads, and then submit them for I/O on the second pass.
7bf7f352
DC
484 *
485 * If @fail is non-zero, it means that we have a situation where some part of
486 * the submission process has failed after we have marked paged for writeback
487 * and unlocked them. In this situation, we need to fail the ioend chain rather
488 * than submit it to IO. This typically only happens on a filesystem shutdown.
f6d6d4fc
CH
489 */
490STATIC void
491xfs_submit_ioend(
06342cf8 492 struct writeback_control *wbc,
7bf7f352
DC
493 xfs_ioend_t *ioend,
494 int fail)
f6d6d4fc 495{
d88992f6 496 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
497 xfs_ioend_t *next;
498 struct buffer_head *bh;
499 struct bio *bio;
500 sector_t lastblock = 0;
501
d88992f6
DC
502 /* Pass 1 - start writeback */
503 do {
504 next = ioend->io_list;
221cb251 505 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
d88992f6 506 xfs_start_buffer_writeback(bh);
d88992f6
DC
507 } while ((ioend = next) != NULL);
508
509 /* Pass 2 - submit I/O */
510 ioend = head;
f6d6d4fc
CH
511 do {
512 next = ioend->io_list;
513 bio = NULL;
514
7bf7f352
DC
515 /*
516 * If we are failing the IO now, just mark the ioend with an
517 * error and finish it. This will run IO completion immediately
518 * as there is only one reference to the ioend at this point in
519 * time.
520 */
521 if (fail) {
522 ioend->io_error = -fail;
523 xfs_finish_ioend(ioend);
524 continue;
525 }
526
f6d6d4fc 527 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
528
529 if (!bio) {
530 retry:
531 bio = xfs_alloc_ioend_bio(bh);
532 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 533 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
534 goto retry;
535 }
536
537 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 538 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
539 goto retry;
540 }
541
542 lastblock = bh->b_blocknr;
543 }
544 if (bio)
06342cf8 545 xfs_submit_ioend_bio(wbc, ioend, bio);
209fb87a 546 xfs_finish_ioend(ioend);
f6d6d4fc
CH
547 } while ((ioend = next) != NULL);
548}
549
550/*
551 * Cancel submission of all buffer_heads so far in this endio.
552 * Toss the endio too. Only ever called for the initial page
553 * in a writepage request, so only ever one page.
554 */
555STATIC void
556xfs_cancel_ioend(
557 xfs_ioend_t *ioend)
558{
559 xfs_ioend_t *next;
560 struct buffer_head *bh, *next_bh;
561
562 do {
563 next = ioend->io_list;
564 bh = ioend->io_buffer_head;
565 do {
566 next_bh = bh->b_private;
567 clear_buffer_async_write(bh);
568 unlock_buffer(bh);
569 } while ((bh = next_bh) != NULL);
570
f6d6d4fc
CH
571 mempool_free(ioend, xfs_ioend_pool);
572 } while ((ioend = next) != NULL);
573}
574
575/*
576 * Test to see if we've been building up a completion structure for
577 * earlier buffers -- if so, we try to append to this ioend if we
578 * can, otherwise we finish off any current ioend and start another.
579 * Return true if we've finished the given ioend.
580 */
581STATIC void
582xfs_add_to_ioend(
583 struct inode *inode,
584 struct buffer_head *bh,
7336cea8 585 xfs_off_t offset,
f6d6d4fc
CH
586 unsigned int type,
587 xfs_ioend_t **result,
588 int need_ioend)
589{
590 xfs_ioend_t *ioend = *result;
591
592 if (!ioend || need_ioend || type != ioend->io_type) {
593 xfs_ioend_t *previous = *result;
f6d6d4fc 594
f6d6d4fc
CH
595 ioend = xfs_alloc_ioend(inode, type);
596 ioend->io_offset = offset;
597 ioend->io_buffer_head = bh;
598 ioend->io_buffer_tail = bh;
599 if (previous)
600 previous->io_list = ioend;
601 *result = ioend;
602 } else {
603 ioend->io_buffer_tail->b_private = bh;
604 ioend->io_buffer_tail = bh;
605 }
606
607 bh->b_private = NULL;
608 ioend->io_size += bh->b_size;
609}
610
87cbc49c
NS
611STATIC void
612xfs_map_buffer(
046f1685 613 struct inode *inode,
87cbc49c 614 struct buffer_head *bh,
207d0416 615 struct xfs_bmbt_irec *imap,
046f1685 616 xfs_off_t offset)
87cbc49c
NS
617{
618 sector_t bn;
8699bb0a 619 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
620 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
621 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 622
207d0416
CH
623 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
624 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 625
e513182d 626 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 627 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 628
046f1685 629 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
630
631 bh->b_blocknr = bn;
632 set_buffer_mapped(bh);
633}
634
1da177e4
LT
635STATIC void
636xfs_map_at_offset(
046f1685 637 struct inode *inode,
1da177e4 638 struct buffer_head *bh,
207d0416 639 struct xfs_bmbt_irec *imap,
046f1685 640 xfs_off_t offset)
1da177e4 641{
207d0416
CH
642 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
643 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 644
207d0416 645 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
646 set_buffer_mapped(bh);
647 clear_buffer_delay(bh);
f6d6d4fc 648 clear_buffer_unwritten(bh);
1da177e4
LT
649}
650
1da177e4 651/*
10ce4444
CH
652 * Test if a given page is suitable for writing as part of an unwritten
653 * or delayed allocate extent.
1da177e4 654 */
10ce4444 655STATIC int
6ffc4db5 656xfs_check_page_type(
10ce4444 657 struct page *page,
f6d6d4fc 658 unsigned int type)
1da177e4 659{
1da177e4 660 if (PageWriteback(page))
10ce4444 661 return 0;
1da177e4
LT
662
663 if (page->mapping && page_has_buffers(page)) {
664 struct buffer_head *bh, *head;
665 int acceptable = 0;
666
667 bh = head = page_buffers(page);
668 do {
f6d6d4fc 669 if (buffer_unwritten(bh))
0d882a36 670 acceptable += (type == XFS_IO_UNWRITTEN);
f6d6d4fc 671 else if (buffer_delay(bh))
0d882a36 672 acceptable += (type == XFS_IO_DELALLOC);
2ddee844 673 else if (buffer_dirty(bh) && buffer_mapped(bh))
0d882a36 674 acceptable += (type == XFS_IO_OVERWRITE);
f6d6d4fc 675 else
1da177e4 676 break;
1da177e4
LT
677 } while ((bh = bh->b_this_page) != head);
678
679 if (acceptable)
10ce4444 680 return 1;
1da177e4
LT
681 }
682
10ce4444 683 return 0;
1da177e4
LT
684}
685
1da177e4
LT
686/*
687 * Allocate & map buffers for page given the extent map. Write it out.
688 * except for the original page of a writepage, this is called on
689 * delalloc/unwritten pages only, for the original page it is possible
690 * that the page has no mapping at all.
691 */
f6d6d4fc 692STATIC int
1da177e4
LT
693xfs_convert_page(
694 struct inode *inode,
695 struct page *page,
10ce4444 696 loff_t tindex,
207d0416 697 struct xfs_bmbt_irec *imap,
f6d6d4fc 698 xfs_ioend_t **ioendp,
2fa24f92 699 struct writeback_control *wbc)
1da177e4 700{
f6d6d4fc 701 struct buffer_head *bh, *head;
9260dc6b
CH
702 xfs_off_t end_offset;
703 unsigned long p_offset;
f6d6d4fc 704 unsigned int type;
24e17b5f 705 int len, page_dirty;
f6d6d4fc 706 int count = 0, done = 0, uptodate = 1;
9260dc6b 707 xfs_off_t offset = page_offset(page);
1da177e4 708
10ce4444
CH
709 if (page->index != tindex)
710 goto fail;
529ae9aa 711 if (!trylock_page(page))
10ce4444
CH
712 goto fail;
713 if (PageWriteback(page))
714 goto fail_unlock_page;
715 if (page->mapping != inode->i_mapping)
716 goto fail_unlock_page;
6ffc4db5 717 if (!xfs_check_page_type(page, (*ioendp)->io_type))
10ce4444
CH
718 goto fail_unlock_page;
719
24e17b5f
NS
720 /*
721 * page_dirty is initially a count of buffers on the page before
c41564b5 722 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
723 *
724 * Derivation:
725 *
726 * End offset is the highest offset that this page should represent.
727 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
728 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
729 * hence give us the correct page_dirty count. On any other page,
730 * it will be zero and in that case we need page_dirty to be the
731 * count of buffers on the page.
24e17b5f 732 */
9260dc6b
CH
733 end_offset = min_t(unsigned long long,
734 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
735 i_size_read(inode));
736
480d7467
DC
737 /*
738 * If the current map does not span the entire page we are about to try
739 * to write, then give up. The only way we can write a page that spans
740 * multiple mappings in a single writeback iteration is via the
741 * xfs_vm_writepage() function. Data integrity writeback requires the
742 * entire page to be written in a single attempt, otherwise the part of
743 * the page we don't write here doesn't get written as part of the data
744 * integrity sync.
745 *
746 * For normal writeback, we also don't attempt to write partial pages
747 * here as it simply means that write_cache_pages() will see it under
748 * writeback and ignore the page until some point in the future, at
749 * which time this will be the only page in the file that needs
750 * writeback. Hence for more optimal IO patterns, we should always
751 * avoid partial page writeback due to multiple mappings on a page here.
752 */
753 if (!xfs_imap_valid(inode, imap, end_offset))
754 goto fail_unlock_page;
755
24e17b5f 756 len = 1 << inode->i_blkbits;
9260dc6b
CH
757 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
758 PAGE_CACHE_SIZE);
759 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
760 page_dirty = p_offset / len;
24e17b5f 761
1da177e4
LT
762 bh = head = page_buffers(page);
763 do {
9260dc6b 764 if (offset >= end_offset)
1da177e4 765 break;
f6d6d4fc
CH
766 if (!buffer_uptodate(bh))
767 uptodate = 0;
768 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
769 done = 1;
1da177e4 770 continue;
f6d6d4fc
CH
771 }
772
2fa24f92
CH
773 if (buffer_unwritten(bh) || buffer_delay(bh) ||
774 buffer_mapped(bh)) {
9260dc6b 775 if (buffer_unwritten(bh))
0d882a36 776 type = XFS_IO_UNWRITTEN;
2fa24f92 777 else if (buffer_delay(bh))
0d882a36 778 type = XFS_IO_DELALLOC;
2fa24f92 779 else
0d882a36 780 type = XFS_IO_OVERWRITE;
9260dc6b 781
558e6891 782 if (!xfs_imap_valid(inode, imap, offset)) {
f6d6d4fc 783 done = 1;
9260dc6b
CH
784 continue;
785 }
786
ecff71e6 787 lock_buffer(bh);
0d882a36 788 if (type != XFS_IO_OVERWRITE)
2fa24f92 789 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
790 xfs_add_to_ioend(inode, bh, offset, type,
791 ioendp, done);
792
9260dc6b
CH
793 page_dirty--;
794 count++;
795 } else {
2fa24f92 796 done = 1;
1da177e4 797 }
7336cea8 798 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 799
f6d6d4fc
CH
800 if (uptodate && bh == head)
801 SetPageUptodate(page);
802
89f3b363 803 if (count) {
efceab1d
DC
804 if (--wbc->nr_to_write <= 0 &&
805 wbc->sync_mode == WB_SYNC_NONE)
89f3b363 806 done = 1;
1da177e4 807 }
89f3b363 808 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
809
810 return done;
10ce4444
CH
811 fail_unlock_page:
812 unlock_page(page);
813 fail:
814 return 1;
1da177e4
LT
815}
816
817/*
818 * Convert & write out a cluster of pages in the same extent as defined
819 * by mp and following the start page.
820 */
821STATIC void
822xfs_cluster_write(
823 struct inode *inode,
824 pgoff_t tindex,
207d0416 825 struct xfs_bmbt_irec *imap,
f6d6d4fc 826 xfs_ioend_t **ioendp,
1da177e4 827 struct writeback_control *wbc,
1da177e4
LT
828 pgoff_t tlast)
829{
10ce4444
CH
830 struct pagevec pvec;
831 int done = 0, i;
1da177e4 832
10ce4444
CH
833 pagevec_init(&pvec, 0);
834 while (!done && tindex <= tlast) {
835 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
836
837 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 838 break;
10ce4444
CH
839
840 for (i = 0; i < pagevec_count(&pvec); i++) {
841 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
2fa24f92 842 imap, ioendp, wbc);
10ce4444
CH
843 if (done)
844 break;
845 }
846
847 pagevec_release(&pvec);
848 cond_resched();
1da177e4
LT
849 }
850}
851
3ed3a434
DC
852STATIC void
853xfs_vm_invalidatepage(
854 struct page *page,
855 unsigned long offset)
856{
857 trace_xfs_invalidatepage(page->mapping->host, page, offset);
858 block_invalidatepage(page, offset);
859}
860
861/*
862 * If the page has delalloc buffers on it, we need to punch them out before we
863 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
864 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
865 * is done on that same region - the delalloc extent is returned when none is
866 * supposed to be there.
867 *
868 * We prevent this by truncating away the delalloc regions on the page before
869 * invalidating it. Because they are delalloc, we can do this without needing a
870 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
871 * truncation without a transaction as there is no space left for block
872 * reservation (typically why we see a ENOSPC in writeback).
873 *
874 * This is not a performance critical path, so for now just do the punching a
875 * buffer head at a time.
876 */
877STATIC void
878xfs_aops_discard_page(
879 struct page *page)
880{
881 struct inode *inode = page->mapping->host;
882 struct xfs_inode *ip = XFS_I(inode);
883 struct buffer_head *bh, *head;
884 loff_t offset = page_offset(page);
3ed3a434 885
0d882a36 886 if (!xfs_check_page_type(page, XFS_IO_DELALLOC))
3ed3a434
DC
887 goto out_invalidate;
888
e8c3753c
DC
889 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
890 goto out_invalidate;
891
4f10700a 892 xfs_alert(ip->i_mount,
3ed3a434
DC
893 "page discard on page %p, inode 0x%llx, offset %llu.",
894 page, ip->i_ino, offset);
895
896 xfs_ilock(ip, XFS_ILOCK_EXCL);
897 bh = head = page_buffers(page);
898 do {
3ed3a434 899 int error;
c726de44 900 xfs_fileoff_t start_fsb;
3ed3a434
DC
901
902 if (!buffer_delay(bh))
903 goto next_buffer;
904
c726de44
DC
905 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
906 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
907 if (error) {
908 /* something screwed, just bail */
e8c3753c 909 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 910 xfs_alert(ip->i_mount,
3ed3a434 911 "page discard unable to remove delalloc mapping.");
e8c3753c 912 }
3ed3a434
DC
913 break;
914 }
915next_buffer:
c726de44 916 offset += 1 << inode->i_blkbits;
3ed3a434
DC
917
918 } while ((bh = bh->b_this_page) != head);
919
920 xfs_iunlock(ip, XFS_ILOCK_EXCL);
921out_invalidate:
922 xfs_vm_invalidatepage(page, 0);
923 return;
924}
925
1da177e4 926/*
89f3b363
CH
927 * Write out a dirty page.
928 *
929 * For delalloc space on the page we need to allocate space and flush it.
930 * For unwritten space on the page we need to start the conversion to
931 * regular allocated space.
89f3b363 932 * For any other dirty buffer heads on the page we should flush them.
1da177e4 933 */
1da177e4 934STATIC int
89f3b363
CH
935xfs_vm_writepage(
936 struct page *page,
937 struct writeback_control *wbc)
1da177e4 938{
89f3b363 939 struct inode *inode = page->mapping->host;
f6d6d4fc 940 struct buffer_head *bh, *head;
207d0416 941 struct xfs_bmbt_irec imap;
f6d6d4fc 942 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 943 loff_t offset;
f6d6d4fc 944 unsigned int type;
1da177e4 945 __uint64_t end_offset;
bd1556a1 946 pgoff_t end_index, last_index;
ed1e7b7e 947 ssize_t len;
a206c817 948 int err, imap_valid = 0, uptodate = 1;
89f3b363 949 int count = 0;
a206c817 950 int nonblocking = 0;
89f3b363
CH
951
952 trace_xfs_writepage(inode, page, 0);
953
20cb52eb
CH
954 ASSERT(page_has_buffers(page));
955
89f3b363
CH
956 /*
957 * Refuse to write the page out if we are called from reclaim context.
958 *
d4f7a5cb
CH
959 * This avoids stack overflows when called from deeply used stacks in
960 * random callers for direct reclaim or memcg reclaim. We explicitly
961 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 962 *
94054fa3
MG
963 * This should never happen except in the case of a VM regression so
964 * warn about it.
89f3b363 965 */
94054fa3
MG
966 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
967 PF_MEMALLOC))
b5420f23 968 goto redirty;
1da177e4 969
89f3b363 970 /*
680a647b
CH
971 * Given that we do not allow direct reclaim to call us, we should
972 * never be called while in a filesystem transaction.
89f3b363 973 */
680a647b 974 if (WARN_ON(current->flags & PF_FSTRANS))
b5420f23 975 goto redirty;
89f3b363 976
1da177e4
LT
977 /* Is this page beyond the end of the file? */
978 offset = i_size_read(inode);
979 end_index = offset >> PAGE_CACHE_SHIFT;
980 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
981 if (page->index >= end_index) {
6b7a03f0
CH
982 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
983
984 /*
ff9a28f6
JK
985 * Skip the page if it is fully outside i_size, e.g. due to a
986 * truncate operation that is in progress. We must redirty the
987 * page so that reclaim stops reclaiming it. Otherwise
988 * xfs_vm_releasepage() is called on it and gets confused.
6b7a03f0 989 */
ff9a28f6
JK
990 if (page->index >= end_index + 1 || offset_into_page == 0)
991 goto redirty;
6b7a03f0
CH
992
993 /*
994 * The page straddles i_size. It must be zeroed out on each
995 * and every writepage invocation because it may be mmapped.
996 * "A file is mapped in multiples of the page size. For a file
997 * that is not a multiple of the page size, the remaining
998 * memory is zeroed when mapped, and writes to that region are
999 * not written out to the file."
1000 */
1001 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
1da177e4
LT
1002 }
1003
f6d6d4fc 1004 end_offset = min_t(unsigned long long,
20cb52eb
CH
1005 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
1006 offset);
24e17b5f 1007 len = 1 << inode->i_blkbits;
24e17b5f 1008
24e17b5f 1009 bh = head = page_buffers(page);
f6d6d4fc 1010 offset = page_offset(page);
0d882a36 1011 type = XFS_IO_OVERWRITE;
a206c817 1012
dbcdde3e 1013 if (wbc->sync_mode == WB_SYNC_NONE)
a206c817 1014 nonblocking = 1;
f6d6d4fc 1015
1da177e4 1016 do {
6ac7248e
CH
1017 int new_ioend = 0;
1018
1da177e4
LT
1019 if (offset >= end_offset)
1020 break;
1021 if (!buffer_uptodate(bh))
1022 uptodate = 0;
1da177e4 1023
3d9b02e3 1024 /*
ece413f5
CH
1025 * set_page_dirty dirties all buffers in a page, independent
1026 * of their state. The dirty state however is entirely
1027 * meaningless for holes (!mapped && uptodate), so skip
1028 * buffers covering holes here.
3d9b02e3
ES
1029 */
1030 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
3d9b02e3
ES
1031 imap_valid = 0;
1032 continue;
1033 }
1034
aeea1b1f 1035 if (buffer_unwritten(bh)) {
0d882a36
AR
1036 if (type != XFS_IO_UNWRITTEN) {
1037 type = XFS_IO_UNWRITTEN;
aeea1b1f 1038 imap_valid = 0;
1da177e4 1039 }
aeea1b1f 1040 } else if (buffer_delay(bh)) {
0d882a36
AR
1041 if (type != XFS_IO_DELALLOC) {
1042 type = XFS_IO_DELALLOC;
aeea1b1f 1043 imap_valid = 0;
1da177e4 1044 }
89f3b363 1045 } else if (buffer_uptodate(bh)) {
0d882a36
AR
1046 if (type != XFS_IO_OVERWRITE) {
1047 type = XFS_IO_OVERWRITE;
85da94c6
CH
1048 imap_valid = 0;
1049 }
aeea1b1f 1050 } else {
7d0fa3ec 1051 if (PageUptodate(page))
aeea1b1f 1052 ASSERT(buffer_mapped(bh));
7d0fa3ec
AR
1053 /*
1054 * This buffer is not uptodate and will not be
1055 * written to disk. Ensure that we will put any
1056 * subsequent writeable buffers into a new
1057 * ioend.
1058 */
1059 imap_valid = 0;
aeea1b1f
CH
1060 continue;
1061 }
d5cb48aa 1062
aeea1b1f
CH
1063 if (imap_valid)
1064 imap_valid = xfs_imap_valid(inode, &imap, offset);
1065 if (!imap_valid) {
1066 /*
1067 * If we didn't have a valid mapping then we need to
1068 * put the new mapping into a separate ioend structure.
1069 * This ensures non-contiguous extents always have
1070 * separate ioends, which is particularly important
1071 * for unwritten extent conversion at I/O completion
1072 * time.
1073 */
1074 new_ioend = 1;
1075 err = xfs_map_blocks(inode, offset, &imap, type,
1076 nonblocking);
1077 if (err)
1078 goto error;
1079 imap_valid = xfs_imap_valid(inode, &imap, offset);
1080 }
1081 if (imap_valid) {
ecff71e6 1082 lock_buffer(bh);
0d882a36 1083 if (type != XFS_IO_OVERWRITE)
aeea1b1f
CH
1084 xfs_map_at_offset(inode, bh, &imap, offset);
1085 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1086 new_ioend);
1087 count++;
1da177e4 1088 }
f6d6d4fc
CH
1089
1090 if (!iohead)
1091 iohead = ioend;
1092
1093 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1094
1095 if (uptodate && bh == head)
1096 SetPageUptodate(page);
1097
89f3b363 1098 xfs_start_page_writeback(page, 1, count);
1da177e4 1099
7bf7f352
DC
1100 /* if there is no IO to be submitted for this page, we are done */
1101 if (!ioend)
1102 return 0;
1103
1104 ASSERT(iohead);
1105
1106 /*
1107 * Any errors from this point onwards need tobe reported through the IO
1108 * completion path as we have marked the initial page as under writeback
1109 * and unlocked it.
1110 */
1111 if (imap_valid) {
bd1556a1
CH
1112 xfs_off_t end_index;
1113
1114 end_index = imap.br_startoff + imap.br_blockcount;
1115
1116 /* to bytes */
1117 end_index <<= inode->i_blkbits;
1118
1119 /* to pages */
1120 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1121
1122 /* check against file size */
1123 if (end_index > last_index)
1124 end_index = last_index;
8699bb0a 1125
207d0416 1126 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
2fa24f92 1127 wbc, end_index);
1da177e4
LT
1128 }
1129
281627df 1130
7bf7f352
DC
1131 /*
1132 * Reserve log space if we might write beyond the on-disk inode size.
1133 */
1134 err = 0;
1135 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1136 err = xfs_setfilesize_trans_alloc(ioend);
1137
1138 xfs_submit_ioend(wbc, iohead, err);
f6d6d4fc 1139
89f3b363 1140 return 0;
1da177e4
LT
1141
1142error:
f6d6d4fc
CH
1143 if (iohead)
1144 xfs_cancel_ioend(iohead);
1da177e4 1145
b5420f23
CH
1146 if (err == -EAGAIN)
1147 goto redirty;
1148
20cb52eb 1149 xfs_aops_discard_page(page);
89f3b363
CH
1150 ClearPageUptodate(page);
1151 unlock_page(page);
1da177e4 1152 return err;
f51623b2 1153
b5420f23 1154redirty:
f51623b2
NS
1155 redirty_page_for_writepage(wbc, page);
1156 unlock_page(page);
1157 return 0;
f51623b2
NS
1158}
1159
7d4fb40a
NS
1160STATIC int
1161xfs_vm_writepages(
1162 struct address_space *mapping,
1163 struct writeback_control *wbc)
1164{
b3aea4ed 1165 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1166 return generic_writepages(mapping, wbc);
1167}
1168
f51623b2
NS
1169/*
1170 * Called to move a page into cleanable state - and from there
89f3b363 1171 * to be released. The page should already be clean. We always
f51623b2
NS
1172 * have buffer heads in this call.
1173 *
89f3b363 1174 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1175 */
1176STATIC int
238f4c54 1177xfs_vm_releasepage(
f51623b2
NS
1178 struct page *page,
1179 gfp_t gfp_mask)
1180{
20cb52eb 1181 int delalloc, unwritten;
f51623b2 1182
89f3b363 1183 trace_xfs_releasepage(page->mapping->host, page, 0);
238f4c54 1184
20cb52eb 1185 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1186
89f3b363 1187 if (WARN_ON(delalloc))
f51623b2 1188 return 0;
89f3b363 1189 if (WARN_ON(unwritten))
f51623b2
NS
1190 return 0;
1191
f51623b2
NS
1192 return try_to_free_buffers(page);
1193}
1194
1da177e4 1195STATIC int
c2536668 1196__xfs_get_blocks(
1da177e4
LT
1197 struct inode *inode,
1198 sector_t iblock,
1da177e4
LT
1199 struct buffer_head *bh_result,
1200 int create,
f2bde9b8 1201 int direct)
1da177e4 1202{
a206c817
CH
1203 struct xfs_inode *ip = XFS_I(inode);
1204 struct xfs_mount *mp = ip->i_mount;
1205 xfs_fileoff_t offset_fsb, end_fsb;
1206 int error = 0;
1207 int lockmode = 0;
207d0416 1208 struct xfs_bmbt_irec imap;
a206c817 1209 int nimaps = 1;
fdc7ed75
NS
1210 xfs_off_t offset;
1211 ssize_t size;
207d0416 1212 int new = 0;
a206c817
CH
1213
1214 if (XFS_FORCED_SHUTDOWN(mp))
1215 return -XFS_ERROR(EIO);
1da177e4 1216
fdc7ed75 1217 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1218 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1219 size = bh_result->b_size;
364f358a
LM
1220
1221 if (!create && direct && offset >= i_size_read(inode))
1222 return 0;
1223
507630b2
DC
1224 /*
1225 * Direct I/O is usually done on preallocated files, so try getting
1226 * a block mapping without an exclusive lock first. For buffered
1227 * writes we already have the exclusive iolock anyway, so avoiding
1228 * a lock roundtrip here by taking the ilock exclusive from the
1229 * beginning is a useful micro optimization.
1230 */
1231 if (create && !direct) {
a206c817
CH
1232 lockmode = XFS_ILOCK_EXCL;
1233 xfs_ilock(ip, lockmode);
1234 } else {
1235 lockmode = xfs_ilock_map_shared(ip);
1236 }
f2bde9b8 1237
d2c28191
DC
1238 ASSERT(offset <= mp->m_super->s_maxbytes);
1239 if (offset + size > mp->m_super->s_maxbytes)
1240 size = mp->m_super->s_maxbytes - offset;
a206c817
CH
1241 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1242 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1243
5c8ed202
DC
1244 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1245 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1da177e4 1246 if (error)
a206c817
CH
1247 goto out_unlock;
1248
1249 if (create &&
1250 (!nimaps ||
1251 (imap.br_startblock == HOLESTARTBLOCK ||
1252 imap.br_startblock == DELAYSTARTBLOCK))) {
aff3a9ed 1253 if (direct || xfs_get_extsz_hint(ip)) {
507630b2
DC
1254 /*
1255 * Drop the ilock in preparation for starting the block
1256 * allocation transaction. It will be retaken
1257 * exclusively inside xfs_iomap_write_direct for the
1258 * actual allocation.
1259 */
1260 xfs_iunlock(ip, lockmode);
a206c817
CH
1261 error = xfs_iomap_write_direct(ip, offset, size,
1262 &imap, nimaps);
507630b2
DC
1263 if (error)
1264 return -error;
d3bc815a 1265 new = 1;
a206c817 1266 } else {
507630b2
DC
1267 /*
1268 * Delalloc reservations do not require a transaction,
d3bc815a
DC
1269 * we can go on without dropping the lock here. If we
1270 * are allocating a new delalloc block, make sure that
1271 * we set the new flag so that we mark the buffer new so
1272 * that we know that it is newly allocated if the write
1273 * fails.
507630b2 1274 */
d3bc815a
DC
1275 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1276 new = 1;
a206c817 1277 error = xfs_iomap_write_delay(ip, offset, size, &imap);
507630b2
DC
1278 if (error)
1279 goto out_unlock;
1280
1281 xfs_iunlock(ip, lockmode);
a206c817 1282 }
a206c817
CH
1283
1284 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1285 } else if (nimaps) {
1286 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
507630b2 1287 xfs_iunlock(ip, lockmode);
a206c817
CH
1288 } else {
1289 trace_xfs_get_blocks_notfound(ip, offset, size);
1290 goto out_unlock;
1291 }
1da177e4 1292
207d0416
CH
1293 if (imap.br_startblock != HOLESTARTBLOCK &&
1294 imap.br_startblock != DELAYSTARTBLOCK) {
87cbc49c
NS
1295 /*
1296 * For unwritten extents do not report a disk address on
1da177e4
LT
1297 * the read case (treat as if we're reading into a hole).
1298 */
207d0416
CH
1299 if (create || !ISUNWRITTEN(&imap))
1300 xfs_map_buffer(inode, bh_result, &imap, offset);
1301 if (create && ISUNWRITTEN(&imap)) {
1da177e4
LT
1302 if (direct)
1303 bh_result->b_private = inode;
1304 set_buffer_unwritten(bh_result);
1da177e4
LT
1305 }
1306 }
1307
c2536668
NS
1308 /*
1309 * If this is a realtime file, data may be on a different device.
1310 * to that pointed to from the buffer_head b_bdev currently.
1311 */
046f1685 1312 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1313
c2536668 1314 /*
549054af
DC
1315 * If we previously allocated a block out beyond eof and we are now
1316 * coming back to use it then we will need to flag it as new even if it
1317 * has a disk address.
1318 *
1319 * With sub-block writes into unwritten extents we also need to mark
1320 * the buffer as new so that the unwritten parts of the buffer gets
1321 * correctly zeroed.
1da177e4
LT
1322 */
1323 if (create &&
1324 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1325 (offset >= i_size_read(inode)) ||
207d0416 1326 (new || ISUNWRITTEN(&imap))))
1da177e4 1327 set_buffer_new(bh_result);
1da177e4 1328
207d0416 1329 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1330 BUG_ON(direct);
1331 if (create) {
1332 set_buffer_uptodate(bh_result);
1333 set_buffer_mapped(bh_result);
1334 set_buffer_delay(bh_result);
1335 }
1336 }
1337
2b8f12b7
CH
1338 /*
1339 * If this is O_DIRECT or the mpage code calling tell them how large
1340 * the mapping is, so that we can avoid repeated get_blocks calls.
1341 */
c2536668 1342 if (direct || size > (1 << inode->i_blkbits)) {
2b8f12b7
CH
1343 xfs_off_t mapping_size;
1344
1345 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1346 mapping_size <<= inode->i_blkbits;
1347
1348 ASSERT(mapping_size > 0);
1349 if (mapping_size > size)
1350 mapping_size = size;
1351 if (mapping_size > LONG_MAX)
1352 mapping_size = LONG_MAX;
1353
1354 bh_result->b_size = mapping_size;
1da177e4
LT
1355 }
1356
1357 return 0;
a206c817
CH
1358
1359out_unlock:
1360 xfs_iunlock(ip, lockmode);
1361 return -error;
1da177e4
LT
1362}
1363
1364int
c2536668 1365xfs_get_blocks(
1da177e4
LT
1366 struct inode *inode,
1367 sector_t iblock,
1368 struct buffer_head *bh_result,
1369 int create)
1370{
f2bde9b8 1371 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1da177e4
LT
1372}
1373
1374STATIC int
e4c573bb 1375xfs_get_blocks_direct(
1da177e4
LT
1376 struct inode *inode,
1377 sector_t iblock,
1da177e4
LT
1378 struct buffer_head *bh_result,
1379 int create)
1380{
f2bde9b8 1381 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1da177e4
LT
1382}
1383
209fb87a
CH
1384/*
1385 * Complete a direct I/O write request.
1386 *
1387 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1388 * need to issue a transaction to convert the range from unwritten to written
1389 * extents. In case this is regular synchronous I/O we just call xfs_end_io
25985edc 1390 * to do this and we are done. But in case this was a successful AIO
209fb87a
CH
1391 * request this handler is called from interrupt context, from which we
1392 * can't start transactions. In that case offload the I/O completion to
1393 * the workqueues we also use for buffered I/O completion.
1394 */
f0973863 1395STATIC void
209fb87a
CH
1396xfs_end_io_direct_write(
1397 struct kiocb *iocb,
1398 loff_t offset,
1399 ssize_t size,
1400 void *private,
1401 int ret,
1402 bool is_async)
f0973863 1403{
209fb87a 1404 struct xfs_ioend *ioend = iocb->private;
f0973863 1405
2813d682
CH
1406 /*
1407 * While the generic direct I/O code updates the inode size, it does
1408 * so only after the end_io handler is called, which means our
1409 * end_io handler thinks the on-disk size is outside the in-core
1410 * size. To prevent this just update it a little bit earlier here.
1411 */
1412 if (offset + size > i_size_read(ioend->io_inode))
1413 i_size_write(ioend->io_inode, offset + size);
1414
f0973863 1415 /*
209fb87a
CH
1416 * blockdev_direct_IO can return an error even after the I/O
1417 * completion handler was called. Thus we need to protect
1418 * against double-freeing.
f0973863 1419 */
209fb87a
CH
1420 iocb->private = NULL;
1421
ba87ea69
LM
1422 ioend->io_offset = offset;
1423 ioend->io_size = size;
c859cdd1
CH
1424 ioend->io_iocb = iocb;
1425 ioend->io_result = ret;
209fb87a 1426 if (private && size > 0)
0d882a36 1427 ioend->io_type = XFS_IO_UNWRITTEN;
209fb87a
CH
1428
1429 if (is_async) {
c859cdd1 1430 ioend->io_isasync = 1;
209fb87a 1431 xfs_finish_ioend(ioend);
f0973863 1432 } else {
209fb87a 1433 xfs_finish_ioend_sync(ioend);
f0973863 1434 }
f0973863
CH
1435}
1436
1da177e4 1437STATIC ssize_t
e4c573bb 1438xfs_vm_direct_IO(
1da177e4
LT
1439 int rw,
1440 struct kiocb *iocb,
1441 const struct iovec *iov,
1442 loff_t offset,
1443 unsigned long nr_segs)
1444{
209fb87a
CH
1445 struct inode *inode = iocb->ki_filp->f_mapping->host;
1446 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
281627df 1447 struct xfs_ioend *ioend = NULL;
209fb87a
CH
1448 ssize_t ret;
1449
1450 if (rw & WRITE) {
281627df
CH
1451 size_t size = iov_length(iov, nr_segs);
1452
1453 /*
437a255a
DC
1454 * We cannot preallocate a size update transaction here as we
1455 * don't know whether allocation is necessary or not. Hence we
1456 * can only tell IO completion that one is necessary if we are
1457 * not doing unwritten extent conversion.
281627df 1458 */
0d882a36 1459 iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT);
437a255a 1460 if (offset + size > XFS_I(inode)->i_d.di_size)
281627df 1461 ioend->io_isdirect = 1;
209fb87a 1462
eafdc7d1
CH
1463 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1464 offset, nr_segs,
1465 xfs_get_blocks_direct,
1466 xfs_end_io_direct_write, NULL, 0);
209fb87a 1467 if (ret != -EIOCBQUEUED && iocb->private)
437a255a 1468 goto out_destroy_ioend;
209fb87a 1469 } else {
eafdc7d1
CH
1470 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1471 offset, nr_segs,
1472 xfs_get_blocks_direct,
1473 NULL, NULL, 0);
209fb87a 1474 }
f0973863 1475
f0973863 1476 return ret;
281627df 1477
281627df
CH
1478out_destroy_ioend:
1479 xfs_destroy_ioend(ioend);
1480 return ret;
1da177e4
LT
1481}
1482
d3bc815a
DC
1483/*
1484 * Punch out the delalloc blocks we have already allocated.
1485 *
1486 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1487 * as the page is still locked at this point.
1488 */
1489STATIC void
1490xfs_vm_kill_delalloc_range(
1491 struct inode *inode,
1492 loff_t start,
1493 loff_t end)
1494{
1495 struct xfs_inode *ip = XFS_I(inode);
1496 xfs_fileoff_t start_fsb;
1497 xfs_fileoff_t end_fsb;
1498 int error;
1499
1500 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1501 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1502 if (end_fsb <= start_fsb)
1503 return;
1504
1505 xfs_ilock(ip, XFS_ILOCK_EXCL);
1506 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1507 end_fsb - start_fsb);
1508 if (error) {
1509 /* something screwed, just bail */
1510 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1511 xfs_alert(ip->i_mount,
1512 "xfs_vm_write_failed: unable to clean up ino %lld",
1513 ip->i_ino);
1514 }
1515 }
1516 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1517}
1518
fa9b227e
CH
1519STATIC void
1520xfs_vm_write_failed(
d3bc815a
DC
1521 struct inode *inode,
1522 struct page *page,
1523 loff_t pos,
1524 unsigned len)
fa9b227e 1525{
d3bc815a
DC
1526 loff_t block_offset = pos & PAGE_MASK;
1527 loff_t block_start;
1528 loff_t block_end;
1529 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1530 loff_t to = from + len;
1531 struct buffer_head *bh, *head;
fa9b227e 1532
d3bc815a 1533 ASSERT(block_offset + from == pos);
c726de44 1534
d3bc815a
DC
1535 head = page_buffers(page);
1536 block_start = 0;
1537 for (bh = head; bh != head || !block_start;
1538 bh = bh->b_this_page, block_start = block_end,
1539 block_offset += bh->b_size) {
1540 block_end = block_start + bh->b_size;
c726de44 1541
d3bc815a
DC
1542 /* skip buffers before the write */
1543 if (block_end <= from)
1544 continue;
1545
1546 /* if the buffer is after the write, we're done */
1547 if (block_start >= to)
1548 break;
1549
1550 if (!buffer_delay(bh))
1551 continue;
1552
1553 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1554 continue;
1555
1556 xfs_vm_kill_delalloc_range(inode, block_offset,
1557 block_offset + bh->b_size);
fa9b227e 1558 }
d3bc815a 1559
fa9b227e
CH
1560}
1561
d3bc815a
DC
1562/*
1563 * This used to call block_write_begin(), but it unlocks and releases the page
1564 * on error, and we need that page to be able to punch stale delalloc blocks out
1565 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1566 * the appropriate point.
1567 */
f51623b2 1568STATIC int
d79689c7 1569xfs_vm_write_begin(
f51623b2 1570 struct file *file,
d79689c7
NP
1571 struct address_space *mapping,
1572 loff_t pos,
1573 unsigned len,
1574 unsigned flags,
1575 struct page **pagep,
1576 void **fsdata)
f51623b2 1577{
d3bc815a
DC
1578 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1579 struct page *page;
1580 int status;
155130a4 1581
d3bc815a
DC
1582 ASSERT(len <= PAGE_CACHE_SIZE);
1583
1584 page = grab_cache_page_write_begin(mapping, index,
1585 flags | AOP_FLAG_NOFS);
1586 if (!page)
1587 return -ENOMEM;
1588
1589 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1590 if (unlikely(status)) {
1591 struct inode *inode = mapping->host;
1592
1593 xfs_vm_write_failed(inode, page, pos, len);
1594 unlock_page(page);
1595
1596 if (pos + len > i_size_read(inode))
1597 truncate_pagecache(inode, pos + len, i_size_read(inode));
1598
1599 page_cache_release(page);
1600 page = NULL;
1601 }
1602
1603 *pagep = page;
1604 return status;
fa9b227e
CH
1605}
1606
d3bc815a
DC
1607/*
1608 * On failure, we only need to kill delalloc blocks beyond EOF because they
1609 * will never be written. For blocks within EOF, generic_write_end() zeros them
1610 * so they are safe to leave alone and be written with all the other valid data.
1611 */
fa9b227e
CH
1612STATIC int
1613xfs_vm_write_end(
1614 struct file *file,
1615 struct address_space *mapping,
1616 loff_t pos,
1617 unsigned len,
1618 unsigned copied,
1619 struct page *page,
1620 void *fsdata)
1621{
1622 int ret;
155130a4 1623
d3bc815a
DC
1624 ASSERT(len <= PAGE_CACHE_SIZE);
1625
fa9b227e 1626 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
d3bc815a
DC
1627 if (unlikely(ret < len)) {
1628 struct inode *inode = mapping->host;
1629 size_t isize = i_size_read(inode);
1630 loff_t to = pos + len;
1631
1632 if (to > isize) {
1633 truncate_pagecache(inode, to, isize);
1634 xfs_vm_kill_delalloc_range(inode, isize, to);
1635 }
1636 }
155130a4 1637 return ret;
f51623b2 1638}
1da177e4
LT
1639
1640STATIC sector_t
e4c573bb 1641xfs_vm_bmap(
1da177e4
LT
1642 struct address_space *mapping,
1643 sector_t block)
1644{
1645 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1646 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1647
cca28fb8 1648 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1649 xfs_ilock(ip, XFS_IOLOCK_SHARED);
4bc1ea6b 1650 filemap_write_and_wait(mapping);
126468b1 1651 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1652 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1653}
1654
1655STATIC int
e4c573bb 1656xfs_vm_readpage(
1da177e4
LT
1657 struct file *unused,
1658 struct page *page)
1659{
c2536668 1660 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1661}
1662
1663STATIC int
e4c573bb 1664xfs_vm_readpages(
1da177e4
LT
1665 struct file *unused,
1666 struct address_space *mapping,
1667 struct list_head *pages,
1668 unsigned nr_pages)
1669{
c2536668 1670 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1671}
1672
3430681f
DC
1673/*
1674 * This is basically a copy of __set_page_dirty_buffers() with one
1675 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1676 * dirty, we'll never be able to clean them because we don't write buffers
1677 * beyond EOF, and that means we can't invalidate pages that span EOF
1678 * that have been marked dirty. Further, the dirty state can leak into
1679 * the file interior if the file is extended, resulting in all sorts of
1680 * bad things happening as the state does not match the underlying data.
1681 *
1682 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1683 * this only exist because of bufferheads and how the generic code manages them.
1684 */
1685STATIC int
1686xfs_vm_set_page_dirty(
1687 struct page *page)
1688{
1689 struct address_space *mapping = page->mapping;
1690 struct inode *inode = mapping->host;
1691 loff_t end_offset;
1692 loff_t offset;
1693 int newly_dirty;
1694
1695 if (unlikely(!mapping))
1696 return !TestSetPageDirty(page);
1697
1698 end_offset = i_size_read(inode);
1699 offset = page_offset(page);
1700
1701 spin_lock(&mapping->private_lock);
1702 if (page_has_buffers(page)) {
1703 struct buffer_head *head = page_buffers(page);
1704 struct buffer_head *bh = head;
1705
1706 do {
1707 if (offset < end_offset)
1708 set_buffer_dirty(bh);
1709 bh = bh->b_this_page;
1710 offset += 1 << inode->i_blkbits;
1711 } while (bh != head);
1712 }
1713 newly_dirty = !TestSetPageDirty(page);
1714 spin_unlock(&mapping->private_lock);
1715
1716 if (newly_dirty) {
1717 /* sigh - __set_page_dirty() is static, so copy it here, too */
1718 unsigned long flags;
1719
1720 spin_lock_irqsave(&mapping->tree_lock, flags);
1721 if (page->mapping) { /* Race with truncate? */
1722 WARN_ON_ONCE(!PageUptodate(page));
1723 account_page_dirtied(page, mapping);
1724 radix_tree_tag_set(&mapping->page_tree,
1725 page_index(page), PAGECACHE_TAG_DIRTY);
1726 }
1727 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1728 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1729 }
1730 return newly_dirty;
1731}
1732
f5e54d6e 1733const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1734 .readpage = xfs_vm_readpage,
1735 .readpages = xfs_vm_readpages,
1736 .writepage = xfs_vm_writepage,
7d4fb40a 1737 .writepages = xfs_vm_writepages,
3430681f 1738 .set_page_dirty = xfs_vm_set_page_dirty,
238f4c54
NS
1739 .releasepage = xfs_vm_releasepage,
1740 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1741 .write_begin = xfs_vm_write_begin,
fa9b227e 1742 .write_end = xfs_vm_write_end,
e4c573bb
NS
1743 .bmap = xfs_vm_bmap,
1744 .direct_IO = xfs_vm_direct_IO,
e965f963 1745 .migratepage = buffer_migrate_page,
bddaafa1 1746 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1747 .error_remove_page = generic_error_remove_page,
1da177e4 1748};