proc: Split the namespace stuff out into linux/proc_ns.h
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
d10577a8
AV
19#include <linux/acct.h> /* acct_auto_close_mnt */
20#include <linux/ramfs.h> /* init_rootfs */
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
07b20889 25#include "pnode.h"
948730b0 26#include "internal.h"
1da177e4 27
13f14b4d
ED
28#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
29#define HASH_SIZE (1UL << HASH_SHIFT)
30
5addc5dd 31static int event;
73cd49ec 32static DEFINE_IDA(mnt_id_ida);
719f5d7f 33static DEFINE_IDA(mnt_group_ida);
99b7db7b 34static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
35static int mnt_id_start = 0;
36static int mnt_group_start = 1;
1da177e4 37
fa3536cc 38static struct list_head *mount_hashtable __read_mostly;
84d17192 39static struct list_head *mountpoint_hashtable __read_mostly;
e18b890b 40static struct kmem_cache *mnt_cache __read_mostly;
390c6843 41static struct rw_semaphore namespace_sem;
1da177e4 42
f87fd4c2 43/* /sys/fs */
00d26666
GKH
44struct kobject *fs_kobj;
45EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 46
99b7db7b
NP
47/*
48 * vfsmount lock may be taken for read to prevent changes to the
49 * vfsmount hash, ie. during mountpoint lookups or walking back
50 * up the tree.
51 *
52 * It should be taken for write in all cases where the vfsmount
53 * tree or hash is modified or when a vfsmount structure is modified.
54 */
55DEFINE_BRLOCK(vfsmount_lock);
56
1da177e4
LT
57static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
58{
b58fed8b
RP
59 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
60 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
61 tmp = tmp + (tmp >> HASH_SHIFT);
62 return tmp & (HASH_SIZE - 1);
1da177e4
LT
63}
64
3d733633
DH
65#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
66
99b7db7b
NP
67/*
68 * allocation is serialized by namespace_sem, but we need the spinlock to
69 * serialize with freeing.
70 */
b105e270 71static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
72{
73 int res;
74
75retry:
76 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 77 spin_lock(&mnt_id_lock);
15169fe7 78 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 79 if (!res)
15169fe7 80 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 81 spin_unlock(&mnt_id_lock);
73cd49ec
MS
82 if (res == -EAGAIN)
83 goto retry;
84
85 return res;
86}
87
b105e270 88static void mnt_free_id(struct mount *mnt)
73cd49ec 89{
15169fe7 90 int id = mnt->mnt_id;
99b7db7b 91 spin_lock(&mnt_id_lock);
f21f6220
AV
92 ida_remove(&mnt_id_ida, id);
93 if (mnt_id_start > id)
94 mnt_id_start = id;
99b7db7b 95 spin_unlock(&mnt_id_lock);
73cd49ec
MS
96}
97
719f5d7f
MS
98/*
99 * Allocate a new peer group ID
100 *
101 * mnt_group_ida is protected by namespace_sem
102 */
4b8b21f4 103static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 104{
f21f6220
AV
105 int res;
106
719f5d7f
MS
107 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
108 return -ENOMEM;
109
f21f6220
AV
110 res = ida_get_new_above(&mnt_group_ida,
111 mnt_group_start,
15169fe7 112 &mnt->mnt_group_id);
f21f6220 113 if (!res)
15169fe7 114 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
115
116 return res;
719f5d7f
MS
117}
118
119/*
120 * Release a peer group ID
121 */
4b8b21f4 122void mnt_release_group_id(struct mount *mnt)
719f5d7f 123{
15169fe7 124 int id = mnt->mnt_group_id;
f21f6220
AV
125 ida_remove(&mnt_group_ida, id);
126 if (mnt_group_start > id)
127 mnt_group_start = id;
15169fe7 128 mnt->mnt_group_id = 0;
719f5d7f
MS
129}
130
b3e19d92
NP
131/*
132 * vfsmount lock must be held for read
133 */
83adc753 134static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
135{
136#ifdef CONFIG_SMP
68e8a9fe 137 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
138#else
139 preempt_disable();
68e8a9fe 140 mnt->mnt_count += n;
b3e19d92
NP
141 preempt_enable();
142#endif
143}
144
b3e19d92
NP
145/*
146 * vfsmount lock must be held for write
147 */
83adc753 148unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
149{
150#ifdef CONFIG_SMP
f03c6599 151 unsigned int count = 0;
b3e19d92
NP
152 int cpu;
153
154 for_each_possible_cpu(cpu) {
68e8a9fe 155 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
156 }
157
158 return count;
159#else
68e8a9fe 160 return mnt->mnt_count;
b3e19d92
NP
161#endif
162}
163
b105e270 164static struct mount *alloc_vfsmnt(const char *name)
1da177e4 165{
c63181e6
AV
166 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
167 if (mnt) {
73cd49ec
MS
168 int err;
169
c63181e6 170 err = mnt_alloc_id(mnt);
88b38782
LZ
171 if (err)
172 goto out_free_cache;
173
174 if (name) {
c63181e6
AV
175 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
176 if (!mnt->mnt_devname)
88b38782 177 goto out_free_id;
73cd49ec
MS
178 }
179
b3e19d92 180#ifdef CONFIG_SMP
c63181e6
AV
181 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
182 if (!mnt->mnt_pcp)
b3e19d92
NP
183 goto out_free_devname;
184
c63181e6 185 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 186#else
c63181e6
AV
187 mnt->mnt_count = 1;
188 mnt->mnt_writers = 0;
b3e19d92
NP
189#endif
190
c63181e6
AV
191 INIT_LIST_HEAD(&mnt->mnt_hash);
192 INIT_LIST_HEAD(&mnt->mnt_child);
193 INIT_LIST_HEAD(&mnt->mnt_mounts);
194 INIT_LIST_HEAD(&mnt->mnt_list);
195 INIT_LIST_HEAD(&mnt->mnt_expire);
196 INIT_LIST_HEAD(&mnt->mnt_share);
197 INIT_LIST_HEAD(&mnt->mnt_slave_list);
198 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
199#ifdef CONFIG_FSNOTIFY
200 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 201#endif
1da177e4 202 }
c63181e6 203 return mnt;
88b38782 204
d3ef3d73 205#ifdef CONFIG_SMP
206out_free_devname:
c63181e6 207 kfree(mnt->mnt_devname);
d3ef3d73 208#endif
88b38782 209out_free_id:
c63181e6 210 mnt_free_id(mnt);
88b38782 211out_free_cache:
c63181e6 212 kmem_cache_free(mnt_cache, mnt);
88b38782 213 return NULL;
1da177e4
LT
214}
215
3d733633
DH
216/*
217 * Most r/o checks on a fs are for operations that take
218 * discrete amounts of time, like a write() or unlink().
219 * We must keep track of when those operations start
220 * (for permission checks) and when they end, so that
221 * we can determine when writes are able to occur to
222 * a filesystem.
223 */
224/*
225 * __mnt_is_readonly: check whether a mount is read-only
226 * @mnt: the mount to check for its write status
227 *
228 * This shouldn't be used directly ouside of the VFS.
229 * It does not guarantee that the filesystem will stay
230 * r/w, just that it is right *now*. This can not and
231 * should not be used in place of IS_RDONLY(inode).
232 * mnt_want/drop_write() will _keep_ the filesystem
233 * r/w.
234 */
235int __mnt_is_readonly(struct vfsmount *mnt)
236{
2e4b7fcd
DH
237 if (mnt->mnt_flags & MNT_READONLY)
238 return 1;
239 if (mnt->mnt_sb->s_flags & MS_RDONLY)
240 return 1;
241 return 0;
3d733633
DH
242}
243EXPORT_SYMBOL_GPL(__mnt_is_readonly);
244
83adc753 245static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 246{
247#ifdef CONFIG_SMP
68e8a9fe 248 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 249#else
68e8a9fe 250 mnt->mnt_writers++;
d3ef3d73 251#endif
252}
3d733633 253
83adc753 254static inline void mnt_dec_writers(struct mount *mnt)
3d733633 255{
d3ef3d73 256#ifdef CONFIG_SMP
68e8a9fe 257 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 258#else
68e8a9fe 259 mnt->mnt_writers--;
d3ef3d73 260#endif
3d733633 261}
3d733633 262
83adc753 263static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 264{
d3ef3d73 265#ifdef CONFIG_SMP
266 unsigned int count = 0;
3d733633 267 int cpu;
3d733633
DH
268
269 for_each_possible_cpu(cpu) {
68e8a9fe 270 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 271 }
3d733633 272
d3ef3d73 273 return count;
274#else
275 return mnt->mnt_writers;
276#endif
3d733633
DH
277}
278
4ed5e82f
MS
279static int mnt_is_readonly(struct vfsmount *mnt)
280{
281 if (mnt->mnt_sb->s_readonly_remount)
282 return 1;
283 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
284 smp_rmb();
285 return __mnt_is_readonly(mnt);
286}
287
8366025e 288/*
eb04c282
JK
289 * Most r/o & frozen checks on a fs are for operations that take discrete
290 * amounts of time, like a write() or unlink(). We must keep track of when
291 * those operations start (for permission checks) and when they end, so that we
292 * can determine when writes are able to occur to a filesystem.
8366025e
DH
293 */
294/**
eb04c282 295 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 296 * @m: the mount on which to take a write
8366025e 297 *
eb04c282
JK
298 * This tells the low-level filesystem that a write is about to be performed to
299 * it, and makes sure that writes are allowed (mnt it read-write) before
300 * returning success. This operation does not protect against filesystem being
301 * frozen. When the write operation is finished, __mnt_drop_write() must be
302 * called. This is effectively a refcount.
8366025e 303 */
eb04c282 304int __mnt_want_write(struct vfsmount *m)
8366025e 305{
83adc753 306 struct mount *mnt = real_mount(m);
3d733633 307 int ret = 0;
3d733633 308
d3ef3d73 309 preempt_disable();
c6653a83 310 mnt_inc_writers(mnt);
d3ef3d73 311 /*
c6653a83 312 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 313 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
314 * incremented count after it has set MNT_WRITE_HOLD.
315 */
316 smp_mb();
1e75529e 317 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 318 cpu_relax();
319 /*
320 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
321 * be set to match its requirements. So we must not load that until
322 * MNT_WRITE_HOLD is cleared.
323 */
324 smp_rmb();
4ed5e82f 325 if (mnt_is_readonly(m)) {
c6653a83 326 mnt_dec_writers(mnt);
3d733633 327 ret = -EROFS;
3d733633 328 }
d3ef3d73 329 preempt_enable();
eb04c282
JK
330
331 return ret;
332}
333
334/**
335 * mnt_want_write - get write access to a mount
336 * @m: the mount on which to take a write
337 *
338 * This tells the low-level filesystem that a write is about to be performed to
339 * it, and makes sure that writes are allowed (mount is read-write, filesystem
340 * is not frozen) before returning success. When the write operation is
341 * finished, mnt_drop_write() must be called. This is effectively a refcount.
342 */
343int mnt_want_write(struct vfsmount *m)
344{
345 int ret;
346
347 sb_start_write(m->mnt_sb);
348 ret = __mnt_want_write(m);
349 if (ret)
350 sb_end_write(m->mnt_sb);
3d733633 351 return ret;
8366025e
DH
352}
353EXPORT_SYMBOL_GPL(mnt_want_write);
354
96029c4e 355/**
356 * mnt_clone_write - get write access to a mount
357 * @mnt: the mount on which to take a write
358 *
359 * This is effectively like mnt_want_write, except
360 * it must only be used to take an extra write reference
361 * on a mountpoint that we already know has a write reference
362 * on it. This allows some optimisation.
363 *
364 * After finished, mnt_drop_write must be called as usual to
365 * drop the reference.
366 */
367int mnt_clone_write(struct vfsmount *mnt)
368{
369 /* superblock may be r/o */
370 if (__mnt_is_readonly(mnt))
371 return -EROFS;
372 preempt_disable();
83adc753 373 mnt_inc_writers(real_mount(mnt));
96029c4e 374 preempt_enable();
375 return 0;
376}
377EXPORT_SYMBOL_GPL(mnt_clone_write);
378
379/**
eb04c282 380 * __mnt_want_write_file - get write access to a file's mount
96029c4e 381 * @file: the file who's mount on which to take a write
382 *
eb04c282 383 * This is like __mnt_want_write, but it takes a file and can
96029c4e 384 * do some optimisations if the file is open for write already
385 */
eb04c282 386int __mnt_want_write_file(struct file *file)
96029c4e 387{
496ad9aa 388 struct inode *inode = file_inode(file);
eb04c282 389
2d8dd38a 390 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
eb04c282 391 return __mnt_want_write(file->f_path.mnt);
96029c4e 392 else
393 return mnt_clone_write(file->f_path.mnt);
394}
eb04c282
JK
395
396/**
397 * mnt_want_write_file - get write access to a file's mount
398 * @file: the file who's mount on which to take a write
399 *
400 * This is like mnt_want_write, but it takes a file and can
401 * do some optimisations if the file is open for write already
402 */
403int mnt_want_write_file(struct file *file)
404{
405 int ret;
406
407 sb_start_write(file->f_path.mnt->mnt_sb);
408 ret = __mnt_want_write_file(file);
409 if (ret)
410 sb_end_write(file->f_path.mnt->mnt_sb);
411 return ret;
412}
96029c4e 413EXPORT_SYMBOL_GPL(mnt_want_write_file);
414
8366025e 415/**
eb04c282 416 * __mnt_drop_write - give up write access to a mount
8366025e
DH
417 * @mnt: the mount on which to give up write access
418 *
419 * Tells the low-level filesystem that we are done
420 * performing writes to it. Must be matched with
eb04c282 421 * __mnt_want_write() call above.
8366025e 422 */
eb04c282 423void __mnt_drop_write(struct vfsmount *mnt)
8366025e 424{
d3ef3d73 425 preempt_disable();
83adc753 426 mnt_dec_writers(real_mount(mnt));
d3ef3d73 427 preempt_enable();
8366025e 428}
eb04c282
JK
429
430/**
431 * mnt_drop_write - give up write access to a mount
432 * @mnt: the mount on which to give up write access
433 *
434 * Tells the low-level filesystem that we are done performing writes to it and
435 * also allows filesystem to be frozen again. Must be matched with
436 * mnt_want_write() call above.
437 */
438void mnt_drop_write(struct vfsmount *mnt)
439{
440 __mnt_drop_write(mnt);
441 sb_end_write(mnt->mnt_sb);
442}
8366025e
DH
443EXPORT_SYMBOL_GPL(mnt_drop_write);
444
eb04c282
JK
445void __mnt_drop_write_file(struct file *file)
446{
447 __mnt_drop_write(file->f_path.mnt);
448}
449
2a79f17e
AV
450void mnt_drop_write_file(struct file *file)
451{
452 mnt_drop_write(file->f_path.mnt);
453}
454EXPORT_SYMBOL(mnt_drop_write_file);
455
83adc753 456static int mnt_make_readonly(struct mount *mnt)
8366025e 457{
3d733633
DH
458 int ret = 0;
459
962830df 460 br_write_lock(&vfsmount_lock);
83adc753 461 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 462 /*
d3ef3d73 463 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
464 * should be visible before we do.
3d733633 465 */
d3ef3d73 466 smp_mb();
467
3d733633 468 /*
d3ef3d73 469 * With writers on hold, if this value is zero, then there are
470 * definitely no active writers (although held writers may subsequently
471 * increment the count, they'll have to wait, and decrement it after
472 * seeing MNT_READONLY).
473 *
474 * It is OK to have counter incremented on one CPU and decremented on
475 * another: the sum will add up correctly. The danger would be when we
476 * sum up each counter, if we read a counter before it is incremented,
477 * but then read another CPU's count which it has been subsequently
478 * decremented from -- we would see more decrements than we should.
479 * MNT_WRITE_HOLD protects against this scenario, because
480 * mnt_want_write first increments count, then smp_mb, then spins on
481 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
482 * we're counting up here.
3d733633 483 */
c6653a83 484 if (mnt_get_writers(mnt) > 0)
d3ef3d73 485 ret = -EBUSY;
486 else
83adc753 487 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 488 /*
489 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
490 * that become unheld will see MNT_READONLY.
491 */
492 smp_wmb();
83adc753 493 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
962830df 494 br_write_unlock(&vfsmount_lock);
3d733633 495 return ret;
8366025e 496}
8366025e 497
83adc753 498static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 499{
962830df 500 br_write_lock(&vfsmount_lock);
83adc753 501 mnt->mnt.mnt_flags &= ~MNT_READONLY;
962830df 502 br_write_unlock(&vfsmount_lock);
2e4b7fcd
DH
503}
504
4ed5e82f
MS
505int sb_prepare_remount_readonly(struct super_block *sb)
506{
507 struct mount *mnt;
508 int err = 0;
509
8e8b8796
MS
510 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
511 if (atomic_long_read(&sb->s_remove_count))
512 return -EBUSY;
513
962830df 514 br_write_lock(&vfsmount_lock);
4ed5e82f
MS
515 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
516 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
517 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
518 smp_mb();
519 if (mnt_get_writers(mnt) > 0) {
520 err = -EBUSY;
521 break;
522 }
523 }
524 }
8e8b8796
MS
525 if (!err && atomic_long_read(&sb->s_remove_count))
526 err = -EBUSY;
527
4ed5e82f
MS
528 if (!err) {
529 sb->s_readonly_remount = 1;
530 smp_wmb();
531 }
532 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
533 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
534 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
535 }
962830df 536 br_write_unlock(&vfsmount_lock);
4ed5e82f
MS
537
538 return err;
539}
540
b105e270 541static void free_vfsmnt(struct mount *mnt)
1da177e4 542{
52ba1621 543 kfree(mnt->mnt_devname);
73cd49ec 544 mnt_free_id(mnt);
d3ef3d73 545#ifdef CONFIG_SMP
68e8a9fe 546 free_percpu(mnt->mnt_pcp);
d3ef3d73 547#endif
b105e270 548 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
549}
550
551/*
a05964f3
RP
552 * find the first or last mount at @dentry on vfsmount @mnt depending on
553 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 554 * vfsmount_lock must be held for read or write.
1da177e4 555 */
c7105365 556struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 557 int dir)
1da177e4 558{
b58fed8b
RP
559 struct list_head *head = mount_hashtable + hash(mnt, dentry);
560 struct list_head *tmp = head;
c7105365 561 struct mount *p, *found = NULL;
1da177e4 562
1da177e4 563 for (;;) {
a05964f3 564 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
565 p = NULL;
566 if (tmp == head)
567 break;
1b8e5564 568 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 569 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 570 found = p;
1da177e4
LT
571 break;
572 }
573 }
1da177e4
LT
574 return found;
575}
576
a05964f3 577/*
f015f126
DH
578 * lookup_mnt - Return the first child mount mounted at path
579 *
580 * "First" means first mounted chronologically. If you create the
581 * following mounts:
582 *
583 * mount /dev/sda1 /mnt
584 * mount /dev/sda2 /mnt
585 * mount /dev/sda3 /mnt
586 *
587 * Then lookup_mnt() on the base /mnt dentry in the root mount will
588 * return successively the root dentry and vfsmount of /dev/sda1, then
589 * /dev/sda2, then /dev/sda3, then NULL.
590 *
591 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 592 */
1c755af4 593struct vfsmount *lookup_mnt(struct path *path)
a05964f3 594{
c7105365 595 struct mount *child_mnt;
99b7db7b 596
962830df 597 br_read_lock(&vfsmount_lock);
c7105365
AV
598 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
599 if (child_mnt) {
600 mnt_add_count(child_mnt, 1);
962830df 601 br_read_unlock(&vfsmount_lock);
c7105365
AV
602 return &child_mnt->mnt;
603 } else {
962830df 604 br_read_unlock(&vfsmount_lock);
c7105365
AV
605 return NULL;
606 }
a05964f3
RP
607}
608
84d17192
AV
609static struct mountpoint *new_mountpoint(struct dentry *dentry)
610{
611 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
612 struct mountpoint *mp;
613
614 list_for_each_entry(mp, chain, m_hash) {
615 if (mp->m_dentry == dentry) {
616 /* might be worth a WARN_ON() */
617 if (d_unlinked(dentry))
618 return ERR_PTR(-ENOENT);
619 mp->m_count++;
620 return mp;
621 }
622 }
623
624 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
625 if (!mp)
626 return ERR_PTR(-ENOMEM);
627
628 spin_lock(&dentry->d_lock);
629 if (d_unlinked(dentry)) {
630 spin_unlock(&dentry->d_lock);
631 kfree(mp);
632 return ERR_PTR(-ENOENT);
633 }
634 dentry->d_flags |= DCACHE_MOUNTED;
635 spin_unlock(&dentry->d_lock);
636 mp->m_dentry = dentry;
637 mp->m_count = 1;
638 list_add(&mp->m_hash, chain);
639 return mp;
640}
641
642static void put_mountpoint(struct mountpoint *mp)
643{
644 if (!--mp->m_count) {
645 struct dentry *dentry = mp->m_dentry;
646 spin_lock(&dentry->d_lock);
647 dentry->d_flags &= ~DCACHE_MOUNTED;
648 spin_unlock(&dentry->d_lock);
649 list_del(&mp->m_hash);
650 kfree(mp);
651 }
652}
653
143c8c91 654static inline int check_mnt(struct mount *mnt)
1da177e4 655{
6b3286ed 656 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
657}
658
99b7db7b
NP
659/*
660 * vfsmount lock must be held for write
661 */
6b3286ed 662static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
663{
664 if (ns) {
665 ns->event = ++event;
666 wake_up_interruptible(&ns->poll);
667 }
668}
669
99b7db7b
NP
670/*
671 * vfsmount lock must be held for write
672 */
6b3286ed 673static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
674{
675 if (ns && ns->event != event) {
676 ns->event = event;
677 wake_up_interruptible(&ns->poll);
678 }
679}
680
99b7db7b
NP
681/*
682 * vfsmount lock must be held for write
683 */
419148da
AV
684static void detach_mnt(struct mount *mnt, struct path *old_path)
685{
a73324da 686 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
687 old_path->mnt = &mnt->mnt_parent->mnt;
688 mnt->mnt_parent = mnt;
a73324da 689 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 690 list_del_init(&mnt->mnt_child);
1b8e5564 691 list_del_init(&mnt->mnt_hash);
84d17192
AV
692 put_mountpoint(mnt->mnt_mp);
693 mnt->mnt_mp = NULL;
1da177e4
LT
694}
695
99b7db7b
NP
696/*
697 * vfsmount lock must be held for write
698 */
84d17192
AV
699void mnt_set_mountpoint(struct mount *mnt,
700 struct mountpoint *mp,
44d964d6 701 struct mount *child_mnt)
b90fa9ae 702{
84d17192 703 mp->m_count++;
3a2393d7 704 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 705 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 706 child_mnt->mnt_parent = mnt;
84d17192 707 child_mnt->mnt_mp = mp;
b90fa9ae
RP
708}
709
99b7db7b
NP
710/*
711 * vfsmount lock must be held for write
712 */
84d17192
AV
713static void attach_mnt(struct mount *mnt,
714 struct mount *parent,
715 struct mountpoint *mp)
1da177e4 716{
84d17192 717 mnt_set_mountpoint(parent, mp, mnt);
1b8e5564 718 list_add_tail(&mnt->mnt_hash, mount_hashtable +
84d17192
AV
719 hash(&parent->mnt, mp->m_dentry));
720 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
721}
722
723/*
99b7db7b 724 * vfsmount lock must be held for write
b90fa9ae 725 */
4b2619a5 726static void commit_tree(struct mount *mnt)
b90fa9ae 727{
0714a533 728 struct mount *parent = mnt->mnt_parent;
83adc753 729 struct mount *m;
b90fa9ae 730 LIST_HEAD(head);
143c8c91 731 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 732
0714a533 733 BUG_ON(parent == mnt);
b90fa9ae 734
1a4eeaf2 735 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 736 list_for_each_entry(m, &head, mnt_list)
143c8c91 737 m->mnt_ns = n;
f03c6599 738
b90fa9ae
RP
739 list_splice(&head, n->list.prev);
740
1b8e5564 741 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 742 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 743 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 744 touch_mnt_namespace(n);
1da177e4
LT
745}
746
909b0a88 747static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 748{
6b41d536
AV
749 struct list_head *next = p->mnt_mounts.next;
750 if (next == &p->mnt_mounts) {
1da177e4 751 while (1) {
909b0a88 752 if (p == root)
1da177e4 753 return NULL;
6b41d536
AV
754 next = p->mnt_child.next;
755 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 756 break;
0714a533 757 p = p->mnt_parent;
1da177e4
LT
758 }
759 }
6b41d536 760 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
761}
762
315fc83e 763static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 764{
6b41d536
AV
765 struct list_head *prev = p->mnt_mounts.prev;
766 while (prev != &p->mnt_mounts) {
767 p = list_entry(prev, struct mount, mnt_child);
768 prev = p->mnt_mounts.prev;
9676f0c6
RP
769 }
770 return p;
771}
772
9d412a43
AV
773struct vfsmount *
774vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
775{
b105e270 776 struct mount *mnt;
9d412a43
AV
777 struct dentry *root;
778
779 if (!type)
780 return ERR_PTR(-ENODEV);
781
782 mnt = alloc_vfsmnt(name);
783 if (!mnt)
784 return ERR_PTR(-ENOMEM);
785
786 if (flags & MS_KERNMOUNT)
b105e270 787 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
788
789 root = mount_fs(type, flags, name, data);
790 if (IS_ERR(root)) {
791 free_vfsmnt(mnt);
792 return ERR_CAST(root);
793 }
794
b105e270
AV
795 mnt->mnt.mnt_root = root;
796 mnt->mnt.mnt_sb = root->d_sb;
a73324da 797 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 798 mnt->mnt_parent = mnt;
962830df 799 br_write_lock(&vfsmount_lock);
39f7c4db 800 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
962830df 801 br_write_unlock(&vfsmount_lock);
b105e270 802 return &mnt->mnt;
9d412a43
AV
803}
804EXPORT_SYMBOL_GPL(vfs_kern_mount);
805
87129cc0 806static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 807 int flag)
1da177e4 808{
87129cc0 809 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
810 struct mount *mnt;
811 int err;
1da177e4 812
be34d1a3
DH
813 mnt = alloc_vfsmnt(old->mnt_devname);
814 if (!mnt)
815 return ERR_PTR(-ENOMEM);
719f5d7f 816
7a472ef4 817 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
818 mnt->mnt_group_id = 0; /* not a peer of original */
819 else
820 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 821
be34d1a3
DH
822 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
823 err = mnt_alloc_group_id(mnt);
824 if (err)
825 goto out_free;
1da177e4 826 }
be34d1a3
DH
827
828 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
829 atomic_inc(&sb->s_active);
830 mnt->mnt.mnt_sb = sb;
831 mnt->mnt.mnt_root = dget(root);
832 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
833 mnt->mnt_parent = mnt;
834 br_write_lock(&vfsmount_lock);
835 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
836 br_write_unlock(&vfsmount_lock);
837
7a472ef4
EB
838 if ((flag & CL_SLAVE) ||
839 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
840 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
841 mnt->mnt_master = old;
842 CLEAR_MNT_SHARED(mnt);
843 } else if (!(flag & CL_PRIVATE)) {
844 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
845 list_add(&mnt->mnt_share, &old->mnt_share);
846 if (IS_MNT_SLAVE(old))
847 list_add(&mnt->mnt_slave, &old->mnt_slave);
848 mnt->mnt_master = old->mnt_master;
849 }
850 if (flag & CL_MAKE_SHARED)
851 set_mnt_shared(mnt);
852
853 /* stick the duplicate mount on the same expiry list
854 * as the original if that was on one */
855 if (flag & CL_EXPIRE) {
856 if (!list_empty(&old->mnt_expire))
857 list_add(&mnt->mnt_expire, &old->mnt_expire);
858 }
859
cb338d06 860 return mnt;
719f5d7f
MS
861
862 out_free:
863 free_vfsmnt(mnt);
be34d1a3 864 return ERR_PTR(err);
1da177e4
LT
865}
866
83adc753 867static inline void mntfree(struct mount *mnt)
1da177e4 868{
83adc753
AV
869 struct vfsmount *m = &mnt->mnt;
870 struct super_block *sb = m->mnt_sb;
b3e19d92 871
3d733633
DH
872 /*
873 * This probably indicates that somebody messed
874 * up a mnt_want/drop_write() pair. If this
875 * happens, the filesystem was probably unable
876 * to make r/w->r/o transitions.
877 */
d3ef3d73 878 /*
b3e19d92
NP
879 * The locking used to deal with mnt_count decrement provides barriers,
880 * so mnt_get_writers() below is safe.
d3ef3d73 881 */
c6653a83 882 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
883 fsnotify_vfsmount_delete(m);
884 dput(m->mnt_root);
885 free_vfsmnt(mnt);
1da177e4
LT
886 deactivate_super(sb);
887}
888
900148dc 889static void mntput_no_expire(struct mount *mnt)
b3e19d92 890{
b3e19d92 891put_again:
f03c6599 892#ifdef CONFIG_SMP
962830df 893 br_read_lock(&vfsmount_lock);
f7a99c5b
AV
894 if (likely(mnt->mnt_ns)) {
895 /* shouldn't be the last one */
aa9c0e07 896 mnt_add_count(mnt, -1);
962830df 897 br_read_unlock(&vfsmount_lock);
f03c6599 898 return;
b3e19d92 899 }
962830df 900 br_read_unlock(&vfsmount_lock);
b3e19d92 901
962830df 902 br_write_lock(&vfsmount_lock);
aa9c0e07 903 mnt_add_count(mnt, -1);
b3e19d92 904 if (mnt_get_count(mnt)) {
962830df 905 br_write_unlock(&vfsmount_lock);
99b7db7b
NP
906 return;
907 }
b3e19d92 908#else
aa9c0e07 909 mnt_add_count(mnt, -1);
b3e19d92 910 if (likely(mnt_get_count(mnt)))
99b7db7b 911 return;
962830df 912 br_write_lock(&vfsmount_lock);
f03c6599 913#endif
863d684f
AV
914 if (unlikely(mnt->mnt_pinned)) {
915 mnt_add_count(mnt, mnt->mnt_pinned + 1);
916 mnt->mnt_pinned = 0;
962830df 917 br_write_unlock(&vfsmount_lock);
900148dc 918 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 919 goto put_again;
7b7b1ace 920 }
962830df 921
39f7c4db 922 list_del(&mnt->mnt_instance);
962830df 923 br_write_unlock(&vfsmount_lock);
b3e19d92
NP
924 mntfree(mnt);
925}
b3e19d92
NP
926
927void mntput(struct vfsmount *mnt)
928{
929 if (mnt) {
863d684f 930 struct mount *m = real_mount(mnt);
b3e19d92 931 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
932 if (unlikely(m->mnt_expiry_mark))
933 m->mnt_expiry_mark = 0;
934 mntput_no_expire(m);
b3e19d92
NP
935 }
936}
937EXPORT_SYMBOL(mntput);
938
939struct vfsmount *mntget(struct vfsmount *mnt)
940{
941 if (mnt)
83adc753 942 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
943 return mnt;
944}
945EXPORT_SYMBOL(mntget);
946
7b7b1ace
AV
947void mnt_pin(struct vfsmount *mnt)
948{
962830df 949 br_write_lock(&vfsmount_lock);
863d684f 950 real_mount(mnt)->mnt_pinned++;
962830df 951 br_write_unlock(&vfsmount_lock);
7b7b1ace 952}
7b7b1ace
AV
953EXPORT_SYMBOL(mnt_pin);
954
863d684f 955void mnt_unpin(struct vfsmount *m)
7b7b1ace 956{
863d684f 957 struct mount *mnt = real_mount(m);
962830df 958 br_write_lock(&vfsmount_lock);
7b7b1ace 959 if (mnt->mnt_pinned) {
863d684f 960 mnt_add_count(mnt, 1);
7b7b1ace
AV
961 mnt->mnt_pinned--;
962 }
962830df 963 br_write_unlock(&vfsmount_lock);
7b7b1ace 964}
7b7b1ace 965EXPORT_SYMBOL(mnt_unpin);
1da177e4 966
b3b304a2
MS
967static inline void mangle(struct seq_file *m, const char *s)
968{
969 seq_escape(m, s, " \t\n\\");
970}
971
972/*
973 * Simple .show_options callback for filesystems which don't want to
974 * implement more complex mount option showing.
975 *
976 * See also save_mount_options().
977 */
34c80b1d 978int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 979{
2a32cebd
AV
980 const char *options;
981
982 rcu_read_lock();
34c80b1d 983 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
984
985 if (options != NULL && options[0]) {
986 seq_putc(m, ',');
987 mangle(m, options);
988 }
2a32cebd 989 rcu_read_unlock();
b3b304a2
MS
990
991 return 0;
992}
993EXPORT_SYMBOL(generic_show_options);
994
995/*
996 * If filesystem uses generic_show_options(), this function should be
997 * called from the fill_super() callback.
998 *
999 * The .remount_fs callback usually needs to be handled in a special
1000 * way, to make sure, that previous options are not overwritten if the
1001 * remount fails.
1002 *
1003 * Also note, that if the filesystem's .remount_fs function doesn't
1004 * reset all options to their default value, but changes only newly
1005 * given options, then the displayed options will not reflect reality
1006 * any more.
1007 */
1008void save_mount_options(struct super_block *sb, char *options)
1009{
2a32cebd
AV
1010 BUG_ON(sb->s_options);
1011 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1012}
1013EXPORT_SYMBOL(save_mount_options);
1014
2a32cebd
AV
1015void replace_mount_options(struct super_block *sb, char *options)
1016{
1017 char *old = sb->s_options;
1018 rcu_assign_pointer(sb->s_options, options);
1019 if (old) {
1020 synchronize_rcu();
1021 kfree(old);
1022 }
1023}
1024EXPORT_SYMBOL(replace_mount_options);
1025
a1a2c409 1026#ifdef CONFIG_PROC_FS
0226f492 1027/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1028static void *m_start(struct seq_file *m, loff_t *pos)
1029{
6ce6e24e 1030 struct proc_mounts *p = proc_mounts(m);
1da177e4 1031
390c6843 1032 down_read(&namespace_sem);
a1a2c409 1033 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
1034}
1035
1036static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1037{
6ce6e24e 1038 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1039
a1a2c409 1040 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
1041}
1042
1043static void m_stop(struct seq_file *m, void *v)
1044{
390c6843 1045 up_read(&namespace_sem);
1da177e4
LT
1046}
1047
0226f492 1048static int m_show(struct seq_file *m, void *v)
2d4d4864 1049{
6ce6e24e 1050 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1051 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1052 return p->show(m, &r->mnt);
1da177e4
LT
1053}
1054
a1a2c409 1055const struct seq_operations mounts_op = {
1da177e4
LT
1056 .start = m_start,
1057 .next = m_next,
1058 .stop = m_stop,
0226f492 1059 .show = m_show,
b4629fe2 1060};
a1a2c409 1061#endif /* CONFIG_PROC_FS */
b4629fe2 1062
1da177e4
LT
1063/**
1064 * may_umount_tree - check if a mount tree is busy
1065 * @mnt: root of mount tree
1066 *
1067 * This is called to check if a tree of mounts has any
1068 * open files, pwds, chroots or sub mounts that are
1069 * busy.
1070 */
909b0a88 1071int may_umount_tree(struct vfsmount *m)
1da177e4 1072{
909b0a88 1073 struct mount *mnt = real_mount(m);
36341f64
RP
1074 int actual_refs = 0;
1075 int minimum_refs = 0;
315fc83e 1076 struct mount *p;
909b0a88 1077 BUG_ON(!m);
1da177e4 1078
b3e19d92 1079 /* write lock needed for mnt_get_count */
962830df 1080 br_write_lock(&vfsmount_lock);
909b0a88 1081 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1082 actual_refs += mnt_get_count(p);
1da177e4 1083 minimum_refs += 2;
1da177e4 1084 }
962830df 1085 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1086
1087 if (actual_refs > minimum_refs)
e3474a8e 1088 return 0;
1da177e4 1089
e3474a8e 1090 return 1;
1da177e4
LT
1091}
1092
1093EXPORT_SYMBOL(may_umount_tree);
1094
1095/**
1096 * may_umount - check if a mount point is busy
1097 * @mnt: root of mount
1098 *
1099 * This is called to check if a mount point has any
1100 * open files, pwds, chroots or sub mounts. If the
1101 * mount has sub mounts this will return busy
1102 * regardless of whether the sub mounts are busy.
1103 *
1104 * Doesn't take quota and stuff into account. IOW, in some cases it will
1105 * give false negatives. The main reason why it's here is that we need
1106 * a non-destructive way to look for easily umountable filesystems.
1107 */
1108int may_umount(struct vfsmount *mnt)
1109{
e3474a8e 1110 int ret = 1;
8ad08d8a 1111 down_read(&namespace_sem);
962830df 1112 br_write_lock(&vfsmount_lock);
1ab59738 1113 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1114 ret = 0;
962830df 1115 br_write_unlock(&vfsmount_lock);
8ad08d8a 1116 up_read(&namespace_sem);
a05964f3 1117 return ret;
1da177e4
LT
1118}
1119
1120EXPORT_SYMBOL(may_umount);
1121
e3197d83
AV
1122static LIST_HEAD(unmounted); /* protected by namespace_sem */
1123
97216be0 1124static void namespace_unlock(void)
70fbcdf4 1125{
d5e50f74 1126 struct mount *mnt;
97216be0
AV
1127 LIST_HEAD(head);
1128
1129 if (likely(list_empty(&unmounted))) {
1130 up_write(&namespace_sem);
1131 return;
1132 }
1133
1134 list_splice_init(&unmounted, &head);
1135 up_write(&namespace_sem);
1136
1137 while (!list_empty(&head)) {
1138 mnt = list_first_entry(&head, struct mount, mnt_hash);
1b8e5564 1139 list_del_init(&mnt->mnt_hash);
676da58d 1140 if (mnt_has_parent(mnt)) {
70fbcdf4 1141 struct dentry *dentry;
863d684f 1142 struct mount *m;
99b7db7b 1143
962830df 1144 br_write_lock(&vfsmount_lock);
a73324da 1145 dentry = mnt->mnt_mountpoint;
863d684f 1146 m = mnt->mnt_parent;
a73324da 1147 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1148 mnt->mnt_parent = mnt;
7c4b93d8 1149 m->mnt_ghosts--;
962830df 1150 br_write_unlock(&vfsmount_lock);
70fbcdf4 1151 dput(dentry);
863d684f 1152 mntput(&m->mnt);
70fbcdf4 1153 }
d5e50f74 1154 mntput(&mnt->mnt);
70fbcdf4
RP
1155 }
1156}
1157
97216be0 1158static inline void namespace_lock(void)
e3197d83 1159{
97216be0 1160 down_write(&namespace_sem);
e3197d83
AV
1161}
1162
99b7db7b
NP
1163/*
1164 * vfsmount lock must be held for write
1165 * namespace_sem must be held for write
1166 */
328e6d90 1167void umount_tree(struct mount *mnt, int propagate)
1da177e4 1168{
7b8a53fd 1169 LIST_HEAD(tmp_list);
315fc83e 1170 struct mount *p;
1da177e4 1171
909b0a88 1172 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1173 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1174
a05964f3 1175 if (propagate)
7b8a53fd 1176 propagate_umount(&tmp_list);
a05964f3 1177
1b8e5564 1178 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1179 list_del_init(&p->mnt_expire);
1a4eeaf2 1180 list_del_init(&p->mnt_list);
143c8c91
AV
1181 __touch_mnt_namespace(p->mnt_ns);
1182 p->mnt_ns = NULL;
6b41d536 1183 list_del_init(&p->mnt_child);
676da58d 1184 if (mnt_has_parent(p)) {
863d684f 1185 p->mnt_parent->mnt_ghosts++;
84d17192
AV
1186 put_mountpoint(p->mnt_mp);
1187 p->mnt_mp = NULL;
7c4b93d8 1188 }
0f0afb1d 1189 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1190 }
328e6d90 1191 list_splice(&tmp_list, &unmounted);
1da177e4
LT
1192}
1193
b54b9be7 1194static void shrink_submounts(struct mount *mnt);
c35038be 1195
1ab59738 1196static int do_umount(struct mount *mnt, int flags)
1da177e4 1197{
1ab59738 1198 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1199 int retval;
1200
1ab59738 1201 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1202 if (retval)
1203 return retval;
1204
1205 /*
1206 * Allow userspace to request a mountpoint be expired rather than
1207 * unmounting unconditionally. Unmount only happens if:
1208 * (1) the mark is already set (the mark is cleared by mntput())
1209 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1210 */
1211 if (flags & MNT_EXPIRE) {
1ab59738 1212 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1213 flags & (MNT_FORCE | MNT_DETACH))
1214 return -EINVAL;
1215
b3e19d92
NP
1216 /*
1217 * probably don't strictly need the lock here if we examined
1218 * all race cases, but it's a slowpath.
1219 */
962830df 1220 br_write_lock(&vfsmount_lock);
83adc753 1221 if (mnt_get_count(mnt) != 2) {
962830df 1222 br_write_unlock(&vfsmount_lock);
1da177e4 1223 return -EBUSY;
b3e19d92 1224 }
962830df 1225 br_write_unlock(&vfsmount_lock);
1da177e4 1226
863d684f 1227 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1228 return -EAGAIN;
1229 }
1230
1231 /*
1232 * If we may have to abort operations to get out of this
1233 * mount, and they will themselves hold resources we must
1234 * allow the fs to do things. In the Unix tradition of
1235 * 'Gee thats tricky lets do it in userspace' the umount_begin
1236 * might fail to complete on the first run through as other tasks
1237 * must return, and the like. Thats for the mount program to worry
1238 * about for the moment.
1239 */
1240
42faad99 1241 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1242 sb->s_op->umount_begin(sb);
42faad99 1243 }
1da177e4
LT
1244
1245 /*
1246 * No sense to grab the lock for this test, but test itself looks
1247 * somewhat bogus. Suggestions for better replacement?
1248 * Ho-hum... In principle, we might treat that as umount + switch
1249 * to rootfs. GC would eventually take care of the old vfsmount.
1250 * Actually it makes sense, especially if rootfs would contain a
1251 * /reboot - static binary that would close all descriptors and
1252 * call reboot(9). Then init(8) could umount root and exec /reboot.
1253 */
1ab59738 1254 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1255 /*
1256 * Special case for "unmounting" root ...
1257 * we just try to remount it readonly.
1258 */
1259 down_write(&sb->s_umount);
4aa98cf7 1260 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1261 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1262 up_write(&sb->s_umount);
1263 return retval;
1264 }
1265
97216be0 1266 namespace_lock();
962830df 1267 br_write_lock(&vfsmount_lock);
5addc5dd 1268 event++;
1da177e4 1269
c35038be 1270 if (!(flags & MNT_DETACH))
b54b9be7 1271 shrink_submounts(mnt);
c35038be 1272
1da177e4 1273 retval = -EBUSY;
a05964f3 1274 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1275 if (!list_empty(&mnt->mnt_list))
328e6d90 1276 umount_tree(mnt, 1);
1da177e4
LT
1277 retval = 0;
1278 }
962830df 1279 br_write_unlock(&vfsmount_lock);
e3197d83 1280 namespace_unlock();
1da177e4
LT
1281 return retval;
1282}
1283
9b40bc90
AV
1284/*
1285 * Is the caller allowed to modify his namespace?
1286 */
1287static inline bool may_mount(void)
1288{
1289 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1290}
1291
1da177e4
LT
1292/*
1293 * Now umount can handle mount points as well as block devices.
1294 * This is important for filesystems which use unnamed block devices.
1295 *
1296 * We now support a flag for forced unmount like the other 'big iron'
1297 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1298 */
1299
bdc480e3 1300SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1301{
2d8f3038 1302 struct path path;
900148dc 1303 struct mount *mnt;
1da177e4 1304 int retval;
db1f05bb 1305 int lookup_flags = 0;
1da177e4 1306
db1f05bb
MS
1307 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1308 return -EINVAL;
1309
9b40bc90
AV
1310 if (!may_mount())
1311 return -EPERM;
1312
db1f05bb
MS
1313 if (!(flags & UMOUNT_NOFOLLOW))
1314 lookup_flags |= LOOKUP_FOLLOW;
1315
1316 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1317 if (retval)
1318 goto out;
900148dc 1319 mnt = real_mount(path.mnt);
1da177e4 1320 retval = -EINVAL;
2d8f3038 1321 if (path.dentry != path.mnt->mnt_root)
1da177e4 1322 goto dput_and_out;
143c8c91 1323 if (!check_mnt(mnt))
1da177e4
LT
1324 goto dput_and_out;
1325
900148dc 1326 retval = do_umount(mnt, flags);
1da177e4 1327dput_and_out:
429731b1 1328 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1329 dput(path.dentry);
900148dc 1330 mntput_no_expire(mnt);
1da177e4
LT
1331out:
1332 return retval;
1333}
1334
1335#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1336
1337/*
b58fed8b 1338 * The 2.0 compatible umount. No flags.
1da177e4 1339 */
bdc480e3 1340SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1341{
b58fed8b 1342 return sys_umount(name, 0);
1da177e4
LT
1343}
1344
1345#endif
1346
8823c079
EB
1347static bool mnt_ns_loop(struct path *path)
1348{
1349 /* Could bind mounting the mount namespace inode cause a
1350 * mount namespace loop?
1351 */
1352 struct inode *inode = path->dentry->d_inode;
0bb80f24 1353 struct proc_ns *ei;
8823c079
EB
1354 struct mnt_namespace *mnt_ns;
1355
1356 if (!proc_ns_inode(inode))
1357 return false;
1358
0bb80f24 1359 ei = get_proc_ns(inode);
8823c079
EB
1360 if (ei->ns_ops != &mntns_operations)
1361 return false;
1362
1363 mnt_ns = ei->ns;
1364 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1365}
1366
87129cc0 1367struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1368 int flag)
1da177e4 1369{
84d17192 1370 struct mount *res, *p, *q, *r, *parent;
1da177e4 1371
fc7be130 1372 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
be34d1a3 1373 return ERR_PTR(-EINVAL);
9676f0c6 1374
36341f64 1375 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1376 if (IS_ERR(q))
1377 return q;
1378
a73324da 1379 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1380
1381 p = mnt;
6b41d536 1382 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1383 struct mount *s;
7ec02ef1 1384 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1385 continue;
1386
909b0a88 1387 for (s = r; s; s = next_mnt(s, r)) {
fc7be130 1388 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
9676f0c6
RP
1389 s = skip_mnt_tree(s);
1390 continue;
1391 }
0714a533
AV
1392 while (p != s->mnt_parent) {
1393 p = p->mnt_parent;
1394 q = q->mnt_parent;
1da177e4 1395 }
87129cc0 1396 p = s;
84d17192 1397 parent = q;
87129cc0 1398 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1399 if (IS_ERR(q))
1400 goto out;
962830df 1401 br_write_lock(&vfsmount_lock);
1a4eeaf2 1402 list_add_tail(&q->mnt_list, &res->mnt_list);
84d17192 1403 attach_mnt(q, parent, p->mnt_mp);
962830df 1404 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1405 }
1406 }
1407 return res;
be34d1a3 1408out:
1da177e4 1409 if (res) {
962830df 1410 br_write_lock(&vfsmount_lock);
328e6d90 1411 umount_tree(res, 0);
962830df 1412 br_write_unlock(&vfsmount_lock);
1da177e4 1413 }
be34d1a3 1414 return q;
1da177e4
LT
1415}
1416
be34d1a3
DH
1417/* Caller should check returned pointer for errors */
1418
589ff870 1419struct vfsmount *collect_mounts(struct path *path)
8aec0809 1420{
cb338d06 1421 struct mount *tree;
97216be0 1422 namespace_lock();
87129cc0
AV
1423 tree = copy_tree(real_mount(path->mnt), path->dentry,
1424 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1425 namespace_unlock();
be34d1a3
DH
1426 if (IS_ERR(tree))
1427 return NULL;
1428 return &tree->mnt;
8aec0809
AV
1429}
1430
1431void drop_collected_mounts(struct vfsmount *mnt)
1432{
97216be0 1433 namespace_lock();
962830df 1434 br_write_lock(&vfsmount_lock);
328e6d90 1435 umount_tree(real_mount(mnt), 0);
962830df 1436 br_write_unlock(&vfsmount_lock);
3ab6abee 1437 namespace_unlock();
8aec0809
AV
1438}
1439
1f707137
AV
1440int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1441 struct vfsmount *root)
1442{
1a4eeaf2 1443 struct mount *mnt;
1f707137
AV
1444 int res = f(root, arg);
1445 if (res)
1446 return res;
1a4eeaf2
AV
1447 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1448 res = f(&mnt->mnt, arg);
1f707137
AV
1449 if (res)
1450 return res;
1451 }
1452 return 0;
1453}
1454
4b8b21f4 1455static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1456{
315fc83e 1457 struct mount *p;
719f5d7f 1458
909b0a88 1459 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1460 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1461 mnt_release_group_id(p);
719f5d7f
MS
1462 }
1463}
1464
4b8b21f4 1465static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1466{
315fc83e 1467 struct mount *p;
719f5d7f 1468
909b0a88 1469 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1470 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1471 int err = mnt_alloc_group_id(p);
719f5d7f 1472 if (err) {
4b8b21f4 1473 cleanup_group_ids(mnt, p);
719f5d7f
MS
1474 return err;
1475 }
1476 }
1477 }
1478
1479 return 0;
1480}
1481
b90fa9ae
RP
1482/*
1483 * @source_mnt : mount tree to be attached
21444403
RP
1484 * @nd : place the mount tree @source_mnt is attached
1485 * @parent_nd : if non-null, detach the source_mnt from its parent and
1486 * store the parent mount and mountpoint dentry.
1487 * (done when source_mnt is moved)
b90fa9ae
RP
1488 *
1489 * NOTE: in the table below explains the semantics when a source mount
1490 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1491 * ---------------------------------------------------------------------------
1492 * | BIND MOUNT OPERATION |
1493 * |**************************************************************************
1494 * | source-->| shared | private | slave | unbindable |
1495 * | dest | | | | |
1496 * | | | | | | |
1497 * | v | | | | |
1498 * |**************************************************************************
1499 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1500 * | | | | | |
1501 * |non-shared| shared (+) | private | slave (*) | invalid |
1502 * ***************************************************************************
b90fa9ae
RP
1503 * A bind operation clones the source mount and mounts the clone on the
1504 * destination mount.
1505 *
1506 * (++) the cloned mount is propagated to all the mounts in the propagation
1507 * tree of the destination mount and the cloned mount is added to
1508 * the peer group of the source mount.
1509 * (+) the cloned mount is created under the destination mount and is marked
1510 * as shared. The cloned mount is added to the peer group of the source
1511 * mount.
5afe0022
RP
1512 * (+++) the mount is propagated to all the mounts in the propagation tree
1513 * of the destination mount and the cloned mount is made slave
1514 * of the same master as that of the source mount. The cloned mount
1515 * is marked as 'shared and slave'.
1516 * (*) the cloned mount is made a slave of the same master as that of the
1517 * source mount.
1518 *
9676f0c6
RP
1519 * ---------------------------------------------------------------------------
1520 * | MOVE MOUNT OPERATION |
1521 * |**************************************************************************
1522 * | source-->| shared | private | slave | unbindable |
1523 * | dest | | | | |
1524 * | | | | | | |
1525 * | v | | | | |
1526 * |**************************************************************************
1527 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1528 * | | | | | |
1529 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1530 * ***************************************************************************
5afe0022
RP
1531 *
1532 * (+) the mount is moved to the destination. And is then propagated to
1533 * all the mounts in the propagation tree of the destination mount.
21444403 1534 * (+*) the mount is moved to the destination.
5afe0022
RP
1535 * (+++) the mount is moved to the destination and is then propagated to
1536 * all the mounts belonging to the destination mount's propagation tree.
1537 * the mount is marked as 'shared and slave'.
1538 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1539 *
1540 * if the source mount is a tree, the operations explained above is
1541 * applied to each mount in the tree.
1542 * Must be called without spinlocks held, since this function can sleep
1543 * in allocations.
1544 */
0fb54e50 1545static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1546 struct mount *dest_mnt,
1547 struct mountpoint *dest_mp,
1548 struct path *parent_path)
b90fa9ae
RP
1549{
1550 LIST_HEAD(tree_list);
315fc83e 1551 struct mount *child, *p;
719f5d7f 1552 int err;
b90fa9ae 1553
fc7be130 1554 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1555 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1556 if (err)
1557 goto out;
1558 }
84d17192 1559 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
719f5d7f
MS
1560 if (err)
1561 goto out_cleanup_ids;
b90fa9ae 1562
962830df 1563 br_write_lock(&vfsmount_lock);
df1a1ad2 1564
fc7be130 1565 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1566 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1567 set_mnt_shared(p);
b90fa9ae 1568 }
1a390689 1569 if (parent_path) {
0fb54e50 1570 detach_mnt(source_mnt, parent_path);
84d17192 1571 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1572 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1573 } else {
84d17192 1574 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
0fb54e50 1575 commit_tree(source_mnt);
21444403 1576 }
b90fa9ae 1577
1b8e5564
AV
1578 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1579 list_del_init(&child->mnt_hash);
4b2619a5 1580 commit_tree(child);
b90fa9ae 1581 }
962830df 1582 br_write_unlock(&vfsmount_lock);
99b7db7b 1583
b90fa9ae 1584 return 0;
719f5d7f
MS
1585
1586 out_cleanup_ids:
fc7be130 1587 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1588 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1589 out:
1590 return err;
b90fa9ae
RP
1591}
1592
84d17192 1593static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1594{
1595 struct vfsmount *mnt;
84d17192 1596 struct dentry *dentry = path->dentry;
b12cea91 1597retry:
84d17192
AV
1598 mutex_lock(&dentry->d_inode->i_mutex);
1599 if (unlikely(cant_mount(dentry))) {
1600 mutex_unlock(&dentry->d_inode->i_mutex);
1601 return ERR_PTR(-ENOENT);
b12cea91 1602 }
97216be0 1603 namespace_lock();
b12cea91 1604 mnt = lookup_mnt(path);
84d17192
AV
1605 if (likely(!mnt)) {
1606 struct mountpoint *mp = new_mountpoint(dentry);
1607 if (IS_ERR(mp)) {
97216be0 1608 namespace_unlock();
84d17192
AV
1609 mutex_unlock(&dentry->d_inode->i_mutex);
1610 return mp;
1611 }
1612 return mp;
1613 }
97216be0 1614 namespace_unlock();
b12cea91
AV
1615 mutex_unlock(&path->dentry->d_inode->i_mutex);
1616 path_put(path);
1617 path->mnt = mnt;
84d17192 1618 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1619 goto retry;
1620}
1621
84d17192 1622static void unlock_mount(struct mountpoint *where)
b12cea91 1623{
84d17192
AV
1624 struct dentry *dentry = where->m_dentry;
1625 put_mountpoint(where);
328e6d90 1626 namespace_unlock();
84d17192 1627 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1628}
1629
84d17192 1630static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1631{
95bc5f25 1632 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1633 return -EINVAL;
1634
84d17192 1635 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1636 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1637 return -ENOTDIR;
1638
84d17192 1639 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1640}
1641
7a2e8a8f
VA
1642/*
1643 * Sanity check the flags to change_mnt_propagation.
1644 */
1645
1646static int flags_to_propagation_type(int flags)
1647{
7c6e984d 1648 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1649
1650 /* Fail if any non-propagation flags are set */
1651 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1652 return 0;
1653 /* Only one propagation flag should be set */
1654 if (!is_power_of_2(type))
1655 return 0;
1656 return type;
1657}
1658
07b20889
RP
1659/*
1660 * recursively change the type of the mountpoint.
1661 */
0a0d8a46 1662static int do_change_type(struct path *path, int flag)
07b20889 1663{
315fc83e 1664 struct mount *m;
4b8b21f4 1665 struct mount *mnt = real_mount(path->mnt);
07b20889 1666 int recurse = flag & MS_REC;
7a2e8a8f 1667 int type;
719f5d7f 1668 int err = 0;
07b20889 1669
2d92ab3c 1670 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1671 return -EINVAL;
1672
7a2e8a8f
VA
1673 type = flags_to_propagation_type(flag);
1674 if (!type)
1675 return -EINVAL;
1676
97216be0 1677 namespace_lock();
719f5d7f
MS
1678 if (type == MS_SHARED) {
1679 err = invent_group_ids(mnt, recurse);
1680 if (err)
1681 goto out_unlock;
1682 }
1683
962830df 1684 br_write_lock(&vfsmount_lock);
909b0a88 1685 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1686 change_mnt_propagation(m, type);
962830df 1687 br_write_unlock(&vfsmount_lock);
719f5d7f
MS
1688
1689 out_unlock:
97216be0 1690 namespace_unlock();
719f5d7f 1691 return err;
07b20889
RP
1692}
1693
1da177e4
LT
1694/*
1695 * do loopback mount.
1696 */
808d4e3c 1697static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1698 int recurse)
1da177e4 1699{
2d92ab3c 1700 struct path old_path;
84d17192
AV
1701 struct mount *mnt = NULL, *old, *parent;
1702 struct mountpoint *mp;
57eccb83 1703 int err;
1da177e4
LT
1704 if (!old_name || !*old_name)
1705 return -EINVAL;
815d405c 1706 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1707 if (err)
1708 return err;
1709
8823c079
EB
1710 err = -EINVAL;
1711 if (mnt_ns_loop(&old_path))
1712 goto out;
1713
84d17192
AV
1714 mp = lock_mount(path);
1715 err = PTR_ERR(mp);
1716 if (IS_ERR(mp))
b12cea91
AV
1717 goto out;
1718
87129cc0 1719 old = real_mount(old_path.mnt);
84d17192 1720 parent = real_mount(path->mnt);
87129cc0 1721
1da177e4 1722 err = -EINVAL;
fc7be130 1723 if (IS_MNT_UNBINDABLE(old))
b12cea91 1724 goto out2;
9676f0c6 1725
84d17192 1726 if (!check_mnt(parent) || !check_mnt(old))
b12cea91 1727 goto out2;
1da177e4 1728
ccd48bc7 1729 if (recurse)
87129cc0 1730 mnt = copy_tree(old, old_path.dentry, 0);
ccd48bc7 1731 else
87129cc0 1732 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1733
be34d1a3
DH
1734 if (IS_ERR(mnt)) {
1735 err = PTR_ERR(mnt);
e9c5d8a5 1736 goto out2;
be34d1a3 1737 }
ccd48bc7 1738
84d17192 1739 err = graft_tree(mnt, parent, mp);
ccd48bc7 1740 if (err) {
962830df 1741 br_write_lock(&vfsmount_lock);
328e6d90 1742 umount_tree(mnt, 0);
962830df 1743 br_write_unlock(&vfsmount_lock);
5b83d2c5 1744 }
b12cea91 1745out2:
84d17192 1746 unlock_mount(mp);
ccd48bc7 1747out:
2d92ab3c 1748 path_put(&old_path);
1da177e4
LT
1749 return err;
1750}
1751
2e4b7fcd
DH
1752static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1753{
1754 int error = 0;
1755 int readonly_request = 0;
1756
1757 if (ms_flags & MS_RDONLY)
1758 readonly_request = 1;
1759 if (readonly_request == __mnt_is_readonly(mnt))
1760 return 0;
1761
1762 if (readonly_request)
83adc753 1763 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1764 else
83adc753 1765 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1766 return error;
1767}
1768
1da177e4
LT
1769/*
1770 * change filesystem flags. dir should be a physical root of filesystem.
1771 * If you've mounted a non-root directory somewhere and want to do remount
1772 * on it - tough luck.
1773 */
0a0d8a46 1774static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1775 void *data)
1776{
1777 int err;
2d92ab3c 1778 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1779 struct mount *mnt = real_mount(path->mnt);
1da177e4 1780
143c8c91 1781 if (!check_mnt(mnt))
1da177e4
LT
1782 return -EINVAL;
1783
2d92ab3c 1784 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1785 return -EINVAL;
1786
ff36fe2c
EP
1787 err = security_sb_remount(sb, data);
1788 if (err)
1789 return err;
1790
1da177e4 1791 down_write(&sb->s_umount);
2e4b7fcd 1792 if (flags & MS_BIND)
2d92ab3c 1793 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
1794 else if (!capable(CAP_SYS_ADMIN))
1795 err = -EPERM;
4aa98cf7 1796 else
2e4b7fcd 1797 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1798 if (!err) {
962830df 1799 br_write_lock(&vfsmount_lock);
143c8c91
AV
1800 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1801 mnt->mnt.mnt_flags = mnt_flags;
962830df 1802 br_write_unlock(&vfsmount_lock);
7b43a79f 1803 }
1da177e4 1804 up_write(&sb->s_umount);
0e55a7cc 1805 if (!err) {
962830df 1806 br_write_lock(&vfsmount_lock);
143c8c91 1807 touch_mnt_namespace(mnt->mnt_ns);
962830df 1808 br_write_unlock(&vfsmount_lock);
0e55a7cc 1809 }
1da177e4
LT
1810 return err;
1811}
1812
cbbe362c 1813static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1814{
315fc83e 1815 struct mount *p;
909b0a88 1816 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1817 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1818 return 1;
1819 }
1820 return 0;
1821}
1822
808d4e3c 1823static int do_move_mount(struct path *path, const char *old_name)
1da177e4 1824{
2d92ab3c 1825 struct path old_path, parent_path;
676da58d 1826 struct mount *p;
0fb54e50 1827 struct mount *old;
84d17192 1828 struct mountpoint *mp;
57eccb83 1829 int err;
1da177e4
LT
1830 if (!old_name || !*old_name)
1831 return -EINVAL;
2d92ab3c 1832 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1833 if (err)
1834 return err;
1835
84d17192
AV
1836 mp = lock_mount(path);
1837 err = PTR_ERR(mp);
1838 if (IS_ERR(mp))
cc53ce53
DH
1839 goto out;
1840
143c8c91 1841 old = real_mount(old_path.mnt);
fc7be130 1842 p = real_mount(path->mnt);
143c8c91 1843
1da177e4 1844 err = -EINVAL;
fc7be130 1845 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1846 goto out1;
1847
1da177e4 1848 err = -EINVAL;
2d92ab3c 1849 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1850 goto out1;
1da177e4 1851
676da58d 1852 if (!mnt_has_parent(old))
21444403 1853 goto out1;
1da177e4 1854
2d92ab3c
AV
1855 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1856 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1857 goto out1;
1858 /*
1859 * Don't move a mount residing in a shared parent.
1860 */
fc7be130 1861 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1862 goto out1;
9676f0c6
RP
1863 /*
1864 * Don't move a mount tree containing unbindable mounts to a destination
1865 * mount which is shared.
1866 */
fc7be130 1867 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1868 goto out1;
1da177e4 1869 err = -ELOOP;
fc7be130 1870 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1871 if (p == old)
21444403 1872 goto out1;
1da177e4 1873
84d17192 1874 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 1875 if (err)
21444403 1876 goto out1;
1da177e4
LT
1877
1878 /* if the mount is moved, it should no longer be expire
1879 * automatically */
6776db3d 1880 list_del_init(&old->mnt_expire);
1da177e4 1881out1:
84d17192 1882 unlock_mount(mp);
1da177e4 1883out:
1da177e4 1884 if (!err)
1a390689 1885 path_put(&parent_path);
2d92ab3c 1886 path_put(&old_path);
1da177e4
LT
1887 return err;
1888}
1889
9d412a43
AV
1890static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1891{
1892 int err;
1893 const char *subtype = strchr(fstype, '.');
1894 if (subtype) {
1895 subtype++;
1896 err = -EINVAL;
1897 if (!subtype[0])
1898 goto err;
1899 } else
1900 subtype = "";
1901
1902 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1903 err = -ENOMEM;
1904 if (!mnt->mnt_sb->s_subtype)
1905 goto err;
1906 return mnt;
1907
1908 err:
1909 mntput(mnt);
1910 return ERR_PTR(err);
1911}
1912
9d412a43
AV
1913/*
1914 * add a mount into a namespace's mount tree
1915 */
95bc5f25 1916static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 1917{
84d17192
AV
1918 struct mountpoint *mp;
1919 struct mount *parent;
9d412a43
AV
1920 int err;
1921
1922 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1923
84d17192
AV
1924 mp = lock_mount(path);
1925 if (IS_ERR(mp))
1926 return PTR_ERR(mp);
9d412a43 1927
84d17192 1928 parent = real_mount(path->mnt);
9d412a43 1929 err = -EINVAL;
84d17192 1930 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
1931 /* that's acceptable only for automounts done in private ns */
1932 if (!(mnt_flags & MNT_SHRINKABLE))
1933 goto unlock;
1934 /* ... and for those we'd better have mountpoint still alive */
84d17192 1935 if (!parent->mnt_ns)
156cacb1
AV
1936 goto unlock;
1937 }
9d412a43
AV
1938
1939 /* Refuse the same filesystem on the same mount point */
1940 err = -EBUSY;
95bc5f25 1941 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1942 path->mnt->mnt_root == path->dentry)
1943 goto unlock;
1944
1945 err = -EINVAL;
95bc5f25 1946 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
1947 goto unlock;
1948
95bc5f25 1949 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 1950 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
1951
1952unlock:
84d17192 1953 unlock_mount(mp);
9d412a43
AV
1954 return err;
1955}
b1e75df4 1956
1da177e4
LT
1957/*
1958 * create a new mount for userspace and request it to be added into the
1959 * namespace's tree
1960 */
0c55cfc4 1961static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 1962 int mnt_flags, const char *name, void *data)
1da177e4 1963{
0c55cfc4 1964 struct file_system_type *type;
9b40bc90 1965 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 1966 struct vfsmount *mnt;
15f9a3f3 1967 int err;
1da177e4 1968
0c55cfc4 1969 if (!fstype)
1da177e4
LT
1970 return -EINVAL;
1971
0c55cfc4
EB
1972 type = get_fs_type(fstype);
1973 if (!type)
1974 return -ENODEV;
1975
1976 if (user_ns != &init_user_ns) {
1977 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
1978 put_filesystem(type);
1979 return -EPERM;
1980 }
1981 /* Only in special cases allow devices from mounts
1982 * created outside the initial user namespace.
1983 */
1984 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
1985 flags |= MS_NODEV;
1986 mnt_flags |= MNT_NODEV;
1987 }
1988 }
1989
1990 mnt = vfs_kern_mount(type, flags, name, data);
1991 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1992 !mnt->mnt_sb->s_subtype)
1993 mnt = fs_set_subtype(mnt, fstype);
1994
1995 put_filesystem(type);
1da177e4
LT
1996 if (IS_ERR(mnt))
1997 return PTR_ERR(mnt);
1998
95bc5f25 1999 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2000 if (err)
2001 mntput(mnt);
2002 return err;
1da177e4
LT
2003}
2004
19a167af
AV
2005int finish_automount(struct vfsmount *m, struct path *path)
2006{
6776db3d 2007 struct mount *mnt = real_mount(m);
19a167af
AV
2008 int err;
2009 /* The new mount record should have at least 2 refs to prevent it being
2010 * expired before we get a chance to add it
2011 */
6776db3d 2012 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2013
2014 if (m->mnt_sb == path->mnt->mnt_sb &&
2015 m->mnt_root == path->dentry) {
b1e75df4
AV
2016 err = -ELOOP;
2017 goto fail;
19a167af
AV
2018 }
2019
95bc5f25 2020 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2021 if (!err)
2022 return 0;
2023fail:
2024 /* remove m from any expiration list it may be on */
6776db3d 2025 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2026 namespace_lock();
962830df 2027 br_write_lock(&vfsmount_lock);
6776db3d 2028 list_del_init(&mnt->mnt_expire);
962830df 2029 br_write_unlock(&vfsmount_lock);
97216be0 2030 namespace_unlock();
19a167af 2031 }
b1e75df4
AV
2032 mntput(m);
2033 mntput(m);
19a167af
AV
2034 return err;
2035}
2036
ea5b778a
DH
2037/**
2038 * mnt_set_expiry - Put a mount on an expiration list
2039 * @mnt: The mount to list.
2040 * @expiry_list: The list to add the mount to.
2041 */
2042void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2043{
97216be0 2044 namespace_lock();
962830df 2045 br_write_lock(&vfsmount_lock);
ea5b778a 2046
6776db3d 2047 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2048
962830df 2049 br_write_unlock(&vfsmount_lock);
97216be0 2050 namespace_unlock();
ea5b778a
DH
2051}
2052EXPORT_SYMBOL(mnt_set_expiry);
2053
1da177e4
LT
2054/*
2055 * process a list of expirable mountpoints with the intent of discarding any
2056 * mountpoints that aren't in use and haven't been touched since last we came
2057 * here
2058 */
2059void mark_mounts_for_expiry(struct list_head *mounts)
2060{
761d5c38 2061 struct mount *mnt, *next;
1da177e4
LT
2062 LIST_HEAD(graveyard);
2063
2064 if (list_empty(mounts))
2065 return;
2066
97216be0 2067 namespace_lock();
962830df 2068 br_write_lock(&vfsmount_lock);
1da177e4
LT
2069
2070 /* extract from the expiration list every vfsmount that matches the
2071 * following criteria:
2072 * - only referenced by its parent vfsmount
2073 * - still marked for expiry (marked on the last call here; marks are
2074 * cleared by mntput())
2075 */
6776db3d 2076 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2077 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2078 propagate_mount_busy(mnt, 1))
1da177e4 2079 continue;
6776db3d 2080 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2081 }
bcc5c7d2 2082 while (!list_empty(&graveyard)) {
6776db3d 2083 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2084 touch_mnt_namespace(mnt->mnt_ns);
328e6d90 2085 umount_tree(mnt, 1);
bcc5c7d2 2086 }
962830df 2087 br_write_unlock(&vfsmount_lock);
3ab6abee 2088 namespace_unlock();
5528f911
TM
2089}
2090
2091EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2092
2093/*
2094 * Ripoff of 'select_parent()'
2095 *
2096 * search the list of submounts for a given mountpoint, and move any
2097 * shrinkable submounts to the 'graveyard' list.
2098 */
692afc31 2099static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2100{
692afc31 2101 struct mount *this_parent = parent;
5528f911
TM
2102 struct list_head *next;
2103 int found = 0;
2104
2105repeat:
6b41d536 2106 next = this_parent->mnt_mounts.next;
5528f911 2107resume:
6b41d536 2108 while (next != &this_parent->mnt_mounts) {
5528f911 2109 struct list_head *tmp = next;
6b41d536 2110 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2111
2112 next = tmp->next;
692afc31 2113 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2114 continue;
5528f911
TM
2115 /*
2116 * Descend a level if the d_mounts list is non-empty.
2117 */
6b41d536 2118 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2119 this_parent = mnt;
2120 goto repeat;
2121 }
1da177e4 2122
1ab59738 2123 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2124 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2125 found++;
2126 }
1da177e4 2127 }
5528f911
TM
2128 /*
2129 * All done at this level ... ascend and resume the search
2130 */
2131 if (this_parent != parent) {
6b41d536 2132 next = this_parent->mnt_child.next;
0714a533 2133 this_parent = this_parent->mnt_parent;
5528f911
TM
2134 goto resume;
2135 }
2136 return found;
2137}
2138
2139/*
2140 * process a list of expirable mountpoints with the intent of discarding any
2141 * submounts of a specific parent mountpoint
99b7db7b
NP
2142 *
2143 * vfsmount_lock must be held for write
5528f911 2144 */
b54b9be7 2145static void shrink_submounts(struct mount *mnt)
5528f911
TM
2146{
2147 LIST_HEAD(graveyard);
761d5c38 2148 struct mount *m;
5528f911 2149
5528f911 2150 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2151 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2152 while (!list_empty(&graveyard)) {
761d5c38 2153 m = list_first_entry(&graveyard, struct mount,
6776db3d 2154 mnt_expire);
143c8c91 2155 touch_mnt_namespace(m->mnt_ns);
328e6d90 2156 umount_tree(m, 1);
bcc5c7d2
AV
2157 }
2158 }
1da177e4
LT
2159}
2160
1da177e4
LT
2161/*
2162 * Some copy_from_user() implementations do not return the exact number of
2163 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2164 * Note that this function differs from copy_from_user() in that it will oops
2165 * on bad values of `to', rather than returning a short copy.
2166 */
b58fed8b
RP
2167static long exact_copy_from_user(void *to, const void __user * from,
2168 unsigned long n)
1da177e4
LT
2169{
2170 char *t = to;
2171 const char __user *f = from;
2172 char c;
2173
2174 if (!access_ok(VERIFY_READ, from, n))
2175 return n;
2176
2177 while (n) {
2178 if (__get_user(c, f)) {
2179 memset(t, 0, n);
2180 break;
2181 }
2182 *t++ = c;
2183 f++;
2184 n--;
2185 }
2186 return n;
2187}
2188
b58fed8b 2189int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2190{
2191 int i;
2192 unsigned long page;
2193 unsigned long size;
b58fed8b 2194
1da177e4
LT
2195 *where = 0;
2196 if (!data)
2197 return 0;
2198
2199 if (!(page = __get_free_page(GFP_KERNEL)))
2200 return -ENOMEM;
2201
2202 /* We only care that *some* data at the address the user
2203 * gave us is valid. Just in case, we'll zero
2204 * the remainder of the page.
2205 */
2206 /* copy_from_user cannot cross TASK_SIZE ! */
2207 size = TASK_SIZE - (unsigned long)data;
2208 if (size > PAGE_SIZE)
2209 size = PAGE_SIZE;
2210
2211 i = size - exact_copy_from_user((void *)page, data, size);
2212 if (!i) {
b58fed8b 2213 free_page(page);
1da177e4
LT
2214 return -EFAULT;
2215 }
2216 if (i != PAGE_SIZE)
2217 memset((char *)page + i, 0, PAGE_SIZE - i);
2218 *where = page;
2219 return 0;
2220}
2221
eca6f534
VN
2222int copy_mount_string(const void __user *data, char **where)
2223{
2224 char *tmp;
2225
2226 if (!data) {
2227 *where = NULL;
2228 return 0;
2229 }
2230
2231 tmp = strndup_user(data, PAGE_SIZE);
2232 if (IS_ERR(tmp))
2233 return PTR_ERR(tmp);
2234
2235 *where = tmp;
2236 return 0;
2237}
2238
1da177e4
LT
2239/*
2240 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2241 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2242 *
2243 * data is a (void *) that can point to any structure up to
2244 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2245 * information (or be NULL).
2246 *
2247 * Pre-0.97 versions of mount() didn't have a flags word.
2248 * When the flags word was introduced its top half was required
2249 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2250 * Therefore, if this magic number is present, it carries no information
2251 * and must be discarded.
2252 */
808d4e3c
AV
2253long do_mount(const char *dev_name, const char *dir_name,
2254 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2255{
2d92ab3c 2256 struct path path;
1da177e4
LT
2257 int retval = 0;
2258 int mnt_flags = 0;
2259
2260 /* Discard magic */
2261 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2262 flags &= ~MS_MGC_MSK;
2263
2264 /* Basic sanity checks */
2265
2266 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2267 return -EINVAL;
1da177e4
LT
2268
2269 if (data_page)
2270 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2271
a27ab9f2
TH
2272 /* ... and get the mountpoint */
2273 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2274 if (retval)
2275 return retval;
2276
2277 retval = security_sb_mount(dev_name, &path,
2278 type_page, flags, data_page);
2279 if (retval)
2280 goto dput_out;
2281
57eccb83
AV
2282 if (!may_mount())
2283 return -EPERM;
2284
613cbe3d
AK
2285 /* Default to relatime unless overriden */
2286 if (!(flags & MS_NOATIME))
2287 mnt_flags |= MNT_RELATIME;
0a1c01c9 2288
1da177e4
LT
2289 /* Separate the per-mountpoint flags */
2290 if (flags & MS_NOSUID)
2291 mnt_flags |= MNT_NOSUID;
2292 if (flags & MS_NODEV)
2293 mnt_flags |= MNT_NODEV;
2294 if (flags & MS_NOEXEC)
2295 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2296 if (flags & MS_NOATIME)
2297 mnt_flags |= MNT_NOATIME;
2298 if (flags & MS_NODIRATIME)
2299 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2300 if (flags & MS_STRICTATIME)
2301 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2302 if (flags & MS_RDONLY)
2303 mnt_flags |= MNT_READONLY;
fc33a7bb 2304
7a4dec53 2305 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2306 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2307 MS_STRICTATIME);
1da177e4 2308
1da177e4 2309 if (flags & MS_REMOUNT)
2d92ab3c 2310 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2311 data_page);
2312 else if (flags & MS_BIND)
2d92ab3c 2313 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2314 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2315 retval = do_change_type(&path, flags);
1da177e4 2316 else if (flags & MS_MOVE)
2d92ab3c 2317 retval = do_move_mount(&path, dev_name);
1da177e4 2318 else
2d92ab3c 2319 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2320 dev_name, data_page);
2321dput_out:
2d92ab3c 2322 path_put(&path);
1da177e4
LT
2323 return retval;
2324}
2325
771b1371
EB
2326static void free_mnt_ns(struct mnt_namespace *ns)
2327{
98f842e6 2328 proc_free_inum(ns->proc_inum);
771b1371
EB
2329 put_user_ns(ns->user_ns);
2330 kfree(ns);
2331}
2332
8823c079
EB
2333/*
2334 * Assign a sequence number so we can detect when we attempt to bind
2335 * mount a reference to an older mount namespace into the current
2336 * mount namespace, preventing reference counting loops. A 64bit
2337 * number incrementing at 10Ghz will take 12,427 years to wrap which
2338 * is effectively never, so we can ignore the possibility.
2339 */
2340static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2341
771b1371 2342static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2343{
2344 struct mnt_namespace *new_ns;
98f842e6 2345 int ret;
cf8d2c11
TM
2346
2347 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2348 if (!new_ns)
2349 return ERR_PTR(-ENOMEM);
98f842e6
EB
2350 ret = proc_alloc_inum(&new_ns->proc_inum);
2351 if (ret) {
2352 kfree(new_ns);
2353 return ERR_PTR(ret);
2354 }
8823c079 2355 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2356 atomic_set(&new_ns->count, 1);
2357 new_ns->root = NULL;
2358 INIT_LIST_HEAD(&new_ns->list);
2359 init_waitqueue_head(&new_ns->poll);
2360 new_ns->event = 0;
771b1371 2361 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2362 return new_ns;
2363}
2364
741a2951
JD
2365/*
2366 * Allocate a new namespace structure and populate it with contents
2367 * copied from the namespace of the passed in task structure.
2368 */
e3222c4e 2369static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
771b1371 2370 struct user_namespace *user_ns, struct fs_struct *fs)
1da177e4 2371{
6b3286ed 2372 struct mnt_namespace *new_ns;
7f2da1e7 2373 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2374 struct mount *p, *q;
be08d6d2 2375 struct mount *old = mnt_ns->root;
cb338d06 2376 struct mount *new;
7a472ef4 2377 int copy_flags;
1da177e4 2378
771b1371 2379 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2380 if (IS_ERR(new_ns))
2381 return new_ns;
1da177e4 2382
97216be0 2383 namespace_lock();
1da177e4 2384 /* First pass: copy the tree topology */
7a472ef4
EB
2385 copy_flags = CL_COPY_ALL | CL_EXPIRE;
2386 if (user_ns != mnt_ns->user_ns)
2387 copy_flags |= CL_SHARED_TO_SLAVE;
2388 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2389 if (IS_ERR(new)) {
328e6d90 2390 namespace_unlock();
771b1371 2391 free_mnt_ns(new_ns);
be34d1a3 2392 return ERR_CAST(new);
1da177e4 2393 }
be08d6d2 2394 new_ns->root = new;
962830df 2395 br_write_lock(&vfsmount_lock);
1a4eeaf2 2396 list_add_tail(&new_ns->list, &new->mnt_list);
962830df 2397 br_write_unlock(&vfsmount_lock);
1da177e4
LT
2398
2399 /*
2400 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2401 * as belonging to new namespace. We have already acquired a private
2402 * fs_struct, so tsk->fs->lock is not needed.
2403 */
909b0a88 2404 p = old;
cb338d06 2405 q = new;
1da177e4 2406 while (p) {
143c8c91 2407 q->mnt_ns = new_ns;
1da177e4 2408 if (fs) {
315fc83e
AV
2409 if (&p->mnt == fs->root.mnt) {
2410 fs->root.mnt = mntget(&q->mnt);
315fc83e 2411 rootmnt = &p->mnt;
1da177e4 2412 }
315fc83e
AV
2413 if (&p->mnt == fs->pwd.mnt) {
2414 fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2415 pwdmnt = &p->mnt;
1da177e4 2416 }
1da177e4 2417 }
909b0a88
AV
2418 p = next_mnt(p, old);
2419 q = next_mnt(q, new);
1da177e4 2420 }
328e6d90 2421 namespace_unlock();
1da177e4 2422
1da177e4 2423 if (rootmnt)
f03c6599 2424 mntput(rootmnt);
1da177e4 2425 if (pwdmnt)
f03c6599 2426 mntput(pwdmnt);
1da177e4 2427
741a2951
JD
2428 return new_ns;
2429}
2430
213dd266 2431struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
771b1371 2432 struct user_namespace *user_ns, struct fs_struct *new_fs)
741a2951 2433{
6b3286ed 2434 struct mnt_namespace *new_ns;
741a2951 2435
e3222c4e 2436 BUG_ON(!ns);
6b3286ed 2437 get_mnt_ns(ns);
741a2951
JD
2438
2439 if (!(flags & CLONE_NEWNS))
e3222c4e 2440 return ns;
741a2951 2441
771b1371 2442 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
741a2951 2443
6b3286ed 2444 put_mnt_ns(ns);
e3222c4e 2445 return new_ns;
1da177e4
LT
2446}
2447
cf8d2c11
TM
2448/**
2449 * create_mnt_ns - creates a private namespace and adds a root filesystem
2450 * @mnt: pointer to the new root filesystem mountpoint
2451 */
1a4eeaf2 2452static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2453{
771b1371 2454 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2455 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2456 struct mount *mnt = real_mount(m);
2457 mnt->mnt_ns = new_ns;
be08d6d2 2458 new_ns->root = mnt;
1a4eeaf2 2459 list_add(&new_ns->list, &mnt->mnt_list);
c1334495 2460 } else {
1a4eeaf2 2461 mntput(m);
cf8d2c11
TM
2462 }
2463 return new_ns;
2464}
cf8d2c11 2465
ea441d11
AV
2466struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2467{
2468 struct mnt_namespace *ns;
d31da0f0 2469 struct super_block *s;
ea441d11
AV
2470 struct path path;
2471 int err;
2472
2473 ns = create_mnt_ns(mnt);
2474 if (IS_ERR(ns))
2475 return ERR_CAST(ns);
2476
2477 err = vfs_path_lookup(mnt->mnt_root, mnt,
2478 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2479
2480 put_mnt_ns(ns);
2481
2482 if (err)
2483 return ERR_PTR(err);
2484
2485 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2486 s = path.mnt->mnt_sb;
2487 atomic_inc(&s->s_active);
ea441d11
AV
2488 mntput(path.mnt);
2489 /* lock the sucker */
d31da0f0 2490 down_write(&s->s_umount);
ea441d11
AV
2491 /* ... and return the root of (sub)tree on it */
2492 return path.dentry;
2493}
2494EXPORT_SYMBOL(mount_subtree);
2495
bdc480e3
HC
2496SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2497 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2498{
eca6f534
VN
2499 int ret;
2500 char *kernel_type;
91a27b2a 2501 struct filename *kernel_dir;
eca6f534 2502 char *kernel_dev;
1da177e4 2503 unsigned long data_page;
1da177e4 2504
eca6f534
VN
2505 ret = copy_mount_string(type, &kernel_type);
2506 if (ret < 0)
2507 goto out_type;
1da177e4 2508
eca6f534
VN
2509 kernel_dir = getname(dir_name);
2510 if (IS_ERR(kernel_dir)) {
2511 ret = PTR_ERR(kernel_dir);
2512 goto out_dir;
2513 }
1da177e4 2514
eca6f534
VN
2515 ret = copy_mount_string(dev_name, &kernel_dev);
2516 if (ret < 0)
2517 goto out_dev;
1da177e4 2518
eca6f534
VN
2519 ret = copy_mount_options(data, &data_page);
2520 if (ret < 0)
2521 goto out_data;
1da177e4 2522
91a27b2a 2523 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2524 (void *) data_page);
1da177e4 2525
eca6f534
VN
2526 free_page(data_page);
2527out_data:
2528 kfree(kernel_dev);
2529out_dev:
2530 putname(kernel_dir);
2531out_dir:
2532 kfree(kernel_type);
2533out_type:
2534 return ret;
1da177e4
LT
2535}
2536
afac7cba
AV
2537/*
2538 * Return true if path is reachable from root
2539 *
2540 * namespace_sem or vfsmount_lock is held
2541 */
643822b4 2542bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2543 const struct path *root)
2544{
643822b4 2545 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2546 dentry = mnt->mnt_mountpoint;
0714a533 2547 mnt = mnt->mnt_parent;
afac7cba 2548 }
643822b4 2549 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2550}
2551
2552int path_is_under(struct path *path1, struct path *path2)
2553{
2554 int res;
962830df 2555 br_read_lock(&vfsmount_lock);
643822b4 2556 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
962830df 2557 br_read_unlock(&vfsmount_lock);
afac7cba
AV
2558 return res;
2559}
2560EXPORT_SYMBOL(path_is_under);
2561
1da177e4
LT
2562/*
2563 * pivot_root Semantics:
2564 * Moves the root file system of the current process to the directory put_old,
2565 * makes new_root as the new root file system of the current process, and sets
2566 * root/cwd of all processes which had them on the current root to new_root.
2567 *
2568 * Restrictions:
2569 * The new_root and put_old must be directories, and must not be on the
2570 * same file system as the current process root. The put_old must be
2571 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2572 * pointed to by put_old must yield the same directory as new_root. No other
2573 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2574 *
4a0d11fa
NB
2575 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2576 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2577 * in this situation.
2578 *
1da177e4
LT
2579 * Notes:
2580 * - we don't move root/cwd if they are not at the root (reason: if something
2581 * cared enough to change them, it's probably wrong to force them elsewhere)
2582 * - it's okay to pick a root that isn't the root of a file system, e.g.
2583 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2584 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2585 * first.
2586 */
3480b257
HC
2587SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2588 const char __user *, put_old)
1da177e4 2589{
2d8f3038 2590 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2591 struct mount *new_mnt, *root_mnt, *old_mnt;
2592 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2593 int error;
2594
9b40bc90 2595 if (!may_mount())
1da177e4
LT
2596 return -EPERM;
2597
2d8f3038 2598 error = user_path_dir(new_root, &new);
1da177e4
LT
2599 if (error)
2600 goto out0;
1da177e4 2601
2d8f3038 2602 error = user_path_dir(put_old, &old);
1da177e4
LT
2603 if (error)
2604 goto out1;
2605
2d8f3038 2606 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2607 if (error)
2608 goto out2;
1da177e4 2609
f7ad3c6b 2610 get_fs_root(current->fs, &root);
84d17192
AV
2611 old_mp = lock_mount(&old);
2612 error = PTR_ERR(old_mp);
2613 if (IS_ERR(old_mp))
b12cea91
AV
2614 goto out3;
2615
1da177e4 2616 error = -EINVAL;
419148da
AV
2617 new_mnt = real_mount(new.mnt);
2618 root_mnt = real_mount(root.mnt);
84d17192
AV
2619 old_mnt = real_mount(old.mnt);
2620 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2621 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2622 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2623 goto out4;
143c8c91 2624 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2625 goto out4;
1da177e4 2626 error = -ENOENT;
f3da392e 2627 if (d_unlinked(new.dentry))
b12cea91 2628 goto out4;
1da177e4 2629 error = -EBUSY;
84d17192 2630 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2631 goto out4; /* loop, on the same file system */
1da177e4 2632 error = -EINVAL;
8c3ee42e 2633 if (root.mnt->mnt_root != root.dentry)
b12cea91 2634 goto out4; /* not a mountpoint */
676da58d 2635 if (!mnt_has_parent(root_mnt))
b12cea91 2636 goto out4; /* not attached */
84d17192 2637 root_mp = root_mnt->mnt_mp;
2d8f3038 2638 if (new.mnt->mnt_root != new.dentry)
b12cea91 2639 goto out4; /* not a mountpoint */
676da58d 2640 if (!mnt_has_parent(new_mnt))
b12cea91 2641 goto out4; /* not attached */
4ac91378 2642 /* make sure we can reach put_old from new_root */
84d17192 2643 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2644 goto out4;
84d17192 2645 root_mp->m_count++; /* pin it so it won't go away */
962830df 2646 br_write_lock(&vfsmount_lock);
419148da
AV
2647 detach_mnt(new_mnt, &parent_path);
2648 detach_mnt(root_mnt, &root_parent);
4ac91378 2649 /* mount old root on put_old */
84d17192 2650 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2651 /* mount new_root on / */
84d17192 2652 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2653 touch_mnt_namespace(current->nsproxy->mnt_ns);
962830df 2654 br_write_unlock(&vfsmount_lock);
2d8f3038 2655 chroot_fs_refs(&root, &new);
84d17192 2656 put_mountpoint(root_mp);
1da177e4 2657 error = 0;
b12cea91 2658out4:
84d17192 2659 unlock_mount(old_mp);
b12cea91
AV
2660 if (!error) {
2661 path_put(&root_parent);
2662 path_put(&parent_path);
2663 }
2664out3:
8c3ee42e 2665 path_put(&root);
b12cea91 2666out2:
2d8f3038 2667 path_put(&old);
1da177e4 2668out1:
2d8f3038 2669 path_put(&new);
1da177e4 2670out0:
1da177e4 2671 return error;
1da177e4
LT
2672}
2673
2674static void __init init_mount_tree(void)
2675{
2676 struct vfsmount *mnt;
6b3286ed 2677 struct mnt_namespace *ns;
ac748a09 2678 struct path root;
0c55cfc4 2679 struct file_system_type *type;
1da177e4 2680
0c55cfc4
EB
2681 type = get_fs_type("rootfs");
2682 if (!type)
2683 panic("Can't find rootfs type");
2684 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2685 put_filesystem(type);
1da177e4
LT
2686 if (IS_ERR(mnt))
2687 panic("Can't create rootfs");
b3e19d92 2688
3b22edc5
TM
2689 ns = create_mnt_ns(mnt);
2690 if (IS_ERR(ns))
1da177e4 2691 panic("Can't allocate initial namespace");
6b3286ed
KK
2692
2693 init_task.nsproxy->mnt_ns = ns;
2694 get_mnt_ns(ns);
2695
be08d6d2
AV
2696 root.mnt = mnt;
2697 root.dentry = mnt->mnt_root;
ac748a09
JB
2698
2699 set_fs_pwd(current->fs, &root);
2700 set_fs_root(current->fs, &root);
1da177e4
LT
2701}
2702
74bf17cf 2703void __init mnt_init(void)
1da177e4 2704{
13f14b4d 2705 unsigned u;
15a67dd8 2706 int err;
1da177e4 2707
390c6843
RP
2708 init_rwsem(&namespace_sem);
2709
7d6fec45 2710 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2711 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2712
b58fed8b 2713 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
84d17192 2714 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4 2715
84d17192 2716 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
2717 panic("Failed to allocate mount hash table\n");
2718
80cdc6da 2719 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2720
2721 for (u = 0; u < HASH_SIZE; u++)
2722 INIT_LIST_HEAD(&mount_hashtable[u]);
84d17192
AV
2723 for (u = 0; u < HASH_SIZE; u++)
2724 INIT_LIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 2725
962830df 2726 br_lock_init(&vfsmount_lock);
99b7db7b 2727
15a67dd8
RD
2728 err = sysfs_init();
2729 if (err)
2730 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2731 __func__, err);
00d26666
GKH
2732 fs_kobj = kobject_create_and_add("fs", NULL);
2733 if (!fs_kobj)
8e24eea7 2734 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2735 init_rootfs();
2736 init_mount_tree();
2737}
2738
616511d0 2739void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2740{
d498b25a 2741 if (!atomic_dec_and_test(&ns->count))
616511d0 2742 return;
97216be0 2743 namespace_lock();
962830df 2744 br_write_lock(&vfsmount_lock);
328e6d90 2745 umount_tree(ns->root, 0);
962830df 2746 br_write_unlock(&vfsmount_lock);
3ab6abee 2747 namespace_unlock();
771b1371 2748 free_mnt_ns(ns);
1da177e4 2749}
9d412a43
AV
2750
2751struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2752{
423e0ab0
TC
2753 struct vfsmount *mnt;
2754 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2755 if (!IS_ERR(mnt)) {
2756 /*
2757 * it is a longterm mount, don't release mnt until
2758 * we unmount before file sys is unregistered
2759 */
f7a99c5b 2760 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2761 }
2762 return mnt;
9d412a43
AV
2763}
2764EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2765
2766void kern_unmount(struct vfsmount *mnt)
2767{
2768 /* release long term mount so mount point can be released */
2769 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b
AV
2770 br_write_lock(&vfsmount_lock);
2771 real_mount(mnt)->mnt_ns = NULL;
2772 br_write_unlock(&vfsmount_lock);
423e0ab0
TC
2773 mntput(mnt);
2774 }
2775}
2776EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2777
2778bool our_mnt(struct vfsmount *mnt)
2779{
143c8c91 2780 return check_mnt(real_mount(mnt));
02125a82 2781}
8823c079
EB
2782
2783static void *mntns_get(struct task_struct *task)
2784{
2785 struct mnt_namespace *ns = NULL;
2786 struct nsproxy *nsproxy;
2787
2788 rcu_read_lock();
2789 nsproxy = task_nsproxy(task);
2790 if (nsproxy) {
2791 ns = nsproxy->mnt_ns;
2792 get_mnt_ns(ns);
2793 }
2794 rcu_read_unlock();
2795
2796 return ns;
2797}
2798
2799static void mntns_put(void *ns)
2800{
2801 put_mnt_ns(ns);
2802}
2803
2804static int mntns_install(struct nsproxy *nsproxy, void *ns)
2805{
2806 struct fs_struct *fs = current->fs;
2807 struct mnt_namespace *mnt_ns = ns;
2808 struct path root;
2809
0c55cfc4 2810 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
5e4a0847
EB
2811 !nsown_capable(CAP_SYS_CHROOT) ||
2812 !nsown_capable(CAP_SYS_ADMIN))
ae11e0f1 2813 return -EPERM;
8823c079
EB
2814
2815 if (fs->users != 1)
2816 return -EINVAL;
2817
2818 get_mnt_ns(mnt_ns);
2819 put_mnt_ns(nsproxy->mnt_ns);
2820 nsproxy->mnt_ns = mnt_ns;
2821
2822 /* Find the root */
2823 root.mnt = &mnt_ns->root->mnt;
2824 root.dentry = mnt_ns->root->mnt.mnt_root;
2825 path_get(&root);
2826 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2827 ;
2828
2829 /* Update the pwd and root */
2830 set_fs_pwd(fs, &root);
2831 set_fs_root(fs, &root);
2832
2833 path_put(&root);
2834 return 0;
2835}
2836
98f842e6
EB
2837static unsigned int mntns_inum(void *ns)
2838{
2839 struct mnt_namespace *mnt_ns = ns;
2840 return mnt_ns->proc_inum;
2841}
2842
8823c079
EB
2843const struct proc_ns_operations mntns_operations = {
2844 .name = "mnt",
2845 .type = CLONE_NEWNS,
2846 .get = mntns_get,
2847 .put = mntns_put,
2848 .install = mntns_install,
98f842e6 2849 .inum = mntns_inum,
8823c079 2850};