Merge tag 'v3.10.107' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / jbd2 / transaction.c
CommitLineData
470decc6 1/*
58862699 2 * linux/fs/jbd2/transaction.c
470decc6
DK
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem transaction handling code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages transactions (compound commits managed by the
16 * journaling code) and handles (individual atomic operations by the
17 * filesystem).
18 */
19
20#include <linux/time.h>
21#include <linux/fs.h>
f7f4bccb 22#include <linux/jbd2.h>
470decc6
DK
23#include <linux/errno.h>
24#include <linux/slab.h>
25#include <linux/timer.h>
470decc6
DK
26#include <linux/mm.h>
27#include <linux/highmem.h>
e07f7183 28#include <linux/hrtimer.h>
47def826 29#include <linux/backing-dev.h>
44705754 30#include <linux/bug.h>
47def826 31#include <linux/module.h>
470decc6 32
343d9c28
TT
33#include <trace/events/jbd2.h>
34
7ddae860 35static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
de1b7941 36static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
7ddae860 37
0c2022ec
YY
38static struct kmem_cache *transaction_cache;
39int __init jbd2_journal_init_transaction_cache(void)
40{
41 J_ASSERT(!transaction_cache);
42 transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 sizeof(transaction_t),
44 0,
45 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 NULL);
47 if (transaction_cache)
48 return 0;
49 return -ENOMEM;
50}
51
52void jbd2_journal_destroy_transaction_cache(void)
53{
54 if (transaction_cache) {
55 kmem_cache_destroy(transaction_cache);
56 transaction_cache = NULL;
57 }
58}
59
60void jbd2_journal_free_transaction(transaction_t *transaction)
61{
62 if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 return;
64 kmem_cache_free(transaction_cache, transaction);
65}
66
470decc6 67/*
f7f4bccb 68 * jbd2_get_transaction: obtain a new transaction_t object.
470decc6
DK
69 *
70 * Simply allocate and initialise a new transaction. Create it in
71 * RUNNING state and add it to the current journal (which should not
72 * have an existing running transaction: we only make a new transaction
73 * once we have started to commit the old one).
74 *
75 * Preconditions:
76 * The journal MUST be locked. We don't perform atomic mallocs on the
77 * new transaction and we can't block without protecting against other
78 * processes trying to touch the journal while it is in transition.
79 *
470decc6
DK
80 */
81
82static transaction_t *
f7f4bccb 83jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
470decc6
DK
84{
85 transaction->t_journal = journal;
86 transaction->t_state = T_RUNNING;
e07f7183 87 transaction->t_start_time = ktime_get();
470decc6
DK
88 transaction->t_tid = journal->j_transaction_sequence++;
89 transaction->t_expires = jiffies + journal->j_commit_interval;
90 spin_lock_init(&transaction->t_handle_lock);
a51dca9c
TT
91 atomic_set(&transaction->t_updates, 0);
92 atomic_set(&transaction->t_outstanding_credits, 0);
8dd42046 93 atomic_set(&transaction->t_handle_count, 0);
c851ed54 94 INIT_LIST_HEAD(&transaction->t_inode_list);
3e624fc7 95 INIT_LIST_HEAD(&transaction->t_private_list);
470decc6
DK
96
97 /* Set up the commit timer for the new transaction. */
b1f485f2 98 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
470decc6
DK
99 add_timer(&journal->j_commit_timer);
100
101 J_ASSERT(journal->j_running_transaction == NULL);
102 journal->j_running_transaction = transaction;
8e85fb3f
JL
103 transaction->t_max_wait = 0;
104 transaction->t_start = jiffies;
9fff24aa 105 transaction->t_requested = 0;
470decc6
DK
106
107 return transaction;
108}
109
110/*
111 * Handle management.
112 *
113 * A handle_t is an object which represents a single atomic update to a
114 * filesystem, and which tracks all of the modifications which form part
115 * of that one update.
116 */
117
6d0bf005 118/*
28e35e42 119 * Update transaction's maximum wait time, if debugging is enabled.
6d0bf005
TT
120 *
121 * In order for t_max_wait to be reliable, it must be protected by a
122 * lock. But doing so will mean that start_this_handle() can not be
123 * run in parallel on SMP systems, which limits our scalability. So
124 * unless debugging is enabled, we no longer update t_max_wait, which
125 * means that maximum wait time reported by the jbd2_run_stats
126 * tracepoint will always be zero.
127 */
28e35e42
TM
128static inline void update_t_max_wait(transaction_t *transaction,
129 unsigned long ts)
6d0bf005
TT
130{
131#ifdef CONFIG_JBD2_DEBUG
6d0bf005
TT
132 if (jbd2_journal_enable_debug &&
133 time_after(transaction->t_start, ts)) {
134 ts = jbd2_time_diff(ts, transaction->t_start);
135 spin_lock(&transaction->t_handle_lock);
136 if (ts > transaction->t_max_wait)
137 transaction->t_max_wait = ts;
138 spin_unlock(&transaction->t_handle_lock);
139 }
140#endif
141}
142
470decc6
DK
143/*
144 * start_this_handle: Given a handle, deal with any locking or stalling
145 * needed to make sure that there is enough journal space for the handle
146 * to begin. Attach the handle to a transaction and set up the
147 * transaction's buffer credits.
148 */
149
47def826 150static int start_this_handle(journal_t *journal, handle_t *handle,
d2159fb7 151 gfp_t gfp_mask)
470decc6 152{
e4471831
TT
153 transaction_t *transaction, *new_transaction = NULL;
154 tid_t tid;
155 int needed, need_to_start;
156 int nblocks = handle->h_buffer_credits;
28e35e42 157 unsigned long ts = jiffies;
470decc6
DK
158
159 if (nblocks > journal->j_max_transaction_buffers) {
f2a44523 160 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
470decc6
DK
161 current->comm, nblocks,
162 journal->j_max_transaction_buffers);
47def826 163 return -ENOSPC;
470decc6
DK
164 }
165
166alloc_transaction:
167 if (!journal->j_running_transaction) {
b2f4edb3
WG
168 new_transaction = kmem_cache_zalloc(transaction_cache,
169 gfp_mask);
470decc6 170 if (!new_transaction) {
47def826
TT
171 /*
172 * If __GFP_FS is not present, then we may be
173 * being called from inside the fs writeback
174 * layer, so we MUST NOT fail. Since
175 * __GFP_NOFAIL is going away, we will arrange
176 * to retry the allocation ourselves.
177 */
178 if ((gfp_mask & __GFP_FS) == 0) {
179 congestion_wait(BLK_RW_ASYNC, HZ/50);
180 goto alloc_transaction;
181 }
182 return -ENOMEM;
470decc6 183 }
470decc6
DK
184 }
185
186 jbd_debug(3, "New handle %p going live.\n", handle);
187
470decc6
DK
188 /*
189 * We need to hold j_state_lock until t_updates has been incremented,
190 * for proper journal barrier handling
191 */
a931da6a
TT
192repeat:
193 read_lock(&journal->j_state_lock);
5c2178e7 194 BUG_ON(journal->j_flags & JBD2_UNMOUNT);
470decc6 195 if (is_journal_aborted(journal) ||
f7f4bccb 196 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
a931da6a 197 read_unlock(&journal->j_state_lock);
0c2022ec 198 jbd2_journal_free_transaction(new_transaction);
47def826 199 return -EROFS;
470decc6
DK
200 }
201
202 /* Wait on the journal's transaction barrier if necessary */
203 if (journal->j_barrier_count) {
a931da6a 204 read_unlock(&journal->j_state_lock);
470decc6
DK
205 wait_event(journal->j_wait_transaction_locked,
206 journal->j_barrier_count == 0);
207 goto repeat;
208 }
209
210 if (!journal->j_running_transaction) {
a931da6a
TT
211 read_unlock(&journal->j_state_lock);
212 if (!new_transaction)
470decc6 213 goto alloc_transaction;
a931da6a 214 write_lock(&journal->j_state_lock);
d7961c7f
JK
215 if (!journal->j_running_transaction &&
216 !journal->j_barrier_count) {
a931da6a
TT
217 jbd2_get_transaction(journal, new_transaction);
218 new_transaction = NULL;
470decc6 219 }
a931da6a
TT
220 write_unlock(&journal->j_state_lock);
221 goto repeat;
470decc6
DK
222 }
223
224 transaction = journal->j_running_transaction;
225
226 /*
227 * If the current transaction is locked down for commit, wait for the
228 * lock to be released.
229 */
230 if (transaction->t_state == T_LOCKED) {
231 DEFINE_WAIT(wait);
232
233 prepare_to_wait(&journal->j_wait_transaction_locked,
234 &wait, TASK_UNINTERRUPTIBLE);
a931da6a 235 read_unlock(&journal->j_state_lock);
470decc6
DK
236 schedule();
237 finish_wait(&journal->j_wait_transaction_locked, &wait);
238 goto repeat;
239 }
240
241 /*
242 * If there is not enough space left in the log to write all potential
243 * buffers requested by this operation, we need to stall pending a log
244 * checkpoint to free some more log space.
245 */
8dd42046
TT
246 needed = atomic_add_return(nblocks,
247 &transaction->t_outstanding_credits);
470decc6
DK
248
249 if (needed > journal->j_max_transaction_buffers) {
250 /*
251 * If the current transaction is already too large, then start
252 * to commit it: we can then go back and attach this handle to
253 * a new transaction.
254 */
255 DEFINE_WAIT(wait);
256
257 jbd_debug(2, "Handle %p starting new commit...\n", handle);
8dd42046 258 atomic_sub(nblocks, &transaction->t_outstanding_credits);
470decc6
DK
259 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
260 TASK_UNINTERRUPTIBLE);
e4471831
TT
261 tid = transaction->t_tid;
262 need_to_start = !tid_geq(journal->j_commit_request, tid);
a931da6a 263 read_unlock(&journal->j_state_lock);
e4471831
TT
264 if (need_to_start)
265 jbd2_log_start_commit(journal, tid);
470decc6
DK
266 schedule();
267 finish_wait(&journal->j_wait_transaction_locked, &wait);
268 goto repeat;
269 }
270
271 /*
272 * The commit code assumes that it can get enough log space
273 * without forcing a checkpoint. This is *critical* for
274 * correctness: a checkpoint of a buffer which is also
275 * associated with a committing transaction creates a deadlock,
276 * so commit simply cannot force through checkpoints.
277 *
278 * We must therefore ensure the necessary space in the journal
279 * *before* starting to dirty potentially checkpointed buffers
280 * in the new transaction.
281 *
282 * The worst part is, any transaction currently committing can
283 * reduce the free space arbitrarily. Be careful to account for
284 * those buffers when checkpointing.
285 */
286
287 /*
288 * @@@ AKPM: This seems rather over-defensive. We're giving commit
289 * a _lot_ of headroom: 1/4 of the journal plus the size of
290 * the committing transaction. Really, we only need to give it
291 * committing_transaction->t_outstanding_credits plus "enough" for
292 * the log control blocks.
a34f0b31 293 * Also, this test is inconsistent with the matching one in
f7f4bccb 294 * jbd2_journal_extend().
470decc6 295 */
f7f4bccb 296 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
470decc6 297 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
8dd42046 298 atomic_sub(nblocks, &transaction->t_outstanding_credits);
a931da6a
TT
299 read_unlock(&journal->j_state_lock);
300 write_lock(&journal->j_state_lock);
301 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
302 __jbd2_log_wait_for_space(journal);
303 write_unlock(&journal->j_state_lock);
304 goto repeat;
470decc6
DK
305 }
306
307 /* OK, account for the buffers that this operation expects to
8dd42046 308 * use and add the handle to the running transaction.
8dd42046 309 */
28e35e42 310 update_t_max_wait(transaction, ts);
470decc6 311 handle->h_transaction = transaction;
343d9c28
TT
312 handle->h_requested_credits = nblocks;
313 handle->h_start_jiffies = jiffies;
a51dca9c 314 atomic_inc(&transaction->t_updates);
8dd42046 315 atomic_inc(&transaction->t_handle_count);
470decc6 316 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
a51dca9c
TT
317 handle, nblocks,
318 atomic_read(&transaction->t_outstanding_credits),
f7f4bccb 319 __jbd2_log_space_left(journal));
a931da6a 320 read_unlock(&journal->j_state_lock);
9599b0e5
JK
321
322 lock_map_acquire(&handle->h_lockdep_map);
0c2022ec 323 jbd2_journal_free_transaction(new_transaction);
47def826 324 return 0;
470decc6
DK
325}
326
7b751066
MC
327static struct lock_class_key jbd2_handle_key;
328
470decc6
DK
329/* Allocate a new handle. This should probably be in a slab... */
330static handle_t *new_handle(int nblocks)
331{
af1e76d6 332 handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
470decc6
DK
333 if (!handle)
334 return NULL;
470decc6
DK
335 handle->h_buffer_credits = nblocks;
336 handle->h_ref = 1;
337
7b751066
MC
338 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
339 &jbd2_handle_key, 0);
340
470decc6
DK
341 return handle;
342}
343
344/**
f7f4bccb 345 * handle_t *jbd2_journal_start() - Obtain a new handle.
470decc6
DK
346 * @journal: Journal to start transaction on.
347 * @nblocks: number of block buffer we might modify
348 *
349 * We make sure that the transaction can guarantee at least nblocks of
350 * modified buffers in the log. We block until the log can guarantee
351 * that much space.
352 *
353 * This function is visible to journal users (like ext3fs), so is not
354 * called with the journal already locked.
355 *
c867516d
EG
356 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
357 * on failure.
470decc6 358 */
343d9c28
TT
359handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask,
360 unsigned int type, unsigned int line_no)
470decc6
DK
361{
362 handle_t *handle = journal_current_handle();
363 int err;
364
365 if (!journal)
366 return ERR_PTR(-EROFS);
367
368 if (handle) {
369 J_ASSERT(handle->h_transaction->t_journal == journal);
370 handle->h_ref++;
371 return handle;
372 }
373
374 handle = new_handle(nblocks);
375 if (!handle)
376 return ERR_PTR(-ENOMEM);
377
378 current->journal_info = handle;
379
47def826 380 err = start_this_handle(journal, handle, gfp_mask);
470decc6 381 if (err < 0) {
af1e76d6 382 jbd2_free_handle(handle);
470decc6 383 current->journal_info = NULL;
df05c1b8 384 return ERR_PTR(err);
470decc6 385 }
343d9c28
TT
386 handle->h_type = type;
387 handle->h_line_no = line_no;
388 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
389 handle->h_transaction->t_tid, type,
390 line_no, nblocks);
470decc6
DK
391 return handle;
392}
47def826
TT
393EXPORT_SYMBOL(jbd2__journal_start);
394
395
396handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
397{
343d9c28 398 return jbd2__journal_start(journal, nblocks, GFP_NOFS, 0, 0);
47def826
TT
399}
400EXPORT_SYMBOL(jbd2_journal_start);
401
470decc6
DK
402
403/**
f7f4bccb 404 * int jbd2_journal_extend() - extend buffer credits.
470decc6
DK
405 * @handle: handle to 'extend'
406 * @nblocks: nr blocks to try to extend by.
407 *
408 * Some transactions, such as large extends and truncates, can be done
409 * atomically all at once or in several stages. The operation requests
410 * a credit for a number of buffer modications in advance, but can
411 * extend its credit if it needs more.
412 *
f7f4bccb 413 * jbd2_journal_extend tries to give the running handle more buffer credits.
470decc6
DK
414 * It does not guarantee that allocation - this is a best-effort only.
415 * The calling process MUST be able to deal cleanly with a failure to
416 * extend here.
417 *
418 * Return 0 on success, non-zero on failure.
419 *
420 * return code < 0 implies an error
421 * return code > 0 implies normal transaction-full status.
422 */
f7f4bccb 423int jbd2_journal_extend(handle_t *handle, int nblocks)
470decc6
DK
424{
425 transaction_t *transaction = handle->h_transaction;
426 journal_t *journal = transaction->t_journal;
427 int result;
428 int wanted;
429
430 result = -EIO;
431 if (is_handle_aborted(handle))
432 goto out;
433
434 result = 1;
435
a931da6a 436 read_lock(&journal->j_state_lock);
470decc6
DK
437
438 /* Don't extend a locked-down transaction! */
439 if (handle->h_transaction->t_state != T_RUNNING) {
440 jbd_debug(3, "denied handle %p %d blocks: "
441 "transaction not running\n", handle, nblocks);
442 goto error_out;
443 }
444
445 spin_lock(&transaction->t_handle_lock);
a51dca9c 446 wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
470decc6
DK
447
448 if (wanted > journal->j_max_transaction_buffers) {
449 jbd_debug(3, "denied handle %p %d blocks: "
450 "transaction too large\n", handle, nblocks);
451 goto unlock;
452 }
453
f7f4bccb 454 if (wanted > __jbd2_log_space_left(journal)) {
470decc6
DK
455 jbd_debug(3, "denied handle %p %d blocks: "
456 "insufficient log space\n", handle, nblocks);
457 goto unlock;
458 }
459
343d9c28
TT
460 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
461 handle->h_transaction->t_tid,
462 handle->h_type, handle->h_line_no,
463 handle->h_buffer_credits,
464 nblocks);
465
470decc6 466 handle->h_buffer_credits += nblocks;
343d9c28 467 handle->h_requested_credits += nblocks;
a51dca9c 468 atomic_add(nblocks, &transaction->t_outstanding_credits);
470decc6
DK
469 result = 0;
470
471 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
472unlock:
473 spin_unlock(&transaction->t_handle_lock);
474error_out:
a931da6a 475 read_unlock(&journal->j_state_lock);
470decc6
DK
476out:
477 return result;
478}
479
480
481/**
f7f4bccb 482 * int jbd2_journal_restart() - restart a handle .
470decc6
DK
483 * @handle: handle to restart
484 * @nblocks: nr credits requested
485 *
486 * Restart a handle for a multi-transaction filesystem
487 * operation.
488 *
f7f4bccb
MC
489 * If the jbd2_journal_extend() call above fails to grant new buffer credits
490 * to a running handle, a call to jbd2_journal_restart will commit the
470decc6
DK
491 * handle's transaction so far and reattach the handle to a new
492 * transaction capabable of guaranteeing the requested number of
493 * credits.
494 */
d2159fb7 495int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
470decc6
DK
496{
497 transaction_t *transaction = handle->h_transaction;
498 journal_t *journal = transaction->t_journal;
e4471831
TT
499 tid_t tid;
500 int need_to_start, ret;
470decc6
DK
501
502 /* If we've had an abort of any type, don't even think about
503 * actually doing the restart! */
504 if (is_handle_aborted(handle))
505 return 0;
506
507 /*
508 * First unlink the handle from its current transaction, and start the
509 * commit on that.
510 */
a51dca9c 511 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
470decc6
DK
512 J_ASSERT(journal_current_handle() == handle);
513
a931da6a 514 read_lock(&journal->j_state_lock);
470decc6 515 spin_lock(&transaction->t_handle_lock);
a51dca9c
TT
516 atomic_sub(handle->h_buffer_credits,
517 &transaction->t_outstanding_credits);
518 if (atomic_dec_and_test(&transaction->t_updates))
470decc6 519 wake_up(&journal->j_wait_updates);
15f26a4c 520 tid = transaction->t_tid;
470decc6
DK
521 spin_unlock(&transaction->t_handle_lock);
522
523 jbd_debug(2, "restarting handle %p\n", handle);
e4471831 524 need_to_start = !tid_geq(journal->j_commit_request, tid);
a931da6a 525 read_unlock(&journal->j_state_lock);
e4471831
TT
526 if (need_to_start)
527 jbd2_log_start_commit(journal, tid);
470decc6 528
9599b0e5 529 lock_map_release(&handle->h_lockdep_map);
470decc6 530 handle->h_buffer_credits = nblocks;
47def826 531 ret = start_this_handle(journal, handle, gfp_mask);
470decc6
DK
532 return ret;
533}
47def826 534EXPORT_SYMBOL(jbd2__journal_restart);
470decc6
DK
535
536
47def826
TT
537int jbd2_journal_restart(handle_t *handle, int nblocks)
538{
539 return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
540}
541EXPORT_SYMBOL(jbd2_journal_restart);
542
470decc6 543/**
f7f4bccb 544 * void jbd2_journal_lock_updates () - establish a transaction barrier.
470decc6
DK
545 * @journal: Journal to establish a barrier on.
546 *
547 * This locks out any further updates from being started, and blocks
548 * until all existing updates have completed, returning only once the
549 * journal is in a quiescent state with no updates running.
550 *
551 * The journal lock should not be held on entry.
552 */
f7f4bccb 553void jbd2_journal_lock_updates(journal_t *journal)
470decc6
DK
554{
555 DEFINE_WAIT(wait);
556
a931da6a 557 write_lock(&journal->j_state_lock);
470decc6
DK
558 ++journal->j_barrier_count;
559
560 /* Wait until there are no running updates */
561 while (1) {
562 transaction_t *transaction = journal->j_running_transaction;
563
564 if (!transaction)
565 break;
566
567 spin_lock(&transaction->t_handle_lock);
9837d8e9
JK
568 prepare_to_wait(&journal->j_wait_updates, &wait,
569 TASK_UNINTERRUPTIBLE);
a51dca9c 570 if (!atomic_read(&transaction->t_updates)) {
470decc6 571 spin_unlock(&transaction->t_handle_lock);
9837d8e9 572 finish_wait(&journal->j_wait_updates, &wait);
470decc6
DK
573 break;
574 }
470decc6 575 spin_unlock(&transaction->t_handle_lock);
a931da6a 576 write_unlock(&journal->j_state_lock);
470decc6
DK
577 schedule();
578 finish_wait(&journal->j_wait_updates, &wait);
a931da6a 579 write_lock(&journal->j_state_lock);
470decc6 580 }
a931da6a 581 write_unlock(&journal->j_state_lock);
470decc6
DK
582
583 /*
584 * We have now established a barrier against other normal updates, but
f7f4bccb 585 * we also need to barrier against other jbd2_journal_lock_updates() calls
470decc6
DK
586 * to make sure that we serialise special journal-locked operations
587 * too.
588 */
589 mutex_lock(&journal->j_barrier);
590}
591
592/**
f7f4bccb 593 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
470decc6
DK
594 * @journal: Journal to release the barrier on.
595 *
f7f4bccb 596 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
470decc6
DK
597 *
598 * Should be called without the journal lock held.
599 */
f7f4bccb 600void jbd2_journal_unlock_updates (journal_t *journal)
470decc6
DK
601{
602 J_ASSERT(journal->j_barrier_count != 0);
603
604 mutex_unlock(&journal->j_barrier);
a931da6a 605 write_lock(&journal->j_state_lock);
470decc6 606 --journal->j_barrier_count;
a931da6a 607 write_unlock(&journal->j_state_lock);
470decc6
DK
608 wake_up(&journal->j_wait_transaction_locked);
609}
610
f91d1d04 611static void warn_dirty_buffer(struct buffer_head *bh)
470decc6 612{
f91d1d04 613 char b[BDEVNAME_SIZE];
470decc6 614
f91d1d04 615 printk(KERN_WARNING
f2a44523 616 "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
f91d1d04
JK
617 "There's a risk of filesystem corruption in case of system "
618 "crash.\n",
619 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
470decc6
DK
620}
621
622/*
623 * If the buffer is already part of the current transaction, then there
624 * is nothing we need to do. If it is already part of a prior
625 * transaction which we are still committing to disk, then we need to
626 * make sure that we do not overwrite the old copy: we do copy-out to
627 * preserve the copy going to disk. We also account the buffer against
628 * the handle's metadata buffer credits (unless the buffer is already
629 * part of the transaction, that is).
630 *
631 */
632static int
633do_get_write_access(handle_t *handle, struct journal_head *jh,
634 int force_copy)
635{
636 struct buffer_head *bh;
637 transaction_t *transaction;
638 journal_t *journal;
639 int error;
640 char *frozen_buffer = NULL;
641 int need_copy = 0;
f783f091 642 unsigned long start_lock, time_lock;
470decc6
DK
643
644 if (is_handle_aborted(handle))
645 return -EROFS;
646
647 transaction = handle->h_transaction;
648 journal = transaction->t_journal;
649
cfef2c6a 650 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
470decc6
DK
651
652 JBUFFER_TRACE(jh, "entry");
653repeat:
654 bh = jh2bh(jh);
655
656 /* @@@ Need to check for errors here at some point. */
657
f783f091 658 start_lock = jiffies;
470decc6
DK
659 lock_buffer(bh);
660 jbd_lock_bh_state(bh);
661
f783f091
TT
662 /* If it takes too long to lock the buffer, trace it */
663 time_lock = jbd2_time_diff(start_lock, jiffies);
664 if (time_lock > HZ/10)
665 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
666 jiffies_to_msecs(time_lock));
667
470decc6
DK
668 /* We now hold the buffer lock so it is safe to query the buffer
669 * state. Is the buffer dirty?
670 *
671 * If so, there are two possibilities. The buffer may be
672 * non-journaled, and undergoing a quite legitimate writeback.
673 * Otherwise, it is journaled, and we don't expect dirty buffers
674 * in that state (the buffers should be marked JBD_Dirty
675 * instead.) So either the IO is being done under our own
676 * control and this is a bug, or it's a third party IO such as
677 * dump(8) (which may leave the buffer scheduled for read ---
678 * ie. locked but not dirty) or tune2fs (which may actually have
679 * the buffer dirtied, ugh.) */
680
681 if (buffer_dirty(bh)) {
682 /*
683 * First question: is this buffer already part of the current
684 * transaction or the existing committing transaction?
685 */
686 if (jh->b_transaction) {
687 J_ASSERT_JH(jh,
688 jh->b_transaction == transaction ||
689 jh->b_transaction ==
690 journal->j_committing_transaction);
691 if (jh->b_next_transaction)
692 J_ASSERT_JH(jh, jh->b_next_transaction ==
693 transaction);
f91d1d04 694 warn_dirty_buffer(bh);
470decc6
DK
695 }
696 /*
697 * In any case we need to clean the dirty flag and we must
698 * do it under the buffer lock to be sure we don't race
699 * with running write-out.
700 */
f91d1d04
JK
701 JBUFFER_TRACE(jh, "Journalling dirty buffer");
702 clear_buffer_dirty(bh);
703 set_buffer_jbddirty(bh);
470decc6
DK
704 }
705
706 unlock_buffer(bh);
707
708 error = -EROFS;
709 if (is_handle_aborted(handle)) {
710 jbd_unlock_bh_state(bh);
711 goto out;
712 }
713 error = 0;
714
715 /*
716 * The buffer is already part of this transaction if b_transaction or
717 * b_next_transaction points to it
718 */
719 if (jh->b_transaction == transaction ||
720 jh->b_next_transaction == transaction)
721 goto done;
722
9fc7c63a
JB
723 /*
724 * this is the first time this transaction is touching this buffer,
725 * reset the modified flag
726 */
727 jh->b_modified = 0;
728
470decc6
DK
729 /*
730 * If there is already a copy-out version of this buffer, then we don't
731 * need to make another one
732 */
733 if (jh->b_frozen_data) {
734 JBUFFER_TRACE(jh, "has frozen data");
735 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
736 jh->b_next_transaction = transaction;
737 goto done;
738 }
739
740 /* Is there data here we need to preserve? */
741
742 if (jh->b_transaction && jh->b_transaction != transaction) {
743 JBUFFER_TRACE(jh, "owned by older transaction");
744 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
745 J_ASSERT_JH(jh, jh->b_transaction ==
746 journal->j_committing_transaction);
747
748 /* There is one case we have to be very careful about.
749 * If the committing transaction is currently writing
750 * this buffer out to disk and has NOT made a copy-out,
751 * then we cannot modify the buffer contents at all
752 * right now. The essence of copy-out is that it is the
753 * extra copy, not the primary copy, which gets
754 * journaled. If the primary copy is already going to
755 * disk then we cannot do copy-out here. */
756
757 if (jh->b_jlist == BJ_Shadow) {
758 DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
759 wait_queue_head_t *wqh;
760
761 wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
762
763 JBUFFER_TRACE(jh, "on shadow: sleep");
764 jbd_unlock_bh_state(bh);
765 /* commit wakes up all shadow buffers after IO */
766 for ( ; ; ) {
767 prepare_to_wait(wqh, &wait.wait,
768 TASK_UNINTERRUPTIBLE);
769 if (jh->b_jlist != BJ_Shadow)
770 break;
771 schedule();
772 }
773 finish_wait(wqh, &wait.wait);
774 goto repeat;
775 }
776
777 /* Only do the copy if the currently-owning transaction
778 * still needs it. If it is on the Forget list, the
779 * committing transaction is past that stage. The
780 * buffer had better remain locked during the kmalloc,
781 * but that should be true --- we hold the journal lock
782 * still and the buffer is already on the BUF_JOURNAL
783 * list so won't be flushed.
784 *
785 * Subtle point, though: if this is a get_undo_access,
786 * then we will be relying on the frozen_data to contain
787 * the new value of the committed_data record after the
788 * transaction, so we HAVE to force the frozen_data copy
789 * in that case. */
790
791 if (jh->b_jlist != BJ_Forget || force_copy) {
792 JBUFFER_TRACE(jh, "generate frozen data");
793 if (!frozen_buffer) {
794 JBUFFER_TRACE(jh, "allocate memory for buffer");
795 jbd_unlock_bh_state(bh);
796 frozen_buffer =
af1e76d6 797 jbd2_alloc(jh2bh(jh)->b_size,
470decc6
DK
798 GFP_NOFS);
799 if (!frozen_buffer) {
800 printk(KERN_EMERG
801 "%s: OOM for frozen_buffer\n",
329d291f 802 __func__);
470decc6
DK
803 JBUFFER_TRACE(jh, "oom!");
804 error = -ENOMEM;
805 jbd_lock_bh_state(bh);
806 goto done;
807 }
808 goto repeat;
809 }
810 jh->b_frozen_data = frozen_buffer;
811 frozen_buffer = NULL;
812 need_copy = 1;
813 }
814 jh->b_next_transaction = transaction;
815 }
816
817
818 /*
819 * Finally, if the buffer is not journaled right now, we need to make
820 * sure it doesn't get written to disk before the caller actually
821 * commits the new data
822 */
823 if (!jh->b_transaction) {
824 JBUFFER_TRACE(jh, "no transaction");
825 J_ASSERT_JH(jh, !jh->b_next_transaction);
470decc6
DK
826 JBUFFER_TRACE(jh, "file as BJ_Reserved");
827 spin_lock(&journal->j_list_lock);
f7f4bccb 828 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
470decc6
DK
829 spin_unlock(&journal->j_list_lock);
830 }
831
832done:
833 if (need_copy) {
834 struct page *page;
835 int offset;
836 char *source;
837
838 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
839 "Possible IO failure.\n");
840 page = jh2bh(jh)->b_page;
a1dd5331 841 offset = offset_in_page(jh2bh(jh)->b_data);
303a8f2a 842 source = kmap_atomic(page);
13ceef09
JK
843 /* Fire data frozen trigger just before we copy the data */
844 jbd2_buffer_frozen_trigger(jh, source + offset,
845 jh->b_triggers);
470decc6 846 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
303a8f2a 847 kunmap_atomic(source);
e06c8227
JB
848
849 /*
850 * Now that the frozen data is saved off, we need to store
851 * any matching triggers.
852 */
853 jh->b_frozen_triggers = jh->b_triggers;
470decc6
DK
854 }
855 jbd_unlock_bh_state(bh);
856
857 /*
858 * If we are about to journal a buffer, then any revoke pending on it is
859 * no longer valid
860 */
f7f4bccb 861 jbd2_journal_cancel_revoke(handle, jh);
470decc6
DK
862
863out:
864 if (unlikely(frozen_buffer)) /* It's usually NULL */
af1e76d6 865 jbd2_free(frozen_buffer, bh->b_size);
470decc6
DK
866
867 JBUFFER_TRACE(jh, "exit");
868 return error;
869}
870
871/**
f7f4bccb 872 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
470decc6
DK
873 * @handle: transaction to add buffer modifications to
874 * @bh: bh to be used for metadata writes
470decc6
DK
875 *
876 * Returns an error code or 0 on success.
877 *
878 * In full data journalling mode the buffer may be of type BJ_AsyncData,
879 * because we're write()ing a buffer which is also part of a shared mapping.
880 */
881
f7f4bccb 882int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
470decc6 883{
f7f4bccb 884 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
470decc6
DK
885 int rc;
886
887 /* We do not want to get caught playing with fields which the
888 * log thread also manipulates. Make sure that the buffer
889 * completes any outstanding IO before proceeding. */
890 rc = do_get_write_access(handle, jh, 0);
f7f4bccb 891 jbd2_journal_put_journal_head(jh);
470decc6
DK
892 return rc;
893}
894
895
896/*
897 * When the user wants to journal a newly created buffer_head
898 * (ie. getblk() returned a new buffer and we are going to populate it
899 * manually rather than reading off disk), then we need to keep the
900 * buffer_head locked until it has been completely filled with new
901 * data. In this case, we should be able to make the assertion that
902 * the bh is not already part of an existing transaction.
903 *
904 * The buffer should already be locked by the caller by this point.
905 * There is no lock ranking violation: it was a newly created,
906 * unlocked buffer beforehand. */
907
908/**
f7f4bccb 909 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
470decc6
DK
910 * @handle: transaction to new buffer to
911 * @bh: new buffer.
912 *
913 * Call this if you create a new bh.
914 */
f7f4bccb 915int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
470decc6
DK
916{
917 transaction_t *transaction = handle->h_transaction;
918 journal_t *journal = transaction->t_journal;
f7f4bccb 919 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
470decc6
DK
920 int err;
921
922 jbd_debug(5, "journal_head %p\n", jh);
923 err = -EROFS;
924 if (is_handle_aborted(handle))
925 goto out;
926 err = 0;
927
928 JBUFFER_TRACE(jh, "entry");
929 /*
930 * The buffer may already belong to this transaction due to pre-zeroing
931 * in the filesystem's new_block code. It may also be on the previous,
932 * committing transaction's lists, but it HAS to be in Forget state in
933 * that case: the transaction must have deleted the buffer for it to be
934 * reused here.
935 */
936 jbd_lock_bh_state(bh);
937 spin_lock(&journal->j_list_lock);
938 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
939 jh->b_transaction == NULL ||
940 (jh->b_transaction == journal->j_committing_transaction &&
941 jh->b_jlist == BJ_Forget)));
942
943 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
944 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
945
946 if (jh->b_transaction == NULL) {
f91d1d04
JK
947 /*
948 * Previous jbd2_journal_forget() could have left the buffer
949 * with jbddirty bit set because it was being committed. When
950 * the commit finished, we've filed the buffer for
951 * checkpointing and marked it dirty. Now we are reallocating
952 * the buffer so the transaction freeing it must have
953 * committed and so it's safe to clear the dirty bit.
954 */
955 clear_buffer_dirty(jh2bh(jh));
9fc7c63a
JB
956 /* first access by this transaction */
957 jh->b_modified = 0;
958
470decc6 959 JBUFFER_TRACE(jh, "file as BJ_Reserved");
f7f4bccb 960 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
470decc6 961 } else if (jh->b_transaction == journal->j_committing_transaction) {
9fc7c63a
JB
962 /* first access by this transaction */
963 jh->b_modified = 0;
964
470decc6
DK
965 JBUFFER_TRACE(jh, "set next transaction");
966 jh->b_next_transaction = transaction;
967 }
968 spin_unlock(&journal->j_list_lock);
969 jbd_unlock_bh_state(bh);
970
971 /*
972 * akpm: I added this. ext3_alloc_branch can pick up new indirect
973 * blocks which contain freed but then revoked metadata. We need
974 * to cancel the revoke in case we end up freeing it yet again
975 * and the reallocating as data - this would cause a second revoke,
976 * which hits an assertion error.
977 */
978 JBUFFER_TRACE(jh, "cancelling revoke");
f7f4bccb 979 jbd2_journal_cancel_revoke(handle, jh);
470decc6 980out:
3991b400 981 jbd2_journal_put_journal_head(jh);
470decc6
DK
982 return err;
983}
984
985/**
f7f4bccb 986 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with
470decc6
DK
987 * non-rewindable consequences
988 * @handle: transaction
989 * @bh: buffer to undo
470decc6
DK
990 *
991 * Sometimes there is a need to distinguish between metadata which has
992 * been committed to disk and that which has not. The ext3fs code uses
993 * this for freeing and allocating space, we have to make sure that we
994 * do not reuse freed space until the deallocation has been committed,
995 * since if we overwrote that space we would make the delete
996 * un-rewindable in case of a crash.
997 *
f7f4bccb 998 * To deal with that, jbd2_journal_get_undo_access requests write access to a
470decc6
DK
999 * buffer for parts of non-rewindable operations such as delete
1000 * operations on the bitmaps. The journaling code must keep a copy of
1001 * the buffer's contents prior to the undo_access call until such time
1002 * as we know that the buffer has definitely been committed to disk.
1003 *
1004 * We never need to know which transaction the committed data is part
1005 * of, buffers touched here are guaranteed to be dirtied later and so
1006 * will be committed to a new transaction in due course, at which point
1007 * we can discard the old committed data pointer.
1008 *
1009 * Returns error number or 0 on success.
1010 */
f7f4bccb 1011int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
470decc6
DK
1012{
1013 int err;
f7f4bccb 1014 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
470decc6
DK
1015 char *committed_data = NULL;
1016
1017 JBUFFER_TRACE(jh, "entry");
1018
1019 /*
1020 * Do this first --- it can drop the journal lock, so we want to
1021 * make sure that obtaining the committed_data is done
1022 * atomically wrt. completion of any outstanding commits.
1023 */
1024 err = do_get_write_access(handle, jh, 1);
1025 if (err)
1026 goto out;
1027
1028repeat:
1029 if (!jh->b_committed_data) {
af1e76d6 1030 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
470decc6
DK
1031 if (!committed_data) {
1032 printk(KERN_EMERG "%s: No memory for committed data\n",
329d291f 1033 __func__);
470decc6
DK
1034 err = -ENOMEM;
1035 goto out;
1036 }
1037 }
1038
1039 jbd_lock_bh_state(bh);
1040 if (!jh->b_committed_data) {
1041 /* Copy out the current buffer contents into the
1042 * preserved, committed copy. */
1043 JBUFFER_TRACE(jh, "generate b_committed data");
1044 if (!committed_data) {
1045 jbd_unlock_bh_state(bh);
1046 goto repeat;
1047 }
1048
1049 jh->b_committed_data = committed_data;
1050 committed_data = NULL;
1051 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1052 }
1053 jbd_unlock_bh_state(bh);
1054out:
f7f4bccb 1055 jbd2_journal_put_journal_head(jh);
470decc6 1056 if (unlikely(committed_data))
af1e76d6 1057 jbd2_free(committed_data, bh->b_size);
470decc6
DK
1058 return err;
1059}
1060
e06c8227
JB
1061/**
1062 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1063 * @bh: buffer to trigger on
1064 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1065 *
1066 * Set any triggers on this journal_head. This is always safe, because
1067 * triggers for a committing buffer will be saved off, and triggers for
1068 * a running transaction will match the buffer in that transaction.
1069 *
1070 * Call with NULL to clear the triggers.
1071 */
1072void jbd2_journal_set_triggers(struct buffer_head *bh,
1073 struct jbd2_buffer_trigger_type *type)
1074{
ad56edad 1075 struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
e06c8227 1076
ad56edad
JK
1077 if (WARN_ON(!jh))
1078 return;
e06c8227 1079 jh->b_triggers = type;
ad56edad 1080 jbd2_journal_put_journal_head(jh);
e06c8227
JB
1081}
1082
13ceef09 1083void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
e06c8227
JB
1084 struct jbd2_buffer_trigger_type *triggers)
1085{
1086 struct buffer_head *bh = jh2bh(jh);
1087
13ceef09 1088 if (!triggers || !triggers->t_frozen)
e06c8227
JB
1089 return;
1090
13ceef09 1091 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
e06c8227
JB
1092}
1093
1094void jbd2_buffer_abort_trigger(struct journal_head *jh,
1095 struct jbd2_buffer_trigger_type *triggers)
1096{
1097 if (!triggers || !triggers->t_abort)
1098 return;
1099
1100 triggers->t_abort(triggers, jh2bh(jh));
1101}
1102
1103
1104
470decc6 1105/**
f7f4bccb 1106 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata
470decc6
DK
1107 * @handle: transaction to add buffer to.
1108 * @bh: buffer to mark
1109 *
1110 * mark dirty metadata which needs to be journaled as part of the current
1111 * transaction.
1112 *
9ea7a0df
TT
1113 * The buffer must have previously had jbd2_journal_get_write_access()
1114 * called so that it has a valid journal_head attached to the buffer
1115 * head.
1116 *
470decc6
DK
1117 * The buffer is placed on the transaction's metadata list and is marked
1118 * as belonging to the transaction.
1119 *
1120 * Returns error number or 0 on success.
1121 *
1122 * Special care needs to be taken if the buffer already belongs to the
1123 * current committing transaction (in which case we should have frozen
1124 * data present for that commit). In that case, we don't relink the
1125 * buffer: that only gets done when the old transaction finally
1126 * completes its commit.
1127 */
f7f4bccb 1128int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
470decc6
DK
1129{
1130 transaction_t *transaction = handle->h_transaction;
1131 journal_t *journal = transaction->t_journal;
ad56edad 1132 struct journal_head *jh;
9ea7a0df 1133 int ret = 0;
470decc6 1134
470decc6
DK
1135 if (is_handle_aborted(handle))
1136 goto out;
ad56edad
JK
1137 jh = jbd2_journal_grab_journal_head(bh);
1138 if (!jh) {
9ea7a0df
TT
1139 ret = -EUCLEAN;
1140 goto out;
1141 }
ad56edad
JK
1142 jbd_debug(5, "journal_head %p\n", jh);
1143 JBUFFER_TRACE(jh, "entry");
470decc6
DK
1144
1145 jbd_lock_bh_state(bh);
1146
1147 if (jh->b_modified == 0) {
1148 /*
1149 * This buffer's got modified and becoming part
1150 * of the transaction. This needs to be done
1151 * once a transaction -bzzz
1152 */
1153 jh->b_modified = 1;
ceed0859
TT
1154 if (handle->h_buffer_credits <= 0) {
1155 ret = -ENOSPC;
1156 goto out_unlock_bh;
1157 }
470decc6
DK
1158 handle->h_buffer_credits--;
1159 }
1160
1161 /*
1162 * fastpath, to avoid expensive locking. If this buffer is already
1163 * on the running transaction's metadata list there is nothing to do.
1164 * Nobody can take it off again because there is a handle open.
1165 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1166 * result in this test being false, so we go in and take the locks.
1167 */
1168 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1169 JBUFFER_TRACE(jh, "fastpath");
9ea7a0df
TT
1170 if (unlikely(jh->b_transaction !=
1171 journal->j_running_transaction)) {
1172 printk(KERN_EMERG "JBD: %s: "
1173 "jh->b_transaction (%llu, %p, %u) != "
1174 "journal->j_running_transaction (%p, %u)",
1175 journal->j_devname,
1176 (unsigned long long) bh->b_blocknr,
1177 jh->b_transaction,
1178 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1179 journal->j_running_transaction,
1180 journal->j_running_transaction ?
1181 journal->j_running_transaction->t_tid : 0);
1182 ret = -EINVAL;
1183 }
470decc6
DK
1184 goto out_unlock_bh;
1185 }
1186
1187 set_buffer_jbddirty(bh);
1188
1189 /*
1190 * Metadata already on the current transaction list doesn't
1191 * need to be filed. Metadata on another transaction's list must
1192 * be committing, and will be refiled once the commit completes:
1193 * leave it alone for now.
1194 */
1195 if (jh->b_transaction != transaction) {
1196 JBUFFER_TRACE(jh, "already on other transaction");
9ea7a0df
TT
1197 if (unlikely(jh->b_transaction !=
1198 journal->j_committing_transaction)) {
1199 printk(KERN_EMERG "JBD: %s: "
1200 "jh->b_transaction (%llu, %p, %u) != "
1201 "journal->j_committing_transaction (%p, %u)",
1202 journal->j_devname,
1203 (unsigned long long) bh->b_blocknr,
1204 jh->b_transaction,
1205 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1206 journal->j_committing_transaction,
1207 journal->j_committing_transaction ?
1208 journal->j_committing_transaction->t_tid : 0);
1209 ret = -EINVAL;
1210 }
1211 if (unlikely(jh->b_next_transaction != transaction)) {
1212 printk(KERN_EMERG "JBD: %s: "
1213 "jh->b_next_transaction (%llu, %p, %u) != "
1214 "transaction (%p, %u)",
1215 journal->j_devname,
1216 (unsigned long long) bh->b_blocknr,
1217 jh->b_next_transaction,
1218 jh->b_next_transaction ?
1219 jh->b_next_transaction->t_tid : 0,
1220 transaction, transaction->t_tid);
1221 ret = -EINVAL;
1222 }
470decc6
DK
1223 /* And this case is illegal: we can't reuse another
1224 * transaction's data buffer, ever. */
1225 goto out_unlock_bh;
1226 }
1227
1228 /* That test should have eliminated the following case: */
4019191b 1229 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
470decc6
DK
1230
1231 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1232 spin_lock(&journal->j_list_lock);
f7f4bccb 1233 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
470decc6
DK
1234 spin_unlock(&journal->j_list_lock);
1235out_unlock_bh:
1236 jbd_unlock_bh_state(bh);
ad56edad 1237 jbd2_journal_put_journal_head(jh);
470decc6
DK
1238out:
1239 JBUFFER_TRACE(jh, "exit");
9ea7a0df 1240 return ret;
470decc6
DK
1241}
1242
470decc6 1243/**
f7f4bccb 1244 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
470decc6
DK
1245 * @handle: transaction handle
1246 * @bh: bh to 'forget'
1247 *
1248 * We can only do the bforget if there are no commits pending against the
1249 * buffer. If the buffer is dirty in the current running transaction we
1250 * can safely unlink it.
1251 *
1252 * bh may not be a journalled buffer at all - it may be a non-JBD
1253 * buffer which came off the hashtable. Check for this.
1254 *
1255 * Decrements bh->b_count by one.
1256 *
1257 * Allow this call even if the handle has aborted --- it may be part of
1258 * the caller's cleanup after an abort.
1259 */
f7f4bccb 1260int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
470decc6
DK
1261{
1262 transaction_t *transaction = handle->h_transaction;
1263 journal_t *journal = transaction->t_journal;
1264 struct journal_head *jh;
1265 int drop_reserve = 0;
1266 int err = 0;
1dfc3220 1267 int was_modified = 0;
470decc6
DK
1268
1269 BUFFER_TRACE(bh, "entry");
1270
1271 jbd_lock_bh_state(bh);
1272 spin_lock(&journal->j_list_lock);
1273
1274 if (!buffer_jbd(bh))
1275 goto not_jbd;
1276 jh = bh2jh(bh);
1277
1278 /* Critical error: attempting to delete a bitmap buffer, maybe?
1279 * Don't do any jbd operations, and return an error. */
1280 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1281 "inconsistent data on disk")) {
1282 err = -EIO;
1283 goto not_jbd;
1284 }
1285
48fc7f7e 1286 /* keep track of whether or not this transaction modified us */
1dfc3220
JB
1287 was_modified = jh->b_modified;
1288
470decc6
DK
1289 /*
1290 * The buffer's going from the transaction, we must drop
1291 * all references -bzzz
1292 */
1293 jh->b_modified = 0;
1294
1295 if (jh->b_transaction == handle->h_transaction) {
1296 J_ASSERT_JH(jh, !jh->b_frozen_data);
1297
1298 /* If we are forgetting a buffer which is already part
1299 * of this transaction, then we can just drop it from
1300 * the transaction immediately. */
1301 clear_buffer_dirty(bh);
1302 clear_buffer_jbddirty(bh);
1303
1304 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1305
1dfc3220
JB
1306 /*
1307 * we only want to drop a reference if this transaction
1308 * modified the buffer
1309 */
1310 if (was_modified)
1311 drop_reserve = 1;
470decc6
DK
1312
1313 /*
1314 * We are no longer going to journal this buffer.
1315 * However, the commit of this transaction is still
1316 * important to the buffer: the delete that we are now
1317 * processing might obsolete an old log entry, so by
1318 * committing, we can satisfy the buffer's checkpoint.
1319 *
1320 * So, if we have a checkpoint on the buffer, we should
1321 * now refile the buffer on our BJ_Forget list so that
1322 * we know to remove the checkpoint after we commit.
1323 */
1324
1325 if (jh->b_cp_transaction) {
f7f4bccb
MC
1326 __jbd2_journal_temp_unlink_buffer(jh);
1327 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
470decc6 1328 } else {
f7f4bccb 1329 __jbd2_journal_unfile_buffer(jh);
470decc6
DK
1330 if (!buffer_jbd(bh)) {
1331 spin_unlock(&journal->j_list_lock);
1332 jbd_unlock_bh_state(bh);
1333 __bforget(bh);
1334 goto drop;
1335 }
1336 }
1337 } else if (jh->b_transaction) {
1338 J_ASSERT_JH(jh, (jh->b_transaction ==
1339 journal->j_committing_transaction));
1340 /* However, if the buffer is still owned by a prior
1341 * (committing) transaction, we can't drop it yet... */
1342 JBUFFER_TRACE(jh, "belongs to older transaction");
1343 /* ... but we CAN drop it from the new transaction if we
1344 * have also modified it since the original commit. */
1345
1346 if (jh->b_next_transaction) {
1347 J_ASSERT(jh->b_next_transaction == transaction);
1348 jh->b_next_transaction = NULL;
1dfc3220
JB
1349
1350 /*
1351 * only drop a reference if this transaction modified
1352 * the buffer
1353 */
1354 if (was_modified)
1355 drop_reserve = 1;
470decc6
DK
1356 }
1357 }
1358
1359not_jbd:
1360 spin_unlock(&journal->j_list_lock);
1361 jbd_unlock_bh_state(bh);
1362 __brelse(bh);
1363drop:
1364 if (drop_reserve) {
1365 /* no need to reserve log space for this block -bzzz */
1366 handle->h_buffer_credits++;
1367 }
1368 return err;
1369}
1370
1371/**
f7f4bccb 1372 * int jbd2_journal_stop() - complete a transaction
470decc6
DK
1373 * @handle: tranaction to complete.
1374 *
1375 * All done for a particular handle.
1376 *
1377 * There is not much action needed here. We just return any remaining
1378 * buffer credits to the transaction and remove the handle. The only
1379 * complication is that we need to start a commit operation if the
1380 * filesystem is marked for synchronous update.
1381 *
f7f4bccb 1382 * jbd2_journal_stop itself will not usually return an error, but it may
470decc6 1383 * do so in unusual circumstances. In particular, expect it to
f7f4bccb 1384 * return -EIO if a jbd2_journal_abort has been executed since the
470decc6
DK
1385 * transaction began.
1386 */
f7f4bccb 1387int jbd2_journal_stop(handle_t *handle)
470decc6
DK
1388{
1389 transaction_t *transaction = handle->h_transaction;
1390 journal_t *journal = transaction->t_journal;
a51dca9c
TT
1391 int err, wait_for_commit = 0;
1392 tid_t tid;
470decc6
DK
1393 pid_t pid;
1394
470decc6
DK
1395 J_ASSERT(journal_current_handle() == handle);
1396
1397 if (is_handle_aborted(handle))
1398 err = -EIO;
3e2a532b 1399 else {
a51dca9c 1400 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
470decc6 1401 err = 0;
3e2a532b 1402 }
470decc6
DK
1403
1404 if (--handle->h_ref > 0) {
1405 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1406 handle->h_ref);
1407 return err;
1408 }
1409
1410 jbd_debug(4, "Handle %p going down\n", handle);
343d9c28
TT
1411 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1412 handle->h_transaction->t_tid,
1413 handle->h_type, handle->h_line_no,
1414 jiffies - handle->h_start_jiffies,
1415 handle->h_sync, handle->h_requested_credits,
1416 (handle->h_requested_credits -
1417 handle->h_buffer_credits));
470decc6
DK
1418
1419 /*
1420 * Implement synchronous transaction batching. If the handle
1421 * was synchronous, don't force a commit immediately. Let's
e07f7183
JB
1422 * yield and let another thread piggyback onto this
1423 * transaction. Keep doing that while new threads continue to
1424 * arrive. It doesn't cost much - we're about to run a commit
1425 * and sleep on IO anyway. Speeds up many-threaded, many-dir
1426 * operations by 30x or more...
1427 *
1428 * We try and optimize the sleep time against what the
1429 * underlying disk can do, instead of having a static sleep
1430 * time. This is useful for the case where our storage is so
1431 * fast that it is more optimal to go ahead and force a flush
1432 * and wait for the transaction to be committed than it is to
1433 * wait for an arbitrary amount of time for new writers to
1434 * join the transaction. We achieve this by measuring how
1435 * long it takes to commit a transaction, and compare it with
1436 * how long this transaction has been running, and if run time
1437 * < commit time then we sleep for the delta and commit. This
1438 * greatly helps super fast disks that would see slowdowns as
1439 * more threads started doing fsyncs.
470decc6 1440 *
e07f7183
JB
1441 * But don't do this if this process was the most recent one
1442 * to perform a synchronous write. We do this to detect the
1443 * case where a single process is doing a stream of sync
1444 * writes. No point in waiting for joiners in that case.
39f9c0e3
ES
1445 *
1446 * Setting max_batch_time to 0 disables this completely.
470decc6
DK
1447 */
1448 pid = current->pid;
39f9c0e3
ES
1449 if (handle->h_sync && journal->j_last_sync_writer != pid &&
1450 journal->j_max_batch_time) {
e07f7183
JB
1451 u64 commit_time, trans_time;
1452
470decc6 1453 journal->j_last_sync_writer = pid;
e07f7183 1454
a931da6a 1455 read_lock(&journal->j_state_lock);
e07f7183 1456 commit_time = journal->j_average_commit_time;
a931da6a 1457 read_unlock(&journal->j_state_lock);
e07f7183
JB
1458
1459 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1460 transaction->t_start_time));
1461
30773840
TT
1462 commit_time = max_t(u64, commit_time,
1463 1000*journal->j_min_batch_time);
e07f7183 1464 commit_time = min_t(u64, commit_time,
30773840 1465 1000*journal->j_max_batch_time);
e07f7183
JB
1466
1467 if (trans_time < commit_time) {
1468 ktime_t expires = ktime_add_ns(ktime_get(),
1469 commit_time);
1470 set_current_state(TASK_UNINTERRUPTIBLE);
1471 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1472 }
470decc6
DK
1473 }
1474
7058548c
TT
1475 if (handle->h_sync)
1476 transaction->t_synchronous_commit = 1;
470decc6 1477 current->journal_info = NULL;
a51dca9c
TT
1478 atomic_sub(handle->h_buffer_credits,
1479 &transaction->t_outstanding_credits);
470decc6
DK
1480
1481 /*
1482 * If the handle is marked SYNC, we need to set another commit
1483 * going! We also want to force a commit if the current
1484 * transaction is occupying too much of the log, or if the
1485 * transaction is too old now.
1486 */
1487 if (handle->h_sync ||
a51dca9c
TT
1488 (atomic_read(&transaction->t_outstanding_credits) >
1489 journal->j_max_transaction_buffers) ||
1490 time_after_eq(jiffies, transaction->t_expires)) {
470decc6
DK
1491 /* Do this even for aborted journals: an abort still
1492 * completes the commit thread, it just doesn't write
1493 * anything to disk. */
470decc6 1494
470decc6
DK
1495 jbd_debug(2, "transaction too old, requesting commit for "
1496 "handle %p\n", handle);
1497 /* This is non-blocking */
c35a56a0 1498 jbd2_log_start_commit(journal, transaction->t_tid);
470decc6
DK
1499
1500 /*
f7f4bccb 1501 * Special case: JBD2_SYNC synchronous updates require us
470decc6
DK
1502 * to wait for the commit to complete.
1503 */
1504 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
a51dca9c 1505 wait_for_commit = 1;
470decc6
DK
1506 }
1507
a51dca9c
TT
1508 /*
1509 * Once we drop t_updates, if it goes to zero the transaction
25985edc 1510 * could start committing on us and eventually disappear. So
a51dca9c
TT
1511 * once we do this, we must not dereference transaction
1512 * pointer again.
1513 */
1514 tid = transaction->t_tid;
1515 if (atomic_dec_and_test(&transaction->t_updates)) {
1516 wake_up(&journal->j_wait_updates);
1517 if (journal->j_barrier_count)
1518 wake_up(&journal->j_wait_transaction_locked);
1519 }
1520
1521 if (wait_for_commit)
1522 err = jbd2_log_wait_commit(journal, tid);
1523
3295f0ef 1524 lock_map_release(&handle->h_lockdep_map);
7b751066 1525
af1e76d6 1526 jbd2_free_handle(handle);
470decc6
DK
1527 return err;
1528}
1529
5648ba5b
RD
1530/**
1531 * int jbd2_journal_force_commit() - force any uncommitted transactions
470decc6
DK
1532 * @journal: journal to force
1533 *
1534 * For synchronous operations: force any uncommitted transactions
1535 * to disk. May seem kludgy, but it reuses all the handle batching
1536 * code in a very simple manner.
1537 */
f7f4bccb 1538int jbd2_journal_force_commit(journal_t *journal)
470decc6
DK
1539{
1540 handle_t *handle;
1541 int ret;
1542
f7f4bccb 1543 handle = jbd2_journal_start(journal, 1);
470decc6
DK
1544 if (IS_ERR(handle)) {
1545 ret = PTR_ERR(handle);
1546 } else {
1547 handle->h_sync = 1;
f7f4bccb 1548 ret = jbd2_journal_stop(handle);
470decc6
DK
1549 }
1550 return ret;
1551}
1552
1553/*
1554 *
1555 * List management code snippets: various functions for manipulating the
1556 * transaction buffer lists.
1557 *
1558 */
1559
1560/*
1561 * Append a buffer to a transaction list, given the transaction's list head
1562 * pointer.
1563 *
1564 * j_list_lock is held.
1565 *
1566 * jbd_lock_bh_state(jh2bh(jh)) is held.
1567 */
1568
1569static inline void
1570__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1571{
1572 if (!*list) {
1573 jh->b_tnext = jh->b_tprev = jh;
1574 *list = jh;
1575 } else {
1576 /* Insert at the tail of the list to preserve order */
1577 struct journal_head *first = *list, *last = first->b_tprev;
1578 jh->b_tprev = last;
1579 jh->b_tnext = first;
1580 last->b_tnext = first->b_tprev = jh;
1581 }
1582}
1583
1584/*
1585 * Remove a buffer from a transaction list, given the transaction's list
1586 * head pointer.
1587 *
1588 * Called with j_list_lock held, and the journal may not be locked.
1589 *
1590 * jbd_lock_bh_state(jh2bh(jh)) is held.
1591 */
1592
1593static inline void
1594__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1595{
1596 if (*list == jh) {
1597 *list = jh->b_tnext;
1598 if (*list == jh)
1599 *list = NULL;
1600 }
1601 jh->b_tprev->b_tnext = jh->b_tnext;
1602 jh->b_tnext->b_tprev = jh->b_tprev;
1603}
1604
1605/*
1606 * Remove a buffer from the appropriate transaction list.
1607 *
1608 * Note that this function can *change* the value of
87c89c23
JK
1609 * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1610 * t_log_list or t_reserved_list. If the caller is holding onto a copy of one
1611 * of these pointers, it could go bad. Generally the caller needs to re-read
1612 * the pointer from the transaction_t.
470decc6 1613 *
5bebccf9 1614 * Called under j_list_lock.
470decc6 1615 */
5bebccf9 1616static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
470decc6
DK
1617{
1618 struct journal_head **list = NULL;
1619 transaction_t *transaction;
1620 struct buffer_head *bh = jh2bh(jh);
1621
1622 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1623 transaction = jh->b_transaction;
1624 if (transaction)
1625 assert_spin_locked(&transaction->t_journal->j_list_lock);
1626
1627 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1628 if (jh->b_jlist != BJ_None)
4019191b 1629 J_ASSERT_JH(jh, transaction != NULL);
470decc6
DK
1630
1631 switch (jh->b_jlist) {
1632 case BJ_None:
1633 return;
470decc6
DK
1634 case BJ_Metadata:
1635 transaction->t_nr_buffers--;
1636 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1637 list = &transaction->t_buffers;
1638 break;
1639 case BJ_Forget:
1640 list = &transaction->t_forget;
1641 break;
1642 case BJ_IO:
1643 list = &transaction->t_iobuf_list;
1644 break;
1645 case BJ_Shadow:
1646 list = &transaction->t_shadow_list;
1647 break;
1648 case BJ_LogCtl:
1649 list = &transaction->t_log_list;
1650 break;
1651 case BJ_Reserved:
1652 list = &transaction->t_reserved_list;
1653 break;
470decc6
DK
1654 }
1655
1656 __blist_del_buffer(list, jh);
1657 jh->b_jlist = BJ_None;
45f1a95e
TT
1658 if (transaction && is_journal_aborted(transaction->t_journal))
1659 clear_buffer_jbddirty(bh);
1660 else if (test_clear_buffer_jbddirty(bh))
470decc6
DK
1661 mark_buffer_dirty(bh); /* Expose it to the VM */
1662}
1663
de1b7941
JK
1664/*
1665 * Remove buffer from all transactions.
1666 *
1667 * Called with bh_state lock and j_list_lock
1668 *
1669 * jh and bh may be already freed when this function returns.
1670 */
1671static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
470decc6 1672{
f7f4bccb 1673 __jbd2_journal_temp_unlink_buffer(jh);
470decc6 1674 jh->b_transaction = NULL;
de1b7941 1675 jbd2_journal_put_journal_head(jh);
470decc6
DK
1676}
1677
f7f4bccb 1678void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
470decc6 1679{
de1b7941
JK
1680 struct buffer_head *bh = jh2bh(jh);
1681
1682 /* Get reference so that buffer cannot be freed before we unlock it */
1683 get_bh(bh);
1684 jbd_lock_bh_state(bh);
470decc6 1685 spin_lock(&journal->j_list_lock);
f7f4bccb 1686 __jbd2_journal_unfile_buffer(jh);
470decc6 1687 spin_unlock(&journal->j_list_lock);
de1b7941
JK
1688 jbd_unlock_bh_state(bh);
1689 __brelse(bh);
470decc6
DK
1690}
1691
1692/*
f7f4bccb 1693 * Called from jbd2_journal_try_to_free_buffers().
470decc6
DK
1694 *
1695 * Called under jbd_lock_bh_state(bh)
1696 */
1697static void
1698__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1699{
1700 struct journal_head *jh;
1701
1702 jh = bh2jh(bh);
1703
1704 if (buffer_locked(bh) || buffer_dirty(bh))
1705 goto out;
1706
4019191b 1707 if (jh->b_next_transaction != NULL)
470decc6
DK
1708 goto out;
1709
1710 spin_lock(&journal->j_list_lock);
87c89c23 1711 if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
470decc6 1712 /* written-back checkpointed metadata buffer */
c254c9ec
JK
1713 JBUFFER_TRACE(jh, "remove from checkpoint list");
1714 __jbd2_journal_remove_checkpoint(jh);
470decc6
DK
1715 }
1716 spin_unlock(&journal->j_list_lock);
1717out:
1718 return;
1719}
1720
470decc6 1721/**
f7f4bccb 1722 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
470decc6
DK
1723 * @journal: journal for operation
1724 * @page: to try and free
530576bb
MC
1725 * @gfp_mask: we use the mask to detect how hard should we try to release
1726 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1727 * release the buffers.
470decc6
DK
1728 *
1729 *
1730 * For all the buffers on this page,
1731 * if they are fully written out ordered data, move them onto BUF_CLEAN
1732 * so try_to_free_buffers() can reap them.
1733 *
1734 * This function returns non-zero if we wish try_to_free_buffers()
1735 * to be called. We do this if the page is releasable by try_to_free_buffers().
1736 * We also do it if the page has locked or dirty buffers and the caller wants
1737 * us to perform sync or async writeout.
1738 *
1739 * This complicates JBD locking somewhat. We aren't protected by the
1740 * BKL here. We wish to remove the buffer from its committing or
f7f4bccb 1741 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
470decc6
DK
1742 *
1743 * This may *change* the value of transaction_t->t_datalist, so anyone
1744 * who looks at t_datalist needs to lock against this function.
1745 *
f7f4bccb
MC
1746 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1747 * buffer. So we need to lock against that. jbd2_journal_dirty_data()
470decc6
DK
1748 * will come out of the lock with the buffer dirty, which makes it
1749 * ineligible for release here.
1750 *
1751 * Who else is affected by this? hmm... Really the only contender
1752 * is do_get_write_access() - it could be looking at the buffer while
1753 * journal_try_to_free_buffer() is changing its state. But that
1754 * cannot happen because we never reallocate freed data as metadata
1755 * while the data is part of a transaction. Yes?
530576bb
MC
1756 *
1757 * Return 0 on failure, 1 on success
470decc6 1758 */
f7f4bccb 1759int jbd2_journal_try_to_free_buffers(journal_t *journal,
530576bb 1760 struct page *page, gfp_t gfp_mask)
470decc6
DK
1761{
1762 struct buffer_head *head;
1763 struct buffer_head *bh;
1764 int ret = 0;
1765
1766 J_ASSERT(PageLocked(page));
1767
1768 head = page_buffers(page);
1769 bh = head;
1770 do {
1771 struct journal_head *jh;
1772
1773 /*
1774 * We take our own ref against the journal_head here to avoid
1775 * having to add tons of locking around each instance of
530576bb 1776 * jbd2_journal_put_journal_head().
470decc6 1777 */
f7f4bccb 1778 jh = jbd2_journal_grab_journal_head(bh);
470decc6
DK
1779 if (!jh)
1780 continue;
1781
1782 jbd_lock_bh_state(bh);
1783 __journal_try_to_free_buffer(journal, bh);
f7f4bccb 1784 jbd2_journal_put_journal_head(jh);
470decc6
DK
1785 jbd_unlock_bh_state(bh);
1786 if (buffer_jbd(bh))
1787 goto busy;
1788 } while ((bh = bh->b_this_page) != head);
530576bb 1789
470decc6 1790 ret = try_to_free_buffers(page);
530576bb 1791
470decc6
DK
1792busy:
1793 return ret;
1794}
1795
1796/*
1797 * This buffer is no longer needed. If it is on an older transaction's
1798 * checkpoint list we need to record it on this transaction's forget list
1799 * to pin this buffer (and hence its checkpointing transaction) down until
1800 * this transaction commits. If the buffer isn't on a checkpoint list, we
1801 * release it.
1802 * Returns non-zero if JBD no longer has an interest in the buffer.
1803 *
1804 * Called under j_list_lock.
1805 *
1806 * Called under jbd_lock_bh_state(bh).
1807 */
1808static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1809{
1810 int may_free = 1;
1811 struct buffer_head *bh = jh2bh(jh);
1812
470decc6
DK
1813 if (jh->b_cp_transaction) {
1814 JBUFFER_TRACE(jh, "on running+cp transaction");
de1b7941 1815 __jbd2_journal_temp_unlink_buffer(jh);
f91d1d04
JK
1816 /*
1817 * We don't want to write the buffer anymore, clear the
1818 * bit so that we don't confuse checks in
1819 * __journal_file_buffer
1820 */
1821 clear_buffer_dirty(bh);
f7f4bccb 1822 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
470decc6
DK
1823 may_free = 0;
1824 } else {
1825 JBUFFER_TRACE(jh, "on running transaction");
de1b7941 1826 __jbd2_journal_unfile_buffer(jh);
470decc6
DK
1827 }
1828 return may_free;
1829}
1830
1831/*
f7f4bccb 1832 * jbd2_journal_invalidatepage
470decc6
DK
1833 *
1834 * This code is tricky. It has a number of cases to deal with.
1835 *
1836 * There are two invariants which this code relies on:
1837 *
1838 * i_size must be updated on disk before we start calling invalidatepage on the
1839 * data.
1840 *
1841 * This is done in ext3 by defining an ext3_setattr method which
1842 * updates i_size before truncate gets going. By maintaining this
1843 * invariant, we can be sure that it is safe to throw away any buffers
1844 * attached to the current transaction: once the transaction commits,
1845 * we know that the data will not be needed.
1846 *
1847 * Note however that we can *not* throw away data belonging to the
1848 * previous, committing transaction!
1849 *
1850 * Any disk blocks which *are* part of the previous, committing
1851 * transaction (and which therefore cannot be discarded immediately) are
1852 * not going to be reused in the new running transaction
1853 *
1854 * The bitmap committed_data images guarantee this: any block which is
1855 * allocated in one transaction and removed in the next will be marked
1856 * as in-use in the committed_data bitmap, so cannot be reused until
1857 * the next transaction to delete the block commits. This means that
1858 * leaving committing buffers dirty is quite safe: the disk blocks
1859 * cannot be reallocated to a different file and so buffer aliasing is
1860 * not possible.
1861 *
1862 *
1863 * The above applies mainly to ordered data mode. In writeback mode we
1864 * don't make guarantees about the order in which data hits disk --- in
1865 * particular we don't guarantee that new dirty data is flushed before
1866 * transaction commit --- so it is always safe just to discard data
1867 * immediately in that mode. --sct
1868 */
1869
1870/*
1871 * The journal_unmap_buffer helper function returns zero if the buffer
1872 * concerned remains pinned as an anonymous buffer belonging to an older
1873 * transaction.
1874 *
1875 * We're outside-transaction here. Either or both of j_running_transaction
1876 * and j_committing_transaction may be NULL.
1877 */
b794e7a6
JK
1878static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1879 int partial_page)
470decc6
DK
1880{
1881 transaction_t *transaction;
1882 struct journal_head *jh;
1883 int may_free = 1;
470decc6
DK
1884
1885 BUFFER_TRACE(bh, "entry");
1886
1887 /*
1888 * It is safe to proceed here without the j_list_lock because the
1889 * buffers cannot be stolen by try_to_free_buffers as long as we are
1890 * holding the page lock. --sct
1891 */
1892
1893 if (!buffer_jbd(bh))
1894 goto zap_buffer_unlocked;
1895
87c89c23 1896 /* OK, we have data buffer in journaled mode */
a931da6a 1897 write_lock(&journal->j_state_lock);
470decc6
DK
1898 jbd_lock_bh_state(bh);
1899 spin_lock(&journal->j_list_lock);
1900
f7f4bccb 1901 jh = jbd2_journal_grab_journal_head(bh);
470decc6
DK
1902 if (!jh)
1903 goto zap_buffer_no_jh;
1904
ba869023 1905 /*
1906 * We cannot remove the buffer from checkpoint lists until the
1907 * transaction adding inode to orphan list (let's call it T)
1908 * is committed. Otherwise if the transaction changing the
1909 * buffer would be cleaned from the journal before T is
1910 * committed, a crash will cause that the correct contents of
1911 * the buffer will be lost. On the other hand we have to
1912 * clear the buffer dirty bit at latest at the moment when the
1913 * transaction marking the buffer as freed in the filesystem
1914 * structures is committed because from that moment on the
b794e7a6 1915 * block can be reallocated and used by a different page.
ba869023 1916 * Since the block hasn't been freed yet but the inode has
1917 * already been added to orphan list, it is safe for us to add
1918 * the buffer to BJ_Forget list of the newest transaction.
b794e7a6
JK
1919 *
1920 * Also we have to clear buffer_mapped flag of a truncated buffer
1921 * because the buffer_head may be attached to the page straddling
1922 * i_size (can happen only when blocksize < pagesize) and thus the
1923 * buffer_head can be reused when the file is extended again. So we end
1924 * up keeping around invalidated buffers attached to transactions'
1925 * BJ_Forget list just to stop checkpointing code from cleaning up
1926 * the transaction this buffer was modified in.
ba869023 1927 */
470decc6
DK
1928 transaction = jh->b_transaction;
1929 if (transaction == NULL) {
1930 /* First case: not on any transaction. If it
1931 * has no checkpoint link, then we can zap it:
1932 * it's a writeback-mode buffer so we don't care
1933 * if it hits disk safely. */
1934 if (!jh->b_cp_transaction) {
1935 JBUFFER_TRACE(jh, "not on any transaction: zap");
1936 goto zap_buffer;
1937 }
1938
1939 if (!buffer_dirty(bh)) {
1940 /* bdflush has written it. We can drop it now */
1174350e 1941 __jbd2_journal_remove_checkpoint(jh);
470decc6
DK
1942 goto zap_buffer;
1943 }
1944
1945 /* OK, it must be in the journal but still not
1946 * written fully to disk: it's metadata or
1947 * journaled data... */
1948
1949 if (journal->j_running_transaction) {
1950 /* ... and once the current transaction has
1951 * committed, the buffer won't be needed any
1952 * longer. */
1953 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
b794e7a6 1954 may_free = __dispose_buffer(jh,
470decc6 1955 journal->j_running_transaction);
b794e7a6 1956 goto zap_buffer;
470decc6
DK
1957 } else {
1958 /* There is no currently-running transaction. So the
1959 * orphan record which we wrote for this file must have
1960 * passed into commit. We must attach this buffer to
1961 * the committing transaction, if it exists. */
1962 if (journal->j_committing_transaction) {
1963 JBUFFER_TRACE(jh, "give to committing trans");
b794e7a6 1964 may_free = __dispose_buffer(jh,
470decc6 1965 journal->j_committing_transaction);
b794e7a6 1966 goto zap_buffer;
470decc6
DK
1967 } else {
1968 /* The orphan record's transaction has
1969 * committed. We can cleanse this buffer */
1970 clear_buffer_jbddirty(bh);
1174350e 1971 __jbd2_journal_remove_checkpoint(jh);
470decc6
DK
1972 goto zap_buffer;
1973 }
1974 }
1975 } else if (transaction == journal->j_committing_transaction) {
9b57988d 1976 JBUFFER_TRACE(jh, "on committing transaction");
470decc6 1977 /*
ba869023 1978 * The buffer is committing, we simply cannot touch
b794e7a6
JK
1979 * it. If the page is straddling i_size we have to wait
1980 * for commit and try again.
1981 */
1982 if (partial_page) {
b794e7a6
JK
1983 jbd2_journal_put_journal_head(jh);
1984 spin_unlock(&journal->j_list_lock);
1985 jbd_unlock_bh_state(bh);
1986 write_unlock(&journal->j_state_lock);
53e87268 1987 return -EBUSY;
b794e7a6
JK
1988 }
1989 /*
1990 * OK, buffer won't be reachable after truncate. We just set
1991 * j_next_transaction to the running transaction (if there is
1992 * one) and mark buffer as freed so that commit code knows it
1993 * should clear dirty bits when it is done with the buffer.
ba869023 1994 */
470decc6 1995 set_buffer_freed(bh);
ba869023 1996 if (journal->j_running_transaction && buffer_jbddirty(bh))
1997 jh->b_next_transaction = journal->j_running_transaction;
f7f4bccb 1998 jbd2_journal_put_journal_head(jh);
470decc6
DK
1999 spin_unlock(&journal->j_list_lock);
2000 jbd_unlock_bh_state(bh);
a931da6a 2001 write_unlock(&journal->j_state_lock);
470decc6
DK
2002 return 0;
2003 } else {
2004 /* Good, the buffer belongs to the running transaction.
2005 * We are writing our own transaction's data, not any
2006 * previous one's, so it is safe to throw it away
2007 * (remember that we expect the filesystem to have set
2008 * i_size already for this truncate so recovery will not
2009 * expose the disk blocks we are discarding here.) */
2010 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
9b57988d 2011 JBUFFER_TRACE(jh, "on running transaction");
470decc6
DK
2012 may_free = __dispose_buffer(jh, transaction);
2013 }
2014
2015zap_buffer:
b794e7a6
JK
2016 /*
2017 * This is tricky. Although the buffer is truncated, it may be reused
2018 * if blocksize < pagesize and it is attached to the page straddling
2019 * EOF. Since the buffer might have been added to BJ_Forget list of the
2020 * running transaction, journal_get_write_access() won't clear
2021 * b_modified and credit accounting gets confused. So clear b_modified
2022 * here.
2023 */
2024 jh->b_modified = 0;
f7f4bccb 2025 jbd2_journal_put_journal_head(jh);
470decc6
DK
2026zap_buffer_no_jh:
2027 spin_unlock(&journal->j_list_lock);
2028 jbd_unlock_bh_state(bh);
a931da6a 2029 write_unlock(&journal->j_state_lock);
470decc6
DK
2030zap_buffer_unlocked:
2031 clear_buffer_dirty(bh);
2032 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2033 clear_buffer_mapped(bh);
2034 clear_buffer_req(bh);
2035 clear_buffer_new(bh);
15291164
ES
2036 clear_buffer_delay(bh);
2037 clear_buffer_unwritten(bh);
470decc6
DK
2038 bh->b_bdev = NULL;
2039 return may_free;
2040}
2041
2042/**
f7f4bccb 2043 * void jbd2_journal_invalidatepage()
470decc6
DK
2044 * @journal: journal to use for flush...
2045 * @page: page to flush
2046 * @offset: length of page to invalidate.
2047 *
53e87268
JK
2048 * Reap page buffers containing data after offset in page. Can return -EBUSY
2049 * if buffers are part of the committing transaction and the page is straddling
2050 * i_size. Caller then has to wait for current commit and try again.
470decc6 2051 */
53e87268
JK
2052int jbd2_journal_invalidatepage(journal_t *journal,
2053 struct page *page,
2054 unsigned long offset)
470decc6
DK
2055{
2056 struct buffer_head *head, *bh, *next;
2057 unsigned int curr_off = 0;
2058 int may_free = 1;
53e87268 2059 int ret = 0;
470decc6
DK
2060
2061 if (!PageLocked(page))
2062 BUG();
2063 if (!page_has_buffers(page))
53e87268 2064 return 0;
470decc6
DK
2065
2066 /* We will potentially be playing with lists other than just the
2067 * data lists (especially for journaled data mode), so be
2068 * cautious in our locking. */
2069
2070 head = bh = page_buffers(page);
2071 do {
2072 unsigned int next_off = curr_off + bh->b_size;
2073 next = bh->b_this_page;
2074
2075 if (offset <= curr_off) {
2076 /* This block is wholly outside the truncation point */
2077 lock_buffer(bh);
53e87268 2078 ret = journal_unmap_buffer(journal, bh, offset > 0);
470decc6 2079 unlock_buffer(bh);
53e87268
JK
2080 if (ret < 0)
2081 return ret;
2082 may_free &= ret;
470decc6
DK
2083 }
2084 curr_off = next_off;
2085 bh = next;
2086
2087 } while (bh != head);
2088
2089 if (!offset) {
2090 if (may_free && try_to_free_buffers(page))
2091 J_ASSERT(!page_has_buffers(page));
2092 }
53e87268 2093 return 0;
470decc6
DK
2094}
2095
2096/*
2097 * File a buffer on the given transaction list.
2098 */
f7f4bccb 2099void __jbd2_journal_file_buffer(struct journal_head *jh,
470decc6
DK
2100 transaction_t *transaction, int jlist)
2101{
2102 struct journal_head **list = NULL;
2103 int was_dirty = 0;
2104 struct buffer_head *bh = jh2bh(jh);
2105
2106 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2107 assert_spin_locked(&transaction->t_journal->j_list_lock);
2108
2109 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2110 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
4019191b 2111 jh->b_transaction == NULL);
470decc6
DK
2112
2113 if (jh->b_transaction && jh->b_jlist == jlist)
2114 return;
2115
470decc6
DK
2116 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2117 jlist == BJ_Shadow || jlist == BJ_Forget) {
f91d1d04
JK
2118 /*
2119 * For metadata buffers, we track dirty bit in buffer_jbddirty
2120 * instead of buffer_dirty. We should not see a dirty bit set
2121 * here because we clear it in do_get_write_access but e.g.
2122 * tune2fs can modify the sb and set the dirty bit at any time
2123 * so we try to gracefully handle that.
2124 */
2125 if (buffer_dirty(bh))
2126 warn_dirty_buffer(bh);
470decc6
DK
2127 if (test_clear_buffer_dirty(bh) ||
2128 test_clear_buffer_jbddirty(bh))
2129 was_dirty = 1;
2130 }
2131
2132 if (jh->b_transaction)
f7f4bccb 2133 __jbd2_journal_temp_unlink_buffer(jh);
de1b7941
JK
2134 else
2135 jbd2_journal_grab_journal_head(bh);
470decc6
DK
2136 jh->b_transaction = transaction;
2137
2138 switch (jlist) {
2139 case BJ_None:
2140 J_ASSERT_JH(jh, !jh->b_committed_data);
2141 J_ASSERT_JH(jh, !jh->b_frozen_data);
2142 return;
470decc6
DK
2143 case BJ_Metadata:
2144 transaction->t_nr_buffers++;
2145 list = &transaction->t_buffers;
2146 break;
2147 case BJ_Forget:
2148 list = &transaction->t_forget;
2149 break;
2150 case BJ_IO:
2151 list = &transaction->t_iobuf_list;
2152 break;
2153 case BJ_Shadow:
2154 list = &transaction->t_shadow_list;
2155 break;
2156 case BJ_LogCtl:
2157 list = &transaction->t_log_list;
2158 break;
2159 case BJ_Reserved:
2160 list = &transaction->t_reserved_list;
2161 break;
470decc6
DK
2162 }
2163
2164 __blist_add_buffer(list, jh);
2165 jh->b_jlist = jlist;
2166
2167 if (was_dirty)
2168 set_buffer_jbddirty(bh);
2169}
2170
f7f4bccb 2171void jbd2_journal_file_buffer(struct journal_head *jh,
470decc6
DK
2172 transaction_t *transaction, int jlist)
2173{
2174 jbd_lock_bh_state(jh2bh(jh));
2175 spin_lock(&transaction->t_journal->j_list_lock);
f7f4bccb 2176 __jbd2_journal_file_buffer(jh, transaction, jlist);
470decc6
DK
2177 spin_unlock(&transaction->t_journal->j_list_lock);
2178 jbd_unlock_bh_state(jh2bh(jh));
2179}
2180
2181/*
2182 * Remove a buffer from its current buffer list in preparation for
2183 * dropping it from its current transaction entirely. If the buffer has
2184 * already started to be used by a subsequent transaction, refile the
2185 * buffer on that transaction's metadata list.
2186 *
de1b7941 2187 * Called under j_list_lock
470decc6 2188 * Called under jbd_lock_bh_state(jh2bh(jh))
de1b7941
JK
2189 *
2190 * jh and bh may be already free when this function returns
470decc6 2191 */
f7f4bccb 2192void __jbd2_journal_refile_buffer(struct journal_head *jh)
470decc6 2193{
ba869023 2194 int was_dirty, jlist;
470decc6
DK
2195 struct buffer_head *bh = jh2bh(jh);
2196
2197 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2198 if (jh->b_transaction)
2199 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2200
2201 /* If the buffer is now unused, just drop it. */
2202 if (jh->b_next_transaction == NULL) {
f7f4bccb 2203 __jbd2_journal_unfile_buffer(jh);
470decc6
DK
2204 return;
2205 }
2206
2207 /*
2208 * It has been modified by a later transaction: add it to the new
2209 * transaction's metadata list.
2210 */
2211
2212 was_dirty = test_clear_buffer_jbddirty(bh);
f7f4bccb 2213 __jbd2_journal_temp_unlink_buffer(jh);
de1b7941
JK
2214 /*
2215 * We set b_transaction here because b_next_transaction will inherit
2216 * our jh reference and thus __jbd2_journal_file_buffer() must not
2217 * take a new one.
2218 */
470decc6
DK
2219 jh->b_transaction = jh->b_next_transaction;
2220 jh->b_next_transaction = NULL;
ba869023 2221 if (buffer_freed(bh))
2222 jlist = BJ_Forget;
2223 else if (jh->b_modified)
2224 jlist = BJ_Metadata;
2225 else
2226 jlist = BJ_Reserved;
2227 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
470decc6
DK
2228 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2229
2230 if (was_dirty)
2231 set_buffer_jbddirty(bh);
2232}
2233
2234/*
de1b7941
JK
2235 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2236 * bh reference so that we can safely unlock bh.
2237 *
2238 * The jh and bh may be freed by this call.
470decc6 2239 */
f7f4bccb 2240void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
470decc6
DK
2241{
2242 struct buffer_head *bh = jh2bh(jh);
2243
de1b7941
JK
2244 /* Get reference so that buffer cannot be freed before we unlock it */
2245 get_bh(bh);
470decc6
DK
2246 jbd_lock_bh_state(bh);
2247 spin_lock(&journal->j_list_lock);
f7f4bccb 2248 __jbd2_journal_refile_buffer(jh);
470decc6 2249 jbd_unlock_bh_state(bh);
470decc6
DK
2250 spin_unlock(&journal->j_list_lock);
2251 __brelse(bh);
2252}
c851ed54
JK
2253
2254/*
2255 * File inode in the inode list of the handle's transaction
2256 */
2257int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2258{
2259 transaction_t *transaction = handle->h_transaction;
2260 journal_t *journal = transaction->t_journal;
2261
2262 if (is_handle_aborted(handle))
2263 return -EIO;
2264
2265 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2266 transaction->t_tid);
2267
2268 /*
2269 * First check whether inode isn't already on the transaction's
2270 * lists without taking the lock. Note that this check is safe
2271 * without the lock as we cannot race with somebody removing inode
2272 * from the transaction. The reason is that we remove inode from the
2273 * transaction only in journal_release_jbd_inode() and when we commit
2274 * the transaction. We are guarded from the first case by holding
2275 * a reference to the inode. We are safe against the second case
2276 * because if jinode->i_transaction == transaction, commit code
2277 * cannot touch the transaction because we hold reference to it,
2278 * and if jinode->i_next_transaction == transaction, commit code
2279 * will only file the inode where we want it.
2280 */
2281 if (jinode->i_transaction == transaction ||
2282 jinode->i_next_transaction == transaction)
2283 return 0;
2284
2285 spin_lock(&journal->j_list_lock);
2286
2287 if (jinode->i_transaction == transaction ||
2288 jinode->i_next_transaction == transaction)
2289 goto done;
2290
81be12c8
JK
2291 /*
2292 * We only ever set this variable to 1 so the test is safe. Since
2293 * t_need_data_flush is likely to be set, we do the test to save some
2294 * cacheline bouncing
2295 */
2296 if (!transaction->t_need_data_flush)
2297 transaction->t_need_data_flush = 1;
c851ed54
JK
2298 /* On some different transaction's list - should be
2299 * the committing one */
2300 if (jinode->i_transaction) {
2301 J_ASSERT(jinode->i_next_transaction == NULL);
2302 J_ASSERT(jinode->i_transaction ==
2303 journal->j_committing_transaction);
2304 jinode->i_next_transaction = transaction;
2305 goto done;
2306 }
2307 /* Not on any transaction list... */
2308 J_ASSERT(!jinode->i_next_transaction);
2309 jinode->i_transaction = transaction;
2310 list_add(&jinode->i_list, &transaction->t_inode_list);
2311done:
2312 spin_unlock(&journal->j_list_lock);
2313
2314 return 0;
2315}
2316
2317/*
7f5aa215
JK
2318 * File truncate and transaction commit interact with each other in a
2319 * non-trivial way. If a transaction writing data block A is
2320 * committing, we cannot discard the data by truncate until we have
2321 * written them. Otherwise if we crashed after the transaction with
2322 * write has committed but before the transaction with truncate has
2323 * committed, we could see stale data in block A. This function is a
2324 * helper to solve this problem. It starts writeout of the truncated
2325 * part in case it is in the committing transaction.
2326 *
2327 * Filesystem code must call this function when inode is journaled in
2328 * ordered mode before truncation happens and after the inode has been
2329 * placed on orphan list with the new inode size. The second condition
2330 * avoids the race that someone writes new data and we start
2331 * committing the transaction after this function has been called but
2332 * before a transaction for truncate is started (and furthermore it
2333 * allows us to optimize the case where the addition to orphan list
2334 * happens in the same transaction as write --- we don't have to write
2335 * any data in such case).
c851ed54 2336 */
7f5aa215
JK
2337int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2338 struct jbd2_inode *jinode,
c851ed54
JK
2339 loff_t new_size)
2340{
7f5aa215 2341 transaction_t *inode_trans, *commit_trans;
c851ed54
JK
2342 int ret = 0;
2343
7f5aa215
JK
2344 /* This is a quick check to avoid locking if not necessary */
2345 if (!jinode->i_transaction)
c851ed54 2346 goto out;
7f5aa215
JK
2347 /* Locks are here just to force reading of recent values, it is
2348 * enough that the transaction was not committing before we started
2349 * a transaction adding the inode to orphan list */
a931da6a 2350 read_lock(&journal->j_state_lock);
c851ed54 2351 commit_trans = journal->j_committing_transaction;
a931da6a 2352 read_unlock(&journal->j_state_lock);
7f5aa215
JK
2353 spin_lock(&journal->j_list_lock);
2354 inode_trans = jinode->i_transaction;
2355 spin_unlock(&journal->j_list_lock);
2356 if (inode_trans == commit_trans) {
2357 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
c851ed54
JK
2358 new_size, LLONG_MAX);
2359 if (ret)
2360 jbd2_journal_abort(journal, ret);
2361 }
2362out:
2363 return ret;
2364}