import PULS_20160108
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4
LT
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
16f7e0fe 27#include <linux/capability.h>
1da177e4
LT
28#include <linux/blkdev.h>
29#include <linux/file.h>
30#include <linux/quotaops.h>
31#include <linux/highmem.h>
630d9c47 32#include <linux/export.h>
1da177e4
LT
33#include <linux/writeback.h>
34#include <linux/hash.h>
35#include <linux/suspend.h>
36#include <linux/buffer_head.h>
55e829af 37#include <linux/task_io_accounting_ops.h>
1da177e4
LT
38#include <linux/bio.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/bitops.h>
42#include <linux/mpage.h>
fb1c8f93 43#include <linux/bit_spinlock.h>
5305cb83 44#include <trace/events/block.h>
1da177e4
LT
45
46static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
1da177e4
LT
47
48#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
a3f3c29c 50void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
1da177e4
LT
51{
52 bh->b_end_io = handler;
53 bh->b_private = private;
54}
1fe72eaa 55EXPORT_SYMBOL(init_buffer);
1da177e4 56
f0059afd
TH
57inline void touch_buffer(struct buffer_head *bh)
58{
5305cb83 59 trace_block_touch_buffer(bh);
f0059afd
TH
60 mark_page_accessed(bh->b_page);
61}
62EXPORT_SYMBOL(touch_buffer);
63
7eaceacc 64static int sleep_on_buffer(void *word)
1da177e4 65{
1da177e4
LT
66 io_schedule();
67 return 0;
68}
69
fc9b52cd 70void __lock_buffer(struct buffer_head *bh)
1da177e4 71{
7eaceacc 72 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
1da177e4
LT
73 TASK_UNINTERRUPTIBLE);
74}
75EXPORT_SYMBOL(__lock_buffer);
76
fc9b52cd 77void unlock_buffer(struct buffer_head *bh)
1da177e4 78{
51b07fc3 79 clear_bit_unlock(BH_Lock, &bh->b_state);
1da177e4
LT
80 smp_mb__after_clear_bit();
81 wake_up_bit(&bh->b_state, BH_Lock);
82}
1fe72eaa 83EXPORT_SYMBOL(unlock_buffer);
1da177e4
LT
84
85/*
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
89 */
90void __wait_on_buffer(struct buffer_head * bh)
91{
7eaceacc 92 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
1da177e4 93}
1fe72eaa 94EXPORT_SYMBOL(__wait_on_buffer);
1da177e4
LT
95
96static void
97__clear_page_buffers(struct page *page)
98{
99 ClearPagePrivate(page);
4c21e2f2 100 set_page_private(page, 0);
1da177e4
LT
101 page_cache_release(page);
102}
103
08bafc03
KM
104
105static int quiet_error(struct buffer_head *bh)
106{
107 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
108 return 0;
109 return 1;
110}
111
112
1da177e4
LT
113static void buffer_io_error(struct buffer_head *bh)
114{
115 char b[BDEVNAME_SIZE];
1da177e4
LT
116 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
117 bdevname(bh->b_bdev, b),
118 (unsigned long long)bh->b_blocknr);
119}
120
121/*
68671f35
DM
122 * End-of-IO handler helper function which does not touch the bh after
123 * unlocking it.
124 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
125 * a race there is benign: unlock_buffer() only use the bh's address for
126 * hashing after unlocking the buffer, so it doesn't actually touch the bh
127 * itself.
1da177e4 128 */
68671f35 129static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
130{
131 if (uptodate) {
132 set_buffer_uptodate(bh);
133 } else {
134 /* This happens, due to failed READA attempts. */
135 clear_buffer_uptodate(bh);
136 }
137 unlock_buffer(bh);
68671f35
DM
138}
139
140/*
141 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
142 * unlock the buffer. This is what ll_rw_block uses too.
143 */
144void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
145{
146 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
147 put_bh(bh);
148}
1fe72eaa 149EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
150
151void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
152{
153 char b[BDEVNAME_SIZE];
154
155 if (uptodate) {
156 set_buffer_uptodate(bh);
157 } else {
0edd55fa 158 if (!quiet_error(bh)) {
1da177e4
LT
159 buffer_io_error(bh);
160 printk(KERN_WARNING "lost page write due to "
161 "I/O error on %s\n",
162 bdevname(bh->b_bdev, b));
163 }
164 set_buffer_write_io_error(bh);
165 clear_buffer_uptodate(bh);
166 }
167 unlock_buffer(bh);
168 put_bh(bh);
169}
1fe72eaa 170EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 171
1da177e4
LT
172/*
173 * Various filesystems appear to want __find_get_block to be non-blocking.
174 * But it's the page lock which protects the buffers. To get around this,
175 * we get exclusion from try_to_free_buffers with the blockdev mapping's
176 * private_lock.
177 *
178 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
179 * may be quite high. This code could TryLock the page, and if that
180 * succeeds, there is no need to take private_lock. (But if
181 * private_lock is contended then so is mapping->tree_lock).
182 */
183static struct buffer_head *
385fd4c5 184__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
185{
186 struct inode *bd_inode = bdev->bd_inode;
187 struct address_space *bd_mapping = bd_inode->i_mapping;
188 struct buffer_head *ret = NULL;
189 pgoff_t index;
190 struct buffer_head *bh;
191 struct buffer_head *head;
192 struct page *page;
193 int all_mapped = 1;
194
195 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
196 page = find_get_page(bd_mapping, index);
197 if (!page)
198 goto out;
199
200 spin_lock(&bd_mapping->private_lock);
201 if (!page_has_buffers(page))
202 goto out_unlock;
203 head = page_buffers(page);
204 bh = head;
205 do {
97f76d3d
NK
206 if (!buffer_mapped(bh))
207 all_mapped = 0;
208 else if (bh->b_blocknr == block) {
1da177e4
LT
209 ret = bh;
210 get_bh(bh);
211 goto out_unlock;
212 }
1da177e4
LT
213 bh = bh->b_this_page;
214 } while (bh != head);
215
216 /* we might be here because some of the buffers on this page are
217 * not mapped. This is due to various races between
218 * file io on the block device and getblk. It gets dealt with
219 * elsewhere, don't buffer_error if we had some unmapped buffers
220 */
221 if (all_mapped) {
72a2ebd8
TM
222 char b[BDEVNAME_SIZE];
223
1da177e4
LT
224 printk("__find_get_block_slow() failed. "
225 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
226 (unsigned long long)block,
227 (unsigned long long)bh->b_blocknr);
228 printk("b_state=0x%08lx, b_size=%zu\n",
229 bh->b_state, bh->b_size);
72a2ebd8
TM
230 printk("device %s blocksize: %d\n", bdevname(bdev, b),
231 1 << bd_inode->i_blkbits);
1da177e4
LT
232 }
233out_unlock:
234 spin_unlock(&bd_mapping->private_lock);
235 page_cache_release(page);
236out:
237 return ret;
238}
239
1da177e4 240/*
5b0830cb 241 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
1da177e4
LT
242 */
243static void free_more_memory(void)
244{
19770b32 245 struct zone *zone;
0e88460d 246 int nid;
1da177e4 247
0e175a18 248 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
1da177e4
LT
249 yield();
250
0e88460d 251 for_each_online_node(nid) {
19770b32
MG
252 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
253 gfp_zone(GFP_NOFS), NULL,
254 &zone);
255 if (zone)
54a6eb5c 256 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
327c0e96 257 GFP_NOFS, NULL);
1da177e4
LT
258 }
259}
260
261/*
262 * I/O completion handler for block_read_full_page() - pages
263 * which come unlocked at the end of I/O.
264 */
265static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
266{
1da177e4 267 unsigned long flags;
a3972203 268 struct buffer_head *first;
1da177e4
LT
269 struct buffer_head *tmp;
270 struct page *page;
271 int page_uptodate = 1;
272
273 BUG_ON(!buffer_async_read(bh));
274
275 page = bh->b_page;
276 if (uptodate) {
277 set_buffer_uptodate(bh);
278 } else {
279 clear_buffer_uptodate(bh);
08bafc03 280 if (!quiet_error(bh))
1da177e4
LT
281 buffer_io_error(bh);
282 SetPageError(page);
283 }
284
285 /*
286 * Be _very_ careful from here on. Bad things can happen if
287 * two buffer heads end IO at almost the same time and both
288 * decide that the page is now completely done.
289 */
a3972203
NP
290 first = page_buffers(page);
291 local_irq_save(flags);
292 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
293 clear_buffer_async_read(bh);
294 unlock_buffer(bh);
295 tmp = bh;
296 do {
297 if (!buffer_uptodate(tmp))
298 page_uptodate = 0;
299 if (buffer_async_read(tmp)) {
300 BUG_ON(!buffer_locked(tmp));
301 goto still_busy;
302 }
303 tmp = tmp->b_this_page;
304 } while (tmp != bh);
a3972203
NP
305 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
306 local_irq_restore(flags);
1da177e4
LT
307
308 /*
309 * If none of the buffers had errors and they are all
310 * uptodate then we can set the page uptodate.
311 */
312 if (page_uptodate && !PageError(page))
313 SetPageUptodate(page);
314 unlock_page(page);
315 return;
316
317still_busy:
a3972203
NP
318 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
319 local_irq_restore(flags);
1da177e4
LT
320 return;
321}
322
323/*
324 * Completion handler for block_write_full_page() - pages which are unlocked
325 * during I/O, and which have PageWriteback cleared upon I/O completion.
326 */
35c80d5f 327void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4
LT
328{
329 char b[BDEVNAME_SIZE];
1da177e4 330 unsigned long flags;
a3972203 331 struct buffer_head *first;
1da177e4
LT
332 struct buffer_head *tmp;
333 struct page *page;
334
335 BUG_ON(!buffer_async_write(bh));
336
337 page = bh->b_page;
338 if (uptodate) {
339 set_buffer_uptodate(bh);
340 } else {
08bafc03 341 if (!quiet_error(bh)) {
1da177e4
LT
342 buffer_io_error(bh);
343 printk(KERN_WARNING "lost page write due to "
344 "I/O error on %s\n",
345 bdevname(bh->b_bdev, b));
346 }
347 set_bit(AS_EIO, &page->mapping->flags);
58ff407b 348 set_buffer_write_io_error(bh);
1da177e4
LT
349 clear_buffer_uptodate(bh);
350 SetPageError(page);
351 }
352
a3972203
NP
353 first = page_buffers(page);
354 local_irq_save(flags);
355 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
356
1da177e4
LT
357 clear_buffer_async_write(bh);
358 unlock_buffer(bh);
359 tmp = bh->b_this_page;
360 while (tmp != bh) {
361 if (buffer_async_write(tmp)) {
362 BUG_ON(!buffer_locked(tmp));
363 goto still_busy;
364 }
365 tmp = tmp->b_this_page;
366 }
a3972203
NP
367 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
368 local_irq_restore(flags);
1da177e4
LT
369 end_page_writeback(page);
370 return;
371
372still_busy:
a3972203
NP
373 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
374 local_irq_restore(flags);
1da177e4
LT
375 return;
376}
1fe72eaa 377EXPORT_SYMBOL(end_buffer_async_write);
1da177e4
LT
378
379/*
380 * If a page's buffers are under async readin (end_buffer_async_read
381 * completion) then there is a possibility that another thread of
382 * control could lock one of the buffers after it has completed
383 * but while some of the other buffers have not completed. This
384 * locked buffer would confuse end_buffer_async_read() into not unlocking
385 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
386 * that this buffer is not under async I/O.
387 *
388 * The page comes unlocked when it has no locked buffer_async buffers
389 * left.
390 *
391 * PageLocked prevents anyone starting new async I/O reads any of
392 * the buffers.
393 *
394 * PageWriteback is used to prevent simultaneous writeout of the same
395 * page.
396 *
397 * PageLocked prevents anyone from starting writeback of a page which is
398 * under read I/O (PageWriteback is only ever set against a locked page).
399 */
400static void mark_buffer_async_read(struct buffer_head *bh)
401{
402 bh->b_end_io = end_buffer_async_read;
403 set_buffer_async_read(bh);
404}
405
1fe72eaa
HS
406static void mark_buffer_async_write_endio(struct buffer_head *bh,
407 bh_end_io_t *handler)
1da177e4 408{
35c80d5f 409 bh->b_end_io = handler;
1da177e4
LT
410 set_buffer_async_write(bh);
411}
35c80d5f
CM
412
413void mark_buffer_async_write(struct buffer_head *bh)
414{
415 mark_buffer_async_write_endio(bh, end_buffer_async_write);
416}
1da177e4
LT
417EXPORT_SYMBOL(mark_buffer_async_write);
418
419
420/*
421 * fs/buffer.c contains helper functions for buffer-backed address space's
422 * fsync functions. A common requirement for buffer-based filesystems is
423 * that certain data from the backing blockdev needs to be written out for
424 * a successful fsync(). For example, ext2 indirect blocks need to be
425 * written back and waited upon before fsync() returns.
426 *
427 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
428 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
429 * management of a list of dependent buffers at ->i_mapping->private_list.
430 *
431 * Locking is a little subtle: try_to_free_buffers() will remove buffers
432 * from their controlling inode's queue when they are being freed. But
433 * try_to_free_buffers() will be operating against the *blockdev* mapping
434 * at the time, not against the S_ISREG file which depends on those buffers.
435 * So the locking for private_list is via the private_lock in the address_space
436 * which backs the buffers. Which is different from the address_space
437 * against which the buffers are listed. So for a particular address_space,
438 * mapping->private_lock does *not* protect mapping->private_list! In fact,
439 * mapping->private_list will always be protected by the backing blockdev's
440 * ->private_lock.
441 *
442 * Which introduces a requirement: all buffers on an address_space's
443 * ->private_list must be from the same address_space: the blockdev's.
444 *
445 * address_spaces which do not place buffers at ->private_list via these
446 * utility functions are free to use private_lock and private_list for
447 * whatever they want. The only requirement is that list_empty(private_list)
448 * be true at clear_inode() time.
449 *
450 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
451 * filesystems should do that. invalidate_inode_buffers() should just go
452 * BUG_ON(!list_empty).
453 *
454 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
455 * take an address_space, not an inode. And it should be called
456 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
457 * queued up.
458 *
459 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
460 * list if it is already on a list. Because if the buffer is on a list,
461 * it *must* already be on the right one. If not, the filesystem is being
462 * silly. This will save a ton of locking. But first we have to ensure
463 * that buffers are taken *off* the old inode's list when they are freed
464 * (presumably in truncate). That requires careful auditing of all
465 * filesystems (do it inside bforget()). It could also be done by bringing
466 * b_inode back.
467 */
468
469/*
470 * The buffer's backing address_space's private_lock must be held
471 */
dbacefc9 472static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
473{
474 list_del_init(&bh->b_assoc_buffers);
58ff407b
JK
475 WARN_ON(!bh->b_assoc_map);
476 if (buffer_write_io_error(bh))
477 set_bit(AS_EIO, &bh->b_assoc_map->flags);
478 bh->b_assoc_map = NULL;
1da177e4
LT
479}
480
481int inode_has_buffers(struct inode *inode)
482{
483 return !list_empty(&inode->i_data.private_list);
484}
485
486/*
487 * osync is designed to support O_SYNC io. It waits synchronously for
488 * all already-submitted IO to complete, but does not queue any new
489 * writes to the disk.
490 *
491 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
492 * you dirty the buffers, and then use osync_inode_buffers to wait for
493 * completion. Any other dirty buffers which are not yet queued for
494 * write will not be flushed to disk by the osync.
495 */
496static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
497{
498 struct buffer_head *bh;
499 struct list_head *p;
500 int err = 0;
501
502 spin_lock(lock);
503repeat:
504 list_for_each_prev(p, list) {
505 bh = BH_ENTRY(p);
506 if (buffer_locked(bh)) {
507 get_bh(bh);
508 spin_unlock(lock);
509 wait_on_buffer(bh);
510 if (!buffer_uptodate(bh))
511 err = -EIO;
512 brelse(bh);
513 spin_lock(lock);
514 goto repeat;
515 }
516 }
517 spin_unlock(lock);
518 return err;
519}
520
01a05b33 521static void do_thaw_one(struct super_block *sb, void *unused)
c2d75438 522{
c2d75438 523 char b[BDEVNAME_SIZE];
01a05b33
AV
524 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
525 printk(KERN_WARNING "Emergency Thaw on %s\n",
526 bdevname(sb->s_bdev, b));
527}
c2d75438 528
01a05b33
AV
529static void do_thaw_all(struct work_struct *work)
530{
531 iterate_supers(do_thaw_one, NULL);
053c525f 532 kfree(work);
c2d75438
ES
533 printk(KERN_WARNING "Emergency Thaw complete\n");
534}
535
536/**
537 * emergency_thaw_all -- forcibly thaw every frozen filesystem
538 *
539 * Used for emergency unfreeze of all filesystems via SysRq
540 */
541void emergency_thaw_all(void)
542{
053c525f
JA
543 struct work_struct *work;
544
545 work = kmalloc(sizeof(*work), GFP_ATOMIC);
546 if (work) {
547 INIT_WORK(work, do_thaw_all);
548 schedule_work(work);
549 }
c2d75438
ES
550}
551
1da177e4 552/**
78a4a50a 553 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 554 * @mapping: the mapping which wants those buffers written
1da177e4
LT
555 *
556 * Starts I/O against the buffers at mapping->private_list, and waits upon
557 * that I/O.
558 *
67be2dd1
MW
559 * Basically, this is a convenience function for fsync().
560 * @mapping is a file or directory which needs those buffers to be written for
561 * a successful fsync().
1da177e4
LT
562 */
563int sync_mapping_buffers(struct address_space *mapping)
564{
252aa6f5 565 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
566
567 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
568 return 0;
569
570 return fsync_buffers_list(&buffer_mapping->private_lock,
571 &mapping->private_list);
572}
573EXPORT_SYMBOL(sync_mapping_buffers);
574
575/*
576 * Called when we've recently written block `bblock', and it is known that
577 * `bblock' was for a buffer_boundary() buffer. This means that the block at
578 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
579 * dirty, schedule it for IO. So that indirects merge nicely with their data.
580 */
581void write_boundary_block(struct block_device *bdev,
582 sector_t bblock, unsigned blocksize)
583{
584 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
585 if (bh) {
586 if (buffer_dirty(bh))
587 ll_rw_block(WRITE, 1, &bh);
588 put_bh(bh);
589 }
590}
591
592void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
593{
594 struct address_space *mapping = inode->i_mapping;
595 struct address_space *buffer_mapping = bh->b_page->mapping;
596
597 mark_buffer_dirty(bh);
252aa6f5
RA
598 if (!mapping->private_data) {
599 mapping->private_data = buffer_mapping;
1da177e4 600 } else {
252aa6f5 601 BUG_ON(mapping->private_data != buffer_mapping);
1da177e4 602 }
535ee2fb 603 if (!bh->b_assoc_map) {
1da177e4
LT
604 spin_lock(&buffer_mapping->private_lock);
605 list_move_tail(&bh->b_assoc_buffers,
606 &mapping->private_list);
58ff407b 607 bh->b_assoc_map = mapping;
1da177e4
LT
608 spin_unlock(&buffer_mapping->private_lock);
609 }
610}
611EXPORT_SYMBOL(mark_buffer_dirty_inode);
612
787d2214
NP
613/*
614 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
615 * dirty.
616 *
617 * If warn is true, then emit a warning if the page is not uptodate and has
618 * not been truncated.
619 */
a8e7d49a 620static void __set_page_dirty(struct page *page,
787d2214
NP
621 struct address_space *mapping, int warn)
622{
7e405afc
KM
623 unsigned long flags;
624
625 spin_lock_irqsave(&mapping->tree_lock, flags);
787d2214
NP
626 if (page->mapping) { /* Race with truncate? */
627 WARN_ON_ONCE(warn && !PageUptodate(page));
e3a7cca1 628 account_page_dirtied(page, mapping);
787d2214
NP
629 radix_tree_tag_set(&mapping->page_tree,
630 page_index(page), PAGECACHE_TAG_DIRTY);
631 }
7e405afc 632 spin_unlock_irqrestore(&mapping->tree_lock, flags);
787d2214 633 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
787d2214
NP
634}
635
1da177e4
LT
636/*
637 * Add a page to the dirty page list.
638 *
639 * It is a sad fact of life that this function is called from several places
640 * deeply under spinlocking. It may not sleep.
641 *
642 * If the page has buffers, the uptodate buffers are set dirty, to preserve
643 * dirty-state coherency between the page and the buffers. It the page does
644 * not have buffers then when they are later attached they will all be set
645 * dirty.
646 *
647 * The buffers are dirtied before the page is dirtied. There's a small race
648 * window in which a writepage caller may see the page cleanness but not the
649 * buffer dirtiness. That's fine. If this code were to set the page dirty
650 * before the buffers, a concurrent writepage caller could clear the page dirty
651 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
652 * page on the dirty page list.
653 *
654 * We use private_lock to lock against try_to_free_buffers while using the
655 * page's buffer list. Also use this to protect against clean buffers being
656 * added to the page after it was set dirty.
657 *
658 * FIXME: may need to call ->reservepage here as well. That's rather up to the
659 * address_space though.
660 */
661int __set_page_dirty_buffers(struct page *page)
662{
a8e7d49a 663 int newly_dirty;
787d2214 664 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
665
666 if (unlikely(!mapping))
667 return !TestSetPageDirty(page);
1da177e4
LT
668
669 spin_lock(&mapping->private_lock);
670 if (page_has_buffers(page)) {
671 struct buffer_head *head = page_buffers(page);
672 struct buffer_head *bh = head;
673
674 do {
675 set_buffer_dirty(bh);
676 bh = bh->b_this_page;
677 } while (bh != head);
678 }
a8e7d49a 679 newly_dirty = !TestSetPageDirty(page);
1da177e4
LT
680 spin_unlock(&mapping->private_lock);
681
a8e7d49a
LT
682 if (newly_dirty)
683 __set_page_dirty(page, mapping, 1);
684 return newly_dirty;
1da177e4
LT
685}
686EXPORT_SYMBOL(__set_page_dirty_buffers);
687
688/*
689 * Write out and wait upon a list of buffers.
690 *
691 * We have conflicting pressures: we want to make sure that all
692 * initially dirty buffers get waited on, but that any subsequently
693 * dirtied buffers don't. After all, we don't want fsync to last
694 * forever if somebody is actively writing to the file.
695 *
696 * Do this in two main stages: first we copy dirty buffers to a
697 * temporary inode list, queueing the writes as we go. Then we clean
698 * up, waiting for those writes to complete.
699 *
700 * During this second stage, any subsequent updates to the file may end
701 * up refiling the buffer on the original inode's dirty list again, so
702 * there is a chance we will end up with a buffer queued for write but
703 * not yet completed on that list. So, as a final cleanup we go through
704 * the osync code to catch these locked, dirty buffers without requeuing
705 * any newly dirty buffers for write.
706 */
707static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
708{
709 struct buffer_head *bh;
710 struct list_head tmp;
7eaceacc 711 struct address_space *mapping;
1da177e4 712 int err = 0, err2;
4ee2491e 713 struct blk_plug plug;
1da177e4
LT
714
715 INIT_LIST_HEAD(&tmp);
4ee2491e 716 blk_start_plug(&plug);
1da177e4
LT
717
718 spin_lock(lock);
719 while (!list_empty(list)) {
720 bh = BH_ENTRY(list->next);
535ee2fb 721 mapping = bh->b_assoc_map;
58ff407b 722 __remove_assoc_queue(bh);
535ee2fb
JK
723 /* Avoid race with mark_buffer_dirty_inode() which does
724 * a lockless check and we rely on seeing the dirty bit */
725 smp_mb();
1da177e4
LT
726 if (buffer_dirty(bh) || buffer_locked(bh)) {
727 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 728 bh->b_assoc_map = mapping;
1da177e4
LT
729 if (buffer_dirty(bh)) {
730 get_bh(bh);
731 spin_unlock(lock);
732 /*
733 * Ensure any pending I/O completes so that
9cb569d6
CH
734 * write_dirty_buffer() actually writes the
735 * current contents - it is a noop if I/O is
736 * still in flight on potentially older
737 * contents.
1da177e4 738 */
721a9602 739 write_dirty_buffer(bh, WRITE_SYNC);
9cf6b720
JA
740
741 /*
742 * Kick off IO for the previous mapping. Note
743 * that we will not run the very last mapping,
744 * wait_on_buffer() will do that for us
745 * through sync_buffer().
746 */
1da177e4
LT
747 brelse(bh);
748 spin_lock(lock);
749 }
750 }
751 }
752
4ee2491e
JA
753 spin_unlock(lock);
754 blk_finish_plug(&plug);
755 spin_lock(lock);
756
1da177e4
LT
757 while (!list_empty(&tmp)) {
758 bh = BH_ENTRY(tmp.prev);
1da177e4 759 get_bh(bh);
535ee2fb
JK
760 mapping = bh->b_assoc_map;
761 __remove_assoc_queue(bh);
762 /* Avoid race with mark_buffer_dirty_inode() which does
763 * a lockless check and we rely on seeing the dirty bit */
764 smp_mb();
765 if (buffer_dirty(bh)) {
766 list_add(&bh->b_assoc_buffers,
e3892296 767 &mapping->private_list);
535ee2fb
JK
768 bh->b_assoc_map = mapping;
769 }
1da177e4
LT
770 spin_unlock(lock);
771 wait_on_buffer(bh);
772 if (!buffer_uptodate(bh))
773 err = -EIO;
774 brelse(bh);
775 spin_lock(lock);
776 }
777
778 spin_unlock(lock);
779 err2 = osync_buffers_list(lock, list);
780 if (err)
781 return err;
782 else
783 return err2;
784}
785
786/*
787 * Invalidate any and all dirty buffers on a given inode. We are
788 * probably unmounting the fs, but that doesn't mean we have already
789 * done a sync(). Just drop the buffers from the inode list.
790 *
791 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
792 * assumes that all the buffers are against the blockdev. Not true
793 * for reiserfs.
794 */
795void invalidate_inode_buffers(struct inode *inode)
796{
797 if (inode_has_buffers(inode)) {
798 struct address_space *mapping = &inode->i_data;
799 struct list_head *list = &mapping->private_list;
252aa6f5 800 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
801
802 spin_lock(&buffer_mapping->private_lock);
803 while (!list_empty(list))
804 __remove_assoc_queue(BH_ENTRY(list->next));
805 spin_unlock(&buffer_mapping->private_lock);
806 }
807}
52b19ac9 808EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
809
810/*
811 * Remove any clean buffers from the inode's buffer list. This is called
812 * when we're trying to free the inode itself. Those buffers can pin it.
813 *
814 * Returns true if all buffers were removed.
815 */
816int remove_inode_buffers(struct inode *inode)
817{
818 int ret = 1;
819
820 if (inode_has_buffers(inode)) {
821 struct address_space *mapping = &inode->i_data;
822 struct list_head *list = &mapping->private_list;
252aa6f5 823 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
824
825 spin_lock(&buffer_mapping->private_lock);
826 while (!list_empty(list)) {
827 struct buffer_head *bh = BH_ENTRY(list->next);
828 if (buffer_dirty(bh)) {
829 ret = 0;
830 break;
831 }
832 __remove_assoc_queue(bh);
833 }
834 spin_unlock(&buffer_mapping->private_lock);
835 }
836 return ret;
837}
838
839/*
840 * Create the appropriate buffers when given a page for data area and
841 * the size of each buffer.. Use the bh->b_this_page linked list to
842 * follow the buffers created. Return NULL if unable to create more
843 * buffers.
844 *
845 * The retry flag is used to differentiate async IO (paging, swapping)
846 * which may not fail from ordinary buffer allocations.
847 */
848struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
849 int retry)
850{
851 struct buffer_head *bh, *head;
852 long offset;
853
854try_again:
855 head = NULL;
856 offset = PAGE_SIZE;
857 while ((offset -= size) >= 0) {
858 bh = alloc_buffer_head(GFP_NOFS);
859 if (!bh)
860 goto no_grow;
861
1da177e4
LT
862 bh->b_this_page = head;
863 bh->b_blocknr = -1;
864 head = bh;
865
1da177e4
LT
866 bh->b_size = size;
867
868 /* Link the buffer to its page */
869 set_bh_page(bh, page, offset);
1da177e4
LT
870 }
871 return head;
872/*
873 * In case anything failed, we just free everything we got.
874 */
875no_grow:
876 if (head) {
877 do {
878 bh = head;
879 head = head->b_this_page;
880 free_buffer_head(bh);
881 } while (head);
882 }
883
884 /*
885 * Return failure for non-async IO requests. Async IO requests
886 * are not allowed to fail, so we have to wait until buffer heads
887 * become available. But we don't want tasks sleeping with
888 * partially complete buffers, so all were released above.
889 */
890 if (!retry)
891 return NULL;
892
893 /* We're _really_ low on memory. Now we just
894 * wait for old buffer heads to become free due to
895 * finishing IO. Since this is an async request and
896 * the reserve list is empty, we're sure there are
897 * async buffer heads in use.
898 */
899 free_more_memory();
900 goto try_again;
901}
902EXPORT_SYMBOL_GPL(alloc_page_buffers);
903
904static inline void
905link_dev_buffers(struct page *page, struct buffer_head *head)
906{
907 struct buffer_head *bh, *tail;
908
909 bh = head;
910 do {
911 tail = bh;
912 bh = bh->b_this_page;
913 } while (bh);
914 tail->b_this_page = head;
915 attach_page_buffers(page, head);
916}
917
bbec0270
LT
918static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
919{
920 sector_t retval = ~((sector_t)0);
921 loff_t sz = i_size_read(bdev->bd_inode);
922
923 if (sz) {
924 unsigned int sizebits = blksize_bits(size);
925 retval = (sz >> sizebits);
926 }
927 return retval;
928}
929
1da177e4
LT
930/*
931 * Initialise the state of a blockdev page's buffers.
932 */
676ce6d5 933static sector_t
1da177e4
LT
934init_page_buffers(struct page *page, struct block_device *bdev,
935 sector_t block, int size)
936{
937 struct buffer_head *head = page_buffers(page);
938 struct buffer_head *bh = head;
939 int uptodate = PageUptodate(page);
bbec0270 940 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
1da177e4
LT
941
942 do {
943 if (!buffer_mapped(bh)) {
944 init_buffer(bh, NULL, NULL);
945 bh->b_bdev = bdev;
946 bh->b_blocknr = block;
947 if (uptodate)
948 set_buffer_uptodate(bh);
080399aa
JM
949 if (block < end_block)
950 set_buffer_mapped(bh);
1da177e4
LT
951 }
952 block++;
953 bh = bh->b_this_page;
954 } while (bh != head);
676ce6d5
HD
955
956 /*
957 * Caller needs to validate requested block against end of device.
958 */
959 return end_block;
1da177e4
LT
960}
961
962/*
963 * Create the page-cache page that contains the requested block.
964 *
676ce6d5 965 * This is used purely for blockdev mappings.
1da177e4 966 */
676ce6d5 967static int
1da177e4 968grow_dev_page(struct block_device *bdev, sector_t block,
676ce6d5 969 pgoff_t index, int size, int sizebits)
1da177e4
LT
970{
971 struct inode *inode = bdev->bd_inode;
972 struct page *page;
973 struct buffer_head *bh;
676ce6d5
HD
974 sector_t end_block;
975 int ret = 0; /* Will call free_more_memory() */
1da177e4 976
ea125892 977 page = find_or_create_page(inode->i_mapping, index,
769848c0 978 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1da177e4 979 if (!page)
676ce6d5 980 return ret;
1da177e4 981
e827f923 982 BUG_ON(!PageLocked(page));
1da177e4
LT
983
984 if (page_has_buffers(page)) {
985 bh = page_buffers(page);
986 if (bh->b_size == size) {
676ce6d5
HD
987 end_block = init_page_buffers(page, bdev,
988 index << sizebits, size);
989 goto done;
1da177e4
LT
990 }
991 if (!try_to_free_buffers(page))
992 goto failed;
993 }
994
995 /*
996 * Allocate some buffers for this page
997 */
998 bh = alloc_page_buffers(page, size, 0);
999 if (!bh)
1000 goto failed;
1001
1002 /*
1003 * Link the page to the buffers and initialise them. Take the
1004 * lock to be atomic wrt __find_get_block(), which does not
1005 * run under the page lock.
1006 */
1007 spin_lock(&inode->i_mapping->private_lock);
1008 link_dev_buffers(page, bh);
676ce6d5 1009 end_block = init_page_buffers(page, bdev, index << sizebits, size);
1da177e4 1010 spin_unlock(&inode->i_mapping->private_lock);
676ce6d5
HD
1011done:
1012 ret = (block < end_block) ? 1 : -ENXIO;
1da177e4 1013failed:
1da177e4
LT
1014 unlock_page(page);
1015 page_cache_release(page);
676ce6d5 1016 return ret;
1da177e4
LT
1017}
1018
1019/*
1020 * Create buffers for the specified block device block's page. If
1021 * that page was dirty, the buffers are set dirty also.
1da177e4 1022 */
858119e1 1023static int
1da177e4
LT
1024grow_buffers(struct block_device *bdev, sector_t block, int size)
1025{
1da177e4
LT
1026 pgoff_t index;
1027 int sizebits;
1028
1029 sizebits = -1;
1030 do {
1031 sizebits++;
1032 } while ((size << sizebits) < PAGE_SIZE);
1033
1034 index = block >> sizebits;
1da177e4 1035
e5657933
AM
1036 /*
1037 * Check for a block which wants to lie outside our maximum possible
1038 * pagecache index. (this comparison is done using sector_t types).
1039 */
1040 if (unlikely(index != block >> sizebits)) {
1041 char b[BDEVNAME_SIZE];
1042
1043 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1044 "device %s\n",
8e24eea7 1045 __func__, (unsigned long long)block,
e5657933
AM
1046 bdevname(bdev, b));
1047 return -EIO;
1048 }
676ce6d5 1049
1da177e4 1050 /* Create a page with the proper size buffers.. */
676ce6d5 1051 return grow_dev_page(bdev, block, index, size, sizebits);
1da177e4
LT
1052}
1053
75c96f85 1054static struct buffer_head *
1da177e4
LT
1055__getblk_slow(struct block_device *bdev, sector_t block, int size)
1056{
1057 /* Size must be multiple of hard sectorsize */
e1defc4f 1058 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1059 (size < 512 || size > PAGE_SIZE))) {
1060 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1061 size);
e1defc4f
MP
1062 printk(KERN_ERR "logical block size: %d\n",
1063 bdev_logical_block_size(bdev));
1da177e4
LT
1064
1065 dump_stack();
1066 return NULL;
1067 }
1068
676ce6d5
HD
1069 for (;;) {
1070 struct buffer_head *bh;
1071 int ret;
1da177e4
LT
1072
1073 bh = __find_get_block(bdev, block, size);
1074 if (bh)
1075 return bh;
676ce6d5
HD
1076
1077 ret = grow_buffers(bdev, block, size);
1078 if (ret < 0)
1079 return NULL;
1080 if (ret == 0)
1081 free_more_memory();
1da177e4
LT
1082 }
1083}
1084
1085/*
1086 * The relationship between dirty buffers and dirty pages:
1087 *
1088 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1089 * the page is tagged dirty in its radix tree.
1090 *
1091 * At all times, the dirtiness of the buffers represents the dirtiness of
1092 * subsections of the page. If the page has buffers, the page dirty bit is
1093 * merely a hint about the true dirty state.
1094 *
1095 * When a page is set dirty in its entirety, all its buffers are marked dirty
1096 * (if the page has buffers).
1097 *
1098 * When a buffer is marked dirty, its page is dirtied, but the page's other
1099 * buffers are not.
1100 *
1101 * Also. When blockdev buffers are explicitly read with bread(), they
1102 * individually become uptodate. But their backing page remains not
1103 * uptodate - even if all of its buffers are uptodate. A subsequent
1104 * block_read_full_page() against that page will discover all the uptodate
1105 * buffers, will set the page uptodate and will perform no I/O.
1106 */
1107
1108/**
1109 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1110 * @bh: the buffer_head to mark dirty
1da177e4
LT
1111 *
1112 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1113 * backing page dirty, then tag the page as dirty in its address_space's radix
1114 * tree and then attach the address_space's inode to its superblock's dirty
1115 * inode list.
1116 *
1117 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
250df6ed 1118 * mapping->tree_lock and mapping->host->i_lock.
1da177e4 1119 */
fc9b52cd 1120void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1121{
787d2214 1122 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1 1123
5305cb83
TH
1124 trace_block_dirty_buffer(bh);
1125
1be62dc1
LT
1126 /*
1127 * Very *carefully* optimize the it-is-already-dirty case.
1128 *
1129 * Don't let the final "is it dirty" escape to before we
1130 * perhaps modified the buffer.
1131 */
1132 if (buffer_dirty(bh)) {
1133 smp_mb();
1134 if (buffer_dirty(bh))
1135 return;
1136 }
1137
a8e7d49a
LT
1138 if (!test_set_buffer_dirty(bh)) {
1139 struct page *page = bh->b_page;
8e9d78ed
LT
1140 if (!TestSetPageDirty(page)) {
1141 struct address_space *mapping = page_mapping(page);
1142 if (mapping)
1143 __set_page_dirty(page, mapping, 0);
1144 }
a8e7d49a 1145 }
1da177e4 1146}
1fe72eaa 1147EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4
LT
1148
1149/*
1150 * Decrement a buffer_head's reference count. If all buffers against a page
1151 * have zero reference count, are clean and unlocked, and if the page is clean
1152 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1153 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1154 * a page but it ends up not being freed, and buffers may later be reattached).
1155 */
1156void __brelse(struct buffer_head * buf)
1157{
1158 if (atomic_read(&buf->b_count)) {
1159 put_bh(buf);
1160 return;
1161 }
5c752ad9 1162 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1163}
1fe72eaa 1164EXPORT_SYMBOL(__brelse);
1da177e4
LT
1165
1166/*
1167 * bforget() is like brelse(), except it discards any
1168 * potentially dirty data.
1169 */
1170void __bforget(struct buffer_head *bh)
1171{
1172 clear_buffer_dirty(bh);
535ee2fb 1173 if (bh->b_assoc_map) {
1da177e4
LT
1174 struct address_space *buffer_mapping = bh->b_page->mapping;
1175
1176 spin_lock(&buffer_mapping->private_lock);
1177 list_del_init(&bh->b_assoc_buffers);
58ff407b 1178 bh->b_assoc_map = NULL;
1da177e4
LT
1179 spin_unlock(&buffer_mapping->private_lock);
1180 }
1181 __brelse(bh);
1182}
1fe72eaa 1183EXPORT_SYMBOL(__bforget);
1da177e4
LT
1184
1185static struct buffer_head *__bread_slow(struct buffer_head *bh)
1186{
1187 lock_buffer(bh);
1188 if (buffer_uptodate(bh)) {
1189 unlock_buffer(bh);
6fa3eb70
S
1190#ifdef FEATURE_STORAGE_META_LOG
1191 if( bh && bh->b_bdev && bh->b_bdev->bd_disk)
1192 set_metadata_rw_status(bh->b_bdev->bd_disk->first_minor, HIT_READ_CNT);
1193#endif
1da177e4
LT
1194 return bh;
1195 } else {
1196 get_bh(bh);
1197 bh->b_end_io = end_buffer_read_sync;
6fa3eb70
S
1198#ifdef FEATURE_STORAGE_META_LOG
1199 if( bh && bh->b_bdev && bh->b_bdev->bd_disk)
1200 set_metadata_rw_status(bh->b_bdev->bd_disk->first_minor, WAIT_READ_CNT);
1201#endif
1da177e4
LT
1202 submit_bh(READ, bh);
1203 wait_on_buffer(bh);
1204 if (buffer_uptodate(bh))
1205 return bh;
1206 }
1207 brelse(bh);
1208 return NULL;
1209}
1210
1211/*
1212 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1213 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1214 * refcount elevated by one when they're in an LRU. A buffer can only appear
1215 * once in a particular CPU's LRU. A single buffer can be present in multiple
1216 * CPU's LRUs at the same time.
1217 *
1218 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1219 * sb_find_get_block().
1220 *
1221 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1222 * a local interrupt disable for that.
1223 */
1224
1225#define BH_LRU_SIZE 8
1226
1227struct bh_lru {
1228 struct buffer_head *bhs[BH_LRU_SIZE];
1229};
1230
1231static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1232
1233#ifdef CONFIG_SMP
1234#define bh_lru_lock() local_irq_disable()
1235#define bh_lru_unlock() local_irq_enable()
1236#else
1237#define bh_lru_lock() preempt_disable()
1238#define bh_lru_unlock() preempt_enable()
1239#endif
1240
1241static inline void check_irqs_on(void)
1242{
1243#ifdef irqs_disabled
1244 BUG_ON(irqs_disabled());
1245#endif
1246}
1247
1248/*
1249 * The LRU management algorithm is dopey-but-simple. Sorry.
1250 */
1251static void bh_lru_install(struct buffer_head *bh)
1252{
1253 struct buffer_head *evictee = NULL;
1da177e4
LT
1254
1255 check_irqs_on();
1256 bh_lru_lock();
c7b92516 1257 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1da177e4
LT
1258 struct buffer_head *bhs[BH_LRU_SIZE];
1259 int in;
1260 int out = 0;
1261
1262 get_bh(bh);
1263 bhs[out++] = bh;
1264 for (in = 0; in < BH_LRU_SIZE; in++) {
c7b92516
CL
1265 struct buffer_head *bh2 =
1266 __this_cpu_read(bh_lrus.bhs[in]);
1da177e4
LT
1267
1268 if (bh2 == bh) {
1269 __brelse(bh2);
1270 } else {
1271 if (out >= BH_LRU_SIZE) {
1272 BUG_ON(evictee != NULL);
1273 evictee = bh2;
1274 } else {
1275 bhs[out++] = bh2;
1276 }
1277 }
1278 }
1279 while (out < BH_LRU_SIZE)
1280 bhs[out++] = NULL;
c7b92516 1281 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1da177e4
LT
1282 }
1283 bh_lru_unlock();
1284
1285 if (evictee)
1286 __brelse(evictee);
1287}
1288
1289/*
1290 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1291 */
858119e1 1292static struct buffer_head *
3991d3bd 1293lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1294{
1295 struct buffer_head *ret = NULL;
3991d3bd 1296 unsigned int i;
1da177e4
LT
1297
1298 check_irqs_on();
1299 bh_lru_lock();
1da177e4 1300 for (i = 0; i < BH_LRU_SIZE; i++) {
c7b92516 1301 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1da177e4
LT
1302
1303 if (bh && bh->b_bdev == bdev &&
1304 bh->b_blocknr == block && bh->b_size == size) {
1305 if (i) {
1306 while (i) {
c7b92516
CL
1307 __this_cpu_write(bh_lrus.bhs[i],
1308 __this_cpu_read(bh_lrus.bhs[i - 1]));
1da177e4
LT
1309 i--;
1310 }
c7b92516 1311 __this_cpu_write(bh_lrus.bhs[0], bh);
1da177e4
LT
1312 }
1313 get_bh(bh);
1314 ret = bh;
1315 break;
1316 }
1317 }
1318 bh_lru_unlock();
1319 return ret;
1320}
1321
1322/*
1323 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1324 * it in the LRU and mark it as accessed. If it is not present then return
1325 * NULL
1326 */
1327struct buffer_head *
3991d3bd 1328__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1329{
1330 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1331
1332 if (bh == NULL) {
385fd4c5 1333 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1334 if (bh)
1335 bh_lru_install(bh);
1336 }
1337 if (bh)
1338 touch_buffer(bh);
1339 return bh;
1340}
1341EXPORT_SYMBOL(__find_get_block);
1342
1343/*
1344 * __getblk will locate (and, if necessary, create) the buffer_head
1345 * which corresponds to the passed block_device, block and size. The
1346 * returned buffer has its reference count incremented.
1347 *
1da177e4
LT
1348 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1349 * attempt is failing. FIXME, perhaps?
1350 */
1351struct buffer_head *
3991d3bd 1352__getblk(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1353{
1354 struct buffer_head *bh = __find_get_block(bdev, block, size);
1355
1356 might_sleep();
1357 if (bh == NULL)
1358 bh = __getblk_slow(bdev, block, size);
1359 return bh;
1360}
1361EXPORT_SYMBOL(__getblk);
1362
1363/*
1364 * Do async read-ahead on a buffer..
1365 */
3991d3bd 1366void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1367{
1368 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5
AM
1369 if (likely(bh)) {
1370 ll_rw_block(READA, 1, &bh);
1371 brelse(bh);
1372 }
1da177e4
LT
1373}
1374EXPORT_SYMBOL(__breadahead);
1375
1376/**
1377 * __bread() - reads a specified block and returns the bh
67be2dd1 1378 * @bdev: the block_device to read from
1da177e4
LT
1379 * @block: number of block
1380 * @size: size (in bytes) to read
1381 *
1382 * Reads a specified block, and returns buffer head that contains it.
1383 * It returns NULL if the block was unreadable.
1384 */
1385struct buffer_head *
3991d3bd 1386__bread(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1387{
1388 struct buffer_head *bh = __getblk(bdev, block, size);
1389
a3e713b5 1390 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1391 bh = __bread_slow(bh);
1392 return bh;
1393}
1394EXPORT_SYMBOL(__bread);
1395
1396/*
1397 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1398 * This doesn't race because it runs in each cpu either in irq
1399 * or with preempt disabled.
1400 */
1401static void invalidate_bh_lru(void *arg)
1402{
1403 struct bh_lru *b = &get_cpu_var(bh_lrus);
1404 int i;
1405
1406 for (i = 0; i < BH_LRU_SIZE; i++) {
1407 brelse(b->bhs[i]);
1408 b->bhs[i] = NULL;
1409 }
1410 put_cpu_var(bh_lrus);
1411}
42be35d0
GBY
1412
1413static bool has_bh_in_lru(int cpu, void *dummy)
1414{
1415 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1416 int i;
1da177e4 1417
42be35d0
GBY
1418 for (i = 0; i < BH_LRU_SIZE; i++) {
1419 if (b->bhs[i])
1420 return 1;
1421 }
1422
1423 return 0;
1424}
1425
f9a14399 1426void invalidate_bh_lrus(void)
1da177e4 1427{
42be35d0 1428 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1da177e4 1429}
9db5579b 1430EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4
LT
1431
1432void set_bh_page(struct buffer_head *bh,
1433 struct page *page, unsigned long offset)
1434{
1435 bh->b_page = page;
e827f923 1436 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1437 if (PageHighMem(page))
1438 /*
1439 * This catches illegal uses and preserves the offset:
1440 */
1441 bh->b_data = (char *)(0 + offset);
1442 else
1443 bh->b_data = page_address(page) + offset;
1444}
1445EXPORT_SYMBOL(set_bh_page);
1446
1447/*
1448 * Called when truncating a buffer on a page completely.
1449 */
858119e1 1450static void discard_buffer(struct buffer_head * bh)
1da177e4
LT
1451{
1452 lock_buffer(bh);
1453 clear_buffer_dirty(bh);
1454 bh->b_bdev = NULL;
1455 clear_buffer_mapped(bh);
1456 clear_buffer_req(bh);
1457 clear_buffer_new(bh);
1458 clear_buffer_delay(bh);
33a266dd 1459 clear_buffer_unwritten(bh);
1da177e4
LT
1460 unlock_buffer(bh);
1461}
1462
1da177e4 1463/**
814e1d25 1464 * block_invalidatepage - invalidate part or all of a buffer-backed page
1da177e4
LT
1465 *
1466 * @page: the page which is affected
1467 * @offset: the index of the truncation point
1468 *
1469 * block_invalidatepage() is called when all or part of the page has become
814e1d25 1470 * invalidated by a truncate operation.
1da177e4
LT
1471 *
1472 * block_invalidatepage() does not have to release all buffers, but it must
1473 * ensure that no dirty buffer is left outside @offset and that no I/O
1474 * is underway against any of the blocks which are outside the truncation
1475 * point. Because the caller is about to free (and possibly reuse) those
1476 * blocks on-disk.
1477 */
2ff28e22 1478void block_invalidatepage(struct page *page, unsigned long offset)
1da177e4
LT
1479{
1480 struct buffer_head *head, *bh, *next;
1481 unsigned int curr_off = 0;
1da177e4
LT
1482
1483 BUG_ON(!PageLocked(page));
1484 if (!page_has_buffers(page))
1485 goto out;
1486
1487 head = page_buffers(page);
1488 bh = head;
1489 do {
1490 unsigned int next_off = curr_off + bh->b_size;
1491 next = bh->b_this_page;
1492
1493 /*
1494 * is this block fully invalidated?
1495 */
1496 if (offset <= curr_off)
1497 discard_buffer(bh);
1498 curr_off = next_off;
1499 bh = next;
1500 } while (bh != head);
1501
1502 /*
1503 * We release buffers only if the entire page is being invalidated.
1504 * The get_block cached value has been unconditionally invalidated,
1505 * so real IO is not possible anymore.
1506 */
1507 if (offset == 0)
2ff28e22 1508 try_to_release_page(page, 0);
1da177e4 1509out:
2ff28e22 1510 return;
1da177e4
LT
1511}
1512EXPORT_SYMBOL(block_invalidatepage);
1513
1514/*
1515 * We attach and possibly dirty the buffers atomically wrt
1516 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1517 * is already excluded via the page lock.
1518 */
1519void create_empty_buffers(struct page *page,
1520 unsigned long blocksize, unsigned long b_state)
1521{
1522 struct buffer_head *bh, *head, *tail;
1523
1524 head = alloc_page_buffers(page, blocksize, 1);
1525 bh = head;
1526 do {
1527 bh->b_state |= b_state;
1528 tail = bh;
1529 bh = bh->b_this_page;
1530 } while (bh);
1531 tail->b_this_page = head;
1532
1533 spin_lock(&page->mapping->private_lock);
1534 if (PageUptodate(page) || PageDirty(page)) {
1535 bh = head;
1536 do {
1537 if (PageDirty(page))
1538 set_buffer_dirty(bh);
1539 if (PageUptodate(page))
1540 set_buffer_uptodate(bh);
1541 bh = bh->b_this_page;
1542 } while (bh != head);
1543 }
1544 attach_page_buffers(page, head);
1545 spin_unlock(&page->mapping->private_lock);
1546}
1547EXPORT_SYMBOL(create_empty_buffers);
1548
1549/*
1550 * We are taking a block for data and we don't want any output from any
1551 * buffer-cache aliases starting from return from that function and
1552 * until the moment when something will explicitly mark the buffer
1553 * dirty (hopefully that will not happen until we will free that block ;-)
1554 * We don't even need to mark it not-uptodate - nobody can expect
1555 * anything from a newly allocated buffer anyway. We used to used
1556 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1557 * don't want to mark the alias unmapped, for example - it would confuse
1558 * anyone who might pick it with bread() afterwards...
1559 *
1560 * Also.. Note that bforget() doesn't lock the buffer. So there can
1561 * be writeout I/O going on against recently-freed buffers. We don't
1562 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1563 * only if we really need to. That happens here.
1564 */
1565void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1566{
1567 struct buffer_head *old_bh;
1568
1569 might_sleep();
1570
385fd4c5 1571 old_bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1572 if (old_bh) {
1573 clear_buffer_dirty(old_bh);
1574 wait_on_buffer(old_bh);
1575 clear_buffer_req(old_bh);
1576 __brelse(old_bh);
1577 }
1578}
1579EXPORT_SYMBOL(unmap_underlying_metadata);
1580
45bce8f3
LT
1581/*
1582 * Size is a power-of-two in the range 512..PAGE_SIZE,
1583 * and the case we care about most is PAGE_SIZE.
1584 *
1585 * So this *could* possibly be written with those
1586 * constraints in mind (relevant mostly if some
1587 * architecture has a slow bit-scan instruction)
1588 */
1589static inline int block_size_bits(unsigned int blocksize)
1590{
1591 return ilog2(blocksize);
1592}
1593
1594static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1595{
1596 BUG_ON(!PageLocked(page));
1597
1598 if (!page_has_buffers(page))
1599 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1600 return page_buffers(page);
1601}
1602
1da177e4
LT
1603/*
1604 * NOTE! All mapped/uptodate combinations are valid:
1605 *
1606 * Mapped Uptodate Meaning
1607 *
1608 * No No "unknown" - must do get_block()
1609 * No Yes "hole" - zero-filled
1610 * Yes No "allocated" - allocated on disk, not read in
1611 * Yes Yes "valid" - allocated and up-to-date in memory.
1612 *
1613 * "Dirty" is valid only with the last case (mapped+uptodate).
1614 */
1615
1616/*
1617 * While block_write_full_page is writing back the dirty buffers under
1618 * the page lock, whoever dirtied the buffers may decide to clean them
1619 * again at any time. We handle that by only looking at the buffer
1620 * state inside lock_buffer().
1621 *
1622 * If block_write_full_page() is called for regular writeback
1623 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1624 * locked buffer. This only can happen if someone has written the buffer
1625 * directly, with submit_bh(). At the address_space level PageWriteback
1626 * prevents this contention from occurring.
6e34eedd
TT
1627 *
1628 * If block_write_full_page() is called with wbc->sync_mode ==
721a9602
JA
1629 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1630 * causes the writes to be flagged as synchronous writes.
1da177e4
LT
1631 */
1632static int __block_write_full_page(struct inode *inode, struct page *page,
35c80d5f
CM
1633 get_block_t *get_block, struct writeback_control *wbc,
1634 bh_end_io_t *handler)
1da177e4
LT
1635{
1636 int err;
1637 sector_t block;
1638 sector_t last_block;
f0fbd5fc 1639 struct buffer_head *bh, *head;
45bce8f3 1640 unsigned int blocksize, bbits;
1da177e4 1641 int nr_underway = 0;
6e34eedd 1642 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
721a9602 1643 WRITE_SYNC : WRITE);
1da177e4 1644
45bce8f3 1645 head = create_page_buffers(page, inode,
1da177e4 1646 (1 << BH_Dirty)|(1 << BH_Uptodate));
1da177e4
LT
1647
1648 /*
1649 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1650 * here, and the (potentially unmapped) buffers may become dirty at
1651 * any time. If a buffer becomes dirty here after we've inspected it
1652 * then we just miss that fact, and the page stays dirty.
1653 *
1654 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1655 * handle that here by just cleaning them.
1656 */
1657
1da177e4 1658 bh = head;
45bce8f3
LT
1659 blocksize = bh->b_size;
1660 bbits = block_size_bits(blocksize);
1661
1662 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1663 last_block = (i_size_read(inode) - 1) >> bbits;
1da177e4
LT
1664
1665 /*
1666 * Get all the dirty buffers mapped to disk addresses and
1667 * handle any aliases from the underlying blockdev's mapping.
1668 */
1669 do {
1670 if (block > last_block) {
1671 /*
1672 * mapped buffers outside i_size will occur, because
1673 * this page can be outside i_size when there is a
1674 * truncate in progress.
1675 */
1676 /*
1677 * The buffer was zeroed by block_write_full_page()
1678 */
1679 clear_buffer_dirty(bh);
1680 set_buffer_uptodate(bh);
29a814d2
AT
1681 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1682 buffer_dirty(bh)) {
b0cf2321 1683 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1684 err = get_block(inode, block, bh, 1);
1685 if (err)
1686 goto recover;
29a814d2 1687 clear_buffer_delay(bh);
1da177e4
LT
1688 if (buffer_new(bh)) {
1689 /* blockdev mappings never come here */
1690 clear_buffer_new(bh);
1691 unmap_underlying_metadata(bh->b_bdev,
1692 bh->b_blocknr);
1693 }
1694 }
1695 bh = bh->b_this_page;
1696 block++;
1697 } while (bh != head);
1698
1699 do {
1da177e4
LT
1700 if (!buffer_mapped(bh))
1701 continue;
1702 /*
1703 * If it's a fully non-blocking write attempt and we cannot
1704 * lock the buffer then redirty the page. Note that this can
5b0830cb
JA
1705 * potentially cause a busy-wait loop from writeback threads
1706 * and kswapd activity, but those code paths have their own
1707 * higher-level throttling.
1da177e4 1708 */
1b430bee 1709 if (wbc->sync_mode != WB_SYNC_NONE) {
1da177e4 1710 lock_buffer(bh);
ca5de404 1711 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1712 redirty_page_for_writepage(wbc, page);
1713 continue;
1714 }
1715 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1716 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1717 } else {
1718 unlock_buffer(bh);
1719 }
1720 } while ((bh = bh->b_this_page) != head);
1721
1722 /*
1723 * The page and its buffers are protected by PageWriteback(), so we can
1724 * drop the bh refcounts early.
1725 */
1726 BUG_ON(PageWriteback(page));
1727 set_page_writeback(page);
1da177e4
LT
1728
1729 do {
1730 struct buffer_head *next = bh->b_this_page;
1731 if (buffer_async_write(bh)) {
a64c8610 1732 submit_bh(write_op, bh);
1da177e4
LT
1733 nr_underway++;
1734 }
1da177e4
LT
1735 bh = next;
1736 } while (bh != head);
05937baa 1737 unlock_page(page);
1da177e4
LT
1738
1739 err = 0;
1740done:
1741 if (nr_underway == 0) {
1742 /*
1743 * The page was marked dirty, but the buffers were
1744 * clean. Someone wrote them back by hand with
1745 * ll_rw_block/submit_bh. A rare case.
1746 */
1da177e4 1747 end_page_writeback(page);
3d67f2d7 1748
1da177e4
LT
1749 /*
1750 * The page and buffer_heads can be released at any time from
1751 * here on.
1752 */
1da177e4
LT
1753 }
1754 return err;
1755
1756recover:
1757 /*
1758 * ENOSPC, or some other error. We may already have added some
1759 * blocks to the file, so we need to write these out to avoid
1760 * exposing stale data.
1761 * The page is currently locked and not marked for writeback
1762 */
1763 bh = head;
1764 /* Recovery: lock and submit the mapped buffers */
1765 do {
29a814d2
AT
1766 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1767 !buffer_delay(bh)) {
1da177e4 1768 lock_buffer(bh);
35c80d5f 1769 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1770 } else {
1771 /*
1772 * The buffer may have been set dirty during
1773 * attachment to a dirty page.
1774 */
1775 clear_buffer_dirty(bh);
1776 }
1777 } while ((bh = bh->b_this_page) != head);
1778 SetPageError(page);
1779 BUG_ON(PageWriteback(page));
7e4c3690 1780 mapping_set_error(page->mapping, err);
1da177e4 1781 set_page_writeback(page);
1da177e4
LT
1782 do {
1783 struct buffer_head *next = bh->b_this_page;
1784 if (buffer_async_write(bh)) {
1785 clear_buffer_dirty(bh);
a64c8610 1786 submit_bh(write_op, bh);
1da177e4
LT
1787 nr_underway++;
1788 }
1da177e4
LT
1789 bh = next;
1790 } while (bh != head);
ffda9d30 1791 unlock_page(page);
1da177e4
LT
1792 goto done;
1793}
1794
afddba49
NP
1795/*
1796 * If a page has any new buffers, zero them out here, and mark them uptodate
1797 * and dirty so they'll be written out (in order to prevent uninitialised
1798 * block data from leaking). And clear the new bit.
1799 */
1800void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1801{
1802 unsigned int block_start, block_end;
1803 struct buffer_head *head, *bh;
1804
1805 BUG_ON(!PageLocked(page));
1806 if (!page_has_buffers(page))
1807 return;
1808
1809 bh = head = page_buffers(page);
1810 block_start = 0;
1811 do {
1812 block_end = block_start + bh->b_size;
1813
1814 if (buffer_new(bh)) {
1815 if (block_end > from && block_start < to) {
1816 if (!PageUptodate(page)) {
1817 unsigned start, size;
1818
1819 start = max(from, block_start);
1820 size = min(to, block_end) - start;
1821
eebd2aa3 1822 zero_user(page, start, size);
afddba49
NP
1823 set_buffer_uptodate(bh);
1824 }
1825
1826 clear_buffer_new(bh);
1827 mark_buffer_dirty(bh);
1828 }
1829 }
1830
1831 block_start = block_end;
1832 bh = bh->b_this_page;
1833 } while (bh != head);
1834}
1835EXPORT_SYMBOL(page_zero_new_buffers);
1836
ebdec241 1837int __block_write_begin(struct page *page, loff_t pos, unsigned len,
6e1db88d 1838 get_block_t *get_block)
1da177e4 1839{
ebdec241
CH
1840 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1841 unsigned to = from + len;
6e1db88d 1842 struct inode *inode = page->mapping->host;
1da177e4
LT
1843 unsigned block_start, block_end;
1844 sector_t block;
1845 int err = 0;
1846 unsigned blocksize, bbits;
1847 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1848
1849 BUG_ON(!PageLocked(page));
1850 BUG_ON(from > PAGE_CACHE_SIZE);
1851 BUG_ON(to > PAGE_CACHE_SIZE);
1852 BUG_ON(from > to);
1853
45bce8f3
LT
1854 head = create_page_buffers(page, inode, 0);
1855 blocksize = head->b_size;
1856 bbits = block_size_bits(blocksize);
1da177e4 1857
1da177e4
LT
1858 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1859
1860 for(bh = head, block_start = 0; bh != head || !block_start;
1861 block++, block_start=block_end, bh = bh->b_this_page) {
1862 block_end = block_start + blocksize;
1863 if (block_end <= from || block_start >= to) {
1864 if (PageUptodate(page)) {
1865 if (!buffer_uptodate(bh))
1866 set_buffer_uptodate(bh);
1867 }
1868 continue;
1869 }
1870 if (buffer_new(bh))
1871 clear_buffer_new(bh);
1872 if (!buffer_mapped(bh)) {
b0cf2321 1873 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1874 err = get_block(inode, block, bh, 1);
1875 if (err)
f3ddbdc6 1876 break;
1da177e4 1877 if (buffer_new(bh)) {
1da177e4
LT
1878 unmap_underlying_metadata(bh->b_bdev,
1879 bh->b_blocknr);
1880 if (PageUptodate(page)) {
637aff46 1881 clear_buffer_new(bh);
1da177e4 1882 set_buffer_uptodate(bh);
637aff46 1883 mark_buffer_dirty(bh);
1da177e4
LT
1884 continue;
1885 }
eebd2aa3
CL
1886 if (block_end > to || block_start < from)
1887 zero_user_segments(page,
1888 to, block_end,
1889 block_start, from);
1da177e4
LT
1890 continue;
1891 }
1892 }
1893 if (PageUptodate(page)) {
1894 if (!buffer_uptodate(bh))
1895 set_buffer_uptodate(bh);
1896 continue;
1897 }
1898 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 1899 !buffer_unwritten(bh) &&
1da177e4
LT
1900 (block_start < from || block_end > to)) {
1901 ll_rw_block(READ, 1, &bh);
1902 *wait_bh++=bh;
1903 }
1904 }
1905 /*
1906 * If we issued read requests - let them complete.
1907 */
1908 while(wait_bh > wait) {
1909 wait_on_buffer(*--wait_bh);
1910 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 1911 err = -EIO;
1da177e4 1912 }
f9f07b6c 1913 if (unlikely(err))
afddba49 1914 page_zero_new_buffers(page, from, to);
1da177e4
LT
1915 return err;
1916}
ebdec241 1917EXPORT_SYMBOL(__block_write_begin);
1da177e4
LT
1918
1919static int __block_commit_write(struct inode *inode, struct page *page,
1920 unsigned from, unsigned to)
1921{
1922 unsigned block_start, block_end;
1923 int partial = 0;
1924 unsigned blocksize;
1925 struct buffer_head *bh, *head;
1926
45bce8f3
LT
1927 bh = head = page_buffers(page);
1928 blocksize = bh->b_size;
1da177e4 1929
45bce8f3
LT
1930 block_start = 0;
1931 do {
1da177e4
LT
1932 block_end = block_start + blocksize;
1933 if (block_end <= from || block_start >= to) {
1934 if (!buffer_uptodate(bh))
1935 partial = 1;
1936 } else {
1937 set_buffer_uptodate(bh);
1938 mark_buffer_dirty(bh);
1939 }
afddba49 1940 clear_buffer_new(bh);
45bce8f3
LT
1941
1942 block_start = block_end;
1943 bh = bh->b_this_page;
1944 } while (bh != head);
1da177e4
LT
1945
1946 /*
1947 * If this is a partial write which happened to make all buffers
1948 * uptodate then we can optimize away a bogus readpage() for
1949 * the next read(). Here we 'discover' whether the page went
1950 * uptodate as a result of this (potentially partial) write.
1951 */
1952 if (!partial)
1953 SetPageUptodate(page);
1954 return 0;
1955}
1956
afddba49 1957/*
155130a4
CH
1958 * block_write_begin takes care of the basic task of block allocation and
1959 * bringing partial write blocks uptodate first.
1960 *
7bb46a67 1961 * The filesystem needs to handle block truncation upon failure.
afddba49 1962 */
155130a4
CH
1963int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1964 unsigned flags, struct page **pagep, get_block_t *get_block)
afddba49 1965{
6e1db88d 1966 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
afddba49 1967 struct page *page;
6e1db88d 1968 int status;
afddba49 1969
6e1db88d
CH
1970 page = grab_cache_page_write_begin(mapping, index, flags);
1971 if (!page)
1972 return -ENOMEM;
afddba49 1973
6e1db88d 1974 status = __block_write_begin(page, pos, len, get_block);
afddba49 1975 if (unlikely(status)) {
6e1db88d
CH
1976 unlock_page(page);
1977 page_cache_release(page);
1978 page = NULL;
afddba49
NP
1979 }
1980
6e1db88d 1981 *pagep = page;
afddba49
NP
1982 return status;
1983}
1984EXPORT_SYMBOL(block_write_begin);
1985
1986int block_write_end(struct file *file, struct address_space *mapping,
1987 loff_t pos, unsigned len, unsigned copied,
1988 struct page *page, void *fsdata)
1989{
1990 struct inode *inode = mapping->host;
1991 unsigned start;
1992
1993 start = pos & (PAGE_CACHE_SIZE - 1);
1994
1995 if (unlikely(copied < len)) {
1996 /*
1997 * The buffers that were written will now be uptodate, so we
1998 * don't have to worry about a readpage reading them and
1999 * overwriting a partial write. However if we have encountered
2000 * a short write and only partially written into a buffer, it
2001 * will not be marked uptodate, so a readpage might come in and
2002 * destroy our partial write.
2003 *
2004 * Do the simplest thing, and just treat any short write to a
2005 * non uptodate page as a zero-length write, and force the
2006 * caller to redo the whole thing.
2007 */
2008 if (!PageUptodate(page))
2009 copied = 0;
2010
2011 page_zero_new_buffers(page, start+copied, start+len);
2012 }
2013 flush_dcache_page(page);
2014
2015 /* This could be a short (even 0-length) commit */
2016 __block_commit_write(inode, page, start, start+copied);
2017
2018 return copied;
2019}
2020EXPORT_SYMBOL(block_write_end);
2021
2022int generic_write_end(struct file *file, struct address_space *mapping,
2023 loff_t pos, unsigned len, unsigned copied,
2024 struct page *page, void *fsdata)
2025{
2026 struct inode *inode = mapping->host;
c7d206b3 2027 int i_size_changed = 0;
afddba49
NP
2028
2029 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2030
2031 /*
2032 * No need to use i_size_read() here, the i_size
2033 * cannot change under us because we hold i_mutex.
2034 *
2035 * But it's important to update i_size while still holding page lock:
2036 * page writeout could otherwise come in and zero beyond i_size.
2037 */
2038 if (pos+copied > inode->i_size) {
2039 i_size_write(inode, pos+copied);
c7d206b3 2040 i_size_changed = 1;
afddba49
NP
2041 }
2042
2043 unlock_page(page);
2044 page_cache_release(page);
2045
c7d206b3
JK
2046 /*
2047 * Don't mark the inode dirty under page lock. First, it unnecessarily
2048 * makes the holding time of page lock longer. Second, it forces lock
2049 * ordering of page lock and transaction start for journaling
2050 * filesystems.
2051 */
2052 if (i_size_changed)
2053 mark_inode_dirty(inode);
2054
afddba49
NP
2055 return copied;
2056}
2057EXPORT_SYMBOL(generic_write_end);
2058
8ab22b9a
HH
2059/*
2060 * block_is_partially_uptodate checks whether buffers within a page are
2061 * uptodate or not.
2062 *
2063 * Returns true if all buffers which correspond to a file portion
2064 * we want to read are uptodate.
2065 */
2066int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2067 unsigned long from)
2068{
8ab22b9a
HH
2069 unsigned block_start, block_end, blocksize;
2070 unsigned to;
2071 struct buffer_head *bh, *head;
2072 int ret = 1;
2073
2074 if (!page_has_buffers(page))
2075 return 0;
2076
45bce8f3
LT
2077 head = page_buffers(page);
2078 blocksize = head->b_size;
8ab22b9a
HH
2079 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2080 to = from + to;
2081 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2082 return 0;
2083
8ab22b9a
HH
2084 bh = head;
2085 block_start = 0;
2086 do {
2087 block_end = block_start + blocksize;
2088 if (block_end > from && block_start < to) {
2089 if (!buffer_uptodate(bh)) {
2090 ret = 0;
2091 break;
2092 }
2093 if (block_end >= to)
2094 break;
2095 }
2096 block_start = block_end;
2097 bh = bh->b_this_page;
2098 } while (bh != head);
2099
2100 return ret;
2101}
2102EXPORT_SYMBOL(block_is_partially_uptodate);
2103
1da177e4
LT
2104/*
2105 * Generic "read page" function for block devices that have the normal
2106 * get_block functionality. This is most of the block device filesystems.
2107 * Reads the page asynchronously --- the unlock_buffer() and
2108 * set/clear_buffer_uptodate() functions propagate buffer state into the
2109 * page struct once IO has completed.
2110 */
2111int block_read_full_page(struct page *page, get_block_t *get_block)
2112{
2113 struct inode *inode = page->mapping->host;
2114 sector_t iblock, lblock;
2115 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
45bce8f3 2116 unsigned int blocksize, bbits;
1da177e4
LT
2117 int nr, i;
2118 int fully_mapped = 1;
2119
45bce8f3
LT
2120 head = create_page_buffers(page, inode, 0);
2121 blocksize = head->b_size;
2122 bbits = block_size_bits(blocksize);
1da177e4 2123
45bce8f3
LT
2124 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2125 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
1da177e4
LT
2126 bh = head;
2127 nr = 0;
2128 i = 0;
2129
2130 do {
2131 if (buffer_uptodate(bh))
2132 continue;
2133
2134 if (!buffer_mapped(bh)) {
c64610ba
AM
2135 int err = 0;
2136
1da177e4
LT
2137 fully_mapped = 0;
2138 if (iblock < lblock) {
b0cf2321 2139 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2140 err = get_block(inode, iblock, bh, 0);
2141 if (err)
1da177e4
LT
2142 SetPageError(page);
2143 }
2144 if (!buffer_mapped(bh)) {
eebd2aa3 2145 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2146 if (!err)
2147 set_buffer_uptodate(bh);
1da177e4
LT
2148 continue;
2149 }
2150 /*
2151 * get_block() might have updated the buffer
2152 * synchronously
2153 */
2154 if (buffer_uptodate(bh))
2155 continue;
2156 }
2157 arr[nr++] = bh;
2158 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2159
2160 if (fully_mapped)
2161 SetPageMappedToDisk(page);
2162
2163 if (!nr) {
2164 /*
2165 * All buffers are uptodate - we can set the page uptodate
2166 * as well. But not if get_block() returned an error.
2167 */
2168 if (!PageError(page))
2169 SetPageUptodate(page);
2170 unlock_page(page);
2171 return 0;
2172 }
2173
2174 /* Stage two: lock the buffers */
2175 for (i = 0; i < nr; i++) {
2176 bh = arr[i];
2177 lock_buffer(bh);
2178 mark_buffer_async_read(bh);
2179 }
2180
2181 /*
2182 * Stage 3: start the IO. Check for uptodateness
2183 * inside the buffer lock in case another process reading
2184 * the underlying blockdev brought it uptodate (the sct fix).
2185 */
2186 for (i = 0; i < nr; i++) {
2187 bh = arr[i];
2188 if (buffer_uptodate(bh))
2189 end_buffer_async_read(bh, 1);
2190 else
2191 submit_bh(READ, bh);
2192 }
2193 return 0;
2194}
1fe72eaa 2195EXPORT_SYMBOL(block_read_full_page);
1da177e4
LT
2196
2197/* utility function for filesystems that need to do work on expanding
89e10787 2198 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2199 * deal with the hole.
2200 */
89e10787 2201int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2202{
2203 struct address_space *mapping = inode->i_mapping;
2204 struct page *page;
89e10787 2205 void *fsdata;
1da177e4
LT
2206 int err;
2207
c08d3b0e 2208 err = inode_newsize_ok(inode, size);
2209 if (err)
1da177e4
LT
2210 goto out;
2211
89e10787
NP
2212 err = pagecache_write_begin(NULL, mapping, size, 0,
2213 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2214 &page, &fsdata);
2215 if (err)
05eb0b51 2216 goto out;
05eb0b51 2217
89e10787
NP
2218 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2219 BUG_ON(err > 0);
05eb0b51 2220
1da177e4
LT
2221out:
2222 return err;
2223}
1fe72eaa 2224EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2225
f1e3af72
AB
2226static int cont_expand_zero(struct file *file, struct address_space *mapping,
2227 loff_t pos, loff_t *bytes)
1da177e4 2228{
1da177e4 2229 struct inode *inode = mapping->host;
1da177e4 2230 unsigned blocksize = 1 << inode->i_blkbits;
89e10787
NP
2231 struct page *page;
2232 void *fsdata;
2233 pgoff_t index, curidx;
2234 loff_t curpos;
2235 unsigned zerofrom, offset, len;
2236 int err = 0;
1da177e4 2237
89e10787
NP
2238 index = pos >> PAGE_CACHE_SHIFT;
2239 offset = pos & ~PAGE_CACHE_MASK;
2240
2241 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2242 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4
LT
2243 if (zerofrom & (blocksize-1)) {
2244 *bytes |= (blocksize-1);
2245 (*bytes)++;
2246 }
89e10787 2247 len = PAGE_CACHE_SIZE - zerofrom;
1da177e4 2248
89e10787
NP
2249 err = pagecache_write_begin(file, mapping, curpos, len,
2250 AOP_FLAG_UNINTERRUPTIBLE,
2251 &page, &fsdata);
2252 if (err)
2253 goto out;
eebd2aa3 2254 zero_user(page, zerofrom, len);
89e10787
NP
2255 err = pagecache_write_end(file, mapping, curpos, len, len,
2256 page, fsdata);
2257 if (err < 0)
2258 goto out;
2259 BUG_ON(err != len);
2260 err = 0;
061e9746
OH
2261
2262 balance_dirty_pages_ratelimited(mapping);
89e10787 2263 }
1da177e4 2264
89e10787
NP
2265 /* page covers the boundary, find the boundary offset */
2266 if (index == curidx) {
2267 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4 2268 /* if we will expand the thing last block will be filled */
89e10787
NP
2269 if (offset <= zerofrom) {
2270 goto out;
2271 }
2272 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2273 *bytes |= (blocksize-1);
2274 (*bytes)++;
2275 }
89e10787 2276 len = offset - zerofrom;
1da177e4 2277
89e10787
NP
2278 err = pagecache_write_begin(file, mapping, curpos, len,
2279 AOP_FLAG_UNINTERRUPTIBLE,
2280 &page, &fsdata);
2281 if (err)
2282 goto out;
eebd2aa3 2283 zero_user(page, zerofrom, len);
89e10787
NP
2284 err = pagecache_write_end(file, mapping, curpos, len, len,
2285 page, fsdata);
2286 if (err < 0)
2287 goto out;
2288 BUG_ON(err != len);
2289 err = 0;
1da177e4 2290 }
89e10787
NP
2291out:
2292 return err;
2293}
2294
2295/*
2296 * For moronic filesystems that do not allow holes in file.
2297 * We may have to extend the file.
2298 */
282dc178 2299int cont_write_begin(struct file *file, struct address_space *mapping,
89e10787
NP
2300 loff_t pos, unsigned len, unsigned flags,
2301 struct page **pagep, void **fsdata,
2302 get_block_t *get_block, loff_t *bytes)
2303{
2304 struct inode *inode = mapping->host;
2305 unsigned blocksize = 1 << inode->i_blkbits;
2306 unsigned zerofrom;
2307 int err;
2308
2309 err = cont_expand_zero(file, mapping, pos, bytes);
2310 if (err)
155130a4 2311 return err;
89e10787
NP
2312
2313 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2314 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2315 *bytes |= (blocksize-1);
2316 (*bytes)++;
1da177e4 2317 }
1da177e4 2318
155130a4 2319 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
1da177e4 2320}
1fe72eaa 2321EXPORT_SYMBOL(cont_write_begin);
1da177e4 2322
1da177e4
LT
2323int block_commit_write(struct page *page, unsigned from, unsigned to)
2324{
2325 struct inode *inode = page->mapping->host;
2326 __block_commit_write(inode,page,from,to);
2327 return 0;
2328}
1fe72eaa 2329EXPORT_SYMBOL(block_commit_write);
1da177e4 2330
54171690
DC
2331/*
2332 * block_page_mkwrite() is not allowed to change the file size as it gets
2333 * called from a page fault handler when a page is first dirtied. Hence we must
2334 * be careful to check for EOF conditions here. We set the page up correctly
2335 * for a written page which means we get ENOSPC checking when writing into
2336 * holes and correct delalloc and unwritten extent mapping on filesystems that
2337 * support these features.
2338 *
2339 * We are not allowed to take the i_mutex here so we have to play games to
2340 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2341 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2342 * page lock we can determine safely if the page is beyond EOF. If it is not
2343 * beyond EOF, then the page is guaranteed safe against truncation until we
2344 * unlock the page.
ea13a864 2345 *
14da9200
JK
2346 * Direct callers of this function should protect against filesystem freezing
2347 * using sb_start_write() - sb_end_write() functions.
54171690 2348 */
24da4fab
JK
2349int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2350 get_block_t get_block)
54171690 2351{
c2ec175c 2352 struct page *page = vmf->page;
496ad9aa 2353 struct inode *inode = file_inode(vma->vm_file);
54171690
DC
2354 unsigned long end;
2355 loff_t size;
24da4fab 2356 int ret;
54171690
DC
2357
2358 lock_page(page);
2359 size = i_size_read(inode);
2360 if ((page->mapping != inode->i_mapping) ||
18336338 2361 (page_offset(page) > size)) {
24da4fab
JK
2362 /* We overload EFAULT to mean page got truncated */
2363 ret = -EFAULT;
2364 goto out_unlock;
54171690
DC
2365 }
2366
2367 /* page is wholly or partially inside EOF */
2368 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2369 end = size & ~PAGE_CACHE_MASK;
2370 else
2371 end = PAGE_CACHE_SIZE;
2372
ebdec241 2373 ret = __block_write_begin(page, 0, end, get_block);
54171690
DC
2374 if (!ret)
2375 ret = block_commit_write(page, 0, end);
2376
24da4fab
JK
2377 if (unlikely(ret < 0))
2378 goto out_unlock;
ea13a864 2379 set_page_dirty(page);
1d1d1a76 2380 wait_for_stable_page(page);
24da4fab
JK
2381 return 0;
2382out_unlock:
2383 unlock_page(page);
54171690 2384 return ret;
24da4fab
JK
2385}
2386EXPORT_SYMBOL(__block_page_mkwrite);
2387
2388int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2389 get_block_t get_block)
2390{
ea13a864 2391 int ret;
496ad9aa 2392 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
24da4fab 2393
14da9200 2394 sb_start_pagefault(sb);
041bbb6d
TT
2395
2396 /*
2397 * Update file times before taking page lock. We may end up failing the
2398 * fault so this update may be superfluous but who really cares...
2399 */
2400 file_update_time(vma->vm_file);
2401
ea13a864 2402 ret = __block_page_mkwrite(vma, vmf, get_block);
14da9200 2403 sb_end_pagefault(sb);
24da4fab 2404 return block_page_mkwrite_return(ret);
54171690 2405}
1fe72eaa 2406EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
2407
2408/*
03158cd7 2409 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2410 * immediately, while under the page lock. So it needs a special end_io
2411 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2412 */
2413static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2414{
68671f35 2415 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2416}
2417
03158cd7
NP
2418/*
2419 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2420 * the page (converting it to circular linked list and taking care of page
2421 * dirty races).
2422 */
2423static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2424{
2425 struct buffer_head *bh;
2426
2427 BUG_ON(!PageLocked(page));
2428
2429 spin_lock(&page->mapping->private_lock);
2430 bh = head;
2431 do {
2432 if (PageDirty(page))
2433 set_buffer_dirty(bh);
2434 if (!bh->b_this_page)
2435 bh->b_this_page = head;
2436 bh = bh->b_this_page;
2437 } while (bh != head);
2438 attach_page_buffers(page, head);
2439 spin_unlock(&page->mapping->private_lock);
2440}
2441
1da177e4 2442/*
ea0f04e5
CH
2443 * On entry, the page is fully not uptodate.
2444 * On exit the page is fully uptodate in the areas outside (from,to)
7bb46a67 2445 * The filesystem needs to handle block truncation upon failure.
1da177e4 2446 */
ea0f04e5 2447int nobh_write_begin(struct address_space *mapping,
03158cd7
NP
2448 loff_t pos, unsigned len, unsigned flags,
2449 struct page **pagep, void **fsdata,
1da177e4
LT
2450 get_block_t *get_block)
2451{
03158cd7 2452 struct inode *inode = mapping->host;
1da177e4
LT
2453 const unsigned blkbits = inode->i_blkbits;
2454 const unsigned blocksize = 1 << blkbits;
a4b0672d 2455 struct buffer_head *head, *bh;
03158cd7
NP
2456 struct page *page;
2457 pgoff_t index;
2458 unsigned from, to;
1da177e4 2459 unsigned block_in_page;
a4b0672d 2460 unsigned block_start, block_end;
1da177e4 2461 sector_t block_in_file;
1da177e4 2462 int nr_reads = 0;
1da177e4
LT
2463 int ret = 0;
2464 int is_mapped_to_disk = 1;
1da177e4 2465
03158cd7
NP
2466 index = pos >> PAGE_CACHE_SHIFT;
2467 from = pos & (PAGE_CACHE_SIZE - 1);
2468 to = from + len;
2469
54566b2c 2470 page = grab_cache_page_write_begin(mapping, index, flags);
03158cd7
NP
2471 if (!page)
2472 return -ENOMEM;
2473 *pagep = page;
2474 *fsdata = NULL;
2475
2476 if (page_has_buffers(page)) {
309f77ad
NK
2477 ret = __block_write_begin(page, pos, len, get_block);
2478 if (unlikely(ret))
2479 goto out_release;
2480 return ret;
03158cd7 2481 }
a4b0672d 2482
1da177e4
LT
2483 if (PageMappedToDisk(page))
2484 return 0;
2485
a4b0672d
NP
2486 /*
2487 * Allocate buffers so that we can keep track of state, and potentially
2488 * attach them to the page if an error occurs. In the common case of
2489 * no error, they will just be freed again without ever being attached
2490 * to the page (which is all OK, because we're under the page lock).
2491 *
2492 * Be careful: the buffer linked list is a NULL terminated one, rather
2493 * than the circular one we're used to.
2494 */
2495 head = alloc_page_buffers(page, blocksize, 0);
03158cd7
NP
2496 if (!head) {
2497 ret = -ENOMEM;
2498 goto out_release;
2499 }
a4b0672d 2500
1da177e4 2501 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
1da177e4
LT
2502
2503 /*
2504 * We loop across all blocks in the page, whether or not they are
2505 * part of the affected region. This is so we can discover if the
2506 * page is fully mapped-to-disk.
2507 */
a4b0672d 2508 for (block_start = 0, block_in_page = 0, bh = head;
1da177e4 2509 block_start < PAGE_CACHE_SIZE;
a4b0672d 2510 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2511 int create;
2512
a4b0672d
NP
2513 block_end = block_start + blocksize;
2514 bh->b_state = 0;
1da177e4
LT
2515 create = 1;
2516 if (block_start >= to)
2517 create = 0;
2518 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2519 bh, create);
1da177e4
LT
2520 if (ret)
2521 goto failed;
a4b0672d 2522 if (!buffer_mapped(bh))
1da177e4 2523 is_mapped_to_disk = 0;
a4b0672d
NP
2524 if (buffer_new(bh))
2525 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2526 if (PageUptodate(page)) {
2527 set_buffer_uptodate(bh);
1da177e4 2528 continue;
a4b0672d
NP
2529 }
2530 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2531 zero_user_segments(page, block_start, from,
2532 to, block_end);
1da177e4
LT
2533 continue;
2534 }
a4b0672d 2535 if (buffer_uptodate(bh))
1da177e4
LT
2536 continue; /* reiserfs does this */
2537 if (block_start < from || block_end > to) {
a4b0672d
NP
2538 lock_buffer(bh);
2539 bh->b_end_io = end_buffer_read_nobh;
2540 submit_bh(READ, bh);
2541 nr_reads++;
1da177e4
LT
2542 }
2543 }
2544
2545 if (nr_reads) {
1da177e4
LT
2546 /*
2547 * The page is locked, so these buffers are protected from
2548 * any VM or truncate activity. Hence we don't need to care
2549 * for the buffer_head refcounts.
2550 */
a4b0672d 2551 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2552 wait_on_buffer(bh);
2553 if (!buffer_uptodate(bh))
2554 ret = -EIO;
1da177e4
LT
2555 }
2556 if (ret)
2557 goto failed;
2558 }
2559
2560 if (is_mapped_to_disk)
2561 SetPageMappedToDisk(page);
1da177e4 2562
03158cd7 2563 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2564
1da177e4
LT
2565 return 0;
2566
2567failed:
03158cd7 2568 BUG_ON(!ret);
1da177e4 2569 /*
a4b0672d
NP
2570 * Error recovery is a bit difficult. We need to zero out blocks that
2571 * were newly allocated, and dirty them to ensure they get written out.
2572 * Buffers need to be attached to the page at this point, otherwise
2573 * the handling of potential IO errors during writeout would be hard
2574 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2575 */
03158cd7
NP
2576 attach_nobh_buffers(page, head);
2577 page_zero_new_buffers(page, from, to);
a4b0672d 2578
03158cd7
NP
2579out_release:
2580 unlock_page(page);
2581 page_cache_release(page);
2582 *pagep = NULL;
a4b0672d 2583
7bb46a67 2584 return ret;
2585}
03158cd7 2586EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2587
03158cd7
NP
2588int nobh_write_end(struct file *file, struct address_space *mapping,
2589 loff_t pos, unsigned len, unsigned copied,
2590 struct page *page, void *fsdata)
1da177e4
LT
2591{
2592 struct inode *inode = page->mapping->host;
efdc3131 2593 struct buffer_head *head = fsdata;
03158cd7 2594 struct buffer_head *bh;
5b41e74a 2595 BUG_ON(fsdata != NULL && page_has_buffers(page));
1da177e4 2596
d4cf109f 2597 if (unlikely(copied < len) && head)
5b41e74a
DM
2598 attach_nobh_buffers(page, head);
2599 if (page_has_buffers(page))
2600 return generic_write_end(file, mapping, pos, len,
2601 copied, page, fsdata);
a4b0672d 2602
22c8ca78 2603 SetPageUptodate(page);
1da177e4 2604 set_page_dirty(page);
03158cd7
NP
2605 if (pos+copied > inode->i_size) {
2606 i_size_write(inode, pos+copied);
1da177e4
LT
2607 mark_inode_dirty(inode);
2608 }
03158cd7
NP
2609
2610 unlock_page(page);
2611 page_cache_release(page);
2612
03158cd7
NP
2613 while (head) {
2614 bh = head;
2615 head = head->b_this_page;
2616 free_buffer_head(bh);
2617 }
2618
2619 return copied;
1da177e4 2620}
03158cd7 2621EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2622
2623/*
2624 * nobh_writepage() - based on block_full_write_page() except
2625 * that it tries to operate without attaching bufferheads to
2626 * the page.
2627 */
2628int nobh_writepage(struct page *page, get_block_t *get_block,
2629 struct writeback_control *wbc)
2630{
2631 struct inode * const inode = page->mapping->host;
2632 loff_t i_size = i_size_read(inode);
2633 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2634 unsigned offset;
1da177e4
LT
2635 int ret;
2636
2637 /* Is the page fully inside i_size? */
2638 if (page->index < end_index)
2639 goto out;
2640
2641 /* Is the page fully outside i_size? (truncate in progress) */
2642 offset = i_size & (PAGE_CACHE_SIZE-1);
2643 if (page->index >= end_index+1 || !offset) {
2644 /*
2645 * The page may have dirty, unmapped buffers. For example,
2646 * they may have been added in ext3_writepage(). Make them
2647 * freeable here, so the page does not leak.
2648 */
2649#if 0
2650 /* Not really sure about this - do we need this ? */
2651 if (page->mapping->a_ops->invalidatepage)
2652 page->mapping->a_ops->invalidatepage(page, offset);
2653#endif
2654 unlock_page(page);
2655 return 0; /* don't care */
2656 }
2657
2658 /*
2659 * The page straddles i_size. It must be zeroed out on each and every
2660 * writepage invocation because it may be mmapped. "A file is mapped
2661 * in multiples of the page size. For a file that is not a multiple of
2662 * the page size, the remaining memory is zeroed when mapped, and
2663 * writes to that region are not written out to the file."
2664 */
eebd2aa3 2665 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1da177e4
LT
2666out:
2667 ret = mpage_writepage(page, get_block, wbc);
2668 if (ret == -EAGAIN)
35c80d5f
CM
2669 ret = __block_write_full_page(inode, page, get_block, wbc,
2670 end_buffer_async_write);
1da177e4
LT
2671 return ret;
2672}
2673EXPORT_SYMBOL(nobh_writepage);
2674
03158cd7
NP
2675int nobh_truncate_page(struct address_space *mapping,
2676 loff_t from, get_block_t *get_block)
1da177e4 2677{
1da177e4
LT
2678 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2679 unsigned offset = from & (PAGE_CACHE_SIZE-1);
03158cd7
NP
2680 unsigned blocksize;
2681 sector_t iblock;
2682 unsigned length, pos;
2683 struct inode *inode = mapping->host;
1da177e4 2684 struct page *page;
03158cd7
NP
2685 struct buffer_head map_bh;
2686 int err;
1da177e4 2687
03158cd7
NP
2688 blocksize = 1 << inode->i_blkbits;
2689 length = offset & (blocksize - 1);
2690
2691 /* Block boundary? Nothing to do */
2692 if (!length)
2693 return 0;
2694
2695 length = blocksize - length;
2696 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4 2697
1da177e4 2698 page = grab_cache_page(mapping, index);
03158cd7 2699 err = -ENOMEM;
1da177e4
LT
2700 if (!page)
2701 goto out;
2702
03158cd7
NP
2703 if (page_has_buffers(page)) {
2704has_buffers:
2705 unlock_page(page);
2706 page_cache_release(page);
2707 return block_truncate_page(mapping, from, get_block);
2708 }
2709
2710 /* Find the buffer that contains "offset" */
2711 pos = blocksize;
2712 while (offset >= pos) {
2713 iblock++;
2714 pos += blocksize;
2715 }
2716
460bcf57
TT
2717 map_bh.b_size = blocksize;
2718 map_bh.b_state = 0;
03158cd7
NP
2719 err = get_block(inode, iblock, &map_bh, 0);
2720 if (err)
2721 goto unlock;
2722 /* unmapped? It's a hole - nothing to do */
2723 if (!buffer_mapped(&map_bh))
2724 goto unlock;
2725
2726 /* Ok, it's mapped. Make sure it's up-to-date */
2727 if (!PageUptodate(page)) {
2728 err = mapping->a_ops->readpage(NULL, page);
2729 if (err) {
2730 page_cache_release(page);
2731 goto out;
2732 }
2733 lock_page(page);
2734 if (!PageUptodate(page)) {
2735 err = -EIO;
2736 goto unlock;
2737 }
2738 if (page_has_buffers(page))
2739 goto has_buffers;
1da177e4 2740 }
eebd2aa3 2741 zero_user(page, offset, length);
03158cd7
NP
2742 set_page_dirty(page);
2743 err = 0;
2744
2745unlock:
1da177e4
LT
2746 unlock_page(page);
2747 page_cache_release(page);
2748out:
03158cd7 2749 return err;
1da177e4
LT
2750}
2751EXPORT_SYMBOL(nobh_truncate_page);
2752
2753int block_truncate_page(struct address_space *mapping,
2754 loff_t from, get_block_t *get_block)
2755{
2756 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2757 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2758 unsigned blocksize;
54b21a79 2759 sector_t iblock;
1da177e4
LT
2760 unsigned length, pos;
2761 struct inode *inode = mapping->host;
2762 struct page *page;
2763 struct buffer_head *bh;
1da177e4
LT
2764 int err;
2765
2766 blocksize = 1 << inode->i_blkbits;
2767 length = offset & (blocksize - 1);
2768
2769 /* Block boundary? Nothing to do */
2770 if (!length)
2771 return 0;
2772
2773 length = blocksize - length;
54b21a79 2774 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
2775
2776 page = grab_cache_page(mapping, index);
2777 err = -ENOMEM;
2778 if (!page)
2779 goto out;
2780
2781 if (!page_has_buffers(page))
2782 create_empty_buffers(page, blocksize, 0);
2783
2784 /* Find the buffer that contains "offset" */
2785 bh = page_buffers(page);
2786 pos = blocksize;
2787 while (offset >= pos) {
2788 bh = bh->b_this_page;
2789 iblock++;
2790 pos += blocksize;
2791 }
2792
2793 err = 0;
2794 if (!buffer_mapped(bh)) {
b0cf2321 2795 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2796 err = get_block(inode, iblock, bh, 0);
2797 if (err)
2798 goto unlock;
2799 /* unmapped? It's a hole - nothing to do */
2800 if (!buffer_mapped(bh))
2801 goto unlock;
2802 }
2803
2804 /* Ok, it's mapped. Make sure it's up-to-date */
2805 if (PageUptodate(page))
2806 set_buffer_uptodate(bh);
2807
33a266dd 2808 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4
LT
2809 err = -EIO;
2810 ll_rw_block(READ, 1, &bh);
2811 wait_on_buffer(bh);
2812 /* Uhhuh. Read error. Complain and punt. */
2813 if (!buffer_uptodate(bh))
2814 goto unlock;
2815 }
2816
eebd2aa3 2817 zero_user(page, offset, length);
1da177e4
LT
2818 mark_buffer_dirty(bh);
2819 err = 0;
2820
2821unlock:
2822 unlock_page(page);
2823 page_cache_release(page);
2824out:
2825 return err;
2826}
1fe72eaa 2827EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2828
2829/*
2830 * The generic ->writepage function for buffer-backed address_spaces
35c80d5f 2831 * this form passes in the end_io handler used to finish the IO.
1da177e4 2832 */
35c80d5f
CM
2833int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2834 struct writeback_control *wbc, bh_end_io_t *handler)
1da177e4
LT
2835{
2836 struct inode * const inode = page->mapping->host;
2837 loff_t i_size = i_size_read(inode);
2838 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2839 unsigned offset;
1da177e4
LT
2840
2841 /* Is the page fully inside i_size? */
2842 if (page->index < end_index)
35c80d5f
CM
2843 return __block_write_full_page(inode, page, get_block, wbc,
2844 handler);
1da177e4
LT
2845
2846 /* Is the page fully outside i_size? (truncate in progress) */
2847 offset = i_size & (PAGE_CACHE_SIZE-1);
2848 if (page->index >= end_index+1 || !offset) {
2849 /*
2850 * The page may have dirty, unmapped buffers. For example,
2851 * they may have been added in ext3_writepage(). Make them
2852 * freeable here, so the page does not leak.
2853 */
aaa4059b 2854 do_invalidatepage(page, 0);
1da177e4
LT
2855 unlock_page(page);
2856 return 0; /* don't care */
2857 }
2858
2859 /*
2860 * The page straddles i_size. It must be zeroed out on each and every
2a61aa40 2861 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4
LT
2862 * in multiples of the page size. For a file that is not a multiple of
2863 * the page size, the remaining memory is zeroed when mapped, and
2864 * writes to that region are not written out to the file."
2865 */
eebd2aa3 2866 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
35c80d5f 2867 return __block_write_full_page(inode, page, get_block, wbc, handler);
1da177e4 2868}
1fe72eaa 2869EXPORT_SYMBOL(block_write_full_page_endio);
1da177e4 2870
35c80d5f
CM
2871/*
2872 * The generic ->writepage function for buffer-backed address_spaces
2873 */
2874int block_write_full_page(struct page *page, get_block_t *get_block,
2875 struct writeback_control *wbc)
2876{
2877 return block_write_full_page_endio(page, get_block, wbc,
2878 end_buffer_async_write);
2879}
1fe72eaa 2880EXPORT_SYMBOL(block_write_full_page);
35c80d5f 2881
1da177e4
LT
2882sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2883 get_block_t *get_block)
2884{
2885 struct buffer_head tmp;
2886 struct inode *inode = mapping->host;
2887 tmp.b_state = 0;
2888 tmp.b_blocknr = 0;
b0cf2321 2889 tmp.b_size = 1 << inode->i_blkbits;
1da177e4
LT
2890 get_block(inode, block, &tmp, 0);
2891 return tmp.b_blocknr;
2892}
1fe72eaa 2893EXPORT_SYMBOL(generic_block_bmap);
1da177e4 2894
6712ecf8 2895static void end_bio_bh_io_sync(struct bio *bio, int err)
1da177e4
LT
2896{
2897 struct buffer_head *bh = bio->bi_private;
2898
1da177e4
LT
2899 if (err == -EOPNOTSUPP) {
2900 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
1da177e4
LT
2901 }
2902
08bafc03
KM
2903 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2904 set_bit(BH_Quiet, &bh->b_state);
2905
1da177e4
LT
2906 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2907 bio_put(bio);
1da177e4
LT
2908}
2909
57302e0d
LT
2910/*
2911 * This allows us to do IO even on the odd last sectors
2912 * of a device, even if the bh block size is some multiple
2913 * of the physical sector size.
2914 *
2915 * We'll just truncate the bio to the size of the device,
2916 * and clear the end of the buffer head manually.
2917 *
2918 * Truly out-of-range accesses will turn into actual IO
2919 * errors, this only handles the "we need to be able to
2920 * do IO at the final sector" case.
2921 */
2922static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2923{
2924 sector_t maxsector;
2925 unsigned bytes;
2926
2927 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2928 if (!maxsector)
2929 return;
2930
2931 /*
2932 * If the *whole* IO is past the end of the device,
2933 * let it through, and the IO layer will turn it into
2934 * an EIO.
2935 */
2936 if (unlikely(bio->bi_sector >= maxsector))
2937 return;
2938
2939 maxsector -= bio->bi_sector;
2940 bytes = bio->bi_size;
2941 if (likely((bytes >> 9) <= maxsector))
2942 return;
2943
2944 /* Uhhuh. We've got a bh that straddles the device size! */
2945 bytes = maxsector << 9;
2946
2947 /* Truncate the bio.. */
2948 bio->bi_size = bytes;
2949 bio->bi_io_vec[0].bv_len = bytes;
2950
2951 /* ..and clear the end of the buffer for reads */
27d7c2a0 2952 if ((rw & RW_MASK) == READ) {
57302e0d
LT
2953 void *kaddr = kmap_atomic(bh->b_page);
2954 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
2955 kunmap_atomic(kaddr);
6d283dba 2956 flush_dcache_page(bh->b_page);
57302e0d
LT
2957 }
2958}
2959
71368511 2960int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
1da177e4
LT
2961{
2962 struct bio *bio;
2963 int ret = 0;
2964
2965 BUG_ON(!buffer_locked(bh));
2966 BUG_ON(!buffer_mapped(bh));
2967 BUG_ON(!bh->b_end_io);
8fb0e342
AK
2968 BUG_ON(buffer_delay(bh));
2969 BUG_ON(buffer_unwritten(bh));
1da177e4 2970
1da177e4 2971 /*
48fd4f93 2972 * Only clear out a write error when rewriting
1da177e4 2973 */
48fd4f93 2974 if (test_set_buffer_req(bh) && (rw & WRITE))
1da177e4
LT
2975 clear_buffer_write_io_error(bh);
2976
2977 /*
2978 * from here on down, it's all bio -- do the initial mapping,
2979 * submit_bio -> generic_make_request may further map this bio around
2980 */
2981 bio = bio_alloc(GFP_NOIO, 1);
2982
2983 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2984 bio->bi_bdev = bh->b_bdev;
2985 bio->bi_io_vec[0].bv_page = bh->b_page;
2986 bio->bi_io_vec[0].bv_len = bh->b_size;
2987 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2988
2989 bio->bi_vcnt = 1;
1da177e4
LT
2990 bio->bi_size = bh->b_size;
2991
2992 bio->bi_end_io = end_bio_bh_io_sync;
2993 bio->bi_private = bh;
71368511 2994 bio->bi_flags |= bio_flags;
1da177e4 2995
57302e0d
LT
2996 /* Take care of bh's that straddle the end of the device */
2997 guard_bh_eod(rw, bio, bh);
2998
877f962c
TT
2999 if (buffer_meta(bh))
3000 rw |= REQ_META;
3001 if (buffer_prio(bh))
3002 rw |= REQ_PRIO;
3003
1da177e4
LT
3004 bio_get(bio);
3005 submit_bio(rw, bio);
3006
3007 if (bio_flagged(bio, BIO_EOPNOTSUPP))
3008 ret = -EOPNOTSUPP;
3009
3010 bio_put(bio);
3011 return ret;
3012}
71368511
DW
3013EXPORT_SYMBOL_GPL(_submit_bh);
3014
3015int submit_bh(int rw, struct buffer_head *bh)
3016{
3017 return _submit_bh(rw, bh, 0);
3018}
1fe72eaa 3019EXPORT_SYMBOL(submit_bh);
1da177e4
LT
3020
3021/**
3022 * ll_rw_block: low-level access to block devices (DEPRECATED)
9cb569d6 3023 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
1da177e4
LT
3024 * @nr: number of &struct buffer_heads in the array
3025 * @bhs: array of pointers to &struct buffer_head
3026 *
a7662236
JK
3027 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3028 * requests an I/O operation on them, either a %READ or a %WRITE. The third
9cb569d6
CH
3029 * %READA option is described in the documentation for generic_make_request()
3030 * which ll_rw_block() calls.
1da177e4
LT
3031 *
3032 * This function drops any buffer that it cannot get a lock on (with the
9cb569d6
CH
3033 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3034 * request, and any buffer that appears to be up-to-date when doing read
3035 * request. Further it marks as clean buffers that are processed for
3036 * writing (the buffer cache won't assume that they are actually clean
3037 * until the buffer gets unlocked).
1da177e4
LT
3038 *
3039 * ll_rw_block sets b_end_io to simple completion handler that marks
3040 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3041 * any waiters.
3042 *
3043 * All of the buffers must be for the same device, and must also be a
3044 * multiple of the current approved size for the device.
3045 */
3046void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3047{
3048 int i;
3049
3050 for (i = 0; i < nr; i++) {
3051 struct buffer_head *bh = bhs[i];
3052
9cb569d6 3053 if (!trylock_buffer(bh))
1da177e4 3054 continue;
9cb569d6 3055 if (rw == WRITE) {
1da177e4 3056 if (test_clear_buffer_dirty(bh)) {
76c3073a 3057 bh->b_end_io = end_buffer_write_sync;
e60e5c50 3058 get_bh(bh);
9cb569d6 3059 submit_bh(WRITE, bh);
1da177e4
LT
3060 continue;
3061 }
3062 } else {
1da177e4 3063 if (!buffer_uptodate(bh)) {
76c3073a 3064 bh->b_end_io = end_buffer_read_sync;
e60e5c50 3065 get_bh(bh);
1da177e4
LT
3066 submit_bh(rw, bh);
3067 continue;
3068 }
3069 }
3070 unlock_buffer(bh);
1da177e4
LT
3071 }
3072}
1fe72eaa 3073EXPORT_SYMBOL(ll_rw_block);
1da177e4 3074
9cb569d6
CH
3075void write_dirty_buffer(struct buffer_head *bh, int rw)
3076{
3077 lock_buffer(bh);
3078 if (!test_clear_buffer_dirty(bh)) {
3079 unlock_buffer(bh);
3080 return;
3081 }
3082 bh->b_end_io = end_buffer_write_sync;
3083 get_bh(bh);
3084 submit_bh(rw, bh);
3085}
3086EXPORT_SYMBOL(write_dirty_buffer);
3087
1da177e4
LT
3088/*
3089 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3090 * and then start new I/O and then wait upon it. The caller must have a ref on
3091 * the buffer_head.
3092 */
87e99511 3093int __sync_dirty_buffer(struct buffer_head *bh, int rw)
1da177e4
LT
3094{
3095 int ret = 0;
3096
3097 WARN_ON(atomic_read(&bh->b_count) < 1);
3098 lock_buffer(bh);
3099 if (test_clear_buffer_dirty(bh)) {
3100 get_bh(bh);
3101 bh->b_end_io = end_buffer_write_sync;
6fa3eb70
S
3102#ifdef FEATURE_STORAGE_META_LOG
3103 if( bh && bh->b_bdev && bh->b_bdev->bd_disk)
3104 set_metadata_rw_status(bh->b_bdev->bd_disk->first_minor, WAIT_WRITE_CNT);
3105#endif
87e99511 3106 ret = submit_bh(rw, bh);
1da177e4 3107 wait_on_buffer(bh);
1da177e4
LT
3108 if (!ret && !buffer_uptodate(bh))
3109 ret = -EIO;
3110 } else {
3111 unlock_buffer(bh);
3112 }
3113 return ret;
3114}
87e99511
CH
3115EXPORT_SYMBOL(__sync_dirty_buffer);
3116
3117int sync_dirty_buffer(struct buffer_head *bh)
3118{
3119 return __sync_dirty_buffer(bh, WRITE_SYNC);
3120}
1fe72eaa 3121EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4
LT
3122
3123/*
3124 * try_to_free_buffers() checks if all the buffers on this particular page
3125 * are unused, and releases them if so.
3126 *
3127 * Exclusion against try_to_free_buffers may be obtained by either
3128 * locking the page or by holding its mapping's private_lock.
3129 *
3130 * If the page is dirty but all the buffers are clean then we need to
3131 * be sure to mark the page clean as well. This is because the page
3132 * may be against a block device, and a later reattachment of buffers
3133 * to a dirty page will set *all* buffers dirty. Which would corrupt
3134 * filesystem data on the same device.
3135 *
3136 * The same applies to regular filesystem pages: if all the buffers are
3137 * clean then we set the page clean and proceed. To do that, we require
3138 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3139 * private_lock.
3140 *
3141 * try_to_free_buffers() is non-blocking.
3142 */
3143static inline int buffer_busy(struct buffer_head *bh)
3144{
3145 return atomic_read(&bh->b_count) |
3146 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3147}
3148
3149static int
3150drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3151{
3152 struct buffer_head *head = page_buffers(page);
3153 struct buffer_head *bh;
3154
3155 bh = head;
3156 do {
de7d5a3b 3157 if (buffer_write_io_error(bh) && page->mapping)
1da177e4
LT
3158 set_bit(AS_EIO, &page->mapping->flags);
3159 if (buffer_busy(bh))
3160 goto failed;
3161 bh = bh->b_this_page;
3162 } while (bh != head);
3163
3164 do {
3165 struct buffer_head *next = bh->b_this_page;
3166
535ee2fb 3167 if (bh->b_assoc_map)
1da177e4
LT
3168 __remove_assoc_queue(bh);
3169 bh = next;
3170 } while (bh != head);
3171 *buffers_to_free = head;
3172 __clear_page_buffers(page);
3173 return 1;
3174failed:
3175 return 0;
3176}
3177
3178int try_to_free_buffers(struct page *page)
3179{
3180 struct address_space * const mapping = page->mapping;
3181 struct buffer_head *buffers_to_free = NULL;
3182 int ret = 0;
3183
3184 BUG_ON(!PageLocked(page));
ecdfc978 3185 if (PageWriteback(page))
1da177e4
LT
3186 return 0;
3187
3188 if (mapping == NULL) { /* can this still happen? */
3189 ret = drop_buffers(page, &buffers_to_free);
3190 goto out;
3191 }
3192
3193 spin_lock(&mapping->private_lock);
3194 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3195
3196 /*
3197 * If the filesystem writes its buffers by hand (eg ext3)
3198 * then we can have clean buffers against a dirty page. We
3199 * clean the page here; otherwise the VM will never notice
3200 * that the filesystem did any IO at all.
3201 *
3202 * Also, during truncate, discard_buffer will have marked all
3203 * the page's buffers clean. We discover that here and clean
3204 * the page also.
87df7241
NP
3205 *
3206 * private_lock must be held over this entire operation in order
3207 * to synchronise against __set_page_dirty_buffers and prevent the
3208 * dirty bit from being lost.
ecdfc978
LT
3209 */
3210 if (ret)
3211 cancel_dirty_page(page, PAGE_CACHE_SIZE);
87df7241 3212 spin_unlock(&mapping->private_lock);
1da177e4
LT
3213out:
3214 if (buffers_to_free) {
3215 struct buffer_head *bh = buffers_to_free;
3216
3217 do {
3218 struct buffer_head *next = bh->b_this_page;
3219 free_buffer_head(bh);
3220 bh = next;
3221 } while (bh != buffers_to_free);
3222 }
3223 return ret;
3224}
3225EXPORT_SYMBOL(try_to_free_buffers);
3226
1da177e4
LT
3227/*
3228 * There are no bdflush tunables left. But distributions are
3229 * still running obsolete flush daemons, so we terminate them here.
3230 *
3231 * Use of bdflush() is deprecated and will be removed in a future kernel.
5b0830cb 3232 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
1da177e4 3233 */
bdc480e3 3234SYSCALL_DEFINE2(bdflush, int, func, long, data)
1da177e4
LT
3235{
3236 static int msg_count;
3237
3238 if (!capable(CAP_SYS_ADMIN))
3239 return -EPERM;
3240
3241 if (msg_count < 5) {
3242 msg_count++;
3243 printk(KERN_INFO
3244 "warning: process `%s' used the obsolete bdflush"
3245 " system call\n", current->comm);
3246 printk(KERN_INFO "Fix your initscripts?\n");
3247 }
3248
3249 if (func == 1)
3250 do_exit(0);
3251 return 0;
3252}
3253
3254/*
3255 * Buffer-head allocation
3256 */
a0a9b043 3257static struct kmem_cache *bh_cachep __read_mostly;
1da177e4
LT
3258
3259/*
3260 * Once the number of bh's in the machine exceeds this level, we start
3261 * stripping them in writeback.
3262 */
43be594a 3263static unsigned long max_buffer_heads;
1da177e4
LT
3264
3265int buffer_heads_over_limit;
3266
3267struct bh_accounting {
3268 int nr; /* Number of live bh's */
3269 int ratelimit; /* Limit cacheline bouncing */
3270};
3271
3272static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3273
3274static void recalc_bh_state(void)
3275{
3276 int i;
3277 int tot = 0;
3278
ee1be862 3279 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
1da177e4 3280 return;
c7b92516 3281 __this_cpu_write(bh_accounting.ratelimit, 0);
8a143426 3282 for_each_online_cpu(i)
1da177e4
LT
3283 tot += per_cpu(bh_accounting, i).nr;
3284 buffer_heads_over_limit = (tot > max_buffer_heads);
3285}
c7b92516 3286
dd0fc66f 3287struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3288{
019b4d12 3289 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3290 if (ret) {
a35afb83 3291 INIT_LIST_HEAD(&ret->b_assoc_buffers);
c7b92516
CL
3292 preempt_disable();
3293 __this_cpu_inc(bh_accounting.nr);
1da177e4 3294 recalc_bh_state();
c7b92516 3295 preempt_enable();
1da177e4
LT
3296 }
3297 return ret;
3298}
3299EXPORT_SYMBOL(alloc_buffer_head);
3300
3301void free_buffer_head(struct buffer_head *bh)
3302{
3303 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3304 kmem_cache_free(bh_cachep, bh);
c7b92516
CL
3305 preempt_disable();
3306 __this_cpu_dec(bh_accounting.nr);
1da177e4 3307 recalc_bh_state();
c7b92516 3308 preempt_enable();
1da177e4
LT
3309}
3310EXPORT_SYMBOL(free_buffer_head);
3311
1da177e4
LT
3312static void buffer_exit_cpu(int cpu)
3313{
3314 int i;
3315 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3316
3317 for (i = 0; i < BH_LRU_SIZE; i++) {
3318 brelse(b->bhs[i]);
3319 b->bhs[i] = NULL;
3320 }
c7b92516 3321 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
8a143426 3322 per_cpu(bh_accounting, cpu).nr = 0;
1da177e4
LT
3323}
3324
3325static int buffer_cpu_notify(struct notifier_block *self,
3326 unsigned long action, void *hcpu)
3327{
8bb78442 3328 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1da177e4
LT
3329 buffer_exit_cpu((unsigned long)hcpu);
3330 return NOTIFY_OK;
3331}
1da177e4 3332
389d1b08 3333/**
a6b91919 3334 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3335 * @bh: struct buffer_head
3336 *
3337 * Return true if the buffer is up-to-date and false,
3338 * with the buffer locked, if not.
3339 */
3340int bh_uptodate_or_lock(struct buffer_head *bh)
3341{
3342 if (!buffer_uptodate(bh)) {
3343 lock_buffer(bh);
3344 if (!buffer_uptodate(bh))
3345 return 0;
3346 unlock_buffer(bh);
3347 }
3348 return 1;
3349}
3350EXPORT_SYMBOL(bh_uptodate_or_lock);
3351
3352/**
a6b91919 3353 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3354 * @bh: struct buffer_head
3355 *
3356 * Returns zero on success and -EIO on error.
3357 */
3358int bh_submit_read(struct buffer_head *bh)
3359{
3360 BUG_ON(!buffer_locked(bh));
3361
3362 if (buffer_uptodate(bh)) {
3363 unlock_buffer(bh);
3364 return 0;
3365 }
3366
3367 get_bh(bh);
3368 bh->b_end_io = end_buffer_read_sync;
6fa3eb70
S
3369#ifdef FEATURE_STORAGE_META_LOG
3370 if( bh && bh->b_bdev && bh->b_bdev->bd_disk)
3371 set_metadata_rw_status(bh->b_bdev->bd_disk->first_minor, WAIT_READ_CNT);
3372#endif
389d1b08
AK
3373 submit_bh(READ, bh);
3374 wait_on_buffer(bh);
3375 if (buffer_uptodate(bh))
3376 return 0;
3377 return -EIO;
3378}
3379EXPORT_SYMBOL(bh_submit_read);
3380
1da177e4
LT
3381void __init buffer_init(void)
3382{
43be594a 3383 unsigned long nrpages;
1da177e4 3384
b98938c3
CL
3385 bh_cachep = kmem_cache_create("buffer_head",
3386 sizeof(struct buffer_head), 0,
3387 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3388 SLAB_MEM_SPREAD),
019b4d12 3389 NULL);
1da177e4
LT
3390
3391 /*
3392 * Limit the bh occupancy to 10% of ZONE_NORMAL
3393 */
3394 nrpages = (nr_free_buffer_pages() * 10) / 100;
3395 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3396 hotcpu_notifier(buffer_cpu_notify, 0);
3397}