Merge tag 'v3.10.107' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / hv / hv_balloon.c
CommitLineData
9aa8b50b
S
1/*
2 * Copyright (c) 2012, Microsoft Corporation.
3 *
4 * Author:
5 * K. Y. Srinivasan <kys@microsoft.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published
9 * by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more
15 * details.
16 *
17 */
18
19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21#include <linux/kernel.h>
72d1e4f6 22#include <linux/jiffies.h>
9aa8b50b
S
23#include <linux/mman.h>
24#include <linux/delay.h>
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/slab.h>
28#include <linux/kthread.h>
29#include <linux/completion.h>
30#include <linux/memory_hotplug.h>
31#include <linux/memory.h>
32#include <linux/notifier.h>
9aa8b50b
S
33#include <linux/percpu_counter.h>
34
35#include <linux/hyperv.h>
36
37/*
38 * We begin with definitions supporting the Dynamic Memory protocol
39 * with the host.
40 *
41 * Begin protocol definitions.
42 */
43
44
45
46/*
47 * Protocol versions. The low word is the minor version, the high word the major
48 * version.
49 *
50 * History:
51 * Initial version 1.0
52 * Changed to 0.1 on 2009/03/25
53 * Changes to 0.2 on 2009/05/14
54 * Changes to 0.3 on 2009/12/03
55 * Changed to 1.0 on 2011/04/05
56 */
57
58#define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
59#define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
60#define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
61
62enum {
63 DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
64 DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
65
66 DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
67 DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
68
69 DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN8
70};
71
72
73
74/*
75 * Message Types
76 */
77
78enum dm_message_type {
79 /*
80 * Version 0.3
81 */
82 DM_ERROR = 0,
83 DM_VERSION_REQUEST = 1,
84 DM_VERSION_RESPONSE = 2,
85 DM_CAPABILITIES_REPORT = 3,
86 DM_CAPABILITIES_RESPONSE = 4,
87 DM_STATUS_REPORT = 5,
88 DM_BALLOON_REQUEST = 6,
89 DM_BALLOON_RESPONSE = 7,
90 DM_UNBALLOON_REQUEST = 8,
91 DM_UNBALLOON_RESPONSE = 9,
92 DM_MEM_HOT_ADD_REQUEST = 10,
93 DM_MEM_HOT_ADD_RESPONSE = 11,
94 DM_VERSION_03_MAX = 11,
95 /*
96 * Version 1.0.
97 */
98 DM_INFO_MESSAGE = 12,
99 DM_VERSION_1_MAX = 12
100};
101
102
103/*
104 * Structures defining the dynamic memory management
105 * protocol.
106 */
107
108union dm_version {
109 struct {
110 __u16 minor_version;
111 __u16 major_version;
112 };
113 __u32 version;
114} __packed;
115
116
117union dm_caps {
118 struct {
119 __u64 balloon:1;
120 __u64 hot_add:1;
647965a2
S
121 /*
122 * To support guests that may have alignment
123 * limitations on hot-add, the guest can specify
124 * its alignment requirements; a value of n
125 * represents an alignment of 2^n in mega bytes.
126 */
127 __u64 hot_add_alignment:4;
128 __u64 reservedz:58;
9aa8b50b
S
129 } cap_bits;
130 __u64 caps;
131} __packed;
132
133union dm_mem_page_range {
134 struct {
135 /*
136 * The PFN number of the first page in the range.
137 * 40 bits is the architectural limit of a PFN
138 * number for AMD64.
139 */
140 __u64 start_page:40;
141 /*
142 * The number of pages in the range.
143 */
144 __u64 page_cnt:24;
145 } finfo;
146 __u64 page_range;
147} __packed;
148
149
150
151/*
152 * The header for all dynamic memory messages:
153 *
154 * type: Type of the message.
155 * size: Size of the message in bytes; including the header.
156 * trans_id: The guest is responsible for manufacturing this ID.
157 */
158
159struct dm_header {
160 __u16 type;
161 __u16 size;
162 __u32 trans_id;
163} __packed;
164
165/*
166 * A generic message format for dynamic memory.
167 * Specific message formats are defined later in the file.
168 */
169
170struct dm_message {
171 struct dm_header hdr;
172 __u8 data[]; /* enclosed message */
173} __packed;
174
175
176/*
177 * Specific message types supporting the dynamic memory protocol.
178 */
179
180/*
181 * Version negotiation message. Sent from the guest to the host.
182 * The guest is free to try different versions until the host
183 * accepts the version.
184 *
185 * dm_version: The protocol version requested.
186 * is_last_attempt: If TRUE, this is the last version guest will request.
187 * reservedz: Reserved field, set to zero.
188 */
189
190struct dm_version_request {
191 struct dm_header hdr;
192 union dm_version version;
193 __u32 is_last_attempt:1;
194 __u32 reservedz:31;
195} __packed;
196
197/*
198 * Version response message; Host to Guest and indicates
199 * if the host has accepted the version sent by the guest.
200 *
201 * is_accepted: If TRUE, host has accepted the version and the guest
202 * should proceed to the next stage of the protocol. FALSE indicates that
203 * guest should re-try with a different version.
204 *
205 * reservedz: Reserved field, set to zero.
206 */
207
208struct dm_version_response {
209 struct dm_header hdr;
210 __u64 is_accepted:1;
211 __u64 reservedz:63;
212} __packed;
213
214/*
215 * Message reporting capabilities. This is sent from the guest to the
216 * host.
217 */
218
219struct dm_capabilities {
220 struct dm_header hdr;
221 union dm_caps caps;
222 __u64 min_page_cnt;
223 __u64 max_page_number;
224} __packed;
225
226/*
227 * Response to the capabilities message. This is sent from the host to the
228 * guest. This message notifies if the host has accepted the guest's
229 * capabilities. If the host has not accepted, the guest must shutdown
230 * the service.
231 *
232 * is_accepted: Indicates if the host has accepted guest's capabilities.
233 * reservedz: Must be 0.
234 */
235
236struct dm_capabilities_resp_msg {
237 struct dm_header hdr;
238 __u64 is_accepted:1;
239 __u64 reservedz:63;
240} __packed;
241
242/*
243 * This message is used to report memory pressure from the guest.
244 * This message is not part of any transaction and there is no
245 * response to this message.
246 *
247 * num_avail: Available memory in pages.
248 * num_committed: Committed memory in pages.
249 * page_file_size: The accumulated size of all page files
250 * in the system in pages.
251 * zero_free: The nunber of zero and free pages.
252 * page_file_writes: The writes to the page file in pages.
253 * io_diff: An indicator of file cache efficiency or page file activity,
254 * calculated as File Cache Page Fault Count - Page Read Count.
255 * This value is in pages.
256 *
257 * Some of these metrics are Windows specific and fortunately
258 * the algorithm on the host side that computes the guest memory
259 * pressure only uses num_committed value.
260 */
261
262struct dm_status {
263 struct dm_header hdr;
264 __u64 num_avail;
265 __u64 num_committed;
266 __u64 page_file_size;
267 __u64 zero_free;
268 __u32 page_file_writes;
269 __u32 io_diff;
270} __packed;
271
272
273/*
274 * Message to ask the guest to allocate memory - balloon up message.
275 * This message is sent from the host to the guest. The guest may not be
276 * able to allocate as much memory as requested.
277 *
278 * num_pages: number of pages to allocate.
279 */
280
281struct dm_balloon {
282 struct dm_header hdr;
283 __u32 num_pages;
284 __u32 reservedz;
285} __packed;
286
287
288/*
289 * Balloon response message; this message is sent from the guest
290 * to the host in response to the balloon message.
291 *
292 * reservedz: Reserved; must be set to zero.
293 * more_pages: If FALSE, this is the last message of the transaction.
294 * if TRUE there will atleast one more message from the guest.
295 *
296 * range_count: The number of ranges in the range array.
297 *
298 * range_array: An array of page ranges returned to the host.
299 *
300 */
301
302struct dm_balloon_response {
303 struct dm_header hdr;
304 __u32 reservedz;
305 __u32 more_pages:1;
306 __u32 range_count:31;
307 union dm_mem_page_range range_array[];
308} __packed;
309
310/*
311 * Un-balloon message; this message is sent from the host
312 * to the guest to give guest more memory.
313 *
314 * more_pages: If FALSE, this is the last message of the transaction.
315 * if TRUE there will atleast one more message from the guest.
316 *
317 * reservedz: Reserved; must be set to zero.
318 *
319 * range_count: The number of ranges in the range array.
320 *
321 * range_array: An array of page ranges returned to the host.
322 *
323 */
324
325struct dm_unballoon_request {
326 struct dm_header hdr;
327 __u32 more_pages:1;
328 __u32 reservedz:31;
329 __u32 range_count;
330 union dm_mem_page_range range_array[];
331} __packed;
332
333/*
334 * Un-balloon response message; this message is sent from the guest
335 * to the host in response to an unballoon request.
336 *
337 */
338
339struct dm_unballoon_response {
340 struct dm_header hdr;
341} __packed;
342
343
344/*
345 * Hot add request message. Message sent from the host to the guest.
346 *
347 * mem_range: Memory range to hot add.
348 *
349 * On Linux we currently don't support this since we cannot hot add
350 * arbitrary granularity of memory.
351 */
352
353struct dm_hot_add {
354 struct dm_header hdr;
355 union dm_mem_page_range range;
356} __packed;
357
358/*
359 * Hot add response message.
360 * This message is sent by the guest to report the status of a hot add request.
361 * If page_count is less than the requested page count, then the host should
362 * assume all further hot add requests will fail, since this indicates that
363 * the guest has hit an upper physical memory barrier.
364 *
365 * Hot adds may also fail due to low resources; in this case, the guest must
366 * not complete this message until the hot add can succeed, and the host must
367 * not send a new hot add request until the response is sent.
368 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
369 * times it fails the request.
370 *
371 *
372 * page_count: number of pages that were successfully hot added.
373 *
374 * result: result of the operation 1: success, 0: failure.
375 *
376 */
377
378struct dm_hot_add_response {
379 struct dm_header hdr;
380 __u32 page_count;
381 __u32 result;
382} __packed;
383
384/*
385 * Types of information sent from host to the guest.
386 */
387
388enum dm_info_type {
389 INFO_TYPE_MAX_PAGE_CNT = 0,
390 MAX_INFO_TYPE
391};
392
393
394/*
395 * Header for the information message.
396 */
397
398struct dm_info_header {
399 enum dm_info_type type;
400 __u32 data_size;
401} __packed;
402
403/*
404 * This message is sent from the host to the guest to pass
405 * some relevant information (win8 addition).
406 *
407 * reserved: no used.
408 * info_size: size of the information blob.
409 * info: information blob.
410 */
411
412struct dm_info_msg {
6427a0d7 413 struct dm_header hdr;
9aa8b50b
S
414 __u32 reserved;
415 __u32 info_size;
416 __u8 info[];
417};
418
419/*
420 * End protocol definitions.
421 */
422
1cac8cd4
S
423/*
424 * State to manage hot adding memory into the guest.
425 * The range start_pfn : end_pfn specifies the range
426 * that the host has asked us to hot add. The range
427 * start_pfn : ha_end_pfn specifies the range that we have
428 * currently hot added. We hot add in multiples of 128M
429 * chunks; it is possible that we may not be able to bring
430 * online all the pages in the region. The range
431 * covered_start_pfn : covered_end_pfn defines the pages that can
432 * be brough online.
433 */
434
435struct hv_hotadd_state {
436 struct list_head list;
437 unsigned long start_pfn;
438 unsigned long covered_start_pfn;
439 unsigned long covered_end_pfn;
440 unsigned long ha_end_pfn;
441 unsigned long end_pfn;
442};
443
6571b2da
S
444struct balloon_state {
445 __u32 num_pages;
446 struct work_struct wrk;
447};
448
c51af826
S
449struct hot_add_wrk {
450 union dm_mem_page_range ha_page_range;
1cac8cd4 451 union dm_mem_page_range ha_region_range;
c51af826
S
452 struct work_struct wrk;
453};
454
1cac8cd4 455static bool hot_add = true;
9aa8b50b 456static bool do_hot_add;
e500d158
S
457/*
458 * Delay reporting memory pressure by
459 * the specified number of seconds.
460 */
1cac8cd4 461static uint pressure_report_delay = 45;
9aa8b50b 462
72d1e4f6
S
463/*
464 * The last time we posted a pressure report to host.
465 */
466static unsigned long last_post_time;
467
9aa8b50b
S
468module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
469MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
470
e500d158
S
471module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
472MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
9aa8b50b
S
473static atomic_t trans_id = ATOMIC_INIT(0);
474
475static int dm_ring_size = (5 * PAGE_SIZE);
476
477/*
478 * Driver specific state.
479 */
480
481enum hv_dm_state {
482 DM_INITIALIZING = 0,
483 DM_INITIALIZED,
484 DM_BALLOON_UP,
485 DM_BALLOON_DOWN,
486 DM_HOT_ADD,
487 DM_INIT_ERROR
488};
489
490
491static __u8 recv_buffer[PAGE_SIZE];
492static __u8 *send_buffer;
493#define PAGES_IN_2M 512
1cac8cd4 494#define HA_CHUNK (32 * 1024)
9aa8b50b
S
495
496struct hv_dynmem_device {
497 struct hv_device *dev;
498 enum hv_dm_state state;
499 struct completion host_event;
500 struct completion config_event;
501
502 /*
503 * Number of pages we have currently ballooned out.
504 */
505 unsigned int num_pages_ballooned;
506
507 /*
6571b2da
S
508 * State to manage the ballooning (up) operation.
509 */
510 struct balloon_state balloon_wrk;
511
c51af826
S
512 /*
513 * State to execute the "hot-add" operation.
514 */
515 struct hot_add_wrk ha_wrk;
516
1cac8cd4
S
517 /*
518 * This state tracks if the host has specified a hot-add
519 * region.
520 */
521 bool host_specified_ha_region;
522
523 /*
524 * State to synchronize hot-add.
525 */
526 struct completion ol_waitevent;
527 bool ha_waiting;
6571b2da
S
528 /*
529 * This thread handles hot-add
9aa8b50b
S
530 * requests from the host as well as notifying
531 * the host with regards to memory pressure in
532 * the guest.
533 */
534 struct task_struct *thread;
535
1cac8cd4
S
536 /*
537 * A list of hot-add regions.
538 */
539 struct list_head ha_region_list;
540
9aa8b50b
S
541 /*
542 * We start with the highest version we can support
543 * and downgrade based on the host; we save here the
544 * next version to try.
545 */
546 __u32 next_version;
547};
548
549static struct hv_dynmem_device dm_device;
550
72d1e4f6 551static void post_status(struct hv_dynmem_device *dm);
1cac8cd4
S
552#ifdef CONFIG_MEMORY_HOTPLUG
553
a6025a2a 554static void hv_bring_pgs_online(unsigned long start_pfn, unsigned long size)
9aa8b50b 555{
1cac8cd4 556 int i;
9aa8b50b 557
1cac8cd4
S
558 for (i = 0; i < size; i++) {
559 struct page *pg;
560 pg = pfn_to_page(start_pfn + i);
561 __online_page_set_limits(pg);
562 __online_page_increment_counters(pg);
563 __online_page_free(pg);
564 }
565}
566
567static void hv_mem_hot_add(unsigned long start, unsigned long size,
568 unsigned long pfn_count,
569 struct hv_hotadd_state *has)
570{
571 int ret = 0;
7b7295e5 572 int i, nid;
1cac8cd4
S
573 unsigned long start_pfn;
574 unsigned long processed_pfn;
575 unsigned long total_pfn = pfn_count;
576
577 for (i = 0; i < (size/HA_CHUNK); i++) {
578 start_pfn = start + (i * HA_CHUNK);
579 has->ha_end_pfn += HA_CHUNK;
580
581 if (total_pfn > HA_CHUNK) {
582 processed_pfn = HA_CHUNK;
583 total_pfn -= HA_CHUNK;
584 } else {
585 processed_pfn = total_pfn;
586 total_pfn = 0;
587 }
588
589 has->covered_end_pfn += processed_pfn;
9aa8b50b 590
1cac8cd4
S
591 init_completion(&dm_device.ol_waitevent);
592 dm_device.ha_waiting = true;
9aa8b50b 593
1cac8cd4
S
594 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
595 ret = add_memory(nid, PFN_PHYS((start_pfn)),
596 (HA_CHUNK << PAGE_SHIFT));
597
598 if (ret) {
599 pr_info("hot_add memory failed error is %d\n", ret);
7f4f2302
S
600 if (ret == -EEXIST) {
601 /*
602 * This error indicates that the error
603 * is not a transient failure. This is the
604 * case where the guest's physical address map
605 * precludes hot adding memory. Stop all further
606 * memory hot-add.
607 */
608 do_hot_add = false;
609 }
1cac8cd4
S
610 has->ha_end_pfn -= HA_CHUNK;
611 has->covered_end_pfn -= processed_pfn;
612 break;
613 }
9aa8b50b
S
614
615 /*
1cac8cd4 616 * Wait for the memory block to be onlined.
7b7295e5
S
617 * Since the hot add has succeeded, it is ok to
618 * proceed even if the pages in the hot added region
619 * have not been "onlined" within the allowed time.
9aa8b50b 620 */
7b7295e5 621 wait_for_completion_timeout(&dm_device.ol_waitevent, 5*HZ);
72d1e4f6 622 post_status(&dm_device);
9aa8b50b
S
623 }
624
1cac8cd4
S
625 return;
626}
627
628static void hv_online_page(struct page *pg)
629{
630 struct list_head *cur;
631 struct hv_hotadd_state *has;
632 unsigned long cur_start_pgp;
633 unsigned long cur_end_pgp;
634
635 if (dm_device.ha_waiting) {
636 dm_device.ha_waiting = false;
637 complete(&dm_device.ol_waitevent);
638 }
639
640 list_for_each(cur, &dm_device.ha_region_list) {
641 has = list_entry(cur, struct hv_hotadd_state, list);
642 cur_start_pgp = (unsigned long)
643 pfn_to_page(has->covered_start_pfn);
644 cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn);
645
646 if (((unsigned long)pg >= cur_start_pgp) &&
647 ((unsigned long)pg < cur_end_pgp)) {
648 /*
649 * This frame is currently backed; online the
650 * page.
651 */
652 __online_page_set_limits(pg);
653 __online_page_increment_counters(pg);
654 __online_page_free(pg);
655 has->covered_start_pfn++;
656 }
657 }
658}
659
660static bool pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
661{
662 struct list_head *cur;
663 struct hv_hotadd_state *has;
664 unsigned long residual, new_inc;
665
666 if (list_empty(&dm_device.ha_region_list))
667 return false;
668
669 list_for_each(cur, &dm_device.ha_region_list) {
670 has = list_entry(cur, struct hv_hotadd_state, list);
671
672 /*
673 * If the pfn range we are dealing with is not in the current
674 * "hot add block", move on.
675 */
2b49b193 676 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
1cac8cd4
S
677 continue;
678 /*
679 * If the current hot add-request extends beyond
680 * our current limit; extend it.
681 */
682 if ((start_pfn + pfn_cnt) > has->end_pfn) {
683 residual = (start_pfn + pfn_cnt - has->end_pfn);
684 /*
685 * Extend the region by multiples of HA_CHUNK.
686 */
687 new_inc = (residual / HA_CHUNK) * HA_CHUNK;
688 if (residual % HA_CHUNK)
689 new_inc += HA_CHUNK;
690
691 has->end_pfn += new_inc;
692 }
693
694 /*
695 * If the current start pfn is not where the covered_end
696 * is, update it.
697 */
698
699 if (has->covered_end_pfn != start_pfn) {
700 has->covered_end_pfn = start_pfn;
701 has->covered_start_pfn = start_pfn;
702 }
703 return true;
704
705 }
706
707 return false;
708}
709
710static unsigned long handle_pg_range(unsigned long pg_start,
711 unsigned long pg_count)
712{
713 unsigned long start_pfn = pg_start;
714 unsigned long pfn_cnt = pg_count;
715 unsigned long size;
716 struct list_head *cur;
717 struct hv_hotadd_state *has;
718 unsigned long pgs_ol = 0;
719 unsigned long old_covered_state;
720
721 if (list_empty(&dm_device.ha_region_list))
722 return 0;
723
724 list_for_each(cur, &dm_device.ha_region_list) {
725 has = list_entry(cur, struct hv_hotadd_state, list);
726
727 /*
728 * If the pfn range we are dealing with is not in the current
729 * "hot add block", move on.
730 */
2b49b193 731 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
1cac8cd4
S
732 continue;
733
734 old_covered_state = has->covered_end_pfn;
735
736 if (start_pfn < has->ha_end_pfn) {
737 /*
738 * This is the case where we are backing pages
739 * in an already hot added region. Bring
740 * these pages online first.
741 */
742 pgs_ol = has->ha_end_pfn - start_pfn;
743 if (pgs_ol > pfn_cnt)
744 pgs_ol = pfn_cnt;
745 hv_bring_pgs_online(start_pfn, pgs_ol);
746 has->covered_end_pfn += pgs_ol;
747 has->covered_start_pfn += pgs_ol;
748 pfn_cnt -= pgs_ol;
749 }
750
751 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
752 /*
753 * We have some residual hot add range
754 * that needs to be hot added; hot add
755 * it now. Hot add a multiple of
756 * of HA_CHUNK that fully covers the pages
757 * we have.
758 */
759 size = (has->end_pfn - has->ha_end_pfn);
760 if (pfn_cnt <= size) {
761 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
762 if (pfn_cnt % HA_CHUNK)
763 size += HA_CHUNK;
764 } else {
765 pfn_cnt = size;
766 }
767 hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
768 }
769 /*
770 * If we managed to online any pages that were given to us,
771 * we declare success.
772 */
773 return has->covered_end_pfn - old_covered_state;
774
775 }
776
777 return 0;
778}
779
780static unsigned long process_hot_add(unsigned long pg_start,
781 unsigned long pfn_cnt,
782 unsigned long rg_start,
783 unsigned long rg_size)
784{
785 struct hv_hotadd_state *ha_region = NULL;
786
787 if (pfn_cnt == 0)
788 return 0;
789
790 if (!dm_device.host_specified_ha_region)
791 if (pfn_covered(pg_start, pfn_cnt))
792 goto do_pg_range;
793
794 /*
795 * If the host has specified a hot-add range; deal with it first.
796 */
797
647965a2 798 if (rg_size != 0) {
1cac8cd4
S
799 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
800 if (!ha_region)
801 return 0;
802
803 INIT_LIST_HEAD(&ha_region->list);
804
805 list_add_tail(&ha_region->list, &dm_device.ha_region_list);
806 ha_region->start_pfn = rg_start;
807 ha_region->ha_end_pfn = rg_start;
808 ha_region->covered_start_pfn = pg_start;
809 ha_region->covered_end_pfn = pg_start;
810 ha_region->end_pfn = rg_start + rg_size;
811 }
812
813do_pg_range:
814 /*
815 * Process the page range specified; bringing them
816 * online if possible.
817 */
818 return handle_pg_range(pg_start, pfn_cnt);
819}
820
821#endif
822
823static void hot_add_req(struct work_struct *dummy)
824{
825 struct dm_hot_add_response resp;
826#ifdef CONFIG_MEMORY_HOTPLUG
827 unsigned long pg_start, pfn_cnt;
828 unsigned long rg_start, rg_sz;
829#endif
830 struct hv_dynmem_device *dm = &dm_device;
831
9aa8b50b
S
832 memset(&resp, 0, sizeof(struct dm_hot_add_response));
833 resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
834 resp.hdr.size = sizeof(struct dm_hot_add_response);
835 resp.hdr.trans_id = atomic_inc_return(&trans_id);
836
1cac8cd4
S
837#ifdef CONFIG_MEMORY_HOTPLUG
838 pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
839 pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
9aa8b50b 840
1cac8cd4
S
841 rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
842 rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
843
844 if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
845 unsigned long region_size;
846 unsigned long region_start;
847
848 /*
849 * The host has not specified the hot-add region.
850 * Based on the hot-add page range being specified,
851 * compute a hot-add region that can cover the pages
852 * that need to be hot-added while ensuring the alignment
853 * and size requirements of Linux as it relates to hot-add.
854 */
855 region_start = pg_start;
856 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
857 if (pfn_cnt % HA_CHUNK)
858 region_size += HA_CHUNK;
859
860 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
861
862 rg_start = region_start;
863 rg_sz = region_size;
864 }
865
7f4f2302
S
866 if (do_hot_add)
867 resp.page_count = process_hot_add(pg_start, pfn_cnt,
868 rg_start, rg_sz);
1cac8cd4 869#endif
7f4f2302
S
870 /*
871 * The result field of the response structure has the
872 * following semantics:
873 *
874 * 1. If all or some pages hot-added: Guest should return success.
875 *
876 * 2. If no pages could be hot-added:
877 *
878 * If the guest returns success, then the host
879 * will not attempt any further hot-add operations. This
880 * signifies a permanent failure.
881 *
882 * If the guest returns failure, then this failure will be
883 * treated as a transient failure and the host may retry the
884 * hot-add operation after some delay.
885 */
1cac8cd4
S
886 if (resp.page_count > 0)
887 resp.result = 1;
7f4f2302
S
888 else if (!do_hot_add)
889 resp.result = 1;
1cac8cd4
S
890 else
891 resp.result = 0;
892
893 if (!do_hot_add || (resp.page_count == 0))
894 pr_info("Memory hot add failed\n");
895
896 dm->state = DM_INITIALIZED;
897 vmbus_sendpacket(dm->dev->channel, &resp,
9aa8b50b
S
898 sizeof(struct dm_hot_add_response),
899 (unsigned long)NULL,
900 VM_PKT_DATA_INBAND, 0);
9aa8b50b
S
901}
902
903static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
904{
6427a0d7
S
905 struct dm_info_header *info_hdr;
906
907 info_hdr = (struct dm_info_header *)msg->info;
908
909 switch (info_hdr->type) {
9aa8b50b
S
910 case INFO_TYPE_MAX_PAGE_CNT:
911 pr_info("Received INFO_TYPE_MAX_PAGE_CNT\n");
6427a0d7 912 pr_info("Data Size is %d\n", info_hdr->data_size);
9aa8b50b
S
913 break;
914 default:
6427a0d7 915 pr_info("Received Unknown type: %d\n", info_hdr->type);
9aa8b50b
S
916 }
917}
918
a6025a2a 919static unsigned long compute_balloon_floor(void)
1c7db96f
S
920{
921 unsigned long min_pages;
922#define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
923 /* Simple continuous piecewiese linear function:
924 * max MiB -> min MiB gradient
925 * 0 0
926 * 16 16
927 * 32 24
928 * 128 72 (1/2)
929 * 512 168 (1/4)
930 * 2048 360 (1/8)
931 * 8192 552 (1/32)
932 * 32768 1320
933 * 131072 4392
934 */
935 if (totalram_pages < MB2PAGES(128))
936 min_pages = MB2PAGES(8) + (totalram_pages >> 1);
937 else if (totalram_pages < MB2PAGES(512))
938 min_pages = MB2PAGES(40) + (totalram_pages >> 2);
939 else if (totalram_pages < MB2PAGES(2048))
940 min_pages = MB2PAGES(104) + (totalram_pages >> 3);
941 else
942 min_pages = MB2PAGES(296) + (totalram_pages >> 5);
943#undef MB2PAGES
944 return min_pages;
945}
946
9aa8b50b
S
947/*
948 * Post our status as it relates memory pressure to the
949 * host. Host expects the guests to post this status
950 * periodically at 1 second intervals.
951 *
952 * The metrics specified in this protocol are very Windows
953 * specific and so we cook up numbers here to convey our memory
954 * pressure.
955 */
956
957static void post_status(struct hv_dynmem_device *dm)
958{
959 struct dm_status status;
0731572b 960 struct sysinfo val;
72d1e4f6
S
961 unsigned long now = jiffies;
962 unsigned long last_post = last_post_time;
9aa8b50b 963
e500d158
S
964 if (pressure_report_delay > 0) {
965 --pressure_report_delay;
966 return;
967 }
72d1e4f6
S
968
969 if (!time_after(now, (last_post_time + HZ)))
970 return;
971
0731572b 972 si_meminfo(&val);
9aa8b50b
S
973 memset(&status, 0, sizeof(struct dm_status));
974 status.hdr.type = DM_STATUS_REPORT;
975 status.hdr.size = sizeof(struct dm_status);
976 status.hdr.trans_id = atomic_inc_return(&trans_id);
977
0731572b
S
978 /*
979 * The host expects the guest to report free memory.
980 * Further, the host expects the pressure information to
981 * include the ballooned out pages.
1c7db96f
S
982 * For a given amount of memory that we are managing, we
983 * need to compute a floor below which we should not balloon.
984 * Compute this and add it to the pressure report.
0731572b
S
985 */
986 status.num_avail = val.freeram;
1c7db96f
S
987 status.num_committed = vm_memory_committed() +
988 dm->num_pages_ballooned +
989 compute_balloon_floor();
9aa8b50b 990
e39992ec
S
991 /*
992 * If our transaction ID is no longer current, just don't
993 * send the status. This can happen if we were interrupted
994 * after we picked our transaction ID.
995 */
996 if (status.hdr.trans_id != atomic_read(&trans_id))
997 return;
998
72d1e4f6
S
999 /*
1000 * If the last post time that we sampled has changed,
1001 * we have raced, don't post the status.
1002 */
1003 if (last_post != last_post_time)
1004 return;
1005
1006 last_post_time = jiffies;
9aa8b50b
S
1007 vmbus_sendpacket(dm->dev->channel, &status,
1008 sizeof(struct dm_status),
1009 (unsigned long)NULL,
1010 VM_PKT_DATA_INBAND, 0);
1011
1012}
1013
989623c7 1014static void free_balloon_pages(struct hv_dynmem_device *dm,
9aa8b50b
S
1015 union dm_mem_page_range *range_array)
1016{
1017 int num_pages = range_array->finfo.page_cnt;
1018 __u64 start_frame = range_array->finfo.start_page;
1019 struct page *pg;
1020 int i;
1021
1022 for (i = 0; i < num_pages; i++) {
1023 pg = pfn_to_page(i + start_frame);
1024 __free_page(pg);
1025 dm->num_pages_ballooned--;
1026 }
1027}
1028
1029
1030
1031static int alloc_balloon_pages(struct hv_dynmem_device *dm, int num_pages,
1032 struct dm_balloon_response *bl_resp, int alloc_unit,
1033 bool *alloc_error)
1034{
1035 int i = 0;
1036 struct page *pg;
1037
1038 if (num_pages < alloc_unit)
1039 return 0;
1040
1041 for (i = 0; (i * alloc_unit) < num_pages; i++) {
1042 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1043 PAGE_SIZE)
1044 return i * alloc_unit;
1045
1046 /*
1047 * We execute this code in a thread context. Furthermore,
1048 * we don't want the kernel to try too hard.
1049 */
1050 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1051 __GFP_NOMEMALLOC | __GFP_NOWARN,
1052 get_order(alloc_unit << PAGE_SHIFT));
1053
1054 if (!pg) {
1055 *alloc_error = true;
1056 return i * alloc_unit;
1057 }
1058
1059
1060 dm->num_pages_ballooned += alloc_unit;
1061
f766dc1e
S
1062 /*
1063 * If we allocatted 2M pages; split them so we
1064 * can free them in any order we get.
1065 */
1066
1067 if (alloc_unit != 1)
1068 split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1069
9aa8b50b
S
1070 bl_resp->range_count++;
1071 bl_resp->range_array[i].finfo.start_page =
1072 page_to_pfn(pg);
1073 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1074 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1075
1076 }
1077
1078 return num_pages;
1079}
1080
1081
1082
6571b2da 1083static void balloon_up(struct work_struct *dummy)
9aa8b50b 1084{
6571b2da 1085 int num_pages = dm_device.balloon_wrk.num_pages;
9aa8b50b
S
1086 int num_ballooned = 0;
1087 struct dm_balloon_response *bl_resp;
1088 int alloc_unit;
1089 int ret;
1090 bool alloc_error = false;
1091 bool done = false;
1092 int i;
1093
1094
1095 /*
f766dc1e
S
1096 * We will attempt 2M allocations. However, if we fail to
1097 * allocate 2M chunks, we will go back to 4k allocations.
9aa8b50b 1098 */
f766dc1e 1099 alloc_unit = 512;
9aa8b50b
S
1100
1101 while (!done) {
1102 bl_resp = (struct dm_balloon_response *)send_buffer;
1103 memset(send_buffer, 0, PAGE_SIZE);
1104 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1105 bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1106 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1107 bl_resp->more_pages = 1;
1108
1109
1110 num_pages -= num_ballooned;
6571b2da 1111 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
9aa8b50b
S
1112 bl_resp, alloc_unit,
1113 &alloc_error);
1114
f766dc1e
S
1115 if ((alloc_error) && (alloc_unit != 1)) {
1116 alloc_unit = 1;
1117 continue;
1118 }
1119
9aa8b50b
S
1120 if ((alloc_error) || (num_ballooned == num_pages)) {
1121 bl_resp->more_pages = 0;
1122 done = true;
6571b2da 1123 dm_device.state = DM_INITIALIZED;
9aa8b50b
S
1124 }
1125
1126 /*
1127 * We are pushing a lot of data through the channel;
1128 * deal with transient failures caused because of the
1129 * lack of space in the ring buffer.
1130 */
1131
1132 do {
1133 ret = vmbus_sendpacket(dm_device.dev->channel,
1134 bl_resp,
1135 bl_resp->hdr.size,
1136 (unsigned long)NULL,
1137 VM_PKT_DATA_INBAND, 0);
1138
1139 if (ret == -EAGAIN)
1140 msleep(20);
72d1e4f6 1141 post_status(&dm_device);
9aa8b50b
S
1142 } while (ret == -EAGAIN);
1143
1144 if (ret) {
1145 /*
1146 * Free up the memory we allocatted.
1147 */
1148 pr_info("Balloon response failed\n");
1149
1150 for (i = 0; i < bl_resp->range_count; i++)
6571b2da 1151 free_balloon_pages(&dm_device,
9aa8b50b
S
1152 &bl_resp->range_array[i]);
1153
1154 done = true;
1155 }
1156 }
1157
1158}
1159
1160static void balloon_down(struct hv_dynmem_device *dm,
1161 struct dm_unballoon_request *req)
1162{
1163 union dm_mem_page_range *range_array = req->range_array;
1164 int range_count = req->range_count;
1165 struct dm_unballoon_response resp;
1166 int i;
1167
72d1e4f6 1168 for (i = 0; i < range_count; i++) {
9aa8b50b 1169 free_balloon_pages(dm, &range_array[i]);
72d1e4f6
S
1170 post_status(&dm_device);
1171 }
9aa8b50b
S
1172
1173 if (req->more_pages == 1)
1174 return;
1175
1176 memset(&resp, 0, sizeof(struct dm_unballoon_response));
1177 resp.hdr.type = DM_UNBALLOON_RESPONSE;
1178 resp.hdr.trans_id = atomic_inc_return(&trans_id);
1179 resp.hdr.size = sizeof(struct dm_unballoon_response);
1180
1181 vmbus_sendpacket(dm_device.dev->channel, &resp,
1182 sizeof(struct dm_unballoon_response),
1183 (unsigned long)NULL,
1184 VM_PKT_DATA_INBAND, 0);
1185
1186 dm->state = DM_INITIALIZED;
1187}
1188
1189static void balloon_onchannelcallback(void *context);
1190
1191static int dm_thread_func(void *dm_dev)
1192{
1193 struct hv_dynmem_device *dm = dm_dev;
1194 int t;
9aa8b50b
S
1195
1196 while (!kthread_should_stop()) {
1197 t = wait_for_completion_timeout(&dm_device.config_event, 1*HZ);
1198 /*
1199 * The host expects us to post information on the memory
1200 * pressure every second.
1201 */
1202
1203 if (t == 0)
1204 post_status(dm);
1205
9aa8b50b
S
1206 }
1207
1208 return 0;
1209}
1210
1211
1212static void version_resp(struct hv_dynmem_device *dm,
1213 struct dm_version_response *vresp)
1214{
1215 struct dm_version_request version_req;
1216 int ret;
1217
1218 if (vresp->is_accepted) {
1219 /*
1220 * We are done; wakeup the
1221 * context waiting for version
1222 * negotiation.
1223 */
1224 complete(&dm->host_event);
1225 return;
1226 }
1227 /*
1228 * If there are more versions to try, continue
1229 * with negotiations; if not
1230 * shutdown the service since we are not able
1231 * to negotiate a suitable version number
1232 * with the host.
1233 */
1234 if (dm->next_version == 0)
1235 goto version_error;
1236
1237 dm->next_version = 0;
1238 memset(&version_req, 0, sizeof(struct dm_version_request));
1239 version_req.hdr.type = DM_VERSION_REQUEST;
1240 version_req.hdr.size = sizeof(struct dm_version_request);
1241 version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1242 version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN7;
1243 version_req.is_last_attempt = 1;
1244
1245 ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1246 sizeof(struct dm_version_request),
1247 (unsigned long)NULL,
1248 VM_PKT_DATA_INBAND, 0);
1249
1250 if (ret)
1251 goto version_error;
1252
1253 return;
1254
1255version_error:
1256 dm->state = DM_INIT_ERROR;
1257 complete(&dm->host_event);
1258}
1259
1260static void cap_resp(struct hv_dynmem_device *dm,
1261 struct dm_capabilities_resp_msg *cap_resp)
1262{
1263 if (!cap_resp->is_accepted) {
1264 pr_info("Capabilities not accepted by host\n");
1265 dm->state = DM_INIT_ERROR;
1266 }
1267 complete(&dm->host_event);
1268}
1269
1270static void balloon_onchannelcallback(void *context)
1271{
1272 struct hv_device *dev = context;
1273 u32 recvlen;
1274 u64 requestid;
1275 struct dm_message *dm_msg;
1276 struct dm_header *dm_hdr;
1277 struct hv_dynmem_device *dm = hv_get_drvdata(dev);
6571b2da 1278 struct dm_balloon *bal_msg;
c51af826
S
1279 struct dm_hot_add *ha_msg;
1280 union dm_mem_page_range *ha_pg_range;
1cac8cd4 1281 union dm_mem_page_range *ha_region;
9aa8b50b
S
1282
1283 memset(recv_buffer, 0, sizeof(recv_buffer));
1284 vmbus_recvpacket(dev->channel, recv_buffer,
1285 PAGE_SIZE, &recvlen, &requestid);
1286
1287 if (recvlen > 0) {
1288 dm_msg = (struct dm_message *)recv_buffer;
1289 dm_hdr = &dm_msg->hdr;
1290
1291 switch (dm_hdr->type) {
1292 case DM_VERSION_RESPONSE:
1293 version_resp(dm,
1294 (struct dm_version_response *)dm_msg);
1295 break;
1296
1297 case DM_CAPABILITIES_RESPONSE:
1298 cap_resp(dm,
1299 (struct dm_capabilities_resp_msg *)dm_msg);
1300 break;
1301
1302 case DM_BALLOON_REQUEST:
6571b2da
S
1303 if (dm->state == DM_BALLOON_UP)
1304 pr_warn("Currently ballooning\n");
1305 bal_msg = (struct dm_balloon *)recv_buffer;
9aa8b50b 1306 dm->state = DM_BALLOON_UP;
6571b2da
S
1307 dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1308 schedule_work(&dm_device.balloon_wrk.wrk);
9aa8b50b
S
1309 break;
1310
1311 case DM_UNBALLOON_REQUEST:
1312 dm->state = DM_BALLOON_DOWN;
1313 balloon_down(dm,
1314 (struct dm_unballoon_request *)recv_buffer);
1315 break;
1316
1317 case DM_MEM_HOT_ADD_REQUEST:
c51af826
S
1318 if (dm->state == DM_HOT_ADD)
1319 pr_warn("Currently hot-adding\n");
9aa8b50b 1320 dm->state = DM_HOT_ADD;
c51af826 1321 ha_msg = (struct dm_hot_add *)recv_buffer;
1cac8cd4
S
1322 if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1323 /*
1324 * This is a normal hot-add request specifying
1325 * hot-add memory.
1326 */
1327 ha_pg_range = &ha_msg->range;
1328 dm->ha_wrk.ha_page_range = *ha_pg_range;
1329 dm->ha_wrk.ha_region_range.page_range = 0;
1330 } else {
1331 /*
1332 * Host is specifying that we first hot-add
1333 * a region and then partially populate this
1334 * region.
1335 */
1336 dm->host_specified_ha_region = true;
1337 ha_pg_range = &ha_msg->range;
1338 ha_region = &ha_pg_range[1];
1339 dm->ha_wrk.ha_page_range = *ha_pg_range;
1340 dm->ha_wrk.ha_region_range = *ha_region;
1341 }
c51af826 1342 schedule_work(&dm_device.ha_wrk.wrk);
9aa8b50b
S
1343 break;
1344
1345 case DM_INFO_MESSAGE:
1346 process_info(dm, (struct dm_info_msg *)dm_msg);
1347 break;
1348
1349 default:
1350 pr_err("Unhandled message: type: %d\n", dm_hdr->type);
1351
1352 }
1353 }
1354
1355}
1356
1357static int balloon_probe(struct hv_device *dev,
1358 const struct hv_vmbus_device_id *dev_id)
1359{
1360 int ret, t;
1361 struct dm_version_request version_req;
1362 struct dm_capabilities cap_msg;
1363
1364 do_hot_add = hot_add;
1365
1366 /*
1367 * First allocate a send buffer.
1368 */
1369
1370 send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1371 if (!send_buffer)
1372 return -ENOMEM;
1373
1374 ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1375 balloon_onchannelcallback, dev);
1376
1377 if (ret)
33080c1c 1378 goto probe_error0;
9aa8b50b
S
1379
1380 dm_device.dev = dev;
1381 dm_device.state = DM_INITIALIZING;
1382 dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1383 init_completion(&dm_device.host_event);
1384 init_completion(&dm_device.config_event);
1cac8cd4 1385 INIT_LIST_HEAD(&dm_device.ha_region_list);
6571b2da 1386 INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
c51af826 1387 INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1cac8cd4 1388 dm_device.host_specified_ha_region = false;
9aa8b50b
S
1389
1390 dm_device.thread =
1391 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1392 if (IS_ERR(dm_device.thread)) {
1393 ret = PTR_ERR(dm_device.thread);
33080c1c 1394 goto probe_error1;
9aa8b50b
S
1395 }
1396
1cac8cd4
S
1397#ifdef CONFIG_MEMORY_HOTPLUG
1398 set_online_page_callback(&hv_online_page);
1399#endif
1400
9aa8b50b
S
1401 hv_set_drvdata(dev, &dm_device);
1402 /*
1403 * Initiate the hand shake with the host and negotiate
1404 * a version that the host can support. We start with the
1405 * highest version number and go down if the host cannot
1406 * support it.
1407 */
1408 memset(&version_req, 0, sizeof(struct dm_version_request));
1409 version_req.hdr.type = DM_VERSION_REQUEST;
1410 version_req.hdr.size = sizeof(struct dm_version_request);
1411 version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1412 version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN8;
1413 version_req.is_last_attempt = 0;
1414
1415 ret = vmbus_sendpacket(dev->channel, &version_req,
1416 sizeof(struct dm_version_request),
1417 (unsigned long)NULL,
7a64b864 1418 VM_PKT_DATA_INBAND, 0);
9aa8b50b 1419 if (ret)
33080c1c 1420 goto probe_error2;
9aa8b50b
S
1421
1422 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1423 if (t == 0) {
1424 ret = -ETIMEDOUT;
33080c1c 1425 goto probe_error2;
9aa8b50b
S
1426 }
1427
1428 /*
1429 * If we could not negotiate a compatible version with the host
1430 * fail the probe function.
1431 */
1432 if (dm_device.state == DM_INIT_ERROR) {
1433 ret = -ETIMEDOUT;
33080c1c 1434 goto probe_error2;
9aa8b50b
S
1435 }
1436 /*
1437 * Now submit our capabilities to the host.
1438 */
1439 memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1440 cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1441 cap_msg.hdr.size = sizeof(struct dm_capabilities);
1442 cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1443
1444 cap_msg.caps.cap_bits.balloon = 1;
9aa8b50b
S
1445 cap_msg.caps.cap_bits.hot_add = 1;
1446
647965a2
S
1447 /*
1448 * Specify our alignment requirements as it relates
1449 * memory hot-add. Specify 128MB alignment.
1450 */
1451 cap_msg.caps.cap_bits.hot_add_alignment = 7;
1452
9aa8b50b
S
1453 /*
1454 * Currently the host does not use these
1455 * values and we set them to what is done in the
1456 * Windows driver.
1457 */
1458 cap_msg.min_page_cnt = 0;
1459 cap_msg.max_page_number = -1;
1460
1461 ret = vmbus_sendpacket(dev->channel, &cap_msg,
1462 sizeof(struct dm_capabilities),
1463 (unsigned long)NULL,
7a64b864 1464 VM_PKT_DATA_INBAND, 0);
9aa8b50b 1465 if (ret)
33080c1c 1466 goto probe_error2;
9aa8b50b
S
1467
1468 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1469 if (t == 0) {
1470 ret = -ETIMEDOUT;
33080c1c 1471 goto probe_error2;
9aa8b50b
S
1472 }
1473
1474 /*
1475 * If the host does not like our capabilities,
1476 * fail the probe function.
1477 */
1478 if (dm_device.state == DM_INIT_ERROR) {
1479 ret = -ETIMEDOUT;
33080c1c 1480 goto probe_error2;
9aa8b50b
S
1481 }
1482
1483 dm_device.state = DM_INITIALIZED;
1484
1485 return 0;
1486
33080c1c 1487probe_error2:
1cac8cd4
S
1488#ifdef CONFIG_MEMORY_HOTPLUG
1489 restore_online_page_callback(&hv_online_page);
1490#endif
9aa8b50b
S
1491 kthread_stop(dm_device.thread);
1492
33080c1c 1493probe_error1:
9aa8b50b 1494 vmbus_close(dev->channel);
33080c1c
S
1495probe_error0:
1496 kfree(send_buffer);
9aa8b50b
S
1497 return ret;
1498}
1499
1500static int balloon_remove(struct hv_device *dev)
1501{
1502 struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1cac8cd4
S
1503 struct list_head *cur, *tmp;
1504 struct hv_hotadd_state *has;
9aa8b50b
S
1505
1506 if (dm->num_pages_ballooned != 0)
1507 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1508
6571b2da 1509 cancel_work_sync(&dm->balloon_wrk.wrk);
c51af826 1510 cancel_work_sync(&dm->ha_wrk.wrk);
1cac8cd4 1511
9aa8b50b
S
1512 vmbus_close(dev->channel);
1513 kthread_stop(dm->thread);
33080c1c 1514 kfree(send_buffer);
1cac8cd4
S
1515#ifdef CONFIG_MEMORY_HOTPLUG
1516 restore_online_page_callback(&hv_online_page);
1517#endif
1518 list_for_each_safe(cur, tmp, &dm->ha_region_list) {
1519 has = list_entry(cur, struct hv_hotadd_state, list);
1520 list_del(&has->list);
1521 kfree(has);
1522 }
9aa8b50b
S
1523
1524 return 0;
1525}
1526
1527static const struct hv_vmbus_device_id id_table[] = {
1528 /* Dynamic Memory Class ID */
1529 /* 525074DC-8985-46e2-8057-A307DC18A502 */
d13984e5 1530 { HV_DM_GUID, },
9aa8b50b
S
1531 { },
1532};
1533
1534MODULE_DEVICE_TABLE(vmbus, id_table);
1535
1536static struct hv_driver balloon_drv = {
1537 .name = "hv_balloon",
1538 .id_table = id_table,
1539 .probe = balloon_probe,
1540 .remove = balloon_remove,
1541};
1542
1543static int __init init_balloon_drv(void)
1544{
1545
1546 return vmbus_driver_register(&balloon_drv);
1547}
1548
9aa8b50b 1549module_init(init_balloon_drv);
9aa8b50b
S
1550
1551MODULE_DESCRIPTION("Hyper-V Balloon");
1552MODULE_VERSION(HV_DRV_VERSION);
1553MODULE_LICENSE("GPL");