zram: cut trailing newline in algorithm name
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / drivers / block / zram / zram_drv.c
CommitLineData
94f740fc
SQK
1/*
2 * Compressed RAM block device
3 *
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
13 */
14
15#define KMSG_COMPONENT "zram"
16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18#ifdef CONFIG_ZRAM_DEBUG
19#define DEBUG
20#endif
21
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/bio.h>
25#include <linux/bitops.h>
26#include <linux/blkdev.h>
27#include <linux/buffer_head.h>
28#include <linux/device.h>
29#include <linux/genhd.h>
30#include <linux/highmem.h>
31#include <linux/slab.h>
32#include <linux/string.h>
33#include <linux/vmalloc.h>
34#include <linux/err.h>
35
36#include "zram_drv.h"
37
38/* Globals */
39static int zram_major;
40static struct zram *zram_devices;
41static const char *default_compressor = "lzo";
42
43/* Module params (documentation at end) */
44static unsigned int num_devices = 1;
45
46static inline void deprecated_attr_warn(const char *name)
47{
48 pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
49 task_pid_nr(current),
50 current->comm,
51 name,
52 "See zram documentation.");
53}
54
55#define ZRAM_ATTR_RO(name) \
56static ssize_t name##_show(struct device *d, \
57 struct device_attribute *attr, char *b) \
58{ \
59 struct zram *zram = dev_to_zram(d); \
60 \
61 deprecated_attr_warn(__stringify(name)); \
62 return scnprintf(b, PAGE_SIZE, "%llu\n", \
63 (u64)atomic64_read(&zram->stats.name)); \
64} \
65static DEVICE_ATTR_RO(name);
66
67static inline bool init_done(struct zram *zram)
68{
69 return zram->disksize;
70}
71
72static inline struct zram *dev_to_zram(struct device *dev)
73{
74 return (struct zram *)dev_to_disk(dev)->private_data;
75}
76
77static ssize_t compact_store(struct device *dev,
78 struct device_attribute *attr, const char *buf, size_t len)
79{
80 unsigned long nr_migrated;
81 struct zram *zram = dev_to_zram(dev);
82 struct zram_meta *meta;
83
84 down_read(&zram->init_lock);
85 if (!init_done(zram)) {
86 up_read(&zram->init_lock);
87 return -EINVAL;
88 }
89
90 meta = zram->meta;
91 nr_migrated = zs_compact(meta->mem_pool);
92 atomic64_add(nr_migrated, &zram->stats.num_migrated);
93 up_read(&zram->init_lock);
94
95 return len;
96}
97
98static ssize_t disksize_show(struct device *dev,
99 struct device_attribute *attr, char *buf)
100{
101 struct zram *zram = dev_to_zram(dev);
102
103 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
104}
105
106static ssize_t initstate_show(struct device *dev,
107 struct device_attribute *attr, char *buf)
108{
109 u32 val;
110 struct zram *zram = dev_to_zram(dev);
111
112 down_read(&zram->init_lock);
113 val = init_done(zram);
114 up_read(&zram->init_lock);
115
116 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
117}
118
119static ssize_t orig_data_size_show(struct device *dev,
120 struct device_attribute *attr, char *buf)
121{
122 struct zram *zram = dev_to_zram(dev);
123
124 deprecated_attr_warn("orig_data_size");
125 return scnprintf(buf, PAGE_SIZE, "%llu\n",
126 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
127}
128
129static ssize_t mem_used_total_show(struct device *dev,
130 struct device_attribute *attr, char *buf)
131{
132 u64 val = 0;
133 struct zram *zram = dev_to_zram(dev);
134
135 deprecated_attr_warn("mem_used_total");
136 down_read(&zram->init_lock);
137 if (init_done(zram)) {
138 struct zram_meta *meta = zram->meta;
139 val = zs_get_total_pages(meta->mem_pool);
140 }
141 up_read(&zram->init_lock);
142
143 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
144}
145
146static ssize_t max_comp_streams_show(struct device *dev,
147 struct device_attribute *attr, char *buf)
148{
149 int val;
150 struct zram *zram = dev_to_zram(dev);
151
152 down_read(&zram->init_lock);
153 val = zram->max_comp_streams;
154 up_read(&zram->init_lock);
155
156 return scnprintf(buf, PAGE_SIZE, "%d\n", val);
157}
158
159static ssize_t mem_limit_show(struct device *dev,
160 struct device_attribute *attr, char *buf)
161{
162 u64 val;
163 struct zram *zram = dev_to_zram(dev);
164
165 deprecated_attr_warn("mem_limit");
166 down_read(&zram->init_lock);
167 val = zram->limit_pages;
168 up_read(&zram->init_lock);
169
170 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
171}
172
173static ssize_t mem_limit_store(struct device *dev,
174 struct device_attribute *attr, const char *buf, size_t len)
175{
176 u64 limit;
177 char *tmp;
178 struct zram *zram = dev_to_zram(dev);
179
180 limit = memparse(buf, &tmp);
181 if (buf == tmp) /* no chars parsed, invalid input */
182 return -EINVAL;
183
184 down_write(&zram->init_lock);
185 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
186 up_write(&zram->init_lock);
187
188 return len;
189}
190
191static ssize_t mem_used_max_show(struct device *dev,
192 struct device_attribute *attr, char *buf)
193{
194 u64 val = 0;
195 struct zram *zram = dev_to_zram(dev);
196
197 deprecated_attr_warn("mem_used_max");
198 down_read(&zram->init_lock);
199 if (init_done(zram))
200 val = atomic_long_read(&zram->stats.max_used_pages);
201 up_read(&zram->init_lock);
202
203 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
204}
205
206static ssize_t mem_used_max_store(struct device *dev,
207 struct device_attribute *attr, const char *buf, size_t len)
208{
209 int err;
210 unsigned long val;
211 struct zram *zram = dev_to_zram(dev);
212
213 err = kstrtoul(buf, 10, &val);
214 if (err || val != 0)
215 return -EINVAL;
216
217 down_read(&zram->init_lock);
218 if (init_done(zram)) {
219 struct zram_meta *meta = zram->meta;
220 atomic_long_set(&zram->stats.max_used_pages,
221 zs_get_total_pages(meta->mem_pool));
222 }
223 up_read(&zram->init_lock);
224
225 return len;
226}
227
228static ssize_t max_comp_streams_store(struct device *dev,
229 struct device_attribute *attr, const char *buf, size_t len)
230{
231 int num;
232 struct zram *zram = dev_to_zram(dev);
233 int ret;
234
235 ret = kstrtoint(buf, 0, &num);
236 if (ret < 0)
237 return ret;
238 if (num < 1)
239 return -EINVAL;
240
241 down_write(&zram->init_lock);
242 if (init_done(zram)) {
243 if (!zcomp_set_max_streams(zram->comp, num)) {
244 pr_info("Cannot change max compression streams\n");
245 ret = -EINVAL;
246 goto out;
247 }
248 }
249
250 zram->max_comp_streams = num;
251 ret = len;
252out:
253 up_write(&zram->init_lock);
254 return ret;
255}
256
257static ssize_t comp_algorithm_show(struct device *dev,
258 struct device_attribute *attr, char *buf)
259{
260 size_t sz;
261 struct zram *zram = dev_to_zram(dev);
262
263 down_read(&zram->init_lock);
264 sz = zcomp_available_show(zram->compressor, buf);
265 up_read(&zram->init_lock);
266
267 return sz;
268}
269
270static ssize_t comp_algorithm_store(struct device *dev,
271 struct device_attribute *attr, const char *buf, size_t len)
272{
273 struct zram *zram = dev_to_zram(dev);
5b25b5da
SS
274 size_t sz;
275
94f740fc
SQK
276 down_write(&zram->init_lock);
277 if (init_done(zram)) {
278 up_write(&zram->init_lock);
279 pr_info("Can't change algorithm for initialized device\n");
280 return -EBUSY;
281 }
282 strlcpy(zram->compressor, buf, sizeof(zram->compressor));
5b25b5da
SS
283
284 /* ignore trailing newline */
285 sz = strlen(zram->compressor);
286 if (sz > 0 && zram->compressor[sz - 1] == '\n')
287 zram->compressor[sz - 1] = 0x00;
288
94f740fc
SQK
289 up_write(&zram->init_lock);
290 return len;
291}
292
293/* flag operations needs meta->tb_lock */
294static int zram_test_flag(struct zram_meta *meta, u32 index,
295 enum zram_pageflags flag)
296{
297 return meta->table[index].value & BIT(flag);
298}
299
300static void zram_set_flag(struct zram_meta *meta, u32 index,
301 enum zram_pageflags flag)
302{
303 meta->table[index].value |= BIT(flag);
304}
305
306static void zram_clear_flag(struct zram_meta *meta, u32 index,
307 enum zram_pageflags flag)
308{
309 meta->table[index].value &= ~BIT(flag);
310}
311
312static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
313{
314 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
315}
316
317static void zram_set_obj_size(struct zram_meta *meta,
318 u32 index, size_t size)
319{
320 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
321
322 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
323}
324
325static inline int is_partial_io(struct bio_vec *bvec)
326{
327 return bvec->bv_len != PAGE_SIZE;
328}
329
330/*
331 * Check if request is within bounds and aligned on zram logical blocks.
332 */
333static inline int valid_io_request(struct zram *zram,
334 sector_t start, unsigned int size)
335{
336 u64 end, bound;
337
338 /* unaligned request */
339 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
340 return 0;
341 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
342 return 0;
343
344 end = start + (size >> SECTOR_SHIFT);
345 bound = zram->disksize >> SECTOR_SHIFT;
346 /* out of range range */
347 if (unlikely(start >= bound || end > bound || start > end))
348 return 0;
349
350 /* I/O request is valid */
351 return 1;
352}
353
354static void zram_meta_free(struct zram_meta *meta, u64 disksize)
355{
356 size_t num_pages = disksize >> PAGE_SHIFT;
357 size_t index;
358
359 /* Free all pages that are still in this zram device */
360 for (index = 0; index < num_pages; index++) {
361 unsigned long handle = meta->table[index].handle;
362
363 if (!handle)
364 continue;
365
366 zs_free(meta->mem_pool, handle);
367 }
368
369 zs_destroy_pool(meta->mem_pool);
370 vfree(meta->table);
371 kfree(meta);
372}
373
374static struct zram_meta *zram_meta_alloc(int device_id, u64 disksize)
375{
376 size_t num_pages;
377 char pool_name[8];
378 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
379
380 if (!meta)
381 return NULL;
382
383 num_pages = disksize >> PAGE_SHIFT;
384 meta->table = vzalloc(num_pages * sizeof(*meta->table));
385 if (!meta->table) {
386 pr_err("Error allocating zram address table\n");
387 goto out_error;
388 }
389
390 snprintf(pool_name, sizeof(pool_name), "zram%d", device_id);
391 meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
392 if (!meta->mem_pool) {
393 pr_err("Error creating memory pool\n");
394 goto out_error;
395 }
396
397 return meta;
398
399out_error:
400 vfree(meta->table);
401 kfree(meta);
402 return NULL;
403}
404
405static inline bool zram_meta_get(struct zram *zram)
406{
407 if (atomic_inc_not_zero(&zram->refcount))
408 return true;
409 return false;
410}
411
412static inline void zram_meta_put(struct zram *zram)
413{
414 atomic_dec(&zram->refcount);
415}
416
417static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
418{
419 if (*offset + bvec->bv_len >= PAGE_SIZE)
420 (*index)++;
421 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
422}
423
424static int page_zero_filled(void *ptr)
425{
426 unsigned int pos;
427 unsigned long *page;
428
429 page = (unsigned long *)ptr;
430
431 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
432 if (page[pos])
433 return 0;
434 }
435
436 return 1;
437}
438
439static void handle_zero_page(struct bio_vec *bvec)
440{
441 struct page *page = bvec->bv_page;
442 void *user_mem;
443
444 user_mem = kmap_atomic(page);
445 if (is_partial_io(bvec))
446 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
447 else
448 clear_page(user_mem);
449 kunmap_atomic(user_mem);
450
451 flush_dcache_page(page);
452}
453
454
455/*
456 * To protect concurrent access to the same index entry,
457 * caller should hold this table index entry's bit_spinlock to
458 * indicate this index entry is accessing.
459 */
460static void zram_free_page(struct zram *zram, size_t index)
461{
462 struct zram_meta *meta = zram->meta;
463 unsigned long handle = meta->table[index].handle;
464
465 if (unlikely(!handle)) {
466 /*
467 * No memory is allocated for zero filled pages.
468 * Simply clear zero page flag.
469 */
470 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
471 zram_clear_flag(meta, index, ZRAM_ZERO);
472 atomic64_dec(&zram->stats.zero_pages);
473 }
474 return;
475 }
476
477 zs_free(meta->mem_pool, handle);
478
479 atomic64_sub(zram_get_obj_size(meta, index),
480 &zram->stats.compr_data_size);
481 atomic64_dec(&zram->stats.pages_stored);
482
483 meta->table[index].handle = 0;
484 zram_set_obj_size(meta, index, 0);
485}
486
487static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
488{
489 int ret = 0;
490 unsigned char *cmem;
491 struct zram_meta *meta = zram->meta;
492 unsigned long handle;
493 size_t size;
494
495 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
496 handle = meta->table[index].handle;
497 size = zram_get_obj_size(meta, index);
498
499 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
500 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
501 clear_page(mem);
502 return 0;
503 }
504
505 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
506 if (size == PAGE_SIZE)
507 copy_page(mem, cmem);
508 else
509 ret = zcomp_decompress(zram->comp, cmem, size, mem);
510 zs_unmap_object(meta->mem_pool, handle);
511 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
512
513 /* Should NEVER happen. Return bio error if it does. */
514 if (unlikely(ret)) {
515 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
516 return ret;
517 }
518
519 return 0;
520}
521
522static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
523 u32 index, int offset)
524{
525 int ret;
526 struct page *page;
527 unsigned char *user_mem, *uncmem = NULL;
528 struct zram_meta *meta = zram->meta;
529 page = bvec->bv_page;
530
531 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
532 if (unlikely(!meta->table[index].handle) ||
533 zram_test_flag(meta, index, ZRAM_ZERO)) {
534 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
535 handle_zero_page(bvec);
536 return 0;
537 }
538 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
539
540 if (is_partial_io(bvec))
541 /* Use a temporary buffer to decompress the page */
542 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
543
544 user_mem = kmap_atomic(page);
545 if (!is_partial_io(bvec))
546 uncmem = user_mem;
547
548 if (!uncmem) {
549 pr_info("Unable to allocate temp memory\n");
550 ret = -ENOMEM;
551 goto out_cleanup;
552 }
553
554 ret = zram_decompress_page(zram, uncmem, index);
555 /* Should NEVER happen. Return bio error if it does. */
556 if (unlikely(ret))
557 goto out_cleanup;
558
559 if (is_partial_io(bvec))
560 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
561 bvec->bv_len);
562
563 flush_dcache_page(page);
564 ret = 0;
565out_cleanup:
566 kunmap_atomic(user_mem);
567 if (is_partial_io(bvec))
568 kfree(uncmem);
569 return ret;
570}
571
572static inline void update_used_max(struct zram *zram,
573 const unsigned long pages)
574{
575 unsigned long old_max, cur_max;
576
577 old_max = atomic_long_read(&zram->stats.max_used_pages);
578
579 do {
580 cur_max = old_max;
581 if (pages > cur_max)
582 old_max = atomic_long_cmpxchg(
583 &zram->stats.max_used_pages, cur_max, pages);
584 } while (old_max != cur_max);
585}
586
587static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
588 int offset)
589{
590 int ret = 0;
591 size_t clen;
592 unsigned long handle;
593 struct page *page;
594 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
595 struct zram_meta *meta = zram->meta;
2a60ea2c 596 struct zcomp_strm *zstrm = NULL;
94f740fc
SQK
597 unsigned long alloced_pages;
598
599 page = bvec->bv_page;
600 if (is_partial_io(bvec)) {
601 /*
602 * This is a partial IO. We need to read the full page
603 * before to write the changes.
604 */
605 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
606 if (!uncmem) {
607 ret = -ENOMEM;
608 goto out;
609 }
610 ret = zram_decompress_page(zram, uncmem, index);
611 if (ret)
612 goto out;
613 }
614
615 zstrm = zcomp_strm_find(zram->comp);
94f740fc
SQK
616 user_mem = kmap_atomic(page);
617
618 if (is_partial_io(bvec)) {
619 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
620 bvec->bv_len);
621 kunmap_atomic(user_mem);
622 user_mem = NULL;
623 } else {
624 uncmem = user_mem;
625 }
626
627 if (page_zero_filled(uncmem)) {
628 if (user_mem)
629 kunmap_atomic(user_mem);
630 /* Free memory associated with this sector now. */
631 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
632 zram_free_page(zram, index);
633 zram_set_flag(meta, index, ZRAM_ZERO);
634 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
635
636 atomic64_inc(&zram->stats.zero_pages);
637 ret = 0;
638 goto out;
639 }
640
641 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
642 if (!is_partial_io(bvec)) {
643 kunmap_atomic(user_mem);
644 user_mem = NULL;
645 uncmem = NULL;
646 }
647
648 if (unlikely(ret)) {
649 pr_err("Compression failed! err=%d\n", ret);
650 goto out;
651 }
652 src = zstrm->buffer;
653 if (unlikely(clen > max_zpage_size)) {
654 clen = PAGE_SIZE;
655 if (is_partial_io(bvec))
656 src = uncmem;
657 }
658
659 handle = zs_malloc(meta->mem_pool, clen);
660 if (!handle) {
661 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
662 index, clen);
663 ret = -ENOMEM;
664 goto out;
665 }
666
667 alloced_pages = zs_get_total_pages(meta->mem_pool);
668 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
669 zs_free(meta->mem_pool, handle);
670 ret = -ENOMEM;
671 goto out;
672 }
673
674 update_used_max(zram, alloced_pages);
675
676 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
677
678 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
679 src = kmap_atomic(page);
680 copy_page(cmem, src);
681 kunmap_atomic(src);
682 } else {
683 memcpy(cmem, src, clen);
684 }
685
686 zcomp_strm_release(zram->comp, zstrm);
2a60ea2c 687 zstrm = NULL;
94f740fc
SQK
688 zs_unmap_object(meta->mem_pool, handle);
689
690 /*
691 * Free memory associated with this sector
692 * before overwriting unused sectors.
693 */
694 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
695 zram_free_page(zram, index);
696
697 meta->table[index].handle = handle;
698 zram_set_obj_size(meta, index, clen);
699 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
700
701 /* Update stats */
702 atomic64_add(clen, &zram->stats.compr_data_size);
703 atomic64_inc(&zram->stats.pages_stored);
704out:
2a60ea2c 705 if (zstrm)
94f740fc
SQK
706 zcomp_strm_release(zram->comp, zstrm);
707 if (is_partial_io(bvec))
708 kfree(uncmem);
709 return ret;
710}
711
712static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
713 int offset, int rw)
714{
715 unsigned long start_time = jiffies;
716 int ret;
717
718 generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
719 &zram->disk->part0);
720
721 if (rw == READ) {
722 atomic64_inc(&zram->stats.num_reads);
723 ret = zram_bvec_read(zram, bvec, index, offset);
724 } else {
725 atomic64_inc(&zram->stats.num_writes);
726 ret = zram_bvec_write(zram, bvec, index, offset);
727 }
728
729 generic_end_io_acct(rw, &zram->disk->part0, start_time);
730
731 if (unlikely(ret)) {
732 if (rw == READ)
733 atomic64_inc(&zram->stats.failed_reads);
734 else
735 atomic64_inc(&zram->stats.failed_writes);
736 }
737
738 return ret;
739}
740
741/*
742 * zram_bio_discard - handler on discard request
743 * @index: physical block index in PAGE_SIZE units
744 * @offset: byte offset within physical block
745 */
746static void zram_bio_discard(struct zram *zram, u32 index,
747 int offset, struct bio *bio)
748{
749 size_t n = bio->bi_size;
750 struct zram_meta *meta = zram->meta;
751
752 /*
753 * zram manages data in physical block size units. Because logical block
754 * size isn't identical with physical block size on some arch, we
755 * could get a discard request pointing to a specific offset within a
756 * certain physical block. Although we can handle this request by
757 * reading that physiclal block and decompressing and partially zeroing
758 * and re-compressing and then re-storing it, this isn't reasonable
759 * because our intent with a discard request is to save memory. So
760 * skipping this logical block is appropriate here.
761 */
762 if (offset) {
763 if (n <= (PAGE_SIZE - offset))
764 return;
765
766 n -= (PAGE_SIZE - offset);
767 index++;
768 }
769
770 while (n >= PAGE_SIZE) {
771 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
772 zram_free_page(zram, index);
773 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
774 atomic64_inc(&zram->stats.notify_free);
775 index++;
776 n -= PAGE_SIZE;
777 }
778}
779
780static void zram_reset_device(struct zram *zram)
781{
782 struct zram_meta *meta;
783 struct zcomp *comp;
784 u64 disksize;
785
786 down_write(&zram->init_lock);
787
788 zram->limit_pages = 0;
789
790 if (!init_done(zram)) {
791 up_write(&zram->init_lock);
792 return;
793 }
794
795 meta = zram->meta;
796 comp = zram->comp;
797 disksize = zram->disksize;
798 /*
799 * Refcount will go down to 0 eventually and r/w handler
800 * cannot handle further I/O so it will bail out by
801 * check zram_meta_get.
802 */
803 zram_meta_put(zram);
804 /*
805 * We want to free zram_meta in process context to avoid
806 * deadlock between reclaim path and any other locks.
807 */
808 wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
809
810 /* Reset stats */
811 memset(&zram->stats, 0, sizeof(zram->stats));
812 zram->disksize = 0;
813 zram->max_comp_streams = 1;
814
815 set_capacity(zram->disk, 0);
816 part_stat_set_all(&zram->disk->part0, 0);
817
818 up_write(&zram->init_lock);
819 /* I/O operation under all of CPU are done so let's free */
820 zram_meta_free(meta, disksize);
821 zcomp_destroy(comp);
822}
823
824static ssize_t disksize_store(struct device *dev,
825 struct device_attribute *attr, const char *buf, size_t len)
826{
827 u64 disksize;
828 struct zcomp *comp;
829 struct zram_meta *meta;
830 struct zram *zram = dev_to_zram(dev);
831 int err;
832
833 disksize = memparse(buf, NULL);
834 if (!disksize)
835 return -EINVAL;
836
837 disksize = PAGE_ALIGN(disksize);
838 meta = zram_meta_alloc(zram->disk->first_minor, disksize);
839 if (!meta)
840 return -ENOMEM;
841
842 comp = zcomp_create(zram->compressor, zram->max_comp_streams);
843 if (IS_ERR(comp)) {
844 pr_info("Cannot initialise %s compressing backend\n",
845 zram->compressor);
846 err = PTR_ERR(comp);
847 goto out_free_meta;
848 }
849
850 down_write(&zram->init_lock);
851 if (init_done(zram)) {
852 pr_info("Cannot change disksize for initialized device\n");
853 err = -EBUSY;
854 goto out_destroy_comp;
855 }
856
857 init_waitqueue_head(&zram->io_done);
858 atomic_set(&zram->refcount, 1);
859 zram->meta = meta;
860 zram->comp = comp;
861 zram->disksize = disksize;
862 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
863 up_write(&zram->init_lock);
864
865 /*
866 * Revalidate disk out of the init_lock to avoid lockdep splat.
867 * It's okay because disk's capacity is protected by init_lock
868 * so that revalidate_disk always sees up-to-date capacity.
869 */
870 revalidate_disk(zram->disk);
871
872 return len;
873
874out_destroy_comp:
875 up_write(&zram->init_lock);
876 zcomp_destroy(comp);
877out_free_meta:
878 zram_meta_free(meta, disksize);
879 return err;
880}
881
882static ssize_t reset_store(struct device *dev,
883 struct device_attribute *attr, const char *buf, size_t len)
884{
885 int ret;
886 unsigned short do_reset;
887 struct zram *zram;
888 struct block_device *bdev;
889
890 zram = dev_to_zram(dev);
891 bdev = bdget_disk(zram->disk, 0);
892
893 if (!bdev)
894 return -ENOMEM;
895
896 mutex_lock(&bdev->bd_mutex);
897 /* Do not reset an active device! */
898 if (bdev->bd_openers) {
899 ret = -EBUSY;
900 goto out;
901 }
902
903 ret = kstrtou16(buf, 10, &do_reset);
904 if (ret)
905 goto out;
906
907 if (!do_reset) {
908 ret = -EINVAL;
909 goto out;
910 }
911
912 /* Make sure all pending I/O is finished */
913 fsync_bdev(bdev);
914 zram_reset_device(zram);
915
916 mutex_unlock(&bdev->bd_mutex);
917 revalidate_disk(zram->disk);
918 bdput(bdev);
919
920 return len;
921
922out:
923 mutex_unlock(&bdev->bd_mutex);
924 bdput(bdev);
925 return ret;
926}
927
928static void __zram_make_request(struct zram *zram, struct bio *bio)
929{
930 int i, offset, rw;
931 u32 index;
932 struct bio_vec *bvec;
933
934 index = bio->bi_sector >> SECTORS_PER_PAGE_SHIFT;
935 offset = (bio->bi_sector &
936 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
937
938 if (unlikely(bio->bi_rw & REQ_DISCARD)) {
939 zram_bio_discard(zram, index, offset, bio);
940 bio_endio(bio, 0);
941 return;
942 }
943
944 rw = bio_data_dir(bio);
945 bio_for_each_segment(bvec, bio, i) {
946 int max_transfer_size = PAGE_SIZE - offset;
947
948 if (bvec->bv_len > max_transfer_size) {
949 /*
950 * zram_bvec_rw() can only make operation on a single
951 * zram page. Split the bio vector.
952 */
953 struct bio_vec bv;
954
955 bv.bv_page = bvec->bv_page;
956 bv.bv_len = max_transfer_size;
957 bv.bv_offset = bvec->bv_offset;
958
959 if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
960 goto out;
961
962 bv.bv_len = bvec->bv_len - max_transfer_size;
963 bv.bv_offset += max_transfer_size;
964 if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
965 goto out;
966 } else
967 if (zram_bvec_rw(zram, bvec, index, offset, rw) < 0)
968 goto out;
969
970 update_position(&index, &offset, bvec);
971 }
972
973 set_bit(BIO_UPTODATE, &bio->bi_flags);
974 bio_endio(bio, 0);
975 return;
976
977out:
978 bio_io_error(bio);
979}
980
981/*
982 * Handler function for all zram I/O requests.
983 */
984static void zram_make_request(struct request_queue *queue, struct bio *bio)
985{
986 struct zram *zram = queue->queuedata;
987
988 if (unlikely(!zram_meta_get(zram)))
989 goto error;
990
991 if (!valid_io_request(zram, bio->bi_sector,
992 bio->bi_size)) {
993 atomic64_inc(&zram->stats.invalid_io);
994 goto put_zram;
995 }
996
997 __zram_make_request(zram, bio);
998 zram_meta_put(zram);
999 return;
1000put_zram:
1001 zram_meta_put(zram);
1002error:
1003 bio_io_error(bio);
1004}
1005
1006static void zram_slot_free_notify(struct block_device *bdev,
1007 unsigned long index)
1008{
1009 struct zram *zram;
1010 struct zram_meta *meta;
1011
1012 zram = bdev->bd_disk->private_data;
1013 meta = zram->meta;
1014
1015 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
1016 zram_free_page(zram, index);
1017 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
1018 atomic64_inc(&zram->stats.notify_free);
1019}
1020
1021static const struct block_device_operations zram_devops = {
1022 .swap_slot_free_notify = zram_slot_free_notify,
1023 .owner = THIS_MODULE
1024};
1025
1026static DEVICE_ATTR_WO(compact);
1027static DEVICE_ATTR_RW(disksize);
1028static DEVICE_ATTR_RO(initstate);
1029static DEVICE_ATTR_WO(reset);
1030static DEVICE_ATTR_RO(orig_data_size);
1031static DEVICE_ATTR_RO(mem_used_total);
1032static DEVICE_ATTR_RW(mem_limit);
1033static DEVICE_ATTR_RW(mem_used_max);
1034static DEVICE_ATTR_RW(max_comp_streams);
1035static DEVICE_ATTR_RW(comp_algorithm);
1036
1037static ssize_t io_stat_show(struct device *dev,
1038 struct device_attribute *attr, char *buf)
1039{
1040 struct zram *zram = dev_to_zram(dev);
1041 ssize_t ret;
1042
1043 down_read(&zram->init_lock);
1044 ret = scnprintf(buf, PAGE_SIZE,
1045 "%8llu %8llu %8llu %8llu\n",
1046 (u64)atomic64_read(&zram->stats.failed_reads),
1047 (u64)atomic64_read(&zram->stats.failed_writes),
1048 (u64)atomic64_read(&zram->stats.invalid_io),
1049 (u64)atomic64_read(&zram->stats.notify_free));
1050 up_read(&zram->init_lock);
1051
1052 return ret;
1053}
1054
1055static ssize_t mm_stat_show(struct device *dev,
1056 struct device_attribute *attr, char *buf)
1057{
1058 struct zram *zram = dev_to_zram(dev);
1059 u64 orig_size, mem_used = 0;
1060 long max_used;
1061 ssize_t ret;
1062
1063 down_read(&zram->init_lock);
1064 if (init_done(zram))
1065 mem_used = zs_get_total_pages(zram->meta->mem_pool);
1066
1067 orig_size = atomic64_read(&zram->stats.pages_stored);
1068 max_used = atomic_long_read(&zram->stats.max_used_pages);
1069
1070 ret = scnprintf(buf, PAGE_SIZE,
1071 "%8llu %8llu %8llu %8lu %8ld %8llu %8llu\n",
1072 orig_size << PAGE_SHIFT,
1073 (u64)atomic64_read(&zram->stats.compr_data_size),
1074 mem_used << PAGE_SHIFT,
1075 zram->limit_pages << PAGE_SHIFT,
1076 max_used << PAGE_SHIFT,
1077 (u64)atomic64_read(&zram->stats.zero_pages),
1078 (u64)atomic64_read(&zram->stats.num_migrated));
1079 up_read(&zram->init_lock);
1080
1081 return ret;
1082}
1083
1084static DEVICE_ATTR_RO(io_stat);
1085static DEVICE_ATTR_RO(mm_stat);
1086ZRAM_ATTR_RO(num_reads);
1087ZRAM_ATTR_RO(num_writes);
1088ZRAM_ATTR_RO(failed_reads);
1089ZRAM_ATTR_RO(failed_writes);
1090ZRAM_ATTR_RO(invalid_io);
1091ZRAM_ATTR_RO(notify_free);
1092ZRAM_ATTR_RO(zero_pages);
1093ZRAM_ATTR_RO(compr_data_size);
1094
1095static struct attribute *zram_disk_attrs[] = {
1096 &dev_attr_disksize.attr,
1097 &dev_attr_initstate.attr,
1098 &dev_attr_reset.attr,
1099 &dev_attr_num_reads.attr,
1100 &dev_attr_num_writes.attr,
1101 &dev_attr_failed_reads.attr,
1102 &dev_attr_failed_writes.attr,
1103 &dev_attr_compact.attr,
1104 &dev_attr_invalid_io.attr,
1105 &dev_attr_notify_free.attr,
1106 &dev_attr_zero_pages.attr,
1107 &dev_attr_orig_data_size.attr,
1108 &dev_attr_compr_data_size.attr,
1109 &dev_attr_mem_used_total.attr,
1110 &dev_attr_mem_limit.attr,
1111 &dev_attr_mem_used_max.attr,
1112 &dev_attr_max_comp_streams.attr,
1113 &dev_attr_comp_algorithm.attr,
1114 &dev_attr_io_stat.attr,
1115 &dev_attr_mm_stat.attr,
1116 NULL,
1117};
1118
1119static struct attribute_group zram_disk_attr_group = {
1120 .attrs = zram_disk_attrs,
1121};
1122
1123static int create_device(struct zram *zram, int device_id)
1124{
1125 struct request_queue *queue;
1126 int ret = -ENOMEM;
1127
1128 init_rwsem(&zram->init_lock);
1129
1130 queue = blk_alloc_queue(GFP_KERNEL);
1131 if (!queue) {
1132 pr_err("Error allocating disk queue for device %d\n",
1133 device_id);
1134 goto out;
1135 }
1136
1137 blk_queue_make_request(queue, zram_make_request);
1138
1139 /* gendisk structure */
1140 zram->disk = alloc_disk(1);
1141 if (!zram->disk) {
1142 pr_warn("Error allocating disk structure for device %d\n",
1143 device_id);
1144 ret = -ENOMEM;
1145 goto out_free_queue;
1146 }
1147
1148 zram->disk->major = zram_major;
1149 zram->disk->first_minor = device_id;
1150 zram->disk->fops = &zram_devops;
1151 zram->disk->queue = queue;
1152 zram->disk->queue->queuedata = zram;
1153 zram->disk->private_data = zram;
1154 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1155
1156 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1157 set_capacity(zram->disk, 0);
1158 /* zram devices sort of resembles non-rotational disks */
1159 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1160 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1161 /*
1162 * To ensure that we always get PAGE_SIZE aligned
1163 * and n*PAGE_SIZED sized I/O requests.
1164 */
1165 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1166 blk_queue_logical_block_size(zram->disk->queue,
1167 ZRAM_LOGICAL_BLOCK_SIZE);
1168 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1169 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1170 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1171 zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
1172 /*
1173 * zram_bio_discard() will clear all logical blocks if logical block
1174 * size is identical with physical block size(PAGE_SIZE). But if it is
1175 * different, we will skip discarding some parts of logical blocks in
1176 * the part of the request range which isn't aligned to physical block
1177 * size. So we can't ensure that all discarded logical blocks are
1178 * zeroed.
1179 */
1180 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1181 zram->disk->queue->limits.discard_zeroes_data = 1;
1182 else
1183 zram->disk->queue->limits.discard_zeroes_data = 0;
1184 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1185
1186 add_disk(zram->disk);
1187
1188 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1189 &zram_disk_attr_group);
1190 if (ret < 0) {
1191 pr_warn("Error creating sysfs group");
1192 goto out_free_disk;
1193 }
1194 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1195 zram->meta = NULL;
1196 zram->max_comp_streams = 1;
1197 return 0;
1198
1199out_free_disk:
1200 del_gendisk(zram->disk);
1201 put_disk(zram->disk);
1202out_free_queue:
1203 blk_cleanup_queue(queue);
1204out:
1205 return ret;
1206}
1207
1208static void destroy_devices(unsigned int nr)
1209{
1210 struct zram *zram;
1211 unsigned int i;
1212
1213 for (i = 0; i < nr; i++) {
1214 zram = &zram_devices[i];
1215 /*
1216 * Remove sysfs first, so no one will perform a disksize
1217 * store while we destroy the devices
1218 */
1219 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1220 &zram_disk_attr_group);
1221
1222 zram_reset_device(zram);
1223
1224 blk_cleanup_queue(zram->disk->queue);
1225 del_gendisk(zram->disk);
1226 put_disk(zram->disk);
1227 }
1228
1229 kfree(zram_devices);
1230 unregister_blkdev(zram_major, "zram");
1231 pr_info("Destroyed %u device(s)\n", nr);
1232}
1233
1234static int __init zram_init(void)
1235{
1236 int ret, dev_id;
1237
1238 if (num_devices > max_num_devices) {
1239 pr_warn("Invalid value for num_devices: %u\n",
1240 num_devices);
1241 return -EINVAL;
1242 }
1243
1244 zram_major = register_blkdev(0, "zram");
1245 if (zram_major <= 0) {
1246 pr_warn("Unable to get major number\n");
1247 return -EBUSY;
1248 }
1249
1250 /* Allocate the device array and initialize each one */
1251 zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
1252 if (!zram_devices) {
1253 unregister_blkdev(zram_major, "zram");
1254 return -ENOMEM;
1255 }
1256
1257 for (dev_id = 0; dev_id < num_devices; dev_id++) {
1258 ret = create_device(&zram_devices[dev_id], dev_id);
1259 if (ret)
1260 goto out_error;
1261 }
1262
1263 pr_info("Created %u device(s)\n", num_devices);
1264 return 0;
1265
1266out_error:
1267 destroy_devices(dev_id);
1268 return ret;
1269}
1270
1271static void __exit zram_exit(void)
1272{
1273 destroy_devices(num_devices);
1274}
1275
1276module_init(zram_init);
1277module_exit(zram_exit);
1278
1279module_param(num_devices, uint, 0);
1280MODULE_PARM_DESC(num_devices, "Number of zram devices");
1281
1282MODULE_LICENSE("Dual BSD/GPL");
1283MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1284MODULE_DESCRIPTION("Compressed RAM Block Device");