dhd: rename 100.10.315.x to 100.10.545.x
[GitHub/LineageOS/G12/android_hardware_amlogic_kernel-modules_dhd-driver.git] / bcmdhd.100.10.545.x / bcmspibrcm.c
diff --git a/bcmdhd.100.10.545.x/bcmspibrcm.c b/bcmdhd.100.10.545.x/bcmspibrcm.c
new file mode 100644 (file)
index 0000000..3a852b1
--- /dev/null
@@ -0,0 +1,1799 @@
+/*
+ * Broadcom BCMSDH to gSPI Protocol Conversion Layer
+ *
+ * Copyright (C) 1999-2019, Broadcom.
+ *
+ *      Unless you and Broadcom execute a separate written software license
+ * agreement governing use of this software, this software is licensed to you
+ * under the terms of the GNU General Public License version 2 (the "GPL"),
+ * available at http://www.broadcom.com/licenses/GPLv2.php, with the
+ * following added to such license:
+ *
+ *      As a special exception, the copyright holders of this software give you
+ * permission to link this software with independent modules, and to copy and
+ * distribute the resulting executable under terms of your choice, provided that
+ * you also meet, for each linked independent module, the terms and conditions of
+ * the license of that module.  An independent module is a module which is not
+ * derived from this software.  The special exception does not apply to any
+ * modifications of the software.
+ *
+ *      Notwithstanding the above, under no circumstances may you combine this
+ * software in any way with any other Broadcom software provided under a license
+ * other than the GPL, without Broadcom's express prior written consent.
+ *
+ *
+ * <<Broadcom-WL-IPTag/Open:>>
+ *
+ * $Id: bcmspibrcm.c 700323 2017-05-18 16:12:11Z $
+ */
+
+#define HSMODE
+
+#include <typedefs.h>
+
+#include <bcmdevs.h>
+#include <bcmendian.h>
+#include <bcmutils.h>
+#include <osl.h>
+#include <hndsoc.h>
+#include <siutils.h>
+#include <sbchipc.h>
+#include <sbsdio.h>    /* SDIO device core hardware definitions. */
+#include <spid.h>
+
+#include <bcmsdbus.h>  /* bcmsdh to/from specific controller APIs */
+#include <sdiovar.h>   /* ioctl/iovars */
+#include <sdio.h>      /* SDIO Device and Protocol Specs */
+
+#include <pcicfg.h>
+
+#include <bcmspibrcm.h>
+#ifdef BCMSPI_ANDROID
+extern void spi_sendrecv(sdioh_info_t *sd, uint8 *msg_out, uint8 *msg_in, int msglen);
+#else
+#include <bcmspi.h>
+#endif /* BCMSPI_ANDROID */
+
+/* these are for the older cores... for newer cores we have control for each of them */
+#define F0_RESPONSE_DELAY      16
+#define F1_RESPONSE_DELAY      16
+#define F2_RESPONSE_DELAY      F0_RESPONSE_DELAY
+
+#define GSPI_F0_RESP_DELAY             0
+#define GSPI_F1_RESP_DELAY             F1_RESPONSE_DELAY
+#define GSPI_F2_RESP_DELAY             0
+#define GSPI_F3_RESP_DELAY             0
+
+#define CMDLEN         4
+
+/* Globals */
+#if defined(DHD_DEBUG)
+uint sd_msglevel = SDH_ERROR_VAL;
+#else
+uint sd_msglevel = 0;
+#endif // endif
+
+uint sd_hiok = FALSE;          /* Use hi-speed mode if available? */
+uint sd_sdmode = SDIOH_MODE_SPI;               /* Use SD4 mode by default */
+uint sd_f2_blocksize = 64;             /* Default blocksize */
+
+uint sd_divisor = 2;
+uint sd_power = 1;             /* Default to SD Slot powered ON */
+uint sd_clock = 1;             /* Default to SD Clock turned ON */
+uint sd_crc = 0;               /* Default to SPI CRC Check turned OFF */
+uint sd_pci_slot = 0xFFFFffff; /* Used to force selection of a particular PCI slot */
+
+uint8  spi_outbuf[SPI_MAX_PKT_LEN];
+uint8  spi_inbuf[SPI_MAX_PKT_LEN];
+
+/* 128bytes buffer is enough to clear data-not-available and program response-delay F0 bits
+ * assuming we will not exceed F0 response delay > 100 bytes at 48MHz.
+ */
+#define BUF2_PKT_LEN   128
+uint8  spi_outbuf2[BUF2_PKT_LEN];
+uint8  spi_inbuf2[BUF2_PKT_LEN];
+#ifdef BCMSPI_ANDROID
+uint *dhd_spi_lockcount = NULL;
+#endif /* BCMSPI_ANDROID */
+
+#if !(defined(SPI_PIO_RW_BIGENDIAN) && defined(SPI_PIO_32BIT_RW))
+#define SPISWAP_WD4(x) bcmswap32(x);
+#define SPISWAP_WD2(x) (bcmswap16(x & 0xffff)) | \
+                                               (bcmswap16((x & 0xffff0000) >> 16) << 16);
+#else
+#define SPISWAP_WD4(x) x;
+#define SPISWAP_WD2(x) bcmswap32by16(x);
+#endif // endif
+
+/* Prototypes */
+static bool bcmspi_test_card(sdioh_info_t *sd);
+static bool bcmspi_host_device_init_adapt(sdioh_info_t *sd);
+static int bcmspi_set_highspeed_mode(sdioh_info_t *sd, bool hsmode);
+static int bcmspi_cmd_issue(sdioh_info_t *sd, bool use_dma, uint32 cmd_arg,
+                           uint32 *data, uint32 datalen);
+static int bcmspi_card_regread(sdioh_info_t *sd, int func, uint32 regaddr,
+                              int regsize, uint32 *data);
+static int bcmspi_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr,
+                               int regsize, uint32 data);
+static int bcmspi_card_bytewrite(sdioh_info_t *sd, int func, uint32 regaddr,
+                               uint8 *data);
+static int bcmspi_driver_init(sdioh_info_t *sd);
+static int bcmspi_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo,
+                          uint32 addr, int nbytes, uint32 *data);
+static int bcmspi_card_regread_fixedaddr(sdioh_info_t *sd, int func, uint32 regaddr, int regsize,
+                                 uint32 *data);
+static void bcmspi_cmd_getdstatus(sdioh_info_t *sd, uint32 *dstatus_buffer);
+static int bcmspi_update_stats(sdioh_info_t *sd, uint32 cmd_arg);
+
+/*
+ *  Public entry points & extern's
+ */
+extern sdioh_info_t *
+sdioh_attach(osl_t *osh, void *bar0, uint irq)
+{
+       sdioh_info_t *sd;
+
+       sd_trace(("%s\n", __FUNCTION__));
+       if ((sd = (sdioh_info_t *)MALLOC(osh, sizeof(sdioh_info_t))) == NULL) {
+               sd_err(("%s: out of memory, malloced %d bytes\n", __FUNCTION__, MALLOCED(osh)));
+               return NULL;
+       }
+       bzero((char *)sd, sizeof(sdioh_info_t));
+       sd->osh = osh;
+       if (spi_osinit(sd) != 0) {
+               sd_err(("%s: spi_osinit() failed\n", __FUNCTION__));
+               MFREE(sd->osh, sd, sizeof(sdioh_info_t));
+               return NULL;
+       }
+
+#ifndef BCMSPI_ANDROID
+       sd->bar0 = bar0;
+#endif /* !BCMSPI_ANDROID */
+       sd->irq = irq;
+#ifndef BCMSPI_ANDROID
+       sd->intr_handler = NULL;
+       sd->intr_handler_arg = NULL;
+       sd->intr_handler_valid = FALSE;
+#endif /* !BCMSPI_ANDROID */
+
+       /* Set defaults */
+       sd->use_client_ints = TRUE;
+       sd->sd_use_dma = FALSE; /* DMA Not supported */
+
+       /* Spi device default is 16bit mode, change to 4 when device is changed to 32bit
+        * mode
+        */
+       sd->wordlen = 2;
+
+#ifdef BCMSPI_ANDROID
+       dhd_spi_lockcount = &sd->lockcount;
+#endif /* BCMSPI_ANDROID */
+
+#ifndef BCMSPI_ANDROID
+       if (!spi_hw_attach(sd)) {
+               sd_err(("%s: spi_hw_attach() failed\n", __FUNCTION__));
+               spi_osfree(sd);
+               MFREE(sd->osh, sd, sizeof(sdioh_info_t));
+               return (NULL);
+       }
+#endif /* !BCMSPI_ANDROID */
+
+       if (bcmspi_driver_init(sd) != SUCCESS) {
+               sd_err(("%s: bcmspi_driver_init() failed()\n", __FUNCTION__));
+#ifndef BCMSPI_ANDROID
+               spi_hw_detach(sd);
+#endif /* !BCMSPI_ANDROID */
+               spi_osfree(sd);
+               MFREE(sd->osh, sd, sizeof(sdioh_info_t));
+               return (NULL);
+       }
+
+       if (spi_register_irq(sd, irq) != SUCCESS) {
+               sd_err(("%s: spi_register_irq() failed for irq = %d\n", __FUNCTION__, irq));
+#ifndef BCMSPI_ANDROID
+               spi_hw_detach(sd);
+#endif /* !BCMSPI_ANDROID */
+               spi_osfree(sd);
+               MFREE(sd->osh, sd, sizeof(sdioh_info_t));
+               return (NULL);
+       }
+
+       sd_trace(("%s: Done\n", __FUNCTION__));
+
+       return sd;
+}
+
+extern SDIOH_API_RC
+sdioh_detach(osl_t *osh, sdioh_info_t *sd)
+{
+       sd_trace(("%s\n", __FUNCTION__));
+       if (sd) {
+               sd_err(("%s: detaching from hardware\n", __FUNCTION__));
+               spi_free_irq(sd->irq, sd);
+#ifndef BCMSPI_ANDROID
+               spi_hw_detach(sd);
+#endif /* !BCMSPI_ANDROID */
+               spi_osfree(sd);
+#ifdef BCMSPI_ANDROID
+               dhd_spi_lockcount = NULL;
+#endif /* !BCMSPI_ANDROID */
+               MFREE(sd->osh, sd, sizeof(sdioh_info_t));
+       }
+       return SDIOH_API_RC_SUCCESS;
+}
+
+/* Configure callback to client when we recieve client interrupt */
+extern SDIOH_API_RC
+sdioh_interrupt_register(sdioh_info_t *sd, sdioh_cb_fn_t fn, void *argh)
+{
+       sd_trace(("%s: Entering\n", __FUNCTION__));
+#if !defined(OOB_INTR_ONLY)
+       sd->intr_handler = fn;
+       sd->intr_handler_arg = argh;
+       sd->intr_handler_valid = TRUE;
+#endif /* !defined(OOB_INTR_ONLY) */
+       return SDIOH_API_RC_SUCCESS;
+}
+
+extern SDIOH_API_RC
+sdioh_interrupt_deregister(sdioh_info_t *sd)
+{
+       sd_trace(("%s: Entering\n", __FUNCTION__));
+#if !defined(OOB_INTR_ONLY)
+       sd->intr_handler_valid = FALSE;
+       sd->intr_handler = NULL;
+       sd->intr_handler_arg = NULL;
+#endif /* !defined(OOB_INTR_ONLY) */
+       return SDIOH_API_RC_SUCCESS;
+}
+
+extern SDIOH_API_RC
+sdioh_interrupt_query(sdioh_info_t *sd, bool *onoff)
+{
+#ifndef BCMSPI_ANDROID
+       sd_trace(("%s: Entering\n", __FUNCTION__));
+       *onoff = sd->client_intr_enabled;
+#endif /* !BCMSPI_ANDROID */
+       return SDIOH_API_RC_SUCCESS;
+}
+
+#if defined(DHD_DEBUG)
+extern bool
+sdioh_interrupt_pending(sdioh_info_t *sd)
+{
+       return 0;
+}
+#endif // endif
+
+/* Provide dstatus bits of spi-transaction for dhd layers. */
+extern uint32
+sdioh_get_dstatus(sdioh_info_t *sd)
+{
+       return sd->card_dstatus;
+}
+
+extern void
+sdioh_chipinfo(sdioh_info_t *sd, uint32 chip, uint32 chiprev)
+{
+       sd->chip = chip;
+       sd->chiprev = chiprev;
+}
+
+extern void
+sdioh_dwordmode(sdioh_info_t *sd, bool set)
+{
+       uint8 reg = 0;
+       int status;
+
+       if ((status = sdioh_request_byte(sd, SDIOH_READ, SPI_FUNC_0, SPID_STATUS_ENABLE, &reg)) !=
+            SUCCESS) {
+               sd_err(("%s: Failed to set dwordmode in gSPI\n", __FUNCTION__));
+               return;
+       }
+
+       if (set) {
+               reg |= DWORD_PKT_LEN_EN;
+               sd->dwordmode = TRUE;
+               sd->client_block_size[SPI_FUNC_2] = 4096; /* h2spi's limit is 4KB, we support 8KB */
+       } else {
+               reg &= ~DWORD_PKT_LEN_EN;
+               sd->dwordmode = FALSE;
+               sd->client_block_size[SPI_FUNC_2] = 2048;
+       }
+
+       if ((status = sdioh_request_byte(sd, SDIOH_WRITE, SPI_FUNC_0, SPID_STATUS_ENABLE, &reg)) !=
+            SUCCESS) {
+               sd_err(("%s: Failed to set dwordmode in gSPI\n", __FUNCTION__));
+               return;
+       }
+}
+
+uint
+sdioh_query_iofnum(sdioh_info_t *sd)
+{
+       return sd->num_funcs;
+}
+
+/* IOVar table */
+enum {
+       IOV_MSGLEVEL = 1,
+       IOV_BLOCKMODE,
+       IOV_BLOCKSIZE,
+       IOV_DMA,
+       IOV_USEINTS,
+       IOV_NUMINTS,
+       IOV_NUMLOCALINTS,
+       IOV_HOSTREG,
+       IOV_DEVREG,
+       IOV_DIVISOR,
+       IOV_SDMODE,
+       IOV_HISPEED,
+       IOV_HCIREGS,
+       IOV_POWER,
+       IOV_CLOCK,
+       IOV_SPIERRSTATS,
+       IOV_RESP_DELAY_ALL
+};
+
+const bcm_iovar_t sdioh_iovars[] = {
+       {"sd_msglevel", IOV_MSGLEVEL,   0,      IOVT_UINT32,    0 },
+       {"sd_blocksize", IOV_BLOCKSIZE, 0,      IOVT_UINT32,    0 }, /* ((fn << 16) | size) */
+       {"sd_dma",      IOV_DMA,        0,      IOVT_BOOL,      0 },
+       {"sd_ints",     IOV_USEINTS,    0,      IOVT_BOOL,      0 },
+       {"sd_numints",  IOV_NUMINTS,    0,      IOVT_UINT32,    0 },
+       {"sd_numlocalints", IOV_NUMLOCALINTS, 0, IOVT_UINT32,   0 },
+       {"sd_hostreg",  IOV_HOSTREG,    0,      IOVT_BUFFER,    sizeof(sdreg_t) },
+       {"sd_devreg",   IOV_DEVREG,     0,      IOVT_BUFFER,    sizeof(sdreg_t) },
+       {"sd_divisor",  IOV_DIVISOR,    0,      IOVT_UINT32,    0 },
+       {"sd_power",    IOV_POWER,      0,      IOVT_UINT32,    0 },
+       {"sd_clock",    IOV_CLOCK,      0,      IOVT_UINT32,    0 },
+       {"sd_mode",     IOV_SDMODE,     0,      IOVT_UINT32,    100},
+       {"sd_highspeed",        IOV_HISPEED,    0,      IOVT_UINT32,    0},
+       {"spi_errstats", IOV_SPIERRSTATS, 0, IOVT_BUFFER, sizeof(struct spierrstats_t) },
+       {"spi_respdelay",       IOV_RESP_DELAY_ALL,     0,      IOVT_BOOL,      0 },
+       {NULL, 0, 0, 0, 0 }
+};
+
+int
+sdioh_iovar_op(sdioh_info_t *si, const char *name,
+               void *params, int plen, void *arg, int len, bool set)
+{
+       const bcm_iovar_t *vi = NULL;
+       int bcmerror = 0;
+       int val_size;
+       int32 int_val = 0;
+       bool bool_val;
+       uint32 actionid;
+/*
+       sdioh_regs_t *regs;
+*/
+
+       ASSERT(name);
+       ASSERT(len >= 0);
+
+       /* Get must have return space; Set does not take qualifiers */
+       ASSERT(set || (arg && len));
+       ASSERT(!set || (!params && !plen));
+
+       sd_trace(("%s: Enter (%s %s)\n", __FUNCTION__, (set ? "set" : "get"), name));
+
+       if ((vi = bcm_iovar_lookup(sdioh_iovars, name)) == NULL) {
+               bcmerror = BCME_UNSUPPORTED;
+               goto exit;
+       }
+
+       if ((bcmerror = bcm_iovar_lencheck(vi, arg, len, set)) != 0)
+               goto exit;
+
+       /* Set up params so get and set can share the convenience variables */
+       if (params == NULL) {
+               params = arg;
+               plen = len;
+       }
+
+       if (vi->type == IOVT_VOID)
+               val_size = 0;
+       else if (vi->type == IOVT_BUFFER)
+               val_size = len;
+       else
+               val_size = sizeof(int);
+
+       if (plen >= (int)sizeof(int_val))
+               bcopy(params, &int_val, sizeof(int_val));
+
+       bool_val = (int_val != 0) ? TRUE : FALSE;
+
+       actionid = set ? IOV_SVAL(vi->varid) : IOV_GVAL(vi->varid);
+       switch (actionid) {
+       case IOV_GVAL(IOV_MSGLEVEL):
+               int_val = (int32)sd_msglevel;
+               bcopy(&int_val, arg, val_size);
+               break;
+
+       case IOV_SVAL(IOV_MSGLEVEL):
+               sd_msglevel = int_val;
+               break;
+
+       case IOV_GVAL(IOV_BLOCKSIZE):
+               if ((uint32)int_val > si->num_funcs) {
+                       bcmerror = BCME_BADARG;
+                       break;
+               }
+               int_val = (int32)si->client_block_size[int_val];
+               bcopy(&int_val, arg, val_size);
+               break;
+
+       case IOV_GVAL(IOV_DMA):
+               int_val = (int32)si->sd_use_dma;
+               bcopy(&int_val, arg, val_size);
+               break;
+
+       case IOV_SVAL(IOV_DMA):
+               si->sd_use_dma = (bool)int_val;
+               break;
+
+       case IOV_GVAL(IOV_USEINTS):
+               int_val = (int32)si->use_client_ints;
+               bcopy(&int_val, arg, val_size);
+               break;
+
+       case IOV_SVAL(IOV_USEINTS):
+               break;
+
+       case IOV_GVAL(IOV_DIVISOR):
+               int_val = (uint32)sd_divisor;
+               bcopy(&int_val, arg, val_size);
+               break;
+
+#ifndef BCMSPI_ANDROID
+       case IOV_SVAL(IOV_DIVISOR):
+               sd_divisor = int_val;
+               if (!spi_start_clock(si, (uint16)sd_divisor)) {
+                       sd_err(("%s: set clock failed\n", __FUNCTION__));
+                       bcmerror = BCME_ERROR;
+               }
+               break;
+#endif /* !BCMSPI_ANDROID */
+
+       case IOV_GVAL(IOV_POWER):
+               int_val = (uint32)sd_power;
+               bcopy(&int_val, arg, val_size);
+               break;
+
+       case IOV_SVAL(IOV_POWER):
+               sd_power = int_val;
+               break;
+
+       case IOV_GVAL(IOV_CLOCK):
+               int_val = (uint32)sd_clock;
+               bcopy(&int_val, arg, val_size);
+               break;
+
+       case IOV_SVAL(IOV_CLOCK):
+               sd_clock = int_val;
+               break;
+
+       case IOV_GVAL(IOV_SDMODE):
+               int_val = (uint32)sd_sdmode;
+               bcopy(&int_val, arg, val_size);
+               break;
+
+       case IOV_SVAL(IOV_SDMODE):
+               sd_sdmode = int_val;
+               break;
+
+       case IOV_GVAL(IOV_HISPEED):
+               int_val = (uint32)sd_hiok;
+               bcopy(&int_val, arg, val_size);
+               break;
+
+       case IOV_SVAL(IOV_HISPEED):
+               sd_hiok = int_val;
+
+               if (!bcmspi_set_highspeed_mode(si, (bool)sd_hiok)) {
+                       sd_err(("%s: Failed changing highspeed mode to %d.\n",
+                               __FUNCTION__, sd_hiok));
+                       bcmerror = BCME_ERROR;
+                       return ERROR;
+               }
+               break;
+
+       case IOV_GVAL(IOV_NUMINTS):
+               int_val = (int32)si->intrcount;
+               bcopy(&int_val, arg, val_size);
+               break;
+
+       case IOV_GVAL(IOV_NUMLOCALINTS):
+               int_val = (int32)si->local_intrcount;
+               bcopy(&int_val, arg, val_size);
+               break;
+       case IOV_GVAL(IOV_DEVREG):
+       {
+               sdreg_t *sd_ptr = (sdreg_t *)params;
+               uint8 data;
+
+               if (sdioh_cfg_read(si, sd_ptr->func, sd_ptr->offset, &data)) {
+                       bcmerror = BCME_SDIO_ERROR;
+                       break;
+               }
+
+               int_val = (int)data;
+               bcopy(&int_val, arg, sizeof(int_val));
+               break;
+       }
+
+       case IOV_SVAL(IOV_DEVREG):
+       {
+               sdreg_t *sd_ptr = (sdreg_t *)params;
+               uint8 data = (uint8)sd_ptr->value;
+
+               if (sdioh_cfg_write(si, sd_ptr->func, sd_ptr->offset, &data)) {
+                       bcmerror = BCME_SDIO_ERROR;
+                       break;
+               }
+               break;
+       }
+
+       case IOV_GVAL(IOV_SPIERRSTATS):
+       {
+               bcopy(&si->spierrstats, arg, sizeof(struct spierrstats_t));
+               break;
+       }
+
+       case IOV_SVAL(IOV_SPIERRSTATS):
+       {
+               bzero(&si->spierrstats, sizeof(struct spierrstats_t));
+               break;
+       }
+
+       case IOV_GVAL(IOV_RESP_DELAY_ALL):
+               int_val = (int32)si->resp_delay_all;
+               bcopy(&int_val, arg, val_size);
+               break;
+
+       case IOV_SVAL(IOV_RESP_DELAY_ALL):
+               si->resp_delay_all = (bool)int_val;
+               int_val = STATUS_ENABLE|INTR_WITH_STATUS;
+               if (si->resp_delay_all)
+                       int_val |= RESP_DELAY_ALL;
+               else {
+                       if (bcmspi_card_regwrite(si, SPI_FUNC_0, SPID_RESPONSE_DELAY, 1,
+                            F1_RESPONSE_DELAY) != SUCCESS) {
+                               sd_err(("%s: Unable to set response delay.\n", __FUNCTION__));
+                               bcmerror = BCME_SDIO_ERROR;
+                               break;
+                       }
+               }
+
+               if (bcmspi_card_regwrite(si, SPI_FUNC_0, SPID_STATUS_ENABLE, 1, int_val)
+                    != SUCCESS) {
+                       sd_err(("%s: Unable to set response delay.\n", __FUNCTION__));
+                       bcmerror = BCME_SDIO_ERROR;
+                       break;
+               }
+               break;
+
+       default:
+               bcmerror = BCME_UNSUPPORTED;
+               break;
+       }
+exit:
+
+       return bcmerror;
+}
+
+extern SDIOH_API_RC
+sdioh_cfg_read(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data)
+{
+       SDIOH_API_RC status;
+       /* No lock needed since sdioh_request_byte does locking */
+       status = sdioh_request_byte(sd, SDIOH_READ, fnc_num, addr, data);
+       return status;
+}
+
+extern SDIOH_API_RC
+sdioh_cfg_write(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data)
+{
+       /* No lock needed since sdioh_request_byte does locking */
+       SDIOH_API_RC status;
+
+       if ((fnc_num == SPI_FUNC_1) && (addr == SBSDIO_FUNC1_FRAMECTRL)) {
+               uint8 dummy_data;
+               status = sdioh_cfg_read(sd, fnc_num, addr, &dummy_data);
+               if (status) {
+                       sd_err(("sdioh_cfg_read() failed.\n"));
+                       return status;
+               }
+       }
+
+       status = sdioh_request_byte(sd, SDIOH_WRITE, fnc_num, addr, data);
+       return status;
+}
+
+extern SDIOH_API_RC
+sdioh_cis_read(sdioh_info_t *sd, uint func, uint8 *cisd, uint32 length)
+{
+       uint32 count;
+       int offset;
+       uint32 cis_byte;
+       uint16 *cis = (uint16 *)cisd;
+       uint bar0 = SI_ENUM_BASE(sd->sih);
+       int status;
+       uint8 data;
+
+       sd_trace(("%s: Func %d\n", __FUNCTION__, func));
+
+       spi_lock(sd);
+
+       /* Set sb window address to 0x18000000 */
+       data = (bar0 >> 8) & SBSDIO_SBADDRLOW_MASK;
+       status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRLOW, &data);
+       if (status == SUCCESS) {
+               data = (bar0 >> 16) & SBSDIO_SBADDRMID_MASK;
+               status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRMID, &data);
+       } else {
+               sd_err(("%s: Unable to set sb-addr-windows\n", __FUNCTION__));
+               spi_unlock(sd);
+               return (BCME_ERROR);
+       }
+       if (status == SUCCESS) {
+               data = (bar0 >> 24) & SBSDIO_SBADDRHIGH_MASK;
+               status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRHIGH, &data);
+       } else {
+               sd_err(("%s: Unable to set sb-addr-windows\n", __FUNCTION__));
+               spi_unlock(sd);
+               return (BCME_ERROR);
+       }
+
+       offset =  CC_SROM_OTP; /* OTP offset in chipcommon. */
+       for (count = 0; count < length/2; count++) {
+               if (bcmspi_card_regread (sd, SDIO_FUNC_1, offset, 2, &cis_byte) < 0) {
+                       sd_err(("%s: regread failed: Can't read CIS\n", __FUNCTION__));
+                       spi_unlock(sd);
+                       return (BCME_ERROR);
+               }
+
+               *cis = (uint16)cis_byte;
+               cis++;
+               offset += 2;
+       }
+
+       spi_unlock(sd);
+
+       return (BCME_OK);
+}
+
+extern SDIOH_API_RC
+sdioh_request_byte(sdioh_info_t *sd, uint rw, uint func, uint regaddr, uint8 *byte)
+{
+       int status;
+       uint32 cmd_arg;
+       uint32 dstatus;
+       uint32 data = (uint32)(*byte);
+
+       spi_lock(sd);
+
+       cmd_arg = 0;
+       cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
+       cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1);       /* Incremental access */
+       cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
+       cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, rw == SDIOH_READ ? 0 : 1);
+       cmd_arg = SFIELD(cmd_arg, SPI_LEN, 1);
+
+       if (rw == SDIOH_READ) {
+               sd_trace(("%s: RD cmd_arg=0x%x func=%d regaddr=0x%x\n",
+                         __FUNCTION__, cmd_arg, func, regaddr));
+       } else {
+               sd_trace(("%s: WR cmd_arg=0x%x func=%d regaddr=0x%x data=0x%x\n",
+                         __FUNCTION__, cmd_arg, func, regaddr, data));
+       }
+
+       if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, &data, 1)) != SUCCESS) {
+               spi_unlock(sd);
+               return status;
+       }
+
+       if (rw == SDIOH_READ) {
+               *byte = (uint8)data;
+               sd_trace(("%s: RD result=0x%x\n", __FUNCTION__, *byte));
+       }
+
+       bcmspi_cmd_getdstatus(sd, &dstatus);
+       if (dstatus)
+               sd_trace(("dstatus=0x%x\n", dstatus));
+
+       spi_unlock(sd);
+       return SDIOH_API_RC_SUCCESS;
+}
+
+extern SDIOH_API_RC
+sdioh_request_word(sdioh_info_t *sd, uint cmd_type, uint rw, uint func, uint addr,
+                   uint32 *word, uint nbytes)
+{
+       int status;
+
+       spi_lock(sd);
+
+       if (rw == SDIOH_READ)
+               status = bcmspi_card_regread(sd, func, addr, nbytes, word);
+       else
+               status = bcmspi_card_regwrite(sd, func, addr, nbytes, *word);
+
+       spi_unlock(sd);
+       return (status == SUCCESS ?  SDIOH_API_RC_SUCCESS : SDIOH_API_RC_FAIL);
+}
+
+extern SDIOH_API_RC
+sdioh_request_buffer(sdioh_info_t *sd, uint pio_dma, uint fix_inc, uint rw, uint func,
+                     uint addr, uint reg_width, uint buflen_u, uint8 *buffer, void *pkt)
+{
+       int len;
+       int buflen = (int)buflen_u;
+       bool fifo = (fix_inc == SDIOH_DATA_FIX);
+
+       spi_lock(sd);
+
+       ASSERT(reg_width == 4);
+       ASSERT(buflen_u < (1 << 30));
+       ASSERT(sd->client_block_size[func]);
+
+       sd_data(("%s: %c len %d r_cnt %d t_cnt %d, pkt @0x%p\n",
+                __FUNCTION__, rw == SDIOH_READ ? 'R' : 'W',
+                buflen_u, sd->r_cnt, sd->t_cnt, pkt));
+
+       /* Break buffer down into blocksize chunks. */
+       while (buflen > 0) {
+               len = MIN(sd->client_block_size[func], buflen);
+               if (bcmspi_card_buf(sd, rw, func, fifo, addr, len, (uint32 *)buffer) != SUCCESS) {
+                       sd_err(("%s: bcmspi_card_buf %s failed\n",
+                               __FUNCTION__, rw == SDIOH_READ ? "Read" : "Write"));
+                       spi_unlock(sd);
+                       return SDIOH_API_RC_FAIL;
+               }
+               buffer += len;
+               buflen -= len;
+               if (!fifo)
+                       addr += len;
+       }
+       spi_unlock(sd);
+       return SDIOH_API_RC_SUCCESS;
+}
+
+/* This function allows write to gspi bus when another rd/wr function is deep down the call stack.
+ * Its main aim is to have simpler spi writes rather than recursive writes.
+ * e.g. When there is a need to program response delay on the fly after detecting the SPI-func
+ * this call will allow to program the response delay.
+ */
+static int
+bcmspi_card_byterewrite(sdioh_info_t *sd, int func, uint32 regaddr, uint8 byte)
+{
+       uint32 cmd_arg;
+       uint32 datalen = 1;
+       uint32 hostlen;
+
+       cmd_arg = 0;
+
+       cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1);
+       cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1);       /* Incremental access */
+       cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
+       cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
+       cmd_arg = SFIELD(cmd_arg, SPI_LEN, datalen);
+
+       sd_trace(("%s cmd_arg = 0x%x\n", __FUNCTION__, cmd_arg));
+
+       /* Set up and issue the SPI command.  MSByte goes out on bus first.  Increase datalen
+        * according to the wordlen mode(16/32bit) the device is in.
+        */
+       ASSERT(sd->wordlen == 4 || sd->wordlen == 2);
+       datalen = ROUNDUP(datalen, sd->wordlen);
+
+       /* Start by copying command in the spi-outbuffer */
+       if (sd->wordlen == 4) { /* 32bit spid */
+               *(uint32 *)spi_outbuf2 = SPISWAP_WD4(cmd_arg);
+               if (datalen & 0x3)
+                       datalen += (4 - (datalen & 0x3));
+       } else if (sd->wordlen == 2) { /* 16bit spid */
+               *(uint32 *)spi_outbuf2 = SPISWAP_WD2(cmd_arg);
+               if (datalen & 0x1)
+                       datalen++;
+       } else {
+               sd_err(("%s: Host is %d bit spid, could not create SPI command.\n",
+                       __FUNCTION__, 8 * sd->wordlen));
+               return ERROR;
+       }
+
+       /* for Write, put the data into the output buffer  */
+       if (datalen != 0) {
+                       if (sd->wordlen == 4) { /* 32bit spid */
+                               *(uint32 *)&spi_outbuf2[CMDLEN] = SPISWAP_WD4(byte);
+                       } else if (sd->wordlen == 2) { /* 16bit spid */
+                               *(uint32 *)&spi_outbuf2[CMDLEN] = SPISWAP_WD2(byte);
+                       }
+       }
+
+       /* +4 for cmd, +4 for dstatus */
+       hostlen = datalen + 8;
+       hostlen += (4 - (hostlen & 0x3));
+       spi_sendrecv(sd, spi_outbuf2, spi_inbuf2, hostlen);
+
+       /* Last 4bytes are dstatus.  Device is configured to return status bits. */
+       if (sd->wordlen == 4) { /* 32bit spid */
+               sd->card_dstatus = SPISWAP_WD4(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]);
+       } else if (sd->wordlen == 2) { /* 16bit spid */
+               sd->card_dstatus = SPISWAP_WD2(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]);
+       } else {
+               sd_err(("%s: Host is %d bit machine, could not read SPI dstatus.\n",
+                       __FUNCTION__, 8 * sd->wordlen));
+               return ERROR;
+       }
+
+       if (sd->card_dstatus)
+               sd_trace(("dstatus after byte rewrite = 0x%x\n", sd->card_dstatus));
+
+       return (BCME_OK);
+}
+
+/* Program the response delay corresponding to the spi function */
+static int
+bcmspi_prog_resp_delay(sdioh_info_t *sd, int func, uint8 resp_delay)
+{
+       if (sd->resp_delay_all == FALSE)
+               return (BCME_OK);
+
+       if (sd->prev_fun == func)
+               return (BCME_OK);
+
+       if (F0_RESPONSE_DELAY == F1_RESPONSE_DELAY)
+               return (BCME_OK);
+
+       bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_RESPONSE_DELAY, resp_delay);
+
+       /* Remember function for which to avoid reprogramming resp-delay in next iteration */
+       sd->prev_fun = func;
+
+       return (BCME_OK);
+
+}
+
+#define GSPI_RESYNC_PATTERN    0x0
+
+/* A resync pattern is a 32bit MOSI line with all zeros. Its a special command in gSPI.
+ * It resets the spi-bkplane logic so that all F1 related ping-pong buffer logic is
+ * synchronised and all queued resuests are cancelled.
+ */
+static int
+bcmspi_resync_f1(sdioh_info_t *sd)
+{
+       uint32 cmd_arg = GSPI_RESYNC_PATTERN, data = 0, datalen = 0;
+
+       /* Set up and issue the SPI command.  MSByte goes out on bus first.  Increase datalen
+        * according to the wordlen mode(16/32bit) the device is in.
+        */
+       ASSERT(sd->wordlen == 4 || sd->wordlen == 2);
+       datalen = ROUNDUP(datalen, sd->wordlen);
+
+       /* Start by copying command in the spi-outbuffer */
+       *(uint32 *)spi_outbuf2 = cmd_arg;
+
+       /* for Write, put the data into the output buffer  */
+       *(uint32 *)&spi_outbuf2[CMDLEN] = data;
+
+       /* +4 for cmd, +4 for dstatus */
+       spi_sendrecv(sd, spi_outbuf2, spi_inbuf2, datalen + 8);
+
+       /* Last 4bytes are dstatus.  Device is configured to return status bits. */
+       if (sd->wordlen == 4) { /* 32bit spid */
+               sd->card_dstatus = SPISWAP_WD4(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]);
+       } else if (sd->wordlen == 2) { /* 16bit spid */
+               sd->card_dstatus = SPISWAP_WD2(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]);
+       } else {
+               sd_err(("%s: Host is %d bit machine, could not read SPI dstatus.\n",
+                       __FUNCTION__, 8 * sd->wordlen));
+               return ERROR;
+       }
+
+       if (sd->card_dstatus)
+               sd_trace(("dstatus after resync pattern write = 0x%x\n", sd->card_dstatus));
+
+       return (BCME_OK);
+}
+
+uint32 dstatus_count = 0;
+
+static int
+bcmspi_update_stats(sdioh_info_t *sd, uint32 cmd_arg)
+{
+       uint32 dstatus = sd->card_dstatus;
+       struct spierrstats_t *spierrstats = &sd->spierrstats;
+       int err = SUCCESS;
+
+       sd_trace(("cmd = 0x%x, dstatus = 0x%x\n", cmd_arg, dstatus));
+
+       /* Store dstatus of last few gSPI transactions */
+       spierrstats->dstatus[dstatus_count % NUM_PREV_TRANSACTIONS] = dstatus;
+       spierrstats->spicmd[dstatus_count % NUM_PREV_TRANSACTIONS] = cmd_arg;
+       dstatus_count++;
+
+       if (sd->card_init_done == FALSE)
+               return err;
+
+       if (dstatus & STATUS_DATA_NOT_AVAILABLE) {
+               spierrstats->dna++;
+               sd_trace(("Read data not available on F1 addr = 0x%x\n",
+                       GFIELD(cmd_arg, SPI_REG_ADDR)));
+               /* Clear dna bit */
+               bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_INTR_REG, DATA_UNAVAILABLE);
+       }
+
+       if (dstatus & STATUS_UNDERFLOW) {
+               spierrstats->rdunderflow++;
+               sd_err(("FIFO underflow happened due to current F2 read command.\n"));
+       }
+
+       if (dstatus & STATUS_OVERFLOW) {
+               spierrstats->wroverflow++;
+               sd_err(("FIFO overflow happened due to current (F1/F2) write command.\n"));
+               bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_INTR_REG, F1_OVERFLOW);
+               bcmspi_resync_f1(sd);
+               sd_err(("Recovering from F1 FIFO overflow.\n"));
+       }
+
+       if (dstatus & STATUS_F2_INTR) {
+               spierrstats->f2interrupt++;
+               sd_trace(("Interrupt from F2.  SW should clear corresponding IntStatus bits\n"));
+       }
+
+       if (dstatus & STATUS_F3_INTR) {
+               spierrstats->f3interrupt++;
+               sd_err(("Interrupt from F3.  SW should clear corresponding IntStatus bits\n"));
+       }
+
+       if (dstatus & STATUS_HOST_CMD_DATA_ERR) {
+               spierrstats->hostcmddataerr++;
+               sd_err(("Error in CMD or Host data, detected by CRC/Checksum (optional)\n"));
+       }
+
+       if (dstatus & STATUS_F2_PKT_AVAILABLE) {
+               spierrstats->f2pktavailable++;
+               sd_trace(("Packet is available/ready in F2 TX FIFO\n"));
+               sd_trace(("Packet length = %d\n", sd->dwordmode ?
+                        ((dstatus & STATUS_F2_PKT_LEN_MASK) >> (STATUS_F2_PKT_LEN_SHIFT - 2)) :
+                        ((dstatus & STATUS_F2_PKT_LEN_MASK) >> STATUS_F2_PKT_LEN_SHIFT)));
+       }
+
+       if (dstatus & STATUS_F3_PKT_AVAILABLE) {
+               spierrstats->f3pktavailable++;
+               sd_err(("Packet is available/ready in F3 TX FIFO\n"));
+               sd_err(("Packet length = %d\n",
+                       (dstatus & STATUS_F3_PKT_LEN_MASK) >> STATUS_F3_PKT_LEN_SHIFT));
+       }
+
+       return err;
+}
+
+extern int
+sdioh_abort(sdioh_info_t *sd, uint func)
+{
+       return 0;
+}
+
+int
+sdioh_start(sdioh_info_t *sd, int stage)
+{
+       return SUCCESS;
+}
+
+int
+sdioh_stop(sdioh_info_t *sd)
+{
+       return SUCCESS;
+}
+
+int
+sdioh_waitlockfree(sdioh_info_t *sd)
+{
+       return SUCCESS;
+}
+
+/*
+ * Private/Static work routines
+ */
+static int
+bcmspi_host_init(sdioh_info_t *sd)
+{
+
+       /* Default power on mode */
+       sd->sd_mode = SDIOH_MODE_SPI;
+       sd->polled_mode = TRUE;
+       sd->host_init_done = TRUE;
+       sd->card_init_done = FALSE;
+       sd->adapter_slot = 1;
+
+       return (SUCCESS);
+}
+
+static int
+get_client_blocksize(sdioh_info_t *sd)
+{
+       uint32 regdata[2];
+       int status;
+
+       /* Find F1/F2/F3 max packet size */
+       if ((status = bcmspi_card_regread(sd, 0, SPID_F1_INFO_REG,
+                                        8, regdata)) != SUCCESS) {
+               return status;
+       }
+
+       sd_trace(("pkt_size regdata[0] = 0x%x, regdata[1] = 0x%x\n",
+               regdata[0], regdata[1]));
+
+       sd->client_block_size[1] = (regdata[0] & F1_MAX_PKT_SIZE) >> 2;
+       sd_trace(("Func1 blocksize = %d\n", sd->client_block_size[1]));
+       ASSERT(sd->client_block_size[1] == BLOCK_SIZE_F1);
+
+       sd->client_block_size[2] = ((regdata[0] >> 16) & F2_MAX_PKT_SIZE) >> 2;
+       sd_trace(("Func2 blocksize = %d\n", sd->client_block_size[2]));
+       ASSERT(sd->client_block_size[2] == BLOCK_SIZE_F2);
+
+       sd->client_block_size[3] = (regdata[1] & F3_MAX_PKT_SIZE) >> 2;
+       sd_trace(("Func3 blocksize = %d\n", sd->client_block_size[3]));
+       ASSERT(sd->client_block_size[3] == BLOCK_SIZE_F3);
+
+       return 0;
+}
+
+static int
+bcmspi_client_init(sdioh_info_t *sd)
+{
+       uint32  status_en_reg = 0;
+       sd_trace(("%s: Powering up slot %d\n", __FUNCTION__, sd->adapter_slot));
+
+#ifndef BCMSPI_ANDROID
+#ifdef HSMODE
+       if (!spi_start_clock(sd, (uint16)sd_divisor)) {
+               sd_err(("spi_start_clock failed\n"));
+               return ERROR;
+       }
+#else
+       /* Start at ~400KHz clock rate for initialization */
+       if (!spi_start_clock(sd, 128)) {
+               sd_err(("spi_start_clock failed\n"));
+               return ERROR;
+       }
+#endif /* HSMODE */
+#endif /* !BCMSPI_ANDROID */
+
+       if (!bcmspi_host_device_init_adapt(sd)) {
+               sd_err(("bcmspi_host_device_init_adapt failed\n"));
+               return ERROR;
+       }
+
+       if (!bcmspi_test_card(sd)) {
+               sd_err(("bcmspi_test_card failed\n"));
+               return ERROR;
+       }
+
+       sd->num_funcs = SPI_MAX_IOFUNCS;
+
+       get_client_blocksize(sd);
+
+       /* Apply resync pattern cmd with all zeros to reset spi-bkplane F1 logic */
+       bcmspi_resync_f1(sd);
+
+       sd->dwordmode = FALSE;
+
+       bcmspi_card_regread(sd, 0, SPID_STATUS_ENABLE, 1, &status_en_reg);
+
+       sd_trace(("%s: Enabling interrupt with dstatus \n", __FUNCTION__));
+       status_en_reg |= INTR_WITH_STATUS;
+
+       if (bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_STATUS_ENABLE, 1,
+           status_en_reg & 0xff) != SUCCESS) {
+               sd_err(("%s: Unable to set response delay for all fun's.\n", __FUNCTION__));
+               return ERROR;
+       }
+
+#ifndef HSMODE
+#ifndef BCMSPI_ANDROID
+       /* After configuring for High-Speed mode, set the desired clock rate. */
+       if (!spi_start_clock(sd, 4)) {
+               sd_err(("spi_start_clock failed\n"));
+               return ERROR;
+       }
+#endif /* !BCMSPI_ANDROID */
+#endif /* HSMODE */
+
+       /* check to see if the response delay needs to be programmed properly */
+       {
+               uint32 f1_respdelay = 0;
+               bcmspi_card_regread(sd, 0, SPID_RESP_DELAY_F1, 1, &f1_respdelay);
+               if ((f1_respdelay == 0) || (f1_respdelay == 0xFF)) {
+                       /* older sdiodevice core and has no separte resp delay for each of */
+                       sd_err(("older corerev < 4 so use the same resp delay for all funcs\n"));
+                       sd->resp_delay_new = FALSE;
+               }
+               else {
+                       /* older sdiodevice core and has no separte resp delay for each of */
+                       int ret_val;
+                       sd->resp_delay_new = TRUE;
+                       sd_err(("new corerev >= 4 so set the resp delay for each of the funcs\n"));
+                       sd_trace(("resp delay for funcs f0(%d), f1(%d), f2(%d), f3(%d)\n",
+                               GSPI_F0_RESP_DELAY, GSPI_F1_RESP_DELAY,
+                               GSPI_F2_RESP_DELAY, GSPI_F3_RESP_DELAY));
+                       ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F0, 1,
+                               GSPI_F0_RESP_DELAY);
+                       if (ret_val != SUCCESS) {
+                               sd_err(("%s: Unable to set response delay for F0\n", __FUNCTION__));
+                               return ERROR;
+                       }
+                       ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F1, 1,
+                               GSPI_F1_RESP_DELAY);
+                       if (ret_val != SUCCESS) {
+                               sd_err(("%s: Unable to set response delay for F1\n", __FUNCTION__));
+                               return ERROR;
+                       }
+                       ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F2, 1,
+                               GSPI_F2_RESP_DELAY);
+                       if (ret_val != SUCCESS) {
+                               sd_err(("%s: Unable to set response delay for F2\n", __FUNCTION__));
+                               return ERROR;
+                       }
+                       ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F3, 1,
+                               GSPI_F3_RESP_DELAY);
+                       if (ret_val != SUCCESS) {
+                               sd_err(("%s: Unable to set response delay for F2\n", __FUNCTION__));
+                               return ERROR;
+                       }
+               }
+       }
+
+       sd->card_init_done = TRUE;
+
+       /* get the device rev to program the prop respdelays */
+
+       return SUCCESS;
+}
+
+static int
+bcmspi_set_highspeed_mode(sdioh_info_t *sd, bool hsmode)
+{
+       uint32 regdata;
+       int status;
+
+       if ((status = bcmspi_card_regread(sd, 0, SPID_CONFIG,
+                                        4, &regdata)) != SUCCESS)
+               return status;
+
+       sd_trace(("In %s spih-ctrl = 0x%x \n", __FUNCTION__, regdata));
+
+       if (hsmode == TRUE) {
+               sd_trace(("Attempting to enable High-Speed mode.\n"));
+
+               if (regdata & HIGH_SPEED_MODE) {
+                       sd_trace(("Device is already in High-Speed mode.\n"));
+                       return status;
+               } else {
+                       regdata |= HIGH_SPEED_MODE;
+                       sd_trace(("Writing %08x to device at %08x\n", regdata, SPID_CONFIG));
+                       if ((status = bcmspi_card_regwrite(sd, 0, SPID_CONFIG,
+                                                         4, regdata)) != SUCCESS) {
+                               return status;
+                       }
+               }
+       } else {
+               sd_trace(("Attempting to disable High-Speed mode.\n"));
+
+               if (regdata & HIGH_SPEED_MODE) {
+                       regdata &= ~HIGH_SPEED_MODE;
+                       sd_trace(("Writing %08x to device at %08x\n", regdata, SPID_CONFIG));
+                       if ((status = bcmspi_card_regwrite(sd, 0, SPID_CONFIG,
+                                                         4, regdata)) != SUCCESS)
+                               return status;
+               }
+                else {
+                       sd_trace(("Device is already in Low-Speed mode.\n"));
+                       return status;
+               }
+       }
+#ifndef BCMSPI_ANDROID
+       spi_controller_highspeed_mode(sd, hsmode);
+#endif /* !BCMSPI_ANDROID */
+
+       return TRUE;
+}
+
+#define bcmspi_find_curr_mode(sd) { \
+       sd->wordlen = 2; \
+       status = bcmspi_card_regread_fixedaddr(sd, 0, SPID_TEST_READ, 4, &regdata); \
+       regdata &= 0xff; \
+       if ((regdata == 0xad) || (regdata == 0x5b) || \
+           (regdata == 0x5d) || (regdata == 0x5a)) \
+               break; \
+       sd->wordlen = 4; \
+       status = bcmspi_card_regread_fixedaddr(sd, 0, SPID_TEST_READ, 4, &regdata); \
+       regdata &= 0xff; \
+       if ((regdata == 0xad) || (regdata == 0x5b) || \
+           (regdata == 0x5d) || (regdata == 0x5a)) \
+               break; \
+       sd_trace(("Silicon testability issue: regdata = 0x%x." \
+               " Expected 0xad, 0x5a, 0x5b or 0x5d.\n", regdata)); \
+       OSL_DELAY(100000); \
+}
+
+#define INIT_ADAPT_LOOP                100
+
+/* Adapt clock-phase-speed-bitwidth between host and device */
+static bool
+bcmspi_host_device_init_adapt(sdioh_info_t *sd)
+{
+       uint32 wrregdata, regdata = 0;
+       int status;
+       int i;
+
+       /* Due to a silicon testability issue, the first command from the Host
+        * to the device will get corrupted (first bit will be lost). So the
+        * Host should poll the device with a safe read request. ie: The Host
+        * should try to read F0 addr 0x14 using the Fixed address mode
+        * (This will prevent a unintended write command to be detected by device)
+        */
+       for (i = 0; i < INIT_ADAPT_LOOP; i++) {
+       /* If device was not power-cycled it will stay in 32bit mode with
+        * response-delay-all bit set.  Alternate the iteration so that
+        * read either with or without response-delay for F0 to succeed.
+        */
+               bcmspi_find_curr_mode(sd);
+               sd->resp_delay_all = (i & 0x1) ? TRUE : FALSE;
+
+               bcmspi_find_curr_mode(sd);
+               sd->dwordmode = TRUE;
+
+               bcmspi_find_curr_mode(sd);
+               sd->dwordmode = FALSE;
+       }
+
+       /* Bail out, device not detected */
+       if (i == INIT_ADAPT_LOOP)
+               return FALSE;
+
+       /* Softreset the spid logic */
+       if ((sd->dwordmode) || (sd->wordlen == 4)) {
+               bcmspi_card_regwrite(sd, 0, SPID_RESET_BP, 1, RESET_ON_WLAN_BP_RESET|RESET_SPI);
+               bcmspi_card_regread(sd, 0, SPID_RESET_BP, 1, &regdata);
+               sd_trace(("reset reg read = 0x%x\n", regdata));
+               sd_trace(("dwordmode = %d, wordlen = %d, resp_delay_all = %d\n", sd->dwordmode,
+                      sd->wordlen, sd->resp_delay_all));
+               /* Restore default state after softreset */
+               sd->wordlen = 2;
+               sd->dwordmode = FALSE;
+       }
+
+       if (sd->wordlen == 4) {
+               if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, &regdata)) !=
+                    SUCCESS)
+                               return FALSE;
+               if (regdata == TEST_RO_DATA_32BIT_LE) {
+                       sd_trace(("Spid is already in 32bit LE mode. Value read = 0x%x\n",
+                                 regdata));
+                       sd_trace(("Spid power was left on.\n"));
+               } else {
+                       sd_err(("Spid power was left on but signature read failed."
+                               " Value read = 0x%x\n", regdata));
+                       return FALSE;
+               }
+       } else {
+               sd->wordlen = 2;
+
+#define CTRL_REG_DEFAULT       0x00010430 /* according to the host m/c */
+
+               wrregdata = (CTRL_REG_DEFAULT);
+
+               if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, &regdata)) != SUCCESS)
+                       return FALSE;
+               sd_trace(("(we are still in 16bit mode) 32bit READ LE regdata = 0x%x\n", regdata));
+
+#ifndef HSMODE
+               wrregdata |= (CLOCK_PHASE | CLOCK_POLARITY);
+               wrregdata &= ~HIGH_SPEED_MODE;
+               bcmspi_card_regwrite(sd, 0, SPID_CONFIG, 4, wrregdata);
+#endif /* HSMODE */
+
+               for (i = 0; i < INIT_ADAPT_LOOP; i++) {
+                       if ((regdata == 0xfdda7d5b) || (regdata == 0xfdda7d5a)) {
+                               sd_trace(("0xfeedbead was leftshifted by 1-bit.\n"));
+                               if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4,
+                                    &regdata)) != SUCCESS)
+                                       return FALSE;
+                       }
+                       OSL_DELAY(1000);
+               }
+
+#if defined(CHANGE_SPI_INTR_POLARITY_ACTIVE_HIGH)
+               /* Change to host controller intr-polarity of active-high */
+               wrregdata |= INTR_POLARITY;
+#else
+               /* Change to host controller intr-polarity of active-low */
+               wrregdata &= ~INTR_POLARITY;
+#endif /* CHANGE_SPI_INTR_POLARITY_ACTIVE_HIGH */
+
+               sd_trace(("(we are still in 16bit mode) 32bit Write LE reg-ctrl-data = 0x%x\n",
+                       wrregdata));
+               /* Change to 32bit mode */
+               wrregdata |= WORD_LENGTH_32;
+               bcmspi_card_regwrite(sd, 0, SPID_CONFIG, 4, wrregdata);
+
+               /* Change command/data packaging in 32bit LE mode */
+               sd->wordlen = 4;
+
+               if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, &regdata)) != SUCCESS)
+                       return FALSE;
+
+               if (regdata == TEST_RO_DATA_32BIT_LE) {
+                       sd_trace(("Read spid passed. Value read = 0x%x\n", regdata));
+                       sd_trace(("Spid had power-on cycle OR spi was soft-resetted \n"));
+               } else {
+                       sd_err(("Stale spid reg values read as it was kept powered. Value read ="
+                         "0x%x\n", regdata));
+                       return FALSE;
+               }
+       }
+
+       return TRUE;
+}
+
+static bool
+bcmspi_test_card(sdioh_info_t *sd)
+{
+       uint32 regdata;
+       int status;
+
+       if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, &regdata)) != SUCCESS)
+               return FALSE;
+
+       if (regdata == (TEST_RO_DATA_32BIT_LE))
+               sd_trace(("32bit LE regdata = 0x%x\n", regdata));
+       else {
+               sd_trace(("Incorrect 32bit LE regdata = 0x%x\n", regdata));
+               return FALSE;
+       }
+
+#define RW_PATTERN1    0xA0A1A2A3
+#define RW_PATTERN2    0x4B5B6B7B
+
+       regdata = RW_PATTERN1;
+       if ((status = bcmspi_card_regwrite(sd, 0, SPID_TEST_RW, 4, regdata)) != SUCCESS)
+               return FALSE;
+       regdata = 0;
+       if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_RW, 4, &regdata)) != SUCCESS)
+               return FALSE;
+       if (regdata != RW_PATTERN1) {
+               sd_err(("Write-Read spid failed. Value wrote = 0x%x, Value read = 0x%x\n",
+                       RW_PATTERN1, regdata));
+               return FALSE;
+       } else
+               sd_trace(("R/W spid passed. Value read = 0x%x\n", regdata));
+
+       regdata = RW_PATTERN2;
+       if ((status = bcmspi_card_regwrite(sd, 0, SPID_TEST_RW, 4, regdata)) != SUCCESS)
+               return FALSE;
+       regdata = 0;
+       if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_RW, 4, &regdata)) != SUCCESS)
+               return FALSE;
+       if (regdata != RW_PATTERN2) {
+               sd_err(("Write-Read spid failed. Value wrote = 0x%x, Value read = 0x%x\n",
+                       RW_PATTERN2, regdata));
+               return FALSE;
+       } else
+               sd_trace(("R/W spid passed. Value read = 0x%x\n", regdata));
+
+       return TRUE;
+}
+
+static int
+bcmspi_driver_init(sdioh_info_t *sd)
+{
+       sd_trace(("%s\n", __FUNCTION__));
+       if ((bcmspi_host_init(sd)) != SUCCESS) {
+               return ERROR;
+       }
+
+       if (bcmspi_client_init(sd) != SUCCESS) {
+               return ERROR;
+       }
+
+       return SUCCESS;
+}
+
+/* Read device reg */
+static int
+bcmspi_card_regread(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 *data)
+{
+       int status;
+       uint32 cmd_arg, dstatus;
+
+       ASSERT(regsize);
+
+       if (func == 2)
+               sd_trace(("Reg access on F2 will generate error indication in dstatus bits.\n"));
+
+       cmd_arg = 0;
+       cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 0);
+       cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1);       /* Incremental access */
+       cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
+       cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
+       cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize == BLOCK_SIZE_F2 ? 0 : regsize);
+
+       sd_trace(("%s: RD cmd_arg=0x%x func=%d regaddr=0x%x regsize=%d\n",
+                 __FUNCTION__, cmd_arg, func, regaddr, regsize));
+
+       if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, data, regsize)) != SUCCESS)
+               return status;
+
+       bcmspi_cmd_getdstatus(sd, &dstatus);
+       if (dstatus)
+               sd_trace(("dstatus =0x%x\n", dstatus));
+
+       return SUCCESS;
+}
+
+static int
+bcmspi_card_regread_fixedaddr(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 *data)
+{
+
+       int status;
+       uint32 cmd_arg;
+       uint32 dstatus;
+
+       ASSERT(regsize);
+
+       if (func == 2)
+               sd_trace(("Reg access on F2 will generate error indication in dstatus bits.\n"));
+
+       cmd_arg = 0;
+       cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 0);
+       cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 0);       /* Fixed access */
+       cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
+       cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
+       cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize);
+
+       sd_trace(("%s: RD cmd_arg=0x%x func=%d regaddr=0x%x regsize=%d\n",
+                 __FUNCTION__, cmd_arg, func, regaddr, regsize));
+
+       if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, data, regsize)) != SUCCESS)
+               return status;
+
+       sd_trace(("%s: RD result=0x%x\n", __FUNCTION__, *data));
+
+       bcmspi_cmd_getdstatus(sd, &dstatus);
+       sd_trace(("dstatus =0x%x\n", dstatus));
+       return SUCCESS;
+}
+
+/* write a device register */
+static int
+bcmspi_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 data)
+{
+       int status;
+       uint32 cmd_arg, dstatus;
+
+       ASSERT(regsize);
+
+       cmd_arg = 0;
+
+       cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1);
+       cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1);       /* Incremental access */
+       cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
+       cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
+       cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize == BLOCK_SIZE_F2 ? 0 : regsize);
+
+       sd_trace(("%s: WR cmd_arg=0x%x func=%d regaddr=0x%x regsize=%d data=0x%x\n",
+                 __FUNCTION__, cmd_arg, func, regaddr, regsize, data));
+
+       if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, &data, regsize)) != SUCCESS)
+               return status;
+
+       bcmspi_cmd_getdstatus(sd, &dstatus);
+       if (dstatus)
+               sd_trace(("dstatus=0x%x\n", dstatus));
+
+       return SUCCESS;
+}
+
+/* write a device register - 1 byte */
+static int
+bcmspi_card_bytewrite(sdioh_info_t *sd, int func, uint32 regaddr, uint8 *byte)
+{
+       int status;
+       uint32 cmd_arg;
+       uint32 dstatus;
+       uint32 data = (uint32)(*byte);
+
+       cmd_arg = 0;
+       cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
+       cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1);       /* Incremental access */
+       cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
+       cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1);
+       cmd_arg = SFIELD(cmd_arg, SPI_LEN, 1);
+
+       sd_trace(("%s: WR cmd_arg=0x%x func=%d regaddr=0x%x data=0x%x\n",
+                 __FUNCTION__, cmd_arg, func, regaddr, data));
+
+       if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, &data, 1)) != SUCCESS)
+               return status;
+
+       bcmspi_cmd_getdstatus(sd, &dstatus);
+       if (dstatus)
+               sd_trace(("dstatus =0x%x\n", dstatus));
+
+       return SUCCESS;
+}
+
+void
+bcmspi_cmd_getdstatus(sdioh_info_t *sd, uint32 *dstatus_buffer)
+{
+       *dstatus_buffer = sd->card_dstatus;
+}
+
+/* 'data' is of type uint32 whereas other buffers are of type uint8 */
+static int
+bcmspi_cmd_issue(sdioh_info_t *sd, bool use_dma, uint32 cmd_arg,
+                uint32 *data, uint32 datalen)
+{
+       uint32  i, j;
+       uint8   resp_delay = 0;
+       int     err = SUCCESS;
+       uint32  hostlen;
+       uint32 spilen = 0;
+       uint32 dstatus_idx = 0;
+       uint16 templen, buslen, len, *ptr = NULL;
+
+       sd_trace(("spi cmd = 0x%x\n", cmd_arg));
+
+       /* Set up and issue the SPI command.  MSByte goes out on bus first.  Increase datalen
+        * according to the wordlen mode(16/32bit) the device is in.
+        */
+       if (sd->wordlen == 4) { /* 32bit spid */
+               *(uint32 *)spi_outbuf = SPISWAP_WD4(cmd_arg);
+               if (datalen & 0x3)
+                       datalen += (4 - (datalen & 0x3));
+       } else if (sd->wordlen == 2) { /* 16bit spid */
+               *(uint32 *)spi_outbuf = SPISWAP_WD2(cmd_arg);
+               if (datalen & 0x1)
+                       datalen++;
+               if (datalen < 4)
+                       datalen = ROUNDUP(datalen, 4);
+       } else {
+               sd_err(("Host is %d bit spid, could not create SPI command.\n",
+                       8 * sd->wordlen));
+               return ERROR;
+       }
+
+       /* for Write, put the data into the output buffer */
+       if (GFIELD(cmd_arg, SPI_RW_FLAG) == 1) {
+               /* We send len field of hw-header always a mod16 size, both from host and dongle */
+               if (datalen != 0) {
+                       for (i = 0; i < datalen/4; i++) {
+                               if (sd->wordlen == 4) { /* 32bit spid */
+                                       *(uint32 *)&spi_outbuf[i * 4 + CMDLEN] =
+                                               SPISWAP_WD4(data[i]);
+                               } else if (sd->wordlen == 2) { /* 16bit spid */
+                                       *(uint32 *)&spi_outbuf[i * 4 + CMDLEN] =
+                                               SPISWAP_WD2(data[i]);
+                               }
+                       }
+               }
+       }
+
+       /* Append resp-delay number of bytes and clock them out for F0/1/2 reads. */
+       if ((GFIELD(cmd_arg, SPI_RW_FLAG) == 0)) {
+               int func = GFIELD(cmd_arg, SPI_FUNCTION);
+               switch (func) {
+                       case 0:
+                               if (sd->resp_delay_new)
+                                       resp_delay = GSPI_F0_RESP_DELAY;
+                               else
+                                       resp_delay = sd->resp_delay_all ? F0_RESPONSE_DELAY : 0;
+                               break;
+                       case 1:
+                               if (sd->resp_delay_new)
+                                       resp_delay = GSPI_F1_RESP_DELAY;
+                               else
+                                       resp_delay = F1_RESPONSE_DELAY;
+                               break;
+                       case 2:
+                               if (sd->resp_delay_new)
+                                       resp_delay = GSPI_F2_RESP_DELAY;
+                               else
+                                       resp_delay = sd->resp_delay_all ? F2_RESPONSE_DELAY : 0;
+                               break;
+                       default:
+                               ASSERT(0);
+                               break;
+               }
+               /* Program response delay */
+               if (sd->resp_delay_new == FALSE)
+                       bcmspi_prog_resp_delay(sd, func, resp_delay);
+       }
+
+       /* +4 for cmd and +4 for dstatus */
+       hostlen = datalen + 8 + resp_delay;
+       hostlen += dstatus_idx;
+#ifdef BCMSPI_ANDROID
+       if (hostlen%4) {
+               sd_err(("Unaligned data len %d, hostlen %d\n",
+                       datalen, hostlen));
+#endif /* BCMSPI_ANDROID */
+       hostlen += (4 - (hostlen & 0x3));
+#ifdef BCMSPI_ANDROID
+       }
+#endif /* BCMSPI_ANDROID */
+       spi_sendrecv(sd, spi_outbuf, spi_inbuf, hostlen);
+
+       /* for Read, get the data into the input buffer */
+       if (datalen != 0) {
+               if (GFIELD(cmd_arg, SPI_RW_FLAG) == 0) { /* if read cmd */
+                       for (j = 0; j < datalen/4; j++) {
+                               if (sd->wordlen == 4) { /* 32bit spid */
+                                       data[j] = SPISWAP_WD4(*(uint32 *)&spi_inbuf[j * 4 +
+                                                   CMDLEN + resp_delay]);
+                               } else if (sd->wordlen == 2) { /* 16bit spid */
+                                       data[j] = SPISWAP_WD2(*(uint32 *)&spi_inbuf[j * 4 +
+                                                   CMDLEN + resp_delay]);
+                               }
+                       }
+               }
+       }
+
+       dstatus_idx += (datalen + CMDLEN + resp_delay);
+       /* Last 4bytes are dstatus.  Device is configured to return status bits. */
+       if (sd->wordlen == 4) { /* 32bit spid */
+               sd->card_dstatus = SPISWAP_WD4(*(uint32 *)&spi_inbuf[dstatus_idx]);
+       } else if (sd->wordlen == 2) { /* 16bit spid */
+               sd->card_dstatus = SPISWAP_WD2(*(uint32 *)&spi_inbuf[dstatus_idx]);
+       } else {
+               sd_err(("Host is %d bit machine, could not read SPI dstatus.\n",
+                       8 * sd->wordlen));
+               return ERROR;
+       }
+       if (sd->card_dstatus == 0xffffffff) {
+               sd_err(("looks like not a GSPI device or device is not powered.\n"));
+       }
+
+       err = bcmspi_update_stats(sd, cmd_arg);
+
+       return err;
+
+}
+
+static int
+bcmspi_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo,
+                uint32 addr, int nbytes, uint32 *data)
+{
+       int status;
+       uint32 cmd_arg;
+       bool write = rw == SDIOH_READ ? 0 : 1;
+       uint retries = 0;
+
+       bool enable;
+       uint32  spilen;
+
+       cmd_arg = 0;
+
+       ASSERT(nbytes);
+       ASSERT(nbytes <= sd->client_block_size[func]);
+
+       if (write) sd->t_cnt++; else sd->r_cnt++;
+
+       if (func == 2) {
+               /* Frame len check limited by gSPI. */
+               if ((nbytes > 2000) && write) {
+                       sd_trace((">2KB write: F2 wr of %d bytes\n", nbytes));
+               }
+               /* ASSERT(nbytes <= 2048); Fix bigger len gspi issue and uncomment. */
+               /* If F2 fifo on device is not ready to receive data, don't do F2 transfer */
+               if (write) {
+                       uint32 dstatus;
+                       /* check F2 ready with cached one */
+                       bcmspi_cmd_getdstatus(sd, &dstatus);
+                       if ((dstatus & STATUS_F2_RX_READY) == 0) {
+                               retries = WAIT_F2RXFIFORDY;
+                               enable = 0;
+                               while (retries-- && !enable) {
+                                       OSL_DELAY(WAIT_F2RXFIFORDY_DELAY * 1000);
+                                       bcmspi_card_regread(sd, SPI_FUNC_0, SPID_STATUS_REG, 4,
+                                                          &dstatus);
+                                       if (dstatus & STATUS_F2_RX_READY)
+                                               enable = TRUE;
+                               }
+                               if (!enable) {
+                                       struct spierrstats_t *spierrstats = &sd->spierrstats;
+                                       spierrstats->f2rxnotready++;
+                                       sd_err(("F2 FIFO is not ready to receive data.\n"));
+                                       return ERROR;
+                               }
+                               sd_trace(("No of retries on F2 ready %d\n",
+                                       (WAIT_F2RXFIFORDY - retries)));
+                       }
+               }
+       }
+
+       /* F2 transfers happen on 0 addr */
+       addr = (func == 2) ? 0 : addr;
+
+       /* In pio mode buffer is read using fixed address fifo in func 1 */
+       if ((func == 1) && (fifo))
+               cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 0);
+       else
+               cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1);
+
+       cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
+       cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, addr);
+       cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, write);
+       spilen = sd->data_xfer_count = MIN(sd->client_block_size[func], nbytes);
+       if ((sd->dwordmode == TRUE) && (GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2)) {
+               /* convert len to mod4 size */
+               spilen = spilen + ((spilen & 0x3) ? (4 - (spilen & 0x3)): 0);
+               cmd_arg = SFIELD(cmd_arg, SPI_LEN, (spilen >> 2));
+       } else
+               cmd_arg = SFIELD(cmd_arg, SPI_LEN, spilen);
+
+       if ((func == 2) && (fifo == 1)) {
+               sd_data(("%s: %s func %d, %s, addr 0x%x, len %d bytes, r_cnt %d t_cnt %d\n",
+                         __FUNCTION__, write ? "Wr" : "Rd", func, "INCR",
+                         addr, nbytes, sd->r_cnt, sd->t_cnt));
+       }
+
+       sd_trace(("%s cmd_arg = 0x%x\n", __FUNCTION__, cmd_arg));
+       sd_data(("%s: %s func %d, %s, addr 0x%x, len %d bytes, r_cnt %d t_cnt %d\n",
+                __FUNCTION__, write ? "Wd" : "Rd", func, "INCR",
+                addr, nbytes, sd->r_cnt, sd->t_cnt));
+
+       if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, data, nbytes)) != SUCCESS) {
+               sd_err(("%s: cmd_issue failed for %s\n", __FUNCTION__,
+                       (write ? "write" : "read")));
+               return status;
+       }
+
+       /* gSPI expects that hw-header-len is equal to spi-command-len */
+       if ((func == 2) && (rw == SDIOH_WRITE) && (sd->dwordmode == FALSE)) {
+               ASSERT((uint16)sd->data_xfer_count == (uint16)(*data & 0xffff));
+               ASSERT((uint16)sd->data_xfer_count == (uint16)(~((*data & 0xffff0000) >> 16)));
+       }
+
+       if ((nbytes > 2000) && !write) {
+               sd_trace((">2KB read: F2 rd of %d bytes\n", nbytes));
+       }
+
+       return SUCCESS;
+}
+
+/* Reset and re-initialize the device */
+int
+sdioh_sdio_reset(sdioh_info_t *si)
+{
+       si->card_init_done = FALSE;
+       return bcmspi_client_init(si);
+}
+
+SDIOH_API_RC
+sdioh_gpioouten(sdioh_info_t *sd, uint32 gpio)
+{
+       return SDIOH_API_RC_FAIL;
+}
+
+SDIOH_API_RC
+sdioh_gpioout(sdioh_info_t *sd, uint32 gpio, bool enab)
+{
+       return SDIOH_API_RC_FAIL;
+}
+
+bool
+sdioh_gpioin(sdioh_info_t *sd, uint32 gpio)
+{
+       return FALSE;
+}
+
+SDIOH_API_RC
+sdioh_gpio_init(sdioh_info_t *sd)
+{
+       return SDIOH_API_RC_FAIL;
+}