fs: kill block_prepare_write
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / reiserfs_fs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3 */
4
5 /* this file has an amazingly stupid
bd4c625c
LT
6 name, yura please fix it to be
7 reiserfs.h, and merge all the rest
8 of our .h files that are in this
9 directory into it. */
1da177e4
LT
10
11#ifndef _LINUX_REISER_FS_H
12#define _LINUX_REISER_FS_H
13
14#include <linux/types.h>
e18fa700
JG
15#include <linux/magic.h>
16
1da177e4
LT
17#ifdef __KERNEL__
18#include <linux/slab.h>
19#include <linux/interrupt.h>
20#include <linux/sched.h>
21#include <linux/workqueue.h>
22#include <asm/unaligned.h>
23#include <linux/bitops.h>
24#include <linux/proc_fs.h>
25#include <linux/smp_lock.h>
26#include <linux/buffer_head.h>
27#include <linux/reiserfs_fs_i.h>
28#include <linux/reiserfs_fs_sb.h>
29#endif
30
31/*
32 * include/linux/reiser_fs.h
33 *
34 * Reiser File System constants and structures
35 *
36 */
37
750e1c18
JSR
38/* ioctl's command */
39#define REISERFS_IOC_UNPACK _IOW(0xCD,1,long)
40/* define following flags to be the same as in ext2, so that chattr(1),
41 lsattr(1) will work with us. */
42#define REISERFS_IOC_GETFLAGS FS_IOC_GETFLAGS
43#define REISERFS_IOC_SETFLAGS FS_IOC_SETFLAGS
44#define REISERFS_IOC_GETVERSION FS_IOC_GETVERSION
45#define REISERFS_IOC_SETVERSION FS_IOC_SETVERSION
46
47#ifdef __KERNEL__
48/* the 32 bit compat definitions with int argument */
49#define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int)
50#define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
51#define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
52#define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION
53#define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION
54
8ebc4232
FW
55/*
56 * Locking primitives. The write lock is a per superblock
57 * special mutex that has properties close to the Big Kernel Lock
58 * which was used in the previous locking scheme.
59 */
60void reiserfs_write_lock(struct super_block *s);
61void reiserfs_write_unlock(struct super_block *s);
daf88c89
FW
62int reiserfs_write_lock_once(struct super_block *s);
63void reiserfs_write_unlock_once(struct super_block *s, int lock_depth);
750e1c18 64
c4a62ca3
FW
65#ifdef CONFIG_REISERFS_CHECK
66void reiserfs_lock_check_recursive(struct super_block *s);
67#else
68static inline void reiserfs_lock_check_recursive(struct super_block *s) { }
69#endif
70
c72e0575
FW
71/*
72 * Several mutexes depend on the write lock.
73 * However sometimes we want to relax the write lock while we hold
74 * these mutexes, according to the release/reacquire on schedule()
75 * properties of the Bkl that were used.
76 * Reiserfs performances and locking were based on this scheme.
77 * Now that the write lock is a mutex and not the bkl anymore, doing so
78 * may result in a deadlock:
79 *
80 * A acquire write_lock
81 * A acquire j_commit_mutex
82 * A release write_lock and wait for something
83 * B acquire write_lock
84 * B can't acquire j_commit_mutex and sleep
85 * A can't acquire write lock anymore
86 * deadlock
87 *
88 * What we do here is avoiding such deadlock by playing the same game
89 * than the Bkl: if we can't acquire a mutex that depends on the write lock,
90 * we release the write lock, wait a bit and then retry.
91 *
92 * The mutexes concerned by this hack are:
93 * - The commit mutex of a journal list
94 * - The flush mutex
95 * - The journal lock
96 * - The inode mutex
97 */
98static inline void reiserfs_mutex_lock_safe(struct mutex *m,
99 struct super_block *s)
100{
c4a62ca3 101 reiserfs_lock_check_recursive(s);
c72e0575
FW
102 reiserfs_write_unlock(s);
103 mutex_lock(m);
104 reiserfs_write_lock(s);
105}
106
47376ceb
FW
107static inline void
108reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass,
109 struct super_block *s)
110{
c4a62ca3 111 reiserfs_lock_check_recursive(s);
47376ceb
FW
112 reiserfs_write_unlock(s);
113 mutex_lock_nested(m, subclass);
114 reiserfs_write_lock(s);
115}
116
0719d343
FW
117static inline void
118reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s)
119{
c4a62ca3 120 reiserfs_lock_check_recursive(s);
0719d343
FW
121 reiserfs_write_unlock(s);
122 down_read(sem);
123 reiserfs_write_lock(s);
124}
125
e43d3f21
FW
126/*
127 * When we schedule, we usually want to also release the write lock,
128 * according to the previous bkl based locking scheme of reiserfs.
129 */
130static inline void reiserfs_cond_resched(struct super_block *s)
131{
132 if (need_resched()) {
133 reiserfs_write_unlock(s);
134 schedule();
135 reiserfs_write_lock(s);
136 }
137}
138
750e1c18
JSR
139struct fid;
140
1da177e4
LT
141/* in reading the #defines, it may help to understand that they employ
142 the following abbreviations:
143
144 B = Buffer
145 I = Item header
146 H = Height within the tree (should be changed to LEV)
147 N = Number of the item in the node
148 STAT = stat data
149 DEH = Directory Entry Header
150 EC = Entry Count
151 E = Entry number
152 UL = Unsigned Long
153 BLKH = BLocK Header
154 UNFM = UNForMatted node
155 DC = Disk Child
156 P = Path
157
158 These #defines are named by concatenating these abbreviations,
159 where first comes the arguments, and last comes the return value,
160 of the macro.
161
162*/
163
164#define USE_INODE_GENERATION_COUNTER
165
166#define REISERFS_PREALLOCATE
167#define DISPLACE_NEW_PACKING_LOCALITIES
168#define PREALLOCATION_SIZE 9
169
170/* n must be power of 2 */
171#define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
172
173// to be ok for alpha and others we have to align structures to 8 byte
174// boundary.
175// FIXME: do not change 4 by anything else: there is code which relies on that
176#define ROUND_UP(x) _ROUND_UP(x,8LL)
177
178/* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug
179** messages.
180*/
bd4c625c 181#define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */
1da177e4 182
45b03d5e
JM
183void __reiserfs_warning(struct super_block *s, const char *id,
184 const char *func, const char *fmt, ...);
185#define reiserfs_warning(s, id, fmt, args...) \
186 __reiserfs_warning(s, id, __func__, fmt, ##args)
1da177e4
LT
187/* assertions handling */
188
189/** always check a condition and panic if it's false. */
c3a9c210
JM
190#define __RASSERT(cond, scond, format, args...) \
191do { \
192 if (!(cond)) \
193 reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
194 __FILE__ ":%i:%s: " format "\n", \
195 in_interrupt() ? -1 : task_pid_nr(current), \
196 __LINE__, __func__ , ##args); \
197} while (0)
1da177e4 198
2d954d06
AV
199#define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
200
1da177e4 201#if defined( CONFIG_REISERFS_CHECK )
2d954d06 202#define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
1da177e4
LT
203#else
204#define RFALSE( cond, format, args... ) do {;} while( 0 )
205#endif
206
207#define CONSTF __attribute_const__
208/*
209 * Disk Data Structures
210 */
211
212/***************************************************************************/
213/* SUPER BLOCK */
214/***************************************************************************/
215
216/*
217 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
218 * the version in RAM is part of a larger structure containing fields never written to disk.
219 */
bd4c625c
LT
220#define UNSET_HASH 0 // read_super will guess about, what hash names
221 // in directories were sorted with
1da177e4
LT
222#define TEA_HASH 1
223#define YURA_HASH 2
224#define R5_HASH 3
225#define DEFAULT_HASH R5_HASH
226
1da177e4 227struct journal_params {
bd4c625c
LT
228 __le32 jp_journal_1st_block; /* where does journal start from on its
229 * device */
230 __le32 jp_journal_dev; /* journal device st_rdev */
231 __le32 jp_journal_size; /* size of the journal */
232 __le32 jp_journal_trans_max; /* max number of blocks in a transaction. */
233 __le32 jp_journal_magic; /* random value made on fs creation (this
234 * was sb_journal_block_count) */
235 __le32 jp_journal_max_batch; /* max number of blocks to batch into a
236 * trans */
237 __le32 jp_journal_max_commit_age; /* in seconds, how old can an async
238 * commit be */
239 __le32 jp_journal_max_trans_age; /* in seconds, how old can a transaction
240 * be */
1da177e4
LT
241};
242
243/* this is the super from 3.5.X, where X >= 10 */
bd4c625c
LT
244struct reiserfs_super_block_v1 {
245 __le32 s_block_count; /* blocks count */
246 __le32 s_free_blocks; /* free blocks count */
247 __le32 s_root_block; /* root block number */
248 struct journal_params s_journal;
249 __le16 s_blocksize; /* block size */
250 __le16 s_oid_maxsize; /* max size of object id array, see
251 * get_objectid() commentary */
252 __le16 s_oid_cursize; /* current size of object id array */
253 __le16 s_umount_state; /* this is set to 1 when filesystem was
254 * umounted, to 2 - when not */
255 char s_magic[10]; /* reiserfs magic string indicates that
256 * file system is reiserfs:
257 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
258 __le16 s_fs_state; /* it is set to used by fsck to mark which
259 * phase of rebuilding is done */
260 __le32 s_hash_function_code; /* indicate, what hash function is being use
261 * to sort names in a directory*/
262 __le16 s_tree_height; /* height of disk tree */
263 __le16 s_bmap_nr; /* amount of bitmap blocks needed to address
264 * each block of file system */
265 __le16 s_version; /* this field is only reliable on filesystem
266 * with non-standard journal */
267 __le16 s_reserved_for_journal; /* size in blocks of journal area on main
268 * device, we need to keep after
269 * making fs with non-standard journal */
1da177e4
LT
270} __attribute__ ((__packed__));
271
272#define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
273
274/* this is the on disk super block */
bd4c625c
LT
275struct reiserfs_super_block {
276 struct reiserfs_super_block_v1 s_v1;
277 __le32 s_inode_generation;
278 __le32 s_flags; /* Right now used only by inode-attributes, if enabled */
279 unsigned char s_uuid[16]; /* filesystem unique identifier */
280 unsigned char s_label[16]; /* filesystem volume label */
702d21c6
JM
281 __le16 s_mnt_count; /* Count of mounts since last fsck */
282 __le16 s_max_mnt_count; /* Maximum mounts before check */
283 __le32 s_lastcheck; /* Timestamp of last fsck */
284 __le32 s_check_interval; /* Interval between checks */
285 char s_unused[76]; /* zero filled by mkreiserfs and
bd4c625c
LT
286 * reiserfs_convert_objectid_map_v1()
287 * so any additions must be updated
288 * there as well. */
289} __attribute__ ((__packed__));
1da177e4
LT
290
291#define SB_SIZE (sizeof(struct reiserfs_super_block))
292
293#define REISERFS_VERSION_1 0
294#define REISERFS_VERSION_2 2
295
1da177e4
LT
296// on-disk super block fields converted to cpu form
297#define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
298#define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
299#define SB_BLOCKSIZE(s) \
300 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
301#define SB_BLOCK_COUNT(s) \
302 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
303#define SB_FREE_BLOCKS(s) \
304 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
305#define SB_REISERFS_MAGIC(s) \
306 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
307#define SB_ROOT_BLOCK(s) \
308 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
309#define SB_TREE_HEIGHT(s) \
310 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
311#define SB_REISERFS_STATE(s) \
312 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
313#define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
314#define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
315
316#define PUT_SB_BLOCK_COUNT(s, val) \
317 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
318#define PUT_SB_FREE_BLOCKS(s, val) \
319 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
320#define PUT_SB_ROOT_BLOCK(s, val) \
321 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
322#define PUT_SB_TREE_HEIGHT(s, val) \
323 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
324#define PUT_SB_REISERFS_STATE(s, val) \
bd4c625c 325 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
1da177e4
LT
326#define PUT_SB_VERSION(s, val) \
327 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
328#define PUT_SB_BMAP_NR(s, val) \
329 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
330
1da177e4
LT
331#define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
332#define SB_ONDISK_JOURNAL_SIZE(s) \
333 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
334#define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
335 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
336#define SB_ONDISK_JOURNAL_DEVICE(s) \
337 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
338#define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
b8cc936f 339 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
1da177e4
LT
340
341#define is_block_in_log_or_reserved_area(s, block) \
342 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
343 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \
344 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
bd4c625c 345 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
1da177e4 346
bd4c625c
LT
347int is_reiserfs_3_5(struct reiserfs_super_block *rs);
348int is_reiserfs_3_6(struct reiserfs_super_block *rs);
349int is_reiserfs_jr(struct reiserfs_super_block *rs);
1da177e4
LT
350
351/* ReiserFS leaves the first 64k unused, so that partition labels have
352 enough space. If someone wants to write a fancy bootloader that
353 needs more than 64k, let us know, and this will be increased in size.
354 This number must be larger than than the largest block size on any
355 platform, or code will break. -Hans */
356#define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
357#define REISERFS_FIRST_BLOCK unused_define
358#define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
359
360/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
361#define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
362
7a2e3659 363/* reiserfs internal error code (used by search_by_key and fix_nodes)) */
1da177e4
LT
364#define CARRY_ON 0
365#define REPEAT_SEARCH -1
366#define IO_ERROR -2
367#define NO_DISK_SPACE -3
368#define NO_BALANCING_NEEDED (-4)
369#define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
370#define QUOTA_EXCEEDED -6
371
372typedef __u32 b_blocknr_t;
3e8962be 373typedef __le32 unp_t;
1da177e4
LT
374
375struct unfm_nodeinfo {
bd4c625c
LT
376 unp_t unfm_nodenum;
377 unsigned short unfm_freespace;
1da177e4
LT
378};
379
380/* there are two formats of keys: 3.5 and 3.6
381 */
382#define KEY_FORMAT_3_5 0
383#define KEY_FORMAT_3_6 1
384
385/* there are two stat datas */
386#define STAT_DATA_V1 0
387#define STAT_DATA_V2 1
388
1da177e4
LT
389static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
390{
391 return container_of(inode, struct reiserfs_inode_info, vfs_inode);
392}
393
394static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
395{
396 return sb->s_fs_info;
397}
398
cb680c1b
JM
399/* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
400 * which overflows on large file systems. */
13d8bcd2 401static inline __u32 reiserfs_bmap_count(struct super_block *sb)
cb680c1b
JM
402{
403 return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
404}
405
406static inline int bmap_would_wrap(unsigned bmap_nr)
407{
408 return bmap_nr > ((1LL << 16) - 1);
409}
410
1da177e4
LT
411/** this says about version of key of all items (but stat data) the
412 object consists of */
413#define get_inode_item_key_version( inode ) \
414 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
415
416#define set_inode_item_key_version( inode, version ) \
417 ({ if((version)==KEY_FORMAT_3_6) \
418 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \
419 else \
420 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
421
422#define get_inode_sd_version(inode) \
423 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
424
425#define set_inode_sd_version(inode, version) \
426 ({ if((version)==STAT_DATA_V2) \
427 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \
428 else \
429 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
430
431/* This is an aggressive tail suppression policy, I am hoping it
432 improves our benchmarks. The principle behind it is that percentage
433 space saving is what matters, not absolute space saving. This is
434 non-intuitive, but it helps to understand it if you consider that the
435 cost to access 4 blocks is not much more than the cost to access 1
436 block, if you have to do a seek and rotate. A tail risks a
437 non-linear disk access that is significant as a percentage of total
438 time cost for a 4 block file and saves an amount of space that is
439 less significant as a percentage of space, or so goes the hypothesis.
440 -Hans */
441#define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
442(\
443 (!(n_tail_size)) || \
444 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
445 ( (n_file_size) >= (n_block_size) * 4 ) || \
446 ( ( (n_file_size) >= (n_block_size) * 3 ) && \
447 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
448 ( ( (n_file_size) >= (n_block_size) * 2 ) && \
449 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
450 ( ( (n_file_size) >= (n_block_size) ) && \
451 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
452)
453
454/* Another strategy for tails, this one means only create a tail if all the
455 file would fit into one DIRECT item.
456 Primary intention for this one is to increase performance by decreasing
457 seeking.
bd4c625c 458*/
1da177e4
LT
459#define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
460(\
461 (!(n_tail_size)) || \
462 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
463)
464
1da177e4
LT
465/*
466 * values for s_umount_state field
467 */
468#define REISERFS_VALID_FS 1
469#define REISERFS_ERROR_FS 2
470
471//
472// there are 5 item types currently
473//
474#define TYPE_STAT_DATA 0
475#define TYPE_INDIRECT 1
476#define TYPE_DIRECT 2
bd4c625c
LT
477#define TYPE_DIRENTRY 3
478#define TYPE_MAXTYPE 3
479#define TYPE_ANY 15 // FIXME: comment is required
1da177e4
LT
480
481/***************************************************************************/
482/* KEY & ITEM HEAD */
483/***************************************************************************/
484
485//
486// directories use this key as well as old files
487//
488struct offset_v1 {
bd4c625c
LT
489 __le32 k_offset;
490 __le32 k_uniqueness;
1da177e4
LT
491} __attribute__ ((__packed__));
492
493struct offset_v2 {
f8e08a84 494 __le64 v;
1da177e4
LT
495} __attribute__ ((__packed__));
496
bd4c625c 497static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
1da177e4 498{
f8e08a84 499 __u8 type = le64_to_cpu(v2->v) >> 60;
bd4c625c 500 return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
1da177e4 501}
bd4c625c
LT
502
503static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
1da177e4 504{
bd4c625c
LT
505 v2->v =
506 (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
1da177e4 507}
bd4c625c
LT
508
509static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
1da177e4 510{
bd4c625c 511 return le64_to_cpu(v2->v) & (~0ULL >> 4);
1da177e4
LT
512}
513
bd4c625c
LT
514static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
515{
516 offset &= (~0ULL >> 4);
517 v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
1da177e4 518}
1da177e4
LT
519
520/* Key of an item determines its location in the S+tree, and
521 is composed of 4 components */
522struct reiserfs_key {
bd4c625c
LT
523 __le32 k_dir_id; /* packing locality: by default parent
524 directory object id */
525 __le32 k_objectid; /* object identifier */
526 union {
527 struct offset_v1 k_offset_v1;
528 struct offset_v2 k_offset_v2;
529 } __attribute__ ((__packed__)) u;
1da177e4
LT
530} __attribute__ ((__packed__));
531
6a3a16f2 532struct in_core_key {
bd4c625c
LT
533 __u32 k_dir_id; /* packing locality: by default parent
534 directory object id */
535 __u32 k_objectid; /* object identifier */
536 __u64 k_offset;
537 __u8 k_type;
6b9f5829 538};
1da177e4
LT
539
540struct cpu_key {
bd4c625c
LT
541 struct in_core_key on_disk_key;
542 int version;
543 int key_length; /* 3 in all cases but direct2indirect and
544 indirect2direct conversion */
1da177e4
LT
545};
546
547/* Our function for comparing keys can compare keys of different
548 lengths. It takes as a parameter the length of the keys it is to
549 compare. These defines are used in determining what is to be passed
550 to it as that parameter. */
551#define REISERFS_FULL_KEY_LEN 4
552#define REISERFS_SHORT_KEY_LEN 2
553
554/* The result of the key compare */
555#define FIRST_GREATER 1
556#define SECOND_GREATER -1
557#define KEYS_IDENTICAL 0
558#define KEY_FOUND 1
559#define KEY_NOT_FOUND 0
560
561#define KEY_SIZE (sizeof(struct reiserfs_key))
562#define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
563
564/* return values for search_by_key and clones */
565#define ITEM_FOUND 1
566#define ITEM_NOT_FOUND 0
567#define ENTRY_FOUND 1
568#define ENTRY_NOT_FOUND 0
569#define DIRECTORY_NOT_FOUND -1
570#define REGULAR_FILE_FOUND -2
571#define DIRECTORY_FOUND -3
572#define BYTE_FOUND 1
573#define BYTE_NOT_FOUND 0
574#define FILE_NOT_FOUND -1
575
576#define POSITION_FOUND 1
577#define POSITION_NOT_FOUND 0
578
579// return values for reiserfs_find_entry and search_by_entry_key
580#define NAME_FOUND 1
581#define NAME_NOT_FOUND 0
582#define GOTO_PREVIOUS_ITEM 2
583#define NAME_FOUND_INVISIBLE 3
584
585/* Everything in the filesystem is stored as a set of items. The
586 item head contains the key of the item, its free space (for
587 indirect items) and specifies the location of the item itself
588 within the block. */
589
bd4c625c 590struct item_head {
1da177e4
LT
591 /* Everything in the tree is found by searching for it based on
592 * its key.*/
593 struct reiserfs_key ih_key;
594 union {
595 /* The free space in the last unformatted node of an
596 indirect item if this is an indirect item. This
597 equals 0xFFFF iff this is a direct item or stat data
598 item. Note that the key, not this field, is used to
599 determine the item type, and thus which field this
600 union contains. */
3e8962be 601 __le16 ih_free_space_reserved;
1da177e4
LT
602 /* Iff this is a directory item, this field equals the
603 number of directory entries in the directory item. */
3e8962be 604 __le16 ih_entry_count;
1da177e4 605 } __attribute__ ((__packed__)) u;
bd4c625c
LT
606 __le16 ih_item_len; /* total size of the item body */
607 __le16 ih_item_location; /* an offset to the item body
608 * within the block */
609 __le16 ih_version; /* 0 for all old items, 2 for new
610 ones. Highest bit is set by fsck
611 temporary, cleaned after all
612 done */
1da177e4
LT
613} __attribute__ ((__packed__));
614/* size of item header */
615#define IH_SIZE (sizeof(struct item_head))
616
617#define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved)
618#define ih_version(ih) le16_to_cpu((ih)->ih_version)
619#define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count)
620#define ih_location(ih) le16_to_cpu((ih)->ih_item_location)
621#define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len)
622
623#define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
624#define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0)
625#define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
626#define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
627#define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
628
1da177e4
LT
629#define unreachable_item(ih) (ih_version(ih) & (1 << 15))
630
631#define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
632#define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
633
634/* these operate on indirect items, where you've got an array of ints
635** at a possibly unaligned location. These are a noop on ia32
636**
637** p is the array of __u32, i is the index into the array, v is the value
638** to store there.
639*/
8b5ac31e
HH
640#define get_block_num(p, i) get_unaligned_le32((p) + (i))
641#define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
1da177e4
LT
642
643//
644// in old version uniqueness field shows key type
645//
646#define V1_SD_UNIQUENESS 0
647#define V1_INDIRECT_UNIQUENESS 0xfffffffe
648#define V1_DIRECT_UNIQUENESS 0xffffffff
649#define V1_DIRENTRY_UNIQUENESS 500
bd4c625c 650#define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
1da177e4
LT
651
652//
653// here are conversion routines
654//
bd4c625c
LT
655static inline int uniqueness2type(__u32 uniqueness) CONSTF;
656static inline int uniqueness2type(__u32 uniqueness)
1da177e4 657{
bd4c625c
LT
658 switch ((int)uniqueness) {
659 case V1_SD_UNIQUENESS:
660 return TYPE_STAT_DATA;
661 case V1_INDIRECT_UNIQUENESS:
662 return TYPE_INDIRECT;
663 case V1_DIRECT_UNIQUENESS:
664 return TYPE_DIRECT;
665 case V1_DIRENTRY_UNIQUENESS:
666 return TYPE_DIRENTRY;
1da177e4 667 case V1_ANY_UNIQUENESS:
fd7cb031 668 default:
bd4c625c
LT
669 return TYPE_ANY;
670 }
1da177e4
LT
671}
672
bd4c625c
LT
673static inline __u32 type2uniqueness(int type) CONSTF;
674static inline __u32 type2uniqueness(int type)
1da177e4 675{
bd4c625c
LT
676 switch (type) {
677 case TYPE_STAT_DATA:
678 return V1_SD_UNIQUENESS;
679 case TYPE_INDIRECT:
680 return V1_INDIRECT_UNIQUENESS;
681 case TYPE_DIRECT:
682 return V1_DIRECT_UNIQUENESS;
683 case TYPE_DIRENTRY:
684 return V1_DIRENTRY_UNIQUENESS;
1da177e4 685 case TYPE_ANY:
fd7cb031 686 default:
bd4c625c
LT
687 return V1_ANY_UNIQUENESS;
688 }
1da177e4
LT
689}
690
691//
692// key is pointer to on disk key which is stored in le, result is cpu,
693// there is no way to get version of object from key, so, provide
694// version to these defines
695//
bd4c625c
LT
696static inline loff_t le_key_k_offset(int version,
697 const struct reiserfs_key *key)
1da177e4 698{
bd4c625c
LT
699 return (version == KEY_FORMAT_3_5) ?
700 le32_to_cpu(key->u.k_offset_v1.k_offset) :
701 offset_v2_k_offset(&(key->u.k_offset_v2));
1da177e4
LT
702}
703
bd4c625c 704static inline loff_t le_ih_k_offset(const struct item_head *ih)
1da177e4 705{
bd4c625c 706 return le_key_k_offset(ih_version(ih), &(ih->ih_key));
1da177e4
LT
707}
708
bd4c625c 709static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
1da177e4 710{
bd4c625c
LT
711 return (version == KEY_FORMAT_3_5) ?
712 uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) :
713 offset_v2_k_type(&(key->u.k_offset_v2));
1da177e4
LT
714}
715
bd4c625c 716static inline loff_t le_ih_k_type(const struct item_head *ih)
1da177e4 717{
bd4c625c 718 return le_key_k_type(ih_version(ih), &(ih->ih_key));
1da177e4
LT
719}
720
bd4c625c
LT
721static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
722 loff_t offset)
1da177e4 723{
bd4c625c
LT
724 (version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) : /* jdm check */
725 (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset));
1da177e4
LT
726}
727
bd4c625c 728static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
1da177e4 729{
bd4c625c 730 set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1da177e4
LT
731}
732
bd4c625c
LT
733static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
734 int type)
1da177e4 735{
bd4c625c
LT
736 (version == KEY_FORMAT_3_5) ?
737 (void)(key->u.k_offset_v1.k_uniqueness =
738 cpu_to_le32(type2uniqueness(type)))
739 : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type));
1da177e4 740}
1d965fe0 741
bd4c625c 742static inline void set_le_ih_k_type(struct item_head *ih, int type)
1da177e4 743{
bd4c625c 744 set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
1da177e4
LT
745}
746
1d965fe0
JM
747static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
748{
749 return le_key_k_type(version, key) == TYPE_DIRENTRY;
750}
751
752static inline int is_direct_le_key(int version, struct reiserfs_key *key)
753{
754 return le_key_k_type(version, key) == TYPE_DIRECT;
755}
756
757static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
758{
759 return le_key_k_type(version, key) == TYPE_INDIRECT;
760}
761
762static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
763{
764 return le_key_k_type(version, key) == TYPE_STAT_DATA;
765}
1da177e4
LT
766
767//
768// item header has version.
769//
1d965fe0
JM
770static inline int is_direntry_le_ih(struct item_head *ih)
771{
772 return is_direntry_le_key(ih_version(ih), &ih->ih_key);
773}
774
775static inline int is_direct_le_ih(struct item_head *ih)
776{
777 return is_direct_le_key(ih_version(ih), &ih->ih_key);
778}
779
780static inline int is_indirect_le_ih(struct item_head *ih)
781{
782 return is_indirect_le_key(ih_version(ih), &ih->ih_key);
783}
784
785static inline int is_statdata_le_ih(struct item_head *ih)
786{
787 return is_statdata_le_key(ih_version(ih), &ih->ih_key);
788}
1da177e4 789
1da177e4
LT
790//
791// key is pointer to cpu key, result is cpu
792//
bd4c625c 793static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
1da177e4 794{
bd4c625c 795 return key->on_disk_key.k_offset;
1da177e4
LT
796}
797
bd4c625c 798static inline loff_t cpu_key_k_type(const struct cpu_key *key)
1da177e4 799{
bd4c625c 800 return key->on_disk_key.k_type;
1da177e4
LT
801}
802
bd4c625c 803static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
1da177e4 804{
6b9f5829 805 key->on_disk_key.k_offset = offset;
1da177e4
LT
806}
807
bd4c625c 808static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
1da177e4 809{
6b9f5829 810 key->on_disk_key.k_type = type;
1da177e4
LT
811}
812
bd4c625c 813static inline void cpu_key_k_offset_dec(struct cpu_key *key)
1da177e4 814{
bd4c625c 815 key->on_disk_key.k_offset--;
1da177e4
LT
816}
817
1da177e4
LT
818#define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
819#define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
820#define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
821#define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
822
1da177e4
LT
823/* are these used ? */
824#define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
825#define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
826#define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
827#define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
828
d68caa95
JM
829#define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
830 (!COMP_SHORT_KEYS(ih, key) && \
831 I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
1da177e4 832
bd4c625c 833/* maximal length of item */
1da177e4
LT
834#define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
835#define MIN_ITEM_LEN 1
836
1da177e4
LT
837/* object identifier for root dir */
838#define REISERFS_ROOT_OBJECTID 2
839#define REISERFS_ROOT_PARENT_OBJECTID 1
750e1c18 840
1da177e4
LT
841extern struct reiserfs_key root_key;
842
1da177e4
LT
843/*
844 * Picture represents a leaf of the S+tree
845 * ______________________________________________________
846 * | | Array of | | |
847 * |Block | Object-Item | F r e e | Objects- |
848 * | head | Headers | S p a c e | Items |
849 * |______|_______________|___________________|___________|
850 */
851
852/* Header of a disk block. More precisely, header of a formatted leaf
853 or internal node, and not the header of an unformatted node. */
bd4c625c
LT
854struct block_head {
855 __le16 blk_level; /* Level of a block in the tree. */
856 __le16 blk_nr_item; /* Number of keys/items in a block. */
857 __le16 blk_free_space; /* Block free space in bytes. */
858 __le16 blk_reserved;
859 /* dump this in v4/planA */
860 struct reiserfs_key blk_right_delim_key; /* kept only for compatibility */
1da177e4
LT
861};
862
863#define BLKH_SIZE (sizeof(struct block_head))
864#define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level))
865#define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item))
866#define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space))
867#define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved))
868#define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val))
869#define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val))
870#define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
871#define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
872#define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key)
873#define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val)
874
875/*
876 * values for blk_level field of the struct block_head
877 */
878
bd4c625c
LT
879#define FREE_LEVEL 0 /* when node gets removed from the tree its
880 blk_level is set to FREE_LEVEL. It is then
881 used to see whether the node is still in the
882 tree */
1da177e4 883
bd4c625c 884#define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */
1da177e4
LT
885
886/* Given the buffer head of a formatted node, resolve to the block head of that node. */
ad31a4fc 887#define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data))
1da177e4 888/* Number of items that are in buffer. */
ad31a4fc
JM
889#define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh)))
890#define B_LEVEL(bh) (blkh_level(B_BLK_HEAD(bh)))
891#define B_FREE_SPACE(bh) (blkh_free_space(B_BLK_HEAD(bh)))
1da177e4 892
ad31a4fc
JM
893#define PUT_B_NR_ITEMS(bh, val) do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
894#define PUT_B_LEVEL(bh, val) do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
895#define PUT_B_FREE_SPACE(bh, val) do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
1da177e4 896
1da177e4 897/* Get right delimiting key. -- little endian */
ad31a4fc 898#define B_PRIGHT_DELIM_KEY(bh) (&(blk_right_delim_key(B_BLK_HEAD(bh))))
1da177e4
LT
899
900/* Does the buffer contain a disk leaf. */
ad31a4fc 901#define B_IS_ITEMS_LEVEL(bh) (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
1da177e4
LT
902
903/* Does the buffer contain a disk internal node */
ad31a4fc
JM
904#define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
905 && B_LEVEL(bh) <= MAX_HEIGHT)
1da177e4 906
1da177e4
LT
907/***************************************************************************/
908/* STAT DATA */
909/***************************************************************************/
910
1da177e4
LT
911//
912// old stat data is 32 bytes long. We are going to distinguish new one by
913// different size
914//
bd4c625c
LT
915struct stat_data_v1 {
916 __le16 sd_mode; /* file type, permissions */
917 __le16 sd_nlink; /* number of hard links */
918 __le16 sd_uid; /* owner */
919 __le16 sd_gid; /* group */
920 __le32 sd_size; /* file size */
921 __le32 sd_atime; /* time of last access */
922 __le32 sd_mtime; /* time file was last modified */
923 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
924 union {
925 __le32 sd_rdev;
926 __le32 sd_blocks; /* number of blocks file uses */
927 } __attribute__ ((__packed__)) u;
928 __le32 sd_first_direct_byte; /* first byte of file which is stored
929 in a direct item: except that if it
930 equals 1 it is a symlink and if it
931 equals ~(__u32)0 there is no
932 direct item. The existence of this
933 field really grates on me. Let's
934 replace it with a macro based on
935 sd_size and our tail suppression
936 policy. Someday. -Hans */
1da177e4
LT
937} __attribute__ ((__packed__));
938
939#define SD_V1_SIZE (sizeof(struct stat_data_v1))
940#define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5)
941#define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
942#define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
943#define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink))
944#define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v))
945#define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid))
946#define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v))
947#define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid))
948#define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v))
949#define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size))
950#define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v))
951#define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
952#define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
953#define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
954#define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
955#define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
956#define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
957#define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
958#define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
959#define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks))
960#define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
961#define sd_v1_first_direct_byte(sdp) \
962 (le32_to_cpu((sdp)->sd_first_direct_byte))
963#define set_sd_v1_first_direct_byte(sdp,v) \
964 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
965
1da177e4
LT
966/* inode flags stored in sd_attrs (nee sd_reserved) */
967
968/* we want common flags to have the same values as in ext2,
969 so chattr(1) will work without problems */
36695673
DH
970#define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
971#define REISERFS_APPEND_FL FS_APPEND_FL
972#define REISERFS_SYNC_FL FS_SYNC_FL
973#define REISERFS_NOATIME_FL FS_NOATIME_FL
974#define REISERFS_NODUMP_FL FS_NODUMP_FL
975#define REISERFS_SECRM_FL FS_SECRM_FL
976#define REISERFS_UNRM_FL FS_UNRM_FL
977#define REISERFS_COMPR_FL FS_COMPR_FL
978#define REISERFS_NOTAIL_FL FS_NOTAIL_FL
1da177e4
LT
979
980/* persistent flags that file inherits from the parent directory */
981#define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
982 REISERFS_SYNC_FL | \
983 REISERFS_NOATIME_FL | \
984 REISERFS_NODUMP_FL | \
985 REISERFS_SECRM_FL | \
986 REISERFS_COMPR_FL | \
987 REISERFS_NOTAIL_FL )
988
989/* Stat Data on disk (reiserfs version of UFS disk inode minus the
990 address blocks) */
991struct stat_data {
bd4c625c
LT
992 __le16 sd_mode; /* file type, permissions */
993 __le16 sd_attrs; /* persistent inode flags */
994 __le32 sd_nlink; /* number of hard links */
995 __le64 sd_size; /* file size */
996 __le32 sd_uid; /* owner */
997 __le32 sd_gid; /* group */
998 __le32 sd_atime; /* time of last access */
999 __le32 sd_mtime; /* time file was last modified */
1000 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
1001 __le32 sd_blocks;
1002 union {
1003 __le32 sd_rdev;
1004 __le32 sd_generation;
1005 //__le32 sd_first_direct_byte;
1006 /* first byte of file which is stored in a
1007 direct item: except that if it equals 1
1008 it is a symlink and if it equals
1009 ~(__u32)0 there is no direct item. The
1010 existence of this field really grates
1011 on me. Let's replace it with a macro
1012 based on sd_size and our tail
1013 suppression policy? */
1014 } __attribute__ ((__packed__)) u;
1da177e4
LT
1015} __attribute__ ((__packed__));
1016//
1017// this is 44 bytes long
1018//
1019#define SD_SIZE (sizeof(struct stat_data))
1020#define SD_V2_SIZE SD_SIZE
1021#define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6)
1022#define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
1023#define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
1024/* sd_reserved */
1025/* set_sd_reserved */
1026#define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink))
1027#define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v))
1028#define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size))
1029#define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v))
1030#define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid))
1031#define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v))
1032#define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid))
1033#define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v))
1034#define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
1035#define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
1036#define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
1037#define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
1038#define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
1039#define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
1040#define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks))
1041#define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
1042#define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
1043#define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
1044#define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation))
1045#define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
1046#define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs))
1047#define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v))
1048
1da177e4
LT
1049/***************************************************************************/
1050/* DIRECTORY STRUCTURE */
1051/***************************************************************************/
1052/*
1053 Picture represents the structure of directory items
1054 ________________________________________________
1055 | Array of | | | | | |
1056 | directory |N-1| N-2 | .... | 1st |0th|
1057 | entry headers | | | | | |
1058 |_______________|___|_____|________|_______|___|
1059 <---- directory entries ------>
1060
1061 First directory item has k_offset component 1. We store "." and ".."
1062 in one item, always, we never split "." and ".." into differing
1063 items. This makes, among other things, the code for removing
1064 directories simpler. */
1065#define SD_OFFSET 0
1066#define SD_UNIQUENESS 0
1067#define DOT_OFFSET 1
1068#define DOT_DOT_OFFSET 2
1069#define DIRENTRY_UNIQUENESS 500
1070
1071/* */
1072#define FIRST_ITEM_OFFSET 1
1073
1074/*
1075 Q: How to get key of object pointed to by entry from entry?
1076
1077 A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
1078 of object, entry points to */
1079
1080/* NOT IMPLEMENTED:
1081 Directory will someday contain stat data of object */
1082
bd4c625c
LT
1083struct reiserfs_de_head {
1084 __le32 deh_offset; /* third component of the directory entry key */
1085 __le32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced
1086 by directory entry */
1087 __le32 deh_objectid; /* objectid of the object, that is referenced by directory entry */
1088 __le16 deh_location; /* offset of name in the whole item */
1089 __le16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether
1090 entry is hidden (unlinked) */
1da177e4
LT
1091} __attribute__ ((__packed__));
1092#define DEH_SIZE sizeof(struct reiserfs_de_head)
1093#define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset))
1094#define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id))
1095#define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid))
1096#define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location))
1097#define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state))
1098
1099#define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v)))
1100#define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1101#define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1102#define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1103#define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v)))
1104
1105/* empty directory contains two entries "." and ".." and their headers */
1106#define EMPTY_DIR_SIZE \
1107(DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
1108
1109/* old format directories have this size when empty */
1110#define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1111
bd4c625c 1112#define DEH_Statdata 0 /* not used now */
1da177e4
LT
1113#define DEH_Visible 2
1114
1115/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1116#if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1117# define ADDR_UNALIGNED_BITS (3)
1118#endif
1119
1120/* These are only used to manipulate deh_state.
1121 * Because of this, we'll use the ext2_ bit routines,
1122 * since they are little endian */
1123#ifdef ADDR_UNALIGNED_BITS
1124
1125# define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1126# define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1127
1128# define set_bit_unaligned(nr, addr) ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1129# define clear_bit_unaligned(nr, addr) ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1130# define test_bit_unaligned(nr, addr) ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1131
1132#else
1133
1134# define set_bit_unaligned(nr, addr) ext2_set_bit(nr, addr)
1135# define clear_bit_unaligned(nr, addr) ext2_clear_bit(nr, addr)
1136# define test_bit_unaligned(nr, addr) ext2_test_bit(nr, addr)
1137
1138#endif
1139
1140#define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1141#define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1142#define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1143#define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1144
1145#define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1146#define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1147#define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1148
bd4c625c
LT
1149extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
1150 __le32 par_dirid, __le32 par_objid);
1151extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
1152 __le32 par_dirid, __le32 par_objid);
1da177e4
LT
1153
1154/* array of the entry headers */
1155 /* get item body */
1156#define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1157#define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1158
1159/* length of the directory entry in directory item. This define
1160 calculates length of i-th directory entry using directory entry
1161 locations from dir entry head. When it calculates length of 0-th
1162 directory entry, it uses length of whole item in place of entry
1163 location of the non-existent following entry in the calculation.
1164 See picture above.*/
1165/*
1166#define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1167((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1168*/
bd4c625c
LT
1169static inline int entry_length(const struct buffer_head *bh,
1170 const struct item_head *ih, int pos_in_item)
1da177e4 1171{
bd4c625c 1172 struct reiserfs_de_head *deh;
1da177e4 1173
bd4c625c
LT
1174 deh = B_I_DEH(bh, ih) + pos_in_item;
1175 if (pos_in_item)
1176 return deh_location(deh - 1) - deh_location(deh);
1da177e4 1177
bd4c625c 1178 return ih_item_len(ih) - deh_location(deh);
1da177e4
LT
1179}
1180
1da177e4
LT
1181/* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1182#define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1183
1da177e4
LT
1184/* name by bh, ih and entry_num */
1185#define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1186
1187// two entries per block (at least)
1188#define REISERFS_MAX_NAME(block_size) 255
1189
1da177e4
LT
1190/* this structure is used for operations on directory entries. It is
1191 not a disk structure. */
1192/* When reiserfs_find_entry or search_by_entry_key find directory
1193 entry, they return filled reiserfs_dir_entry structure */
bd4c625c
LT
1194struct reiserfs_dir_entry {
1195 struct buffer_head *de_bh;
1196 int de_item_num;
1197 struct item_head *de_ih;
1198 int de_entry_num;
1199 struct reiserfs_de_head *de_deh;
1200 int de_entrylen;
1201 int de_namelen;
1202 char *de_name;
3af1efe8 1203 unsigned long *de_gen_number_bit_string;
bd4c625c
LT
1204
1205 __u32 de_dir_id;
1206 __u32 de_objectid;
1207
1208 struct cpu_key de_entry_key;
1da177e4 1209};
bd4c625c 1210
1da177e4
LT
1211/* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1212
1213/* pointer to file name, stored in entry */
1214#define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1215
1216/* length of name */
1217#define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1218(I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1219
1da177e4
LT
1220/* hash value occupies bits from 7 up to 30 */
1221#define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1222/* generation number occupies 7 bits starting from 0 up to 6 */
1223#define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1224#define MAX_GENERATION_NUMBER 127
1225
1226#define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1227
1da177e4
LT
1228/*
1229 * Picture represents an internal node of the reiserfs tree
1230 * ______________________________________________________
1231 * | | Array of | Array of | Free |
1232 * |block | keys | pointers | space |
1233 * | head | N | N+1 | |
1234 * |______|_______________|___________________|___________|
1235 */
1236
1237/***************************************************************************/
1238/* DISK CHILD */
1239/***************************************************************************/
1240/* Disk child pointer: The pointer from an internal node of the tree
1241 to a node that is on disk. */
1242struct disk_child {
bd4c625c
LT
1243 __le32 dc_block_number; /* Disk child's block number. */
1244 __le16 dc_size; /* Disk child's used space. */
1245 __le16 dc_reserved;
1da177e4
LT
1246};
1247
1248#define DC_SIZE (sizeof(struct disk_child))
1249#define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number))
1250#define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size))
1251#define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1252#define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1253
1254/* Get disk child by buffer header and position in the tree node. */
ad31a4fc
JM
1255#define B_N_CHILD(bh, n_pos) ((struct disk_child *)\
1256((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
1da177e4
LT
1257
1258/* Get disk child number by buffer header and position in the tree node. */
ad31a4fc
JM
1259#define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
1260#define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
1261 (put_dc_block_number(B_N_CHILD(bh, n_pos), val))
1da177e4 1262
bd4c625c 1263 /* maximal value of field child_size in structure disk_child */
1da177e4
LT
1264 /* child size is the combined size of all items and their headers */
1265#define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1266
1267/* amount of used space in buffer (not including block head) */
1268#define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1269
1270/* max and min number of keys in internal node */
1271#define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1272#define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2)
1273
1274/***************************************************************************/
1275/* PATH STRUCTURES AND DEFINES */
1276/***************************************************************************/
1277
1da177e4
LT
1278/* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1279 key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it
1280 does not find them in the cache it reads them from disk. For each node search_by_key finds using
1281 reiserfs_bread it then uses bin_search to look through that node. bin_search will find the
1282 position of the block_number of the next node if it is looking through an internal node. If it
1283 is looking through a leaf node bin_search will find the position of the item which has key either
1284 equal to given key, or which is the maximal key less than the given key. */
1285
bd4c625c
LT
1286struct path_element {
1287 struct buffer_head *pe_buffer; /* Pointer to the buffer at the path in the tree. */
1288 int pe_position; /* Position in the tree node which is placed in the */
1289 /* buffer above. */
1da177e4
LT
1290};
1291
bd4c625c
LT
1292#define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1293#define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1294#define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */
1da177e4 1295
bd4c625c
LT
1296#define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1297#define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
1da177e4
LT
1298
1299/* We need to keep track of who the ancestors of nodes are. When we
1300 perform a search we record which nodes were visited while
1301 descending the tree looking for the node we searched for. This list
1302 of nodes is called the path. This information is used while
1303 performing balancing. Note that this path information may become
1304 invalid, and this means we must check it when using it to see if it
1305 is still valid. You'll need to read search_by_key and the comments
1306 in it, especially about decrement_counters_in_path(), to understand
1307 this structure.
1308
1309Paths make the code so much harder to work with and debug.... An
1310enormous number of bugs are due to them, and trying to write or modify
1311code that uses them just makes my head hurt. They are based on an
1312excessive effort to avoid disturbing the precious VFS code.:-( The
1313gods only know how we are going to SMP the code that uses them.
1314znodes are the way! */
1315
bd4c625c
LT
1316#define PATH_READA 0x1 /* do read ahead */
1317#define PATH_READA_BACK 0x2 /* read backwards */
1da177e4 1318
fec6d055 1319struct treepath {
bd4c625c
LT
1320 int path_length; /* Length of the array above. */
1321 int reada;
1322 struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */
1323 int pos_in_item;
1da177e4
LT
1324};
1325
1326#define pos_in_item(path) ((path)->pos_in_item)
1327
1328#define INITIALIZE_PATH(var) \
fec6d055 1329struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
1da177e4
LT
1330
1331/* Get path element by path and path position. */
d68caa95 1332#define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset))
1da177e4
LT
1333
1334/* Get buffer header at the path by path and path position. */
d68caa95 1335#define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
1da177e4
LT
1336
1337/* Get position in the element at the path by path and path position. */
d68caa95 1338#define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
1da177e4 1339
d68caa95 1340#define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
1da177e4 1341 /* you know, to the person who didn't
bd4c625c
LT
1342 write this the macro name does not
1343 at first suggest what it does.
1344 Maybe POSITION_FROM_PATH_END? Or
1345 maybe we should just focus on
1346 dumping paths... -Hans */
d68caa95 1347#define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
1da177e4 1348
d68caa95 1349#define PATH_PITEM_HEAD(path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path))
1da177e4
LT
1350
1351/* in do_balance leaf has h == 0 in contrast with path structure,
1352 where root has level == 0. That is why we need these defines */
d68caa95 1353#define PATH_H_PBUFFER(path, h) PATH_OFFSET_PBUFFER (path, path->path_length - (h)) /* tb->S[h] */
bd4c625c
LT
1354#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */
1355#define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1356#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */
1da177e4 1357
d68caa95 1358#define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
1da177e4
LT
1359
1360#define get_last_bh(path) PATH_PLAST_BUFFER(path)
1361#define get_ih(path) PATH_PITEM_HEAD(path)
1362#define get_item_pos(path) PATH_LAST_POSITION(path)
1363#define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1364#define item_moved(ih,path) comp_items(ih, path)
1365#define path_changed(ih,path) comp_items (ih, path)
1366
1da177e4
LT
1367/***************************************************************************/
1368/* MISC */
1369/***************************************************************************/
1370
1371/* Size of pointer to the unformatted node. */
1372#define UNFM_P_SIZE (sizeof(unp_t))
1373#define UNFM_P_SHIFT 2
1374
1375// in in-core inode key is stored on le form
1376#define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
1377
1378#define MAX_UL_INT 0xffffffff
1379#define MAX_INT 0x7ffffff
1380#define MAX_US_INT 0xffff
1381
1382// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1383#define U32_MAX (~(__u32)0)
1384
bd4c625c 1385static inline loff_t max_reiserfs_offset(struct inode *inode)
1da177e4 1386{
bd4c625c
LT
1387 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1388 return (loff_t) U32_MAX;
1da177e4 1389
bd4c625c 1390 return (loff_t) ((~(__u64) 0) >> 4);
1da177e4
LT
1391}
1392
1da177e4
LT
1393/*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/
1394#define MAX_KEY_OBJECTID MAX_UL_INT
1395
1da177e4
LT
1396#define MAX_B_NUM MAX_UL_INT
1397#define MAX_FC_NUM MAX_US_INT
1398
1da177e4
LT
1399/* the purpose is to detect overflow of an unsigned short */
1400#define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1401
1da177e4 1402/* The following defines are used in reiserfs_insert_item and reiserfs_append_item */
bd4c625c
LT
1403#define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */
1404#define REISERFS_USER_MEM 1 /* reiserfs user memory mode */
1da177e4
LT
1405
1406#define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1407#define get_generation(s) atomic_read (&fs_generation(s))
1408#define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1409#define __fs_changed(gen,s) (gen != get_generation (s))
f32049dc
FW
1410#define fs_changed(gen,s) \
1411({ \
d663af80 1412 reiserfs_cond_resched(s); \
f32049dc
FW
1413 __fs_changed(gen, s); \
1414})
1da177e4 1415
1da177e4
LT
1416/***************************************************************************/
1417/* FIXATE NODES */
1418/***************************************************************************/
1419
1420#define VI_TYPE_LEFT_MERGEABLE 1
1421#define VI_TYPE_RIGHT_MERGEABLE 2
1422
1423/* To make any changes in the tree we always first find node, that
1424 contains item to be changed/deleted or place to insert a new
1425 item. We call this node S. To do balancing we need to decide what
1426 we will shift to left/right neighbor, or to a new node, where new
1427 item will be etc. To make this analysis simpler we build virtual
1428 node. Virtual node is an array of items, that will replace items of
1429 node S. (For instance if we are going to delete an item, virtual
1430 node does not contain it). Virtual node keeps information about
1431 item sizes and types, mergeability of first and last items, sizes
1432 of all entries in directory item. We use this array of items when
1433 calculating what we can shift to neighbors and how many nodes we
1434 have to have if we do not any shiftings, if we shift to left/right
1435 neighbor or to both. */
bd4c625c
LT
1436struct virtual_item {
1437 int vi_index; // index in the array of item operations
1438 unsigned short vi_type; // left/right mergeability
1439 unsigned short vi_item_len; /* length of item that it will have after balancing */
1440 struct item_head *vi_ih;
1441 const char *vi_item; // body of item (old or new)
1442 const void *vi_new_data; // 0 always but paste mode
1443 void *vi_uarea; // item specific area
1da177e4
LT
1444};
1445
bd4c625c
LT
1446struct virtual_node {
1447 char *vn_free_ptr; /* this is a pointer to the free space in the buffer */
1448 unsigned short vn_nr_item; /* number of items in virtual node */
1449 short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */
1450 short vn_mode; /* mode of balancing (paste, insert, delete, cut) */
1451 short vn_affected_item_num;
1452 short vn_pos_in_item;
1453 struct item_head *vn_ins_ih; /* item header of inserted item, 0 for other modes */
1454 const void *vn_data;
1455 struct virtual_item *vn_vi; /* array of items (including a new one, excluding item to be deleted) */
1da177e4
LT
1456};
1457
1458/* used by directory items when creating virtual nodes */
1459struct direntry_uarea {
bd4c625c
LT
1460 int flags;
1461 __u16 entry_count;
1462 __u16 entry_sizes[1];
1463} __attribute__ ((__packed__));
1da177e4
LT
1464
1465/***************************************************************************/
1466/* TREE BALANCE */
1467/***************************************************************************/
1468
1469/* This temporary structure is used in tree balance algorithms, and
1470 constructed as we go to the extent that its various parts are
1471 needed. It contains arrays of nodes that can potentially be
1472 involved in the balancing of node S, and parameters that define how
1473 each of the nodes must be balanced. Note that in these algorithms
1474 for balancing the worst case is to need to balance the current node
1475 S and the left and right neighbors and all of their parents plus
1476 create a new node. We implement S1 balancing for the leaf nodes
1477 and S0 balancing for the internal nodes (S1 and S0 are defined in
1478 our papers.)*/
1479
1480#define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */
1481
1482/* maximum number of FEB blocknrs on a single level */
1483#define MAX_AMOUNT_NEEDED 2
1484
1485/* someday somebody will prefix every field in this struct with tb_ */
bd4c625c
LT
1486struct tree_balance {
1487 int tb_mode;
1488 int need_balance_dirty;
1489 struct super_block *tb_sb;
1490 struct reiserfs_transaction_handle *transaction_handle;
fec6d055 1491 struct treepath *tb_path;
bd4c625c
LT
1492 struct buffer_head *L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */
1493 struct buffer_head *R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path */
1494 struct buffer_head *FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */
1495 struct buffer_head *FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */
1496 struct buffer_head *CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */
1497 struct buffer_head *CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */
1498
1499 struct buffer_head *FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals
1500 cur_blknum. */
1501 struct buffer_head *used[MAX_FEB_SIZE];
1502 struct buffer_head *thrown[MAX_FEB_SIZE];
1503 int lnum[MAX_HEIGHT]; /* array of number of items which must be
1504 shifted to the left in order to balance the
1505 current node; for leaves includes item that
1506 will be partially shifted; for internal
1507 nodes, it is the number of child pointers
1508 rather than items. It includes the new item
1509 being created. The code sometimes subtracts
1510 one to get the number of wholly shifted
1511 items for other purposes. */
1512 int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */
1513 int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and
1514 S[h] to its item number within the node CFL[h] */
1515 int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */
1516 int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from
1517 S[h]. A negative value means removing. */
1518 int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after
1519 balancing on the level h of the tree. If 0 then S is
1520 being deleted, if 1 then S is remaining and no new nodes
1521 are being created, if 2 or 3 then 1 or 2 new nodes is
1522 being created */
1523
1524 /* fields that are used only for balancing leaves of the tree */
1525 int cur_blknum; /* number of empty blocks having been already allocated */
1526 int s0num; /* number of items that fall into left most node when S[0] splits */
1527 int s1num; /* number of items that fall into first new node when S[0] splits */
1528 int s2num; /* number of items that fall into second new node when S[0] splits */
1529 int lbytes; /* number of bytes which can flow to the left neighbor from the left */
1530 /* most liquid item that cannot be shifted from S[0] entirely */
1531 /* if -1 then nothing will be partially shifted */
1532 int rbytes; /* number of bytes which will flow to the right neighbor from the right */
1533 /* most liquid item that cannot be shifted from S[0] entirely */
1534 /* if -1 then nothing will be partially shifted */
1535 int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */
1536 /* note: if S[0] splits into 3 nodes, then items do not need to be cut */
1537 int s2bytes;
1538 struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
1539 char *vn_buf; /* kmalloced memory. Used to create
1da177e4
LT
1540 virtual node and keep map of
1541 dirtied bitmap blocks */
bd4c625c
LT
1542 int vn_buf_size; /* size of the vn_buf */
1543 struct virtual_node *tb_vn; /* VN starts after bitmap of bitmap blocks */
1da177e4 1544
bd4c625c
LT
1545 int fs_gen; /* saved value of `reiserfs_generation' counter
1546 see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
1da177e4 1547#ifdef DISPLACE_NEW_PACKING_LOCALITIES
bd4c625c
LT
1548 struct in_core_key key; /* key pointer, to pass to block allocator or
1549 another low-level subsystem */
1da177e4 1550#endif
bd4c625c 1551};
1da177e4
LT
1552
1553/* These are modes of balancing */
1554
1555/* When inserting an item. */
1556#define M_INSERT 'i'
1557/* When inserting into (directories only) or appending onto an already
1558 existant item. */
1559#define M_PASTE 'p'
1560/* When deleting an item. */
1561#define M_DELETE 'd'
1562/* When truncating an item or removing an entry from a (directory) item. */
1563#define M_CUT 'c'
1564
1565/* used when balancing on leaf level skipped (in reiserfsck) */
1566#define M_INTERNAL 'n'
1567
1568/* When further balancing is not needed, then do_balance does not need
1569 to be called. */
1570#define M_SKIP_BALANCING 's'
1571#define M_CONVERT 'v'
1572
1573/* modes of leaf_move_items */
1574#define LEAF_FROM_S_TO_L 0
1575#define LEAF_FROM_S_TO_R 1
1576#define LEAF_FROM_R_TO_L 2
1577#define LEAF_FROM_L_TO_R 3
1578#define LEAF_FROM_S_TO_SNEW 4
1579
1580#define FIRST_TO_LAST 0
1581#define LAST_TO_FIRST 1
1582
1583/* used in do_balance for passing parent of node information that has
1584 been gotten from tb struct */
1585struct buffer_info {
bd4c625c
LT
1586 struct tree_balance *tb;
1587 struct buffer_head *bi_bh;
1588 struct buffer_head *bi_parent;
1589 int bi_position;
1da177e4
LT
1590};
1591
c3a9c210
JM
1592static inline struct super_block *sb_from_tb(struct tree_balance *tb)
1593{
1594 return tb ? tb->tb_sb : NULL;
1595}
1596
1597static inline struct super_block *sb_from_bi(struct buffer_info *bi)
1598{
1599 return bi ? sb_from_tb(bi->tb) : NULL;
1600}
1601
1da177e4
LT
1602/* there are 4 types of items: stat data, directory item, indirect, direct.
1603+-------------------+------------+--------------+------------+
1604| | k_offset | k_uniqueness | mergeable? |
1605+-------------------+------------+--------------+------------+
1606| stat data | 0 | 0 | no |
1607+-------------------+------------+--------------+------------+
1608| 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no |
1609| non 1st directory | hash value | | yes |
1610| item | | | |
1611+-------------------+------------+--------------+------------+
1612| indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object
1613+-------------------+------------+--------------+------------+
1614| direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object
1615+-------------------+------------+--------------+------------+
1616*/
1617
1618struct item_operations {
bd4c625c
LT
1619 int (*bytes_number) (struct item_head * ih, int block_size);
1620 void (*decrement_key) (struct cpu_key *);
1621 int (*is_left_mergeable) (struct reiserfs_key * ih,
1622 unsigned long bsize);
1623 void (*print_item) (struct item_head *, char *item);
1624 void (*check_item) (struct item_head *, char *item);
1625
1626 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
1627 int is_affected, int insert_size);
1628 int (*check_left) (struct virtual_item * vi, int free,
1629 int start_skip, int end_skip);
1630 int (*check_right) (struct virtual_item * vi, int free);
1631 int (*part_size) (struct virtual_item * vi, int from, int to);
1632 int (*unit_num) (struct virtual_item * vi);
1633 void (*print_vi) (struct virtual_item * vi);
1da177e4
LT
1634};
1635
bd4c625c 1636extern struct item_operations *item_ops[TYPE_ANY + 1];
1da177e4
LT
1637
1638#define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
1639#define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
1640#define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item)
1641#define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item)
1642#define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
1643#define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
1644#define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free)
1645#define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to)
1646#define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi)
1647#define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi)
1648
1da177e4
LT
1649#define COMP_SHORT_KEYS comp_short_keys
1650
1651/* number of blocks pointed to by the indirect item */
d68caa95 1652#define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE)
1da177e4
LT
1653
1654/* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
1655#define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
1656
1657/* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
1658
bd4c625c 1659/* get the item header */
1da177e4
LT
1660#define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1661
1662/* get key */
1663#define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1664
1665/* get the key */
1666#define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
1667
1668/* get item body */
1669#define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
1670
1671/* get the stat data by the buffer header and the item order */
1672#define B_N_STAT_DATA(bh,nr) \
1673( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
1674
1675 /* following defines use reiserfs buffer header and item header */
1676
1677/* get stat-data */
1678#define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
1679
1680// this is 3976 for size==4096
1681#define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
1682
1683/* indirect items consist of entries which contain blocknrs, pos
1684 indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
1685 blocknr contained by the entry pos points to */
1686#define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
1687#define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
1688
1689struct reiserfs_iget_args {
bd4c625c
LT
1690 __u32 objectid;
1691 __u32 dirid;
1692};
1da177e4
LT
1693
1694/***************************************************************************/
1695/* FUNCTION DECLARATIONS */
1696/***************************************************************************/
1697
1da177e4
LT
1698#define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
1699
1700#define journal_trans_half(blocksize) \
1701 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
1702
1703/* journal.c see journal.c for all the comments here */
1704
1705/* first block written in a commit. */
1706struct reiserfs_journal_desc {
bd4c625c
LT
1707 __le32 j_trans_id; /* id of commit */
1708 __le32 j_len; /* length of commit. len +1 is the commit block */
1709 __le32 j_mount_id; /* mount id of this trans */
1710 __le32 j_realblock[1]; /* real locations for each block */
1711};
1da177e4
LT
1712
1713#define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id)
1714#define get_desc_trans_len(d) le32_to_cpu((d)->j_len)
1715#define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id)
1716
1717#define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
1718#define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0)
1719#define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
1720
1721/* last block written in a commit */
1722struct reiserfs_journal_commit {
bd4c625c
LT
1723 __le32 j_trans_id; /* must match j_trans_id from the desc block */
1724 __le32 j_len; /* ditto */
1725 __le32 j_realblock[1]; /* real locations for each block */
1726};
1da177e4
LT
1727
1728#define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
1729#define get_commit_trans_len(c) le32_to_cpu((c)->j_len)
1730#define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
1731
1732#define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
1733#define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0)
1734
1735/* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
1736** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk,
1737** and this transaction does not need to be replayed.
1738*/
1739struct reiserfs_journal_header {
bd4c625c
LT
1740 __le32 j_last_flush_trans_id; /* id of last fully flushed transaction */
1741 __le32 j_first_unflushed_offset; /* offset in the log of where to start replay after a crash */
1742 __le32 j_mount_id;
1743 /* 12 */ struct journal_params jh_journal;
1744};
1da177e4
LT
1745
1746/* biggest tunable defines are right here */
bd4c625c
LT
1747#define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
1748#define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */
1da177e4 1749#define JOURNAL_TRANS_MIN_DEFAULT 256
bd4c625c 1750#define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
1da177e4 1751#define JOURNAL_MIN_RATIO 2
bd4c625c 1752#define JOURNAL_MAX_COMMIT_AGE 30
1da177e4
LT
1753#define JOURNAL_MAX_TRANS_AGE 30
1754#define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
0ab2621e
JM
1755#define JOURNAL_BLOCKS_PER_OBJECT(sb) (JOURNAL_PER_BALANCE_CNT * 3 + \
1756 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
1757 REISERFS_QUOTA_TRANS_BLOCKS(sb)))
1758
1da177e4 1759#ifdef CONFIG_QUOTA
556a2a45
JK
1760/* We need to update data and inode (atime) */
1761#define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? 2 : 0)
1762/* 1 balancing, 1 bitmap, 1 data per write + stat data update */
1763#define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1764(DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
1765/* same as with INIT */
1766#define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1767(DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
1da177e4 1768#else
556a2a45
JK
1769#define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
1770#define REISERFS_QUOTA_INIT_BLOCKS(s) 0
1771#define REISERFS_QUOTA_DEL_BLOCKS(s) 0
1da177e4
LT
1772#endif
1773
1774/* both of these can be as low as 1, or as high as you want. The min is the
1775** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
1776** as needed, and released when transactions are committed. On release, if
1777** the current number of nodes is > max, the node is freed, otherwise,
1778** it is put on a free list for faster use later.
1779*/
bd4c625c
LT
1780#define REISERFS_MIN_BITMAP_NODES 10
1781#define REISERFS_MAX_BITMAP_NODES 100
1da177e4 1782
bd4c625c 1783#define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
1da177e4
LT
1784#define JBH_HASH_MASK 8191
1785
1786#define _jhashfn(sb,block) \
1787 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
1788 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
1789#define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
1790
1791// We need these to make journal.c code more readable
1792#define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1793#define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1794#define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1795
1796enum reiserfs_bh_state_bits {
bd4c625c
LT
1797 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */
1798 BH_JDirty_wait,
1799 BH_JNew, /* disk block was taken off free list before
1800 * being in a finished transaction, or
1801 * written to disk. Can be reused immed. */
1802 BH_JPrepared,
1803 BH_JRestore_dirty,
1804 BH_JTest, // debugging only will go away
1da177e4
LT
1805};
1806
1807BUFFER_FNS(JDirty, journaled);
1808TAS_BUFFER_FNS(JDirty, journaled);
1809BUFFER_FNS(JDirty_wait, journal_dirty);
1810TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
1811BUFFER_FNS(JNew, journal_new);
1812TAS_BUFFER_FNS(JNew, journal_new);
1813BUFFER_FNS(JPrepared, journal_prepared);
1814TAS_BUFFER_FNS(JPrepared, journal_prepared);
1815BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1816TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1817BUFFER_FNS(JTest, journal_test);
1818TAS_BUFFER_FNS(JTest, journal_test);
1819
1820/*
1821** transaction handle which is passed around for all journal calls
1822*/
1823struct reiserfs_transaction_handle {
bd4c625c
LT
1824 struct super_block *t_super; /* super for this FS when journal_begin was
1825 called. saves calls to reiserfs_get_super
1826 also used by nested transactions to make
1827 sure they are nesting on the right FS
1828 _must_ be first in the handle
1829 */
1830 int t_refcount;
1831 int t_blocks_logged; /* number of blocks this writer has logged */
1832 int t_blocks_allocated; /* number of blocks this writer allocated */
600ed416 1833 unsigned int t_trans_id; /* sanity check, equals the current trans id */
bd4c625c
LT
1834 void *t_handle_save; /* save existing current->journal_info */
1835 unsigned displace_new_blocks:1; /* if new block allocation occurres, that block
1836 should be displaced from others */
1837 struct list_head t_list;
1838};
1da177e4
LT
1839
1840/* used to keep track of ordered and tail writes, attached to the buffer
1841 * head through b_journal_head.
1842 */
1843struct reiserfs_jh {
bd4c625c
LT
1844 struct reiserfs_journal_list *jl;
1845 struct buffer_head *bh;
1846 struct list_head list;
1da177e4
LT
1847};
1848
1849void reiserfs_free_jh(struct buffer_head *bh);
1850int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
1851int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
bd4c625c
LT
1852int journal_mark_dirty(struct reiserfs_transaction_handle *,
1853 struct super_block *, struct buffer_head *bh);
1854
1855static inline int reiserfs_file_data_log(struct inode *inode)
1856{
1857 if (reiserfs_data_log(inode->i_sb) ||
1858 (REISERFS_I(inode)->i_flags & i_data_log))
1859 return 1;
1860 return 0;
1da177e4
LT
1861}
1862
bd4c625c
LT
1863static inline int reiserfs_transaction_running(struct super_block *s)
1864{
1865 struct reiserfs_transaction_handle *th = current->journal_info;
1866 if (th && th->t_super == s)
1867 return 1;
1868 if (th && th->t_super == NULL)
1869 BUG();
1870 return 0;
1da177e4
LT
1871}
1872
23f9e0f8
AZ
1873static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
1874{
1875 return th->t_blocks_allocated - th->t_blocks_logged;
1876}
1877
bd4c625c
LT
1878struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
1879 super_block
1880 *,
1881 int count);
1da177e4
LT
1882int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
1883int reiserfs_commit_page(struct inode *inode, struct page *page,
bd4c625c 1884 unsigned from, unsigned to);
1da177e4 1885int reiserfs_flush_old_commits(struct super_block *);
bd4c625c
LT
1886int reiserfs_commit_for_inode(struct inode *);
1887int reiserfs_inode_needs_commit(struct inode *);
1888void reiserfs_update_inode_transaction(struct inode *);
1889void reiserfs_wait_on_write_block(struct super_block *s);
1890void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
1891void reiserfs_allow_writes(struct super_block *s);
1892void reiserfs_check_lock_depth(struct super_block *s, char *caller);
1893int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
1894 int wait);
1895void reiserfs_restore_prepared_buffer(struct super_block *,
1896 struct buffer_head *bh);
1897int journal_init(struct super_block *, const char *j_dev_name, int old_format,
1898 unsigned int);
1899int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
1900int journal_release_error(struct reiserfs_transaction_handle *,
1901 struct super_block *);
1902int journal_end(struct reiserfs_transaction_handle *, struct super_block *,
1903 unsigned long);
1904int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *,
1905 unsigned long);
1906int journal_mark_freed(struct reiserfs_transaction_handle *,
1907 struct super_block *, b_blocknr_t blocknr);
1908int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
a9dd3643
JM
1909int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
1910 int bit_nr, int searchall, b_blocknr_t *next);
bd4c625c 1911int journal_begin(struct reiserfs_transaction_handle *,
a9dd3643 1912 struct super_block *sb, unsigned long);
bd4c625c 1913int journal_join_abort(struct reiserfs_transaction_handle *,
a9dd3643 1914 struct super_block *sb, unsigned long);
32e8b106 1915void reiserfs_abort_journal(struct super_block *sb, int errno);
bd4c625c
LT
1916void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
1917int reiserfs_allocate_list_bitmaps(struct super_block *s,
3ee16670 1918 struct reiserfs_list_bitmap *, unsigned int);
bd4c625c
LT
1919
1920void add_save_link(struct reiserfs_transaction_handle *th,
1921 struct inode *inode, int truncate);
1922int remove_save_link(struct inode *inode, int truncate);
1da177e4
LT
1923
1924/* objectid.c */
bd4c625c
LT
1925__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
1926void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
1927 __u32 objectid_to_release);
1928int reiserfs_convert_objectid_map_v1(struct super_block *);
1da177e4
LT
1929
1930/* stree.c */
1931int B_IS_IN_TREE(const struct buffer_head *);
d68caa95
JM
1932extern void copy_item_head(struct item_head *to,
1933 const struct item_head *from);
1da177e4
LT
1934
1935// first key is in cpu form, second - le
bd4c625c
LT
1936extern int comp_short_keys(const struct reiserfs_key *le_key,
1937 const struct cpu_key *cpu_key);
1938extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
1da177e4
LT
1939
1940// both are in le form
bd4c625c
LT
1941extern int comp_le_keys(const struct reiserfs_key *,
1942 const struct reiserfs_key *);
1943extern int comp_short_le_keys(const struct reiserfs_key *,
1944 const struct reiserfs_key *);
1da177e4
LT
1945
1946//
1947// get key version from on disk key - kludge
1948//
bd4c625c 1949static inline int le_key_version(const struct reiserfs_key *key)
1da177e4 1950{
bd4c625c 1951 int type;
1da177e4 1952
bd4c625c
LT
1953 type = offset_v2_k_type(&(key->u.k_offset_v2));
1954 if (type != TYPE_DIRECT && type != TYPE_INDIRECT
1955 && type != TYPE_DIRENTRY)
1956 return KEY_FORMAT_3_5;
1957
1958 return KEY_FORMAT_3_6;
1da177e4 1959
1da177e4
LT
1960}
1961
bd4c625c
LT
1962static inline void copy_key(struct reiserfs_key *to,
1963 const struct reiserfs_key *from)
1964{
1965 memcpy(to, from, KEY_SIZE);
1966}
1da177e4 1967
d68caa95
JM
1968int comp_items(const struct item_head *stored_ih, const struct treepath *path);
1969const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
a9dd3643 1970 const struct super_block *sb);
bd4c625c 1971int search_by_key(struct super_block *, const struct cpu_key *,
fec6d055 1972 struct treepath *, int);
1da177e4 1973#define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
a9dd3643 1974int search_for_position_by_key(struct super_block *sb,
d68caa95
JM
1975 const struct cpu_key *cpu_key,
1976 struct treepath *search_path);
ad31a4fc 1977extern void decrement_bcount(struct buffer_head *bh);
d68caa95
JM
1978void decrement_counters_in_path(struct treepath *search_path);
1979void pathrelse(struct treepath *search_path);
fec6d055 1980int reiserfs_check_path(struct treepath *p);
d68caa95 1981void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
bd4c625c
LT
1982
1983int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
fec6d055 1984 struct treepath *path,
bd4c625c
LT
1985 const struct cpu_key *key,
1986 struct item_head *ih,
1987 struct inode *inode, const char *body);
1988
1989int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
fec6d055 1990 struct treepath *path,
bd4c625c
LT
1991 const struct cpu_key *key,
1992 struct inode *inode,
1993 const char *body, int paste_size);
1994
1995int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
fec6d055 1996 struct treepath *path,
bd4c625c
LT
1997 struct cpu_key *key,
1998 struct inode *inode,
1999 struct page *page, loff_t new_file_size);
2000
2001int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
fec6d055 2002 struct treepath *path,
bd4c625c 2003 const struct cpu_key *key,
d68caa95 2004 struct inode *inode, struct buffer_head *un_bh);
bd4c625c
LT
2005
2006void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
2007 struct inode *inode, struct reiserfs_key *key);
2008int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
995c762e 2009 struct inode *inode);
bd4c625c 2010int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
995c762e 2011 struct inode *inode, struct page *,
bd4c625c 2012 int update_timestamps);
1da177e4
LT
2013
2014#define i_block_size(inode) ((inode)->i_sb->s_blocksize)
2015#define file_size(inode) ((inode)->i_size)
2016#define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
2017
2018#define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
2019!STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
2020
bd4c625c 2021void padd_item(char *item, int total_length, int length);
1da177e4
LT
2022
2023/* inode.c */
2024/* args for the create parameter of reiserfs_get_block */
bd4c625c
LT
2025#define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */
2026#define GET_BLOCK_CREATE 1 /* add anything you need to find block */
2027#define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */
2028#define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */
1b1dcc1b 2029#define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */
bd4c625c
LT
2030#define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */
2031
bd4c625c
LT
2032void reiserfs_read_locked_inode(struct inode *inode,
2033 struct reiserfs_iget_args *args);
2034int reiserfs_find_actor(struct inode *inode, void *p);
2035int reiserfs_init_locked_inode(struct inode *inode, void *p);
845a2cc0 2036void reiserfs_evict_inode(struct inode *inode);
a9185b41 2037int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc);
bd4c625c
LT
2038int reiserfs_get_block(struct inode *inode, sector_t block,
2039 struct buffer_head *bh_result, int create);
be55caf1
CH
2040struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2041 int fh_len, int fh_type);
2042struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
2043 int fh_len, int fh_type);
bd4c625c
LT
2044int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
2045 int connectable);
2046
2047int reiserfs_truncate_file(struct inode *, int update_timestamps);
2048void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
2049 int type, int key_length);
2050void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
2051 int version,
2052 loff_t offset, int type, int length, int entry_count);
2053struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
2054
57fe60df 2055struct reiserfs_security_handle;
bd4c625c
LT
2056int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
2057 struct inode *dir, int mode,
2058 const char *symname, loff_t i_size,
57fe60df
JM
2059 struct dentry *dentry, struct inode *inode,
2060 struct reiserfs_security_handle *security);
bd4c625c
LT
2061
2062void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
2063 struct inode *inode, loff_t size);
1da177e4
LT
2064
2065static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
bd4c625c 2066 struct inode *inode)
1da177e4 2067{
bd4c625c 2068 reiserfs_update_sd_size(th, inode, inode->i_size);
1da177e4
LT
2069}
2070
bd4c625c
LT
2071void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
2072void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs);
1da177e4
LT
2073int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
2074
ebdec241
CH
2075int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len);
2076
1da177e4 2077/* namei.c */
bd4c625c
LT
2078void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
2079int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
fec6d055 2080 struct treepath *path, struct reiserfs_dir_entry *de);
bd4c625c 2081struct dentry *reiserfs_get_parent(struct dentry *);
1da177e4 2082
e3c96f53 2083#ifdef CONFIG_REISERFS_PROC_INFO
bd4c625c
LT
2084int reiserfs_proc_info_init(struct super_block *sb);
2085int reiserfs_proc_info_done(struct super_block *sb);
bd4c625c
LT
2086int reiserfs_proc_info_global_init(void);
2087int reiserfs_proc_info_global_done(void);
1da177e4 2088
1da177e4
LT
2089#define PROC_EXP( e ) e
2090
2091#define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
2092#define PROC_INFO_MAX( sb, field, value ) \
2093 __PINFO( sb ).field = \
2094 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
2095#define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
2096#define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
2097#define PROC_INFO_BH_STAT( sb, bh, level ) \
2098 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \
2099 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \
2100 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
2101#else
e3c96f53
AD
2102static inline int reiserfs_proc_info_init(struct super_block *sb)
2103{
2104 return 0;
2105}
2106
2107static inline int reiserfs_proc_info_done(struct super_block *sb)
2108{
2109 return 0;
2110}
2111
2112static inline int reiserfs_proc_info_global_init(void)
2113{
2114 return 0;
2115}
2116
2117static inline int reiserfs_proc_info_global_done(void)
2118{
2119 return 0;
2120}
2121
1da177e4
LT
2122#define PROC_EXP( e )
2123#define VOID_V ( ( void ) 0 )
2124#define PROC_INFO_MAX( sb, field, value ) VOID_V
2125#define PROC_INFO_INC( sb, field ) VOID_V
2126#define PROC_INFO_ADD( sb, field, val ) VOID_V
ad31a4fc 2127#define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
1da177e4
LT
2128#endif
2129
2130/* dir.c */
c5ef1c42
AV
2131extern const struct inode_operations reiserfs_dir_inode_operations;
2132extern const struct inode_operations reiserfs_symlink_inode_operations;
2133extern const struct inode_operations reiserfs_special_inode_operations;
4b6f5d20 2134extern const struct file_operations reiserfs_dir_operations;
a41f1a47 2135int reiserfs_readdir_dentry(struct dentry *, void *, filldir_t, loff_t *);
1da177e4
LT
2136
2137/* tail_conversion.c */
bd4c625c 2138int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
fec6d055 2139 struct treepath *, struct buffer_head *, loff_t);
bd4c625c 2140int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
fec6d055 2141 struct page *, struct treepath *, const struct cpu_key *,
bd4c625c
LT
2142 loff_t, char *);
2143void reiserfs_unmap_buffer(struct buffer_head *);
1da177e4
LT
2144
2145/* file.c */
c5ef1c42 2146extern const struct inode_operations reiserfs_file_inode_operations;
4b6f5d20 2147extern const struct file_operations reiserfs_file_operations;
f5e54d6e 2148extern const struct address_space_operations reiserfs_address_space_operations;
1da177e4
LT
2149
2150/* fix_nodes.c */
1da177e4 2151
a063ae17 2152int fix_nodes(int n_op_mode, struct tree_balance *tb,
d68caa95 2153 struct item_head *ins_ih, const void *);
bd4c625c 2154void unfix_nodes(struct tree_balance *);
1da177e4
LT
2155
2156/* prints.c */
c3a9c210
JM
2157void __reiserfs_panic(struct super_block *s, const char *id,
2158 const char *function, const char *fmt, ...)
bd4c625c 2159 __attribute__ ((noreturn));
c3a9c210
JM
2160#define reiserfs_panic(s, id, fmt, args...) \
2161 __reiserfs_panic(s, id, __func__, fmt, ##args)
1e5e59d4
JM
2162void __reiserfs_error(struct super_block *s, const char *id,
2163 const char *function, const char *fmt, ...);
2164#define reiserfs_error(s, id, fmt, args...) \
2165 __reiserfs_error(s, id, __func__, fmt, ##args)
bd4c625c
LT
2166void reiserfs_info(struct super_block *s, const char *fmt, ...);
2167void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
2168void print_indirect_item(struct buffer_head *bh, int item_num);
2169void store_print_tb(struct tree_balance *tb);
2170void print_cur_tb(char *mes);
2171void print_de(struct reiserfs_dir_entry *de);
2172void print_bi(struct buffer_info *bi, char *mes);
2173#define PRINT_LEAF_ITEMS 1 /* print all items */
2174#define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
2175#define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
2176void print_block(struct buffer_head *bh, ...);
2177void print_bmap(struct super_block *s, int silent);
2178void print_bmap_block(int i, char *data, int size, int silent);
1da177e4 2179/*void print_super_block (struct super_block * s, char * mes);*/
bd4c625c
LT
2180void print_objectid_map(struct super_block *s);
2181void print_block_head(struct buffer_head *bh, char *mes);
2182void check_leaf(struct buffer_head *bh);
2183void check_internal(struct buffer_head *bh);
2184void print_statistics(struct super_block *s);
2185char *reiserfs_hashname(int code);
1da177e4
LT
2186
2187/* lbalance.c */
bd4c625c
LT
2188int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
2189 int mov_bytes, struct buffer_head *Snew);
2190int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
2191int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
2192void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
2193 int del_num, int del_bytes);
2194void leaf_insert_into_buf(struct buffer_info *bi, int before,
2195 struct item_head *inserted_item_ih,
2196 const char *inserted_item_body, int zeros_number);
2197void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
2198 int pos_in_item, int paste_size, const char *body,
2199 int zeros_number);
2200void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
2201 int pos_in_item, int cut_size);
eba00305 2202void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
bd4c625c
LT
2203 int new_entry_count, struct reiserfs_de_head *new_dehs,
2204 const char *records, int paste_size);
1da177e4 2205/* ibalance.c */
bd4c625c
LT
2206int balance_internal(struct tree_balance *, int, int, struct item_head *,
2207 struct buffer_head **);
1da177e4
LT
2208
2209/* do_balance.c */
bd4c625c
LT
2210void do_balance_mark_leaf_dirty(struct tree_balance *tb,
2211 struct buffer_head *bh, int flag);
1da177e4
LT
2212#define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2213#define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2214
bd4c625c
LT
2215void do_balance(struct tree_balance *tb, struct item_head *ih,
2216 const char *body, int flag);
2217void reiserfs_invalidate_buffer(struct tree_balance *tb,
2218 struct buffer_head *bh);
1da177e4 2219
bd4c625c
LT
2220int get_left_neighbor_position(struct tree_balance *tb, int h);
2221int get_right_neighbor_position(struct tree_balance *tb, int h);
2222void replace_key(struct tree_balance *tb, struct buffer_head *, int,
2223 struct buffer_head *, int);
2224void make_empty_node(struct buffer_info *);
2225struct buffer_head *get_FEB(struct tree_balance *);
1da177e4
LT
2226
2227/* bitmap.c */
2228
2229/* structure contains hints for block allocator, and it is a container for
2230 * arguments, such as node, search path, transaction_handle, etc. */
bd4c625c
LT
2231struct __reiserfs_blocknr_hint {
2232 struct inode *inode; /* inode passed to allocator, if we allocate unf. nodes */
3ee16670 2233 sector_t block; /* file offset, in blocks */
bd4c625c 2234 struct in_core_key key;
fec6d055 2235 struct treepath *path; /* search path, used by allocator to deternine search_start by
bd4c625c
LT
2236 * various ways */
2237 struct reiserfs_transaction_handle *th; /* transaction handle is needed to log super blocks and
2238 * bitmap blocks changes */
2239 b_blocknr_t beg, end;
2240 b_blocknr_t search_start; /* a field used to transfer search start value (block number)
1da177e4
LT
2241 * between different block allocator procedures
2242 * (determine_search_start() and others) */
bd4c625c
LT
2243 int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed
2244 * function that do actual allocation */
1da177e4 2245
bd4c625c 2246 unsigned formatted_node:1; /* the allocator uses different polices for getting disk space for
1da177e4 2247 * formatted/unformatted blocks with/without preallocation */
bd4c625c 2248 unsigned preallocate:1;
1da177e4
LT
2249};
2250
2251typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2252
bd4c625c
LT
2253int reiserfs_parse_alloc_options(struct super_block *, char *);
2254void reiserfs_init_alloc_options(struct super_block *s);
1da177e4
LT
2255
2256/*
2257 * given a directory, this will tell you what packing locality
2258 * to use for a new object underneat it. The locality is returned
2259 * in disk byte order (le).
2260 */
3e8962be 2261__le32 reiserfs_choose_packing(struct inode *dir);
1da177e4 2262
6f01046b
JM
2263int reiserfs_init_bitmap_cache(struct super_block *sb);
2264void reiserfs_free_bitmap_cache(struct super_block *sb);
2265void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
2266struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
bd4c625c
LT
2267int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
2268void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
2269 b_blocknr_t, int for_unformatted);
2270int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
2271 int);
9adeb1b4 2272static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
bd4c625c
LT
2273 b_blocknr_t * new_blocknrs,
2274 int amount_needed)
1da177e4 2275{
bd4c625c
LT
2276 reiserfs_blocknr_hint_t hint = {
2277 .th = tb->transaction_handle,
2278 .path = tb->tb_path,
2279 .inode = NULL,
2280 .key = tb->key,
2281 .block = 0,
2282 .formatted_node = 1
2283 };
2284 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
2285 0);
1da177e4
LT
2286}
2287
9adeb1b4 2288static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
bd4c625c
LT
2289 *th, struct inode *inode,
2290 b_blocknr_t * new_blocknrs,
3ee16670
JM
2291 struct treepath *path,
2292 sector_t block)
1da177e4 2293{
bd4c625c
LT
2294 reiserfs_blocknr_hint_t hint = {
2295 .th = th,
2296 .path = path,
2297 .inode = inode,
2298 .block = block,
2299 .formatted_node = 0,
2300 .preallocate = 0
2301 };
2302 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
1da177e4
LT
2303}
2304
2305#ifdef REISERFS_PREALLOCATE
9adeb1b4 2306static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
bd4c625c
LT
2307 *th, struct inode *inode,
2308 b_blocknr_t * new_blocknrs,
3ee16670
JM
2309 struct treepath *path,
2310 sector_t block)
1da177e4 2311{
bd4c625c
LT
2312 reiserfs_blocknr_hint_t hint = {
2313 .th = th,
2314 .path = path,
2315 .inode = inode,
2316 .block = block,
2317 .formatted_node = 0,
2318 .preallocate = 1
2319 };
2320 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
1da177e4
LT
2321}
2322
bd4c625c
LT
2323void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
2324 struct inode *inode);
2325void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
1da177e4 2326#endif
1da177e4
LT
2327
2328/* hashes.c */
bd4c625c
LT
2329__u32 keyed_hash(const signed char *msg, int len);
2330__u32 yura_hash(const signed char *msg, int len);
2331__u32 r5_hash(const signed char *msg, int len);
1da177e4
LT
2332
2333/* the ext2 bit routines adjust for big or little endian as
2334** appropriate for the arch, so in our laziness we use them rather
2335** than using the bit routines they call more directly. These
2336** routines must be used when changing on disk bitmaps. */
2337#define reiserfs_test_and_set_le_bit ext2_set_bit
2338#define reiserfs_test_and_clear_le_bit ext2_clear_bit
2339#define reiserfs_test_le_bit ext2_test_bit
2340#define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
2341
2342/* sometimes reiserfs_truncate may require to allocate few new blocks
2343 to perform indirect2direct conversion. People probably used to
2344 think, that truncate should work without problems on a filesystem
2345 without free disk space. They may complain that they can not
2346 truncate due to lack of free disk space. This spare space allows us
2347 to not worry about it. 500 is probably too much, but it should be
2348 absolutely safe */
2349#define SPARE_SPACE 500
2350
1da177e4 2351/* prototypes from ioctl.c */
205cb37b 2352long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
52b499c4
DH
2353long reiserfs_compat_ioctl(struct file *filp,
2354 unsigned int cmd, unsigned long arg);
d5dee5c3 2355int reiserfs_unpack(struct inode *inode, struct file *filp);
bd4c625c 2356
11d9f653 2357#endif /* __KERNEL__ */
bd4c625c 2358
bd4c625c 2359#endif /* _LINUX_REISER_FS_H */