dcache: Fix locking bugs in backported "deal with deadlock in d_walk()"
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
07f3f05c 40#include "internal.h"
b2dba1af 41#include "mount.h"
1da177e4 42
789680d1
NP
43/*
44 * Usage:
873feea0 45 * dcache->d_inode->i_lock protects:
d76c446b 46 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
23044507
NP
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
b7ab39f6 57 * - d_count
da502956 58 * - d_unhashed()
2fd6b7f5
NP
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
d76c446b 61 * - d_u.d_alias, d_inode
789680d1
NP
62 *
63 * Ordering:
873feea0 64 * dentry->d_inode->i_lock
b5c84bf6
NP
65 * dentry->d_lock
66 * dcache_lru_lock
ceb5bdc2
NP
67 * dcache_hash_bucket lock
68 * s_anon lock
789680d1 69 *
da502956
NP
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
789680d1
NP
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
fa3536cc 81int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
82EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
23044507 84static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
1da177e4 99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
8966be90 105static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 106 unsigned int hash)
ceb5bdc2 107{
6d7d1a0d 108 hash += (unsigned long) parent / L1_CACHE_BYTES;
d4c96061 109 return dentry_hashtable + hash_32(hash, d_hash_shift);
ceb5bdc2
NP
110}
111
1da177e4
LT
112/* Statistics gathering. */
113struct dentry_stat_t dentry_stat = {
114 .age_limit = 45,
115};
116
3e880fb5 117static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
118
119#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
120static int get_nr_dentry(void)
121{
122 int i;
123 int sum = 0;
124 for_each_possible_cpu(i)
125 sum += per_cpu(nr_dentry, i);
126 return sum < 0 ? 0 : sum;
127}
128
312d3ca8
CH
129int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
130 size_t *lenp, loff_t *ppos)
131{
3e880fb5 132 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
133 return proc_dointvec(table, write, buffer, lenp, ppos);
134}
135#endif
136
5483f18e
LT
137/*
138 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
139 * The strings are both count bytes long, and count is non-zero.
140 */
e419b4cc
LT
141#ifdef CONFIG_DCACHE_WORD_ACCESS
142
143#include <asm/word-at-a-time.h>
144/*
145 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
146 * aligned allocation for this particular component. We don't
147 * strictly need the load_unaligned_zeropad() safety, but it
148 * doesn't hurt either.
149 *
150 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
151 * need the careful unaligned handling.
152 */
94753db5 153static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 154{
bfcfaa77 155 unsigned long a,b,mask;
bfcfaa77
LT
156
157 for (;;) {
12f8ad4b 158 a = *(unsigned long *)cs;
e419b4cc 159 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
160 if (tcount < sizeof(unsigned long))
161 break;
162 if (unlikely(a != b))
163 return 1;
164 cs += sizeof(unsigned long);
165 ct += sizeof(unsigned long);
166 tcount -= sizeof(unsigned long);
167 if (!tcount)
168 return 0;
169 }
170 mask = ~(~0ul << tcount*8);
171 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
172}
173
bfcfaa77 174#else
e419b4cc 175
94753db5 176static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 177{
5483f18e
LT
178 do {
179 if (*cs != *ct)
180 return 1;
181 cs++;
182 ct++;
183 tcount--;
184 } while (tcount);
185 return 0;
186}
187
e419b4cc
LT
188#endif
189
94753db5
LT
190static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
191{
6326c71f 192 const unsigned char *cs;
94753db5
LT
193 /*
194 * Be careful about RCU walk racing with rename:
195 * use ACCESS_ONCE to fetch the name pointer.
196 *
197 * NOTE! Even if a rename will mean that the length
198 * was not loaded atomically, we don't care. The
199 * RCU walk will check the sequence count eventually,
200 * and catch it. And we won't overrun the buffer,
201 * because we're reading the name pointer atomically,
202 * and a dentry name is guaranteed to be properly
203 * terminated with a NUL byte.
204 *
205 * End result: even if 'len' is wrong, we'll exit
206 * early because the data cannot match (there can
207 * be no NUL in the ct/tcount data)
208 */
6326c71f
LT
209 cs = ACCESS_ONCE(dentry->d_name.name);
210 smp_read_barrier_depends();
211 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
212}
213
9c82ab9c 214static void __d_free(struct rcu_head *head)
1da177e4 215{
9c82ab9c
CH
216 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
217
1da177e4
LT
218 if (dname_external(dentry))
219 kfree(dentry->d_name.name);
220 kmem_cache_free(dentry_cache, dentry);
221}
222
223/*
b5c84bf6 224 * no locks, please.
1da177e4
LT
225 */
226static void d_free(struct dentry *dentry)
227{
d76c446b 228 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
b7ab39f6 229 BUG_ON(dentry->d_count);
3e880fb5 230 this_cpu_dec(nr_dentry);
1da177e4
LT
231 if (dentry->d_op && dentry->d_op->d_release)
232 dentry->d_op->d_release(dentry);
312d3ca8 233
dea3667b
LT
234 /* if dentry was never visible to RCU, immediate free is OK */
235 if (!(dentry->d_flags & DCACHE_RCUACCESS))
9c82ab9c 236 __d_free(&dentry->d_u.d_rcu);
b3423415 237 else
9c82ab9c 238 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
239}
240
ae9cf59b
AV
241void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
242{
243 spin_lock(&dentry->d_lock);
244 if (unlikely(dname_external(dentry))) {
245 u32 len;
246 char *p;
247 for (;;) {
248 len = dentry->d_name.len;
249 spin_unlock(&dentry->d_lock);
250 p = kmalloc(len + 1, GFP_KERNEL | __GFP_NOFAIL);
251 spin_lock(&dentry->d_lock);
252 if (dentry->d_name.len <= len)
253 break;
254 kfree(p);
255 }
256 memcpy(p, dentry->d_name.name, dentry->d_name.len + 1);
257 spin_unlock(&dentry->d_lock);
258 name->name = p;
259 } else {
260 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
261 spin_unlock(&dentry->d_lock);
262 name->name = name->inline_name;
263 }
264}
265EXPORT_SYMBOL(take_dentry_name_snapshot);
266 void release_dentry_name_snapshot(struct name_snapshot *name)
267{
268 if (unlikely(name->name != name->inline_name))
269 kfree(name->name);
270}
271EXPORT_SYMBOL(release_dentry_name_snapshot);
272
31e6b01f
NP
273/**
274 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 275 * @dentry: the target dentry
31e6b01f
NP
276 * After this call, in-progress rcu-walk path lookup will fail. This
277 * should be called after unhashing, and after changing d_inode (if
278 * the dentry has not already been unhashed).
279 */
280static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
281{
282 assert_spin_locked(&dentry->d_lock);
283 /* Go through a barrier */
284 write_seqcount_barrier(&dentry->d_seq);
285}
286
1da177e4
LT
287/*
288 * Release the dentry's inode, using the filesystem
31e6b01f
NP
289 * d_iput() operation if defined. Dentry has no refcount
290 * and is unhashed.
1da177e4 291 */
858119e1 292static void dentry_iput(struct dentry * dentry)
31f3e0b3 293 __releases(dentry->d_lock)
873feea0 294 __releases(dentry->d_inode->i_lock)
1da177e4
LT
295{
296 struct inode *inode = dentry->d_inode;
297 if (inode) {
298 dentry->d_inode = NULL;
d76c446b 299 hlist_del_init(&dentry->d_u.d_alias);
1da177e4 300 spin_unlock(&dentry->d_lock);
873feea0 301 spin_unlock(&inode->i_lock);
f805fbda
LT
302 if (!inode->i_nlink)
303 fsnotify_inoderemove(inode);
1da177e4
LT
304 if (dentry->d_op && dentry->d_op->d_iput)
305 dentry->d_op->d_iput(dentry, inode);
306 else
307 iput(inode);
308 } else {
309 spin_unlock(&dentry->d_lock);
1da177e4
LT
310 }
311}
312
31e6b01f
NP
313/*
314 * Release the dentry's inode, using the filesystem
315 * d_iput() operation if defined. dentry remains in-use.
316 */
317static void dentry_unlink_inode(struct dentry * dentry)
318 __releases(dentry->d_lock)
873feea0 319 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
320{
321 struct inode *inode = dentry->d_inode;
322 dentry->d_inode = NULL;
d76c446b 323 hlist_del_init(&dentry->d_u.d_alias);
31e6b01f
NP
324 dentry_rcuwalk_barrier(dentry);
325 spin_unlock(&dentry->d_lock);
873feea0 326 spin_unlock(&inode->i_lock);
31e6b01f
NP
327 if (!inode->i_nlink)
328 fsnotify_inoderemove(inode);
329 if (dentry->d_op && dentry->d_op->d_iput)
330 dentry->d_op->d_iput(dentry, inode);
331 else
332 iput(inode);
333}
334
da3bbdd4 335/*
f0023bc6 336 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
da3bbdd4
KM
337 */
338static void dentry_lru_add(struct dentry *dentry)
339{
a4633357 340 if (list_empty(&dentry->d_lru)) {
23044507 341 spin_lock(&dcache_lru_lock);
a4633357
CH
342 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
343 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 344 dentry_stat.nr_unused++;
23044507 345 spin_unlock(&dcache_lru_lock);
a4633357 346 }
da3bbdd4
KM
347}
348
23044507
NP
349static void __dentry_lru_del(struct dentry *dentry)
350{
351 list_del_init(&dentry->d_lru);
eaf5f907 352 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
23044507
NP
353 dentry->d_sb->s_nr_dentry_unused--;
354 dentry_stat.nr_unused--;
355}
356
f0023bc6
SW
357/*
358 * Remove a dentry with references from the LRU.
359 */
da3bbdd4
KM
360static void dentry_lru_del(struct dentry *dentry)
361{
362 if (!list_empty(&dentry->d_lru)) {
23044507
NP
363 spin_lock(&dcache_lru_lock);
364 __dentry_lru_del(dentry);
365 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
366 }
367}
368
b48f03b3 369static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
da3bbdd4 370{
23044507 371 spin_lock(&dcache_lru_lock);
a4633357 372 if (list_empty(&dentry->d_lru)) {
b48f03b3 373 list_add_tail(&dentry->d_lru, list);
a4633357 374 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 375 dentry_stat.nr_unused++;
a4633357 376 } else {
b48f03b3 377 list_move_tail(&dentry->d_lru, list);
da3bbdd4 378 }
23044507 379 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
380}
381
d52b9086
MS
382/**
383 * d_kill - kill dentry and return parent
384 * @dentry: dentry to kill
ff5fdb61 385 * @parent: parent dentry
d52b9086 386 *
31f3e0b3 387 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
388 *
389 * If this is the root of the dentry tree, return NULL.
23044507 390 *
b5c84bf6
NP
391 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
392 * d_kill.
d52b9086 393 */
2fd6b7f5 394static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 395 __releases(dentry->d_lock)
2fd6b7f5 396 __releases(parent->d_lock)
873feea0 397 __releases(dentry->d_inode->i_lock)
d52b9086 398{
b102b017 399 __list_del_entry(&dentry->d_child);
c83ce989 400 /*
b102b017 401 * Inform ascending readers that we are no longer attached to the
c83ce989
TM
402 * dentry tree
403 */
b161dfa6 404 dentry->d_flags |= DCACHE_DENTRY_KILLED;
2fd6b7f5
NP
405 if (parent)
406 spin_unlock(&parent->d_lock);
d52b9086 407 dentry_iput(dentry);
b7ab39f6
NP
408 /*
409 * dentry_iput drops the locks, at which point nobody (except
410 * transient RCU lookups) can reach this dentry.
411 */
d52b9086 412 d_free(dentry);
871c0067 413 return parent;
d52b9086
MS
414}
415
c6627c60
DH
416/*
417 * Unhash a dentry without inserting an RCU walk barrier or checking that
418 * dentry->d_lock is locked. The caller must take care of that, if
419 * appropriate.
420 */
421static void __d_shrink(struct dentry *dentry)
422{
423 if (!d_unhashed(dentry)) {
424 struct hlist_bl_head *b;
425 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
426 b = &dentry->d_sb->s_anon;
427 else
428 b = d_hash(dentry->d_parent, dentry->d_name.hash);
429
430 hlist_bl_lock(b);
431 __hlist_bl_del(&dentry->d_hash);
432 dentry->d_hash.pprev = NULL;
433 hlist_bl_unlock(b);
434 }
435}
436
789680d1
NP
437/**
438 * d_drop - drop a dentry
439 * @dentry: dentry to drop
440 *
441 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
442 * be found through a VFS lookup any more. Note that this is different from
443 * deleting the dentry - d_delete will try to mark the dentry negative if
444 * possible, giving a successful _negative_ lookup, while d_drop will
445 * just make the cache lookup fail.
446 *
447 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
448 * reason (NFS timeouts or autofs deletes).
449 *
450 * __d_drop requires dentry->d_lock.
451 */
452void __d_drop(struct dentry *dentry)
453{
dea3667b 454 if (!d_unhashed(dentry)) {
c6627c60 455 __d_shrink(dentry);
dea3667b 456 dentry_rcuwalk_barrier(dentry);
789680d1
NP
457 }
458}
459EXPORT_SYMBOL(__d_drop);
460
461void d_drop(struct dentry *dentry)
462{
789680d1
NP
463 spin_lock(&dentry->d_lock);
464 __d_drop(dentry);
465 spin_unlock(&dentry->d_lock);
789680d1
NP
466}
467EXPORT_SYMBOL(d_drop);
468
77812a1e
NP
469/*
470 * Finish off a dentry we've decided to kill.
471 * dentry->d_lock must be held, returns with it unlocked.
472 * If ref is non-zero, then decrement the refcount too.
473 * Returns dentry requiring refcount drop, or NULL if we're done.
474 */
475static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
476 __releases(dentry->d_lock)
477{
873feea0 478 struct inode *inode;
77812a1e
NP
479 struct dentry *parent;
480
873feea0
NP
481 inode = dentry->d_inode;
482 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e
NP
483relock:
484 spin_unlock(&dentry->d_lock);
485 cpu_relax();
486 return dentry; /* try again with same dentry */
487 }
488 if (IS_ROOT(dentry))
489 parent = NULL;
490 else
491 parent = dentry->d_parent;
492 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
493 if (inode)
494 spin_unlock(&inode->i_lock);
77812a1e
NP
495 goto relock;
496 }
31e6b01f 497
77812a1e
NP
498 if (ref)
499 dentry->d_count--;
f0023bc6 500 /*
f0023bc6
SW
501 * inform the fs via d_prune that this dentry is about to be
502 * unhashed and destroyed.
503 */
61572bb1
YZ
504 if (dentry->d_flags & DCACHE_OP_PRUNE)
505 dentry->d_op->d_prune(dentry);
506
507 dentry_lru_del(dentry);
77812a1e
NP
508 /* if it was on the hash then remove it */
509 __d_drop(dentry);
510 return d_kill(dentry, parent);
511}
512
1da177e4
LT
513/*
514 * This is dput
515 *
516 * This is complicated by the fact that we do not want to put
517 * dentries that are no longer on any hash chain on the unused
518 * list: we'd much rather just get rid of them immediately.
519 *
520 * However, that implies that we have to traverse the dentry
521 * tree upwards to the parents which might _also_ now be
522 * scheduled for deletion (it may have been only waiting for
523 * its last child to go away).
524 *
525 * This tail recursion is done by hand as we don't want to depend
526 * on the compiler to always get this right (gcc generally doesn't).
527 * Real recursion would eat up our stack space.
528 */
529
530/*
531 * dput - release a dentry
532 * @dentry: dentry to release
533 *
534 * Release a dentry. This will drop the usage count and if appropriate
535 * call the dentry unlink method as well as removing it from the queues and
536 * releasing its resources. If the parent dentries were scheduled for release
537 * they too may now get deleted.
1da177e4 538 */
1da177e4
LT
539void dput(struct dentry *dentry)
540{
541 if (!dentry)
542 return;
543
544repeat:
b7ab39f6 545 if (dentry->d_count == 1)
1da177e4 546 might_sleep();
1da177e4 547 spin_lock(&dentry->d_lock);
61f3dee4
NP
548 BUG_ON(!dentry->d_count);
549 if (dentry->d_count > 1) {
550 dentry->d_count--;
1da177e4 551 spin_unlock(&dentry->d_lock);
1da177e4
LT
552 return;
553 }
554
fb045adb 555 if (dentry->d_flags & DCACHE_OP_DELETE) {
1da177e4 556 if (dentry->d_op->d_delete(dentry))
61f3dee4 557 goto kill_it;
1da177e4 558 }
265ac902 559
1da177e4
LT
560 /* Unreachable? Get rid of it */
561 if (d_unhashed(dentry))
562 goto kill_it;
265ac902 563
39e3c955 564 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 565 dentry_lru_add(dentry);
265ac902 566
61f3dee4
NP
567 dentry->d_count--;
568 spin_unlock(&dentry->d_lock);
1da177e4
LT
569 return;
570
d52b9086 571kill_it:
77812a1e 572 dentry = dentry_kill(dentry, 1);
d52b9086
MS
573 if (dentry)
574 goto repeat;
1da177e4 575}
ec4f8605 576EXPORT_SYMBOL(dput);
1da177e4
LT
577
578/**
579 * d_invalidate - invalidate a dentry
580 * @dentry: dentry to invalidate
581 *
582 * Try to invalidate the dentry if it turns out to be
583 * possible. If there are other dentries that can be
584 * reached through this one we can't delete it and we
585 * return -EBUSY. On success we return 0.
586 *
587 * no dcache lock.
588 */
589
590int d_invalidate(struct dentry * dentry)
591{
592 /*
593 * If it's already been dropped, return OK.
594 */
da502956 595 spin_lock(&dentry->d_lock);
1da177e4 596 if (d_unhashed(dentry)) {
da502956 597 spin_unlock(&dentry->d_lock);
1da177e4
LT
598 return 0;
599 }
600 /*
601 * Check whether to do a partial shrink_dcache
602 * to get rid of unused child entries.
603 */
604 if (!list_empty(&dentry->d_subdirs)) {
da502956 605 spin_unlock(&dentry->d_lock);
1da177e4 606 shrink_dcache_parent(dentry);
da502956 607 spin_lock(&dentry->d_lock);
1da177e4
LT
608 }
609
610 /*
611 * Somebody else still using it?
612 *
613 * If it's a directory, we can't drop it
614 * for fear of somebody re-populating it
615 * with children (even though dropping it
616 * would make it unreachable from the root,
617 * we might still populate it if it was a
618 * working directory or similar).
50e69630
AV
619 * We also need to leave mountpoints alone,
620 * directory or not.
1da177e4 621 */
50e69630
AV
622 if (dentry->d_count > 1 && dentry->d_inode) {
623 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 624 spin_unlock(&dentry->d_lock);
1da177e4
LT
625 return -EBUSY;
626 }
627 }
628
629 __d_drop(dentry);
630 spin_unlock(&dentry->d_lock);
1da177e4
LT
631 return 0;
632}
ec4f8605 633EXPORT_SYMBOL(d_invalidate);
1da177e4 634
b5c84bf6 635/* This must be called with d_lock held */
dc0474be 636static inline void __dget_dlock(struct dentry *dentry)
23044507 637{
b7ab39f6 638 dentry->d_count++;
23044507
NP
639}
640
dc0474be 641static inline void __dget(struct dentry *dentry)
1da177e4 642{
23044507 643 spin_lock(&dentry->d_lock);
dc0474be 644 __dget_dlock(dentry);
23044507 645 spin_unlock(&dentry->d_lock);
1da177e4
LT
646}
647
b7ab39f6
NP
648struct dentry *dget_parent(struct dentry *dentry)
649{
650 struct dentry *ret;
651
652repeat:
a734eb45
NP
653 /*
654 * Don't need rcu_dereference because we re-check it was correct under
655 * the lock.
656 */
657 rcu_read_lock();
b7ab39f6 658 ret = dentry->d_parent;
a734eb45
NP
659 spin_lock(&ret->d_lock);
660 if (unlikely(ret != dentry->d_parent)) {
661 spin_unlock(&ret->d_lock);
662 rcu_read_unlock();
b7ab39f6
NP
663 goto repeat;
664 }
a734eb45 665 rcu_read_unlock();
b7ab39f6
NP
666 BUG_ON(!ret->d_count);
667 ret->d_count++;
668 spin_unlock(&ret->d_lock);
b7ab39f6
NP
669 return ret;
670}
671EXPORT_SYMBOL(dget_parent);
672
1da177e4
LT
673/**
674 * d_find_alias - grab a hashed alias of inode
675 * @inode: inode in question
32ba9c3f
LT
676 * @want_discon: flag, used by d_splice_alias, to request
677 * that only a DISCONNECTED alias be returned.
1da177e4
LT
678 *
679 * If inode has a hashed alias, or is a directory and has any alias,
680 * acquire the reference to alias and return it. Otherwise return NULL.
681 * Notice that if inode is a directory there can be only one alias and
682 * it can be unhashed only if it has no children, or if it is the root
683 * of a filesystem.
684 *
21c0d8fd 685 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
32ba9c3f
LT
686 * any other hashed alias over that one unless @want_discon is set,
687 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 688 */
32ba9c3f 689static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 690{
da502956 691 struct dentry *alias, *discon_alias;
1da177e4 692
da502956
NP
693again:
694 discon_alias = NULL;
d76c446b 695 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 696 spin_lock(&alias->d_lock);
1da177e4 697 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 698 if (IS_ROOT(alias) &&
da502956 699 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 700 discon_alias = alias;
32ba9c3f 701 } else if (!want_discon) {
dc0474be 702 __dget_dlock(alias);
da502956
NP
703 spin_unlock(&alias->d_lock);
704 return alias;
705 }
706 }
707 spin_unlock(&alias->d_lock);
708 }
709 if (discon_alias) {
710 alias = discon_alias;
711 spin_lock(&alias->d_lock);
712 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
713 if (IS_ROOT(alias) &&
714 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 715 __dget_dlock(alias);
da502956 716 spin_unlock(&alias->d_lock);
1da177e4
LT
717 return alias;
718 }
719 }
da502956
NP
720 spin_unlock(&alias->d_lock);
721 goto again;
1da177e4 722 }
da502956 723 return NULL;
1da177e4
LT
724}
725
da502956 726struct dentry *d_find_alias(struct inode *inode)
1da177e4 727{
214fda1f
DH
728 struct dentry *de = NULL;
729
b3d9b7a3 730 if (!hlist_empty(&inode->i_dentry)) {
873feea0 731 spin_lock(&inode->i_lock);
32ba9c3f 732 de = __d_find_alias(inode, 0);
873feea0 733 spin_unlock(&inode->i_lock);
214fda1f 734 }
1da177e4
LT
735 return de;
736}
ec4f8605 737EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
738
739/*
740 * Try to kill dentries associated with this inode.
741 * WARNING: you must own a reference to inode.
742 */
743void d_prune_aliases(struct inode *inode)
744{
0cdca3f9 745 struct dentry *dentry;
1da177e4 746restart:
873feea0 747 spin_lock(&inode->i_lock);
d76c446b 748 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 749 spin_lock(&dentry->d_lock);
b7ab39f6 750 if (!dentry->d_count) {
dc0474be 751 __dget_dlock(dentry);
1da177e4
LT
752 __d_drop(dentry);
753 spin_unlock(&dentry->d_lock);
873feea0 754 spin_unlock(&inode->i_lock);
1da177e4
LT
755 dput(dentry);
756 goto restart;
757 }
758 spin_unlock(&dentry->d_lock);
759 }
873feea0 760 spin_unlock(&inode->i_lock);
1da177e4 761}
ec4f8605 762EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
763
764/*
77812a1e
NP
765 * Try to throw away a dentry - free the inode, dput the parent.
766 * Requires dentry->d_lock is held, and dentry->d_count == 0.
767 * Releases dentry->d_lock.
d702ccb3 768 *
77812a1e 769 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 770 */
77812a1e 771static void try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 772 __releases(dentry->d_lock)
1da177e4 773{
77812a1e 774 struct dentry *parent;
d52b9086 775
77812a1e 776 parent = dentry_kill(dentry, 0);
d52b9086 777 /*
77812a1e
NP
778 * If dentry_kill returns NULL, we have nothing more to do.
779 * if it returns the same dentry, trylocks failed. In either
780 * case, just loop again.
781 *
782 * Otherwise, we need to prune ancestors too. This is necessary
783 * to prevent quadratic behavior of shrink_dcache_parent(), but
784 * is also expected to be beneficial in reducing dentry cache
785 * fragmentation.
d52b9086 786 */
77812a1e
NP
787 if (!parent)
788 return;
789 if (parent == dentry)
790 return;
791
792 /* Prune ancestors. */
793 dentry = parent;
d52b9086 794 while (dentry) {
b7ab39f6 795 spin_lock(&dentry->d_lock);
89e60548
NP
796 if (dentry->d_count > 1) {
797 dentry->d_count--;
798 spin_unlock(&dentry->d_lock);
799 return;
800 }
77812a1e 801 dentry = dentry_kill(dentry, 1);
d52b9086 802 }
1da177e4
LT
803}
804
3049cfe2 805static void shrink_dentry_list(struct list_head *list)
1da177e4 806{
da3bbdd4 807 struct dentry *dentry;
da3bbdd4 808
ec33679d
NP
809 rcu_read_lock();
810 for (;;) {
ec33679d
NP
811 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
812 if (&dentry->d_lru == list)
813 break; /* empty */
814 spin_lock(&dentry->d_lock);
815 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
816 spin_unlock(&dentry->d_lock);
23044507
NP
817 continue;
818 }
819
1da177e4
LT
820 /*
821 * We found an inuse dentry which was not removed from
da3bbdd4
KM
822 * the LRU because of laziness during lookup. Do not free
823 * it - just keep it off the LRU list.
1da177e4 824 */
b7ab39f6 825 if (dentry->d_count) {
ec33679d 826 dentry_lru_del(dentry);
da3bbdd4 827 spin_unlock(&dentry->d_lock);
1da177e4
LT
828 continue;
829 }
ec33679d 830
ec33679d 831 rcu_read_unlock();
77812a1e
NP
832
833 try_prune_one_dentry(dentry);
834
ec33679d 835 rcu_read_lock();
da3bbdd4 836 }
ec33679d 837 rcu_read_unlock();
3049cfe2
CH
838}
839
840/**
b48f03b3
DC
841 * prune_dcache_sb - shrink the dcache
842 * @sb: superblock
843 * @count: number of entries to try to free
844 *
845 * Attempt to shrink the superblock dcache LRU by @count entries. This is
846 * done when we need more memory an called from the superblock shrinker
847 * function.
3049cfe2 848 *
b48f03b3
DC
849 * This function may fail to free any resources if all the dentries are in
850 * use.
3049cfe2 851 */
b48f03b3 852void prune_dcache_sb(struct super_block *sb, int count)
3049cfe2 853{
3049cfe2
CH
854 struct dentry *dentry;
855 LIST_HEAD(referenced);
856 LIST_HEAD(tmp);
3049cfe2 857
23044507
NP
858relock:
859 spin_lock(&dcache_lru_lock);
3049cfe2
CH
860 while (!list_empty(&sb->s_dentry_lru)) {
861 dentry = list_entry(sb->s_dentry_lru.prev,
862 struct dentry, d_lru);
863 BUG_ON(dentry->d_sb != sb);
864
23044507
NP
865 if (!spin_trylock(&dentry->d_lock)) {
866 spin_unlock(&dcache_lru_lock);
867 cpu_relax();
868 goto relock;
869 }
870
b48f03b3 871 if (dentry->d_flags & DCACHE_REFERENCED) {
23044507
NP
872 dentry->d_flags &= ~DCACHE_REFERENCED;
873 list_move(&dentry->d_lru, &referenced);
3049cfe2 874 spin_unlock(&dentry->d_lock);
23044507
NP
875 } else {
876 list_move_tail(&dentry->d_lru, &tmp);
eaf5f907 877 dentry->d_flags |= DCACHE_SHRINK_LIST;
23044507 878 spin_unlock(&dentry->d_lock);
b0d40c92 879 if (!--count)
23044507 880 break;
3049cfe2 881 }
ec33679d 882 cond_resched_lock(&dcache_lru_lock);
3049cfe2 883 }
da3bbdd4
KM
884 if (!list_empty(&referenced))
885 list_splice(&referenced, &sb->s_dentry_lru);
23044507 886 spin_unlock(&dcache_lru_lock);
ec33679d
NP
887
888 shrink_dentry_list(&tmp);
da3bbdd4
KM
889}
890
1da177e4
LT
891/**
892 * shrink_dcache_sb - shrink dcache for a superblock
893 * @sb: superblock
894 *
3049cfe2
CH
895 * Shrink the dcache for the specified super block. This is used to free
896 * the dcache before unmounting a file system.
1da177e4 897 */
3049cfe2 898void shrink_dcache_sb(struct super_block *sb)
1da177e4 899{
3049cfe2
CH
900 LIST_HEAD(tmp);
901
23044507 902 spin_lock(&dcache_lru_lock);
3049cfe2
CH
903 while (!list_empty(&sb->s_dentry_lru)) {
904 list_splice_init(&sb->s_dentry_lru, &tmp);
ec33679d 905 spin_unlock(&dcache_lru_lock);
3049cfe2 906 shrink_dentry_list(&tmp);
ec33679d 907 spin_lock(&dcache_lru_lock);
3049cfe2 908 }
23044507 909 spin_unlock(&dcache_lru_lock);
1da177e4 910}
ec4f8605 911EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 912
c636ebdb
DH
913/*
914 * destroy a single subtree of dentries for unmount
915 * - see the comments on shrink_dcache_for_umount() for a description of the
916 * locking
917 */
918static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
919{
920 struct dentry *parent;
921
922 BUG_ON(!IS_ROOT(dentry));
923
c636ebdb
DH
924 for (;;) {
925 /* descend to the first leaf in the current subtree */
43c1c9cd 926 while (!list_empty(&dentry->d_subdirs))
c636ebdb 927 dentry = list_entry(dentry->d_subdirs.next,
d76c446b 928 struct dentry, d_child);
c636ebdb
DH
929
930 /* consume the dentries from this leaf up through its parents
931 * until we find one with children or run out altogether */
932 do {
933 struct inode *inode;
934
f0023bc6 935 /*
61572bb1 936 * inform the fs that this dentry is about to be
f0023bc6
SW
937 * unhashed and destroyed.
938 */
61572bb1
YZ
939 if (dentry->d_flags & DCACHE_OP_PRUNE)
940 dentry->d_op->d_prune(dentry);
941
942 dentry_lru_del(dentry);
43c1c9cd
DH
943 __d_shrink(dentry);
944
b7ab39f6 945 if (dentry->d_count != 0) {
c636ebdb
DH
946 printk(KERN_ERR
947 "BUG: Dentry %p{i=%lx,n=%s}"
948 " still in use (%d)"
949 " [unmount of %s %s]\n",
950 dentry,
951 dentry->d_inode ?
952 dentry->d_inode->i_ino : 0UL,
953 dentry->d_name.name,
b7ab39f6 954 dentry->d_count,
c636ebdb
DH
955 dentry->d_sb->s_type->name,
956 dentry->d_sb->s_id);
957 BUG();
958 }
959
2fd6b7f5 960 if (IS_ROOT(dentry)) {
c636ebdb 961 parent = NULL;
d76c446b 962 list_del(&dentry->d_child);
2fd6b7f5 963 } else {
871c0067 964 parent = dentry->d_parent;
b7ab39f6 965 parent->d_count--;
d76c446b 966 list_del(&dentry->d_child);
871c0067 967 }
c636ebdb 968
c636ebdb
DH
969 inode = dentry->d_inode;
970 if (inode) {
971 dentry->d_inode = NULL;
d76c446b 972 hlist_del_init(&dentry->d_u.d_alias);
c636ebdb
DH
973 if (dentry->d_op && dentry->d_op->d_iput)
974 dentry->d_op->d_iput(dentry, inode);
975 else
976 iput(inode);
977 }
978
979 d_free(dentry);
980
981 /* finished when we fall off the top of the tree,
982 * otherwise we ascend to the parent and move to the
983 * next sibling if there is one */
984 if (!parent)
312d3ca8 985 return;
c636ebdb 986 dentry = parent;
c636ebdb
DH
987 } while (list_empty(&dentry->d_subdirs));
988
989 dentry = list_entry(dentry->d_subdirs.next,
d76c446b 990 struct dentry, d_child);
c636ebdb
DH
991 }
992}
993
994/*
995 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 996 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
997 * - the superblock is detached from all mountings and open files, so the
998 * dentry trees will not be rearranged by the VFS
999 * - s_umount is write-locked, so the memory pressure shrinker will ignore
1000 * any dentries belonging to this superblock that it comes across
1001 * - the filesystem itself is no longer permitted to rearrange the dentries
1002 * in this superblock
1003 */
1004void shrink_dcache_for_umount(struct super_block *sb)
1005{
1006 struct dentry *dentry;
1007
1008 if (down_read_trylock(&sb->s_umount))
1009 BUG();
1010
1011 dentry = sb->s_root;
1012 sb->s_root = NULL;
b7ab39f6 1013 dentry->d_count--;
c636ebdb
DH
1014 shrink_dcache_for_umount_subtree(dentry);
1015
ceb5bdc2
NP
1016 while (!hlist_bl_empty(&sb->s_anon)) {
1017 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
1018 shrink_dcache_for_umount_subtree(dentry);
1019 }
1020}
1021
1da177e4
LT
1022/*
1023 * Search for at least 1 mount point in the dentry's subdirs.
1024 * We descend to the next level whenever the d_subdirs
1025 * list is non-empty and continue searching.
1026 */
1027
1028/**
1029 * have_submounts - check for mounts over a dentry
1030 * @parent: dentry to check.
1031 *
1032 * Return true if the parent or its subdirectories contain
1033 * a mount point
1034 */
1da177e4
LT
1035int have_submounts(struct dentry *parent)
1036{
949854d0 1037 struct dentry *this_parent;
1da177e4 1038 struct list_head *next;
949854d0 1039 unsigned seq;
58db63d0 1040 int locked = 0;
949854d0 1041
949854d0 1042 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1043again:
1044 this_parent = parent;
1da177e4 1045
1da177e4
LT
1046 if (d_mountpoint(parent))
1047 goto positive;
2fd6b7f5 1048 spin_lock(&this_parent->d_lock);
1da177e4
LT
1049repeat:
1050 next = this_parent->d_subdirs.next;
1051resume:
1052 while (next != &this_parent->d_subdirs) {
1053 struct list_head *tmp = next;
d76c446b 1054 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1055 next = tmp->next;
2fd6b7f5
NP
1056
1057 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 1058 /* Have we found a mount point ? */
2fd6b7f5
NP
1059 if (d_mountpoint(dentry)) {
1060 spin_unlock(&dentry->d_lock);
1061 spin_unlock(&this_parent->d_lock);
1da177e4 1062 goto positive;
2fd6b7f5 1063 }
1da177e4 1064 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1065 spin_unlock(&this_parent->d_lock);
1066 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1067 this_parent = dentry;
2fd6b7f5 1068 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1069 goto repeat;
1070 }
2fd6b7f5 1071 spin_unlock(&dentry->d_lock);
1da177e4
LT
1072 }
1073 /*
1074 * All done at this level ... ascend and resume the search.
1075 */
b102b017
AV
1076 rcu_read_lock();
1077ascend:
1da177e4 1078 if (this_parent != parent) {
c826cb7d 1079 struct dentry *child = this_parent;
b102b017
AV
1080 this_parent = child->d_parent;
1081
1082 spin_unlock(&child->d_lock);
1083 spin_lock(&this_parent->d_lock);
1084
1085 /* might go back up the wrong parent if we have had a rename. */
1086 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1087 goto rename_retry;
d76c446b 1088 next = child->d_child.next;
b102b017
AV
1089 while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)) {
1090 if (next == &this_parent->d_subdirs)
1091 goto ascend;
1092 child = list_entry(next, struct dentry, d_child);
1093 next = next->next;
1094 }
1095 rcu_read_unlock();
1da177e4
LT
1096 goto resume;
1097 }
58db63d0 1098 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1099 goto rename_retry;
b102b017
AV
1100 spin_unlock(&this_parent->d_lock);
1101 rcu_read_unlock();
58db63d0
NP
1102 if (locked)
1103 write_sequnlock(&rename_lock);
1da177e4
LT
1104 return 0; /* No mount points found in tree */
1105positive:
58db63d0 1106 if (!locked && read_seqretry(&rename_lock, seq))
e2dbdc06 1107 goto rename_retry_unlocked;
58db63d0
NP
1108 if (locked)
1109 write_sequnlock(&rename_lock);
1da177e4 1110 return 1;
58db63d0
NP
1111
1112rename_retry:
b102b017
AV
1113 spin_unlock(&this_parent->d_lock);
1114 rcu_read_unlock();
8110e16d
MS
1115 if (locked)
1116 goto again;
e2dbdc06 1117rename_retry_unlocked:
58db63d0
NP
1118 locked = 1;
1119 write_seqlock(&rename_lock);
1120 goto again;
1da177e4 1121}
ec4f8605 1122EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1123
1124/*
fd517909 1125 * Search the dentry child list of the specified parent,
1da177e4
LT
1126 * and move any unused dentries to the end of the unused
1127 * list for prune_dcache(). We descend to the next level
1128 * whenever the d_subdirs list is non-empty and continue
1129 * searching.
1130 *
1131 * It returns zero iff there are no unused children,
1132 * otherwise it returns the number of children moved to
1133 * the end of the unused list. This may not be the total
1134 * number of unused children, because select_parent can
1135 * drop the lock and return early due to latency
1136 * constraints.
1137 */
b48f03b3 1138static int select_parent(struct dentry *parent, struct list_head *dispose)
1da177e4 1139{
949854d0 1140 struct dentry *this_parent;
1da177e4 1141 struct list_head *next;
949854d0 1142 unsigned seq;
1da177e4 1143 int found = 0;
58db63d0 1144 int locked = 0;
1da177e4 1145
949854d0 1146 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1147again:
1148 this_parent = parent;
2fd6b7f5 1149 spin_lock(&this_parent->d_lock);
1da177e4
LT
1150repeat:
1151 next = this_parent->d_subdirs.next;
1152resume:
1153 while (next != &this_parent->d_subdirs) {
1154 struct list_head *tmp = next;
d76c446b 1155 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4
LT
1156 next = tmp->next;
1157
2fd6b7f5 1158 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1159
b48f03b3
DC
1160 /*
1161 * move only zero ref count dentries to the dispose list.
eaf5f907
MS
1162 *
1163 * Those which are presently on the shrink list, being processed
1164 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1165 * loop in shrink_dcache_parent() might not make any progress
1166 * and loop forever.
1da177e4 1167 */
eaf5f907
MS
1168 if (dentry->d_count) {
1169 dentry_lru_del(dentry);
1170 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
b48f03b3 1171 dentry_lru_move_list(dentry, dispose);
eaf5f907 1172 dentry->d_flags |= DCACHE_SHRINK_LIST;
1da177e4
LT
1173 found++;
1174 }
1da177e4
LT
1175 /*
1176 * We can return to the caller if we have found some (this
1177 * ensures forward progress). We'll be coming back to find
1178 * the rest.
1179 */
2fd6b7f5
NP
1180 if (found && need_resched()) {
1181 spin_unlock(&dentry->d_lock);
e2dbdc06 1182 rcu_read_lock();
1da177e4 1183 goto out;
2fd6b7f5 1184 }
1da177e4
LT
1185
1186 /*
1187 * Descend a level if the d_subdirs list is non-empty.
1188 */
1189 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1190 spin_unlock(&this_parent->d_lock);
1191 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1192 this_parent = dentry;
2fd6b7f5 1193 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1194 goto repeat;
1195 }
2fd6b7f5
NP
1196
1197 spin_unlock(&dentry->d_lock);
1da177e4
LT
1198 }
1199 /*
1200 * All done at this level ... ascend and resume the search.
1201 */
b102b017
AV
1202 rcu_read_lock();
1203ascend:
1da177e4 1204 if (this_parent != parent) {
c826cb7d 1205 struct dentry *child = this_parent;
b102b017
AV
1206 this_parent = child->d_parent;
1207
1208 spin_unlock(&child->d_lock);
1209 spin_lock(&this_parent->d_lock);
1210
1211 /* might go back up the wrong parent if we have had a rename. */
1212 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1213 goto rename_retry;
d76c446b 1214 next = child->d_child.next;
b102b017
AV
1215 while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)) {
1216 if (next == &this_parent->d_subdirs)
1217 goto ascend;
1218 child = list_entry(next, struct dentry, d_child);
1219 next = next->next;
1220 }
1221 rcu_read_unlock();
1da177e4
LT
1222 goto resume;
1223 }
1224out:
58db63d0 1225 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1226 goto rename_retry;
b102b017
AV
1227 spin_unlock(&this_parent->d_lock);
1228 rcu_read_unlock();
58db63d0
NP
1229 if (locked)
1230 write_sequnlock(&rename_lock);
1da177e4 1231 return found;
58db63d0
NP
1232
1233rename_retry:
b102b017
AV
1234 spin_unlock(&this_parent->d_lock);
1235 rcu_read_unlock();
58db63d0
NP
1236 if (found)
1237 return found;
8110e16d
MS
1238 if (locked)
1239 goto again;
58db63d0
NP
1240 locked = 1;
1241 write_seqlock(&rename_lock);
1242 goto again;
1da177e4
LT
1243}
1244
1245/**
1246 * shrink_dcache_parent - prune dcache
1247 * @parent: parent of entries to prune
1248 *
1249 * Prune the dcache to remove unused children of the parent dentry.
1250 */
1da177e4
LT
1251void shrink_dcache_parent(struct dentry * parent)
1252{
b48f03b3 1253 LIST_HEAD(dispose);
1da177e4
LT
1254 int found;
1255
421348f1 1256 while ((found = select_parent(parent, &dispose)) != 0) {
b48f03b3 1257 shrink_dentry_list(&dispose);
421348f1
GT
1258 cond_resched();
1259 }
1da177e4 1260}
ec4f8605 1261EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1262
1da177e4 1263/**
a4464dbc
AV
1264 * __d_alloc - allocate a dcache entry
1265 * @sb: filesystem it will belong to
1da177e4
LT
1266 * @name: qstr of the name
1267 *
1268 * Allocates a dentry. It returns %NULL if there is insufficient memory
1269 * available. On a success the dentry is returned. The name passed in is
1270 * copied and the copy passed in may be reused after this call.
1271 */
1272
a4464dbc 1273struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1274{
1275 struct dentry *dentry;
1276 char *dname;
1277
e12ba74d 1278 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1279 if (!dentry)
1280 return NULL;
1281
6326c71f
LT
1282 /*
1283 * We guarantee that the inline name is always NUL-terminated.
1284 * This way the memcpy() done by the name switching in rename
1285 * will still always have a NUL at the end, even if we might
1286 * be overwriting an internal NUL character
1287 */
1288 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4
LT
1289 if (name->len > DNAME_INLINE_LEN-1) {
1290 dname = kmalloc(name->len + 1, GFP_KERNEL);
1291 if (!dname) {
1292 kmem_cache_free(dentry_cache, dentry);
1293 return NULL;
1294 }
1295 } else {
1296 dname = dentry->d_iname;
1297 }
1da177e4
LT
1298
1299 dentry->d_name.len = name->len;
1300 dentry->d_name.hash = name->hash;
1301 memcpy(dname, name->name, name->len);
1302 dname[name->len] = 0;
1303
6326c71f
LT
1304 /* Make sure we always see the terminating NUL character */
1305 smp_wmb();
1306 dentry->d_name.name = dname;
1307
b7ab39f6 1308 dentry->d_count = 1;
dea3667b 1309 dentry->d_flags = 0;
1da177e4 1310 spin_lock_init(&dentry->d_lock);
31e6b01f 1311 seqcount_init(&dentry->d_seq);
1da177e4 1312 dentry->d_inode = NULL;
a4464dbc
AV
1313 dentry->d_parent = dentry;
1314 dentry->d_sb = sb;
1da177e4
LT
1315 dentry->d_op = NULL;
1316 dentry->d_fsdata = NULL;
ceb5bdc2 1317 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1318 INIT_LIST_HEAD(&dentry->d_lru);
1319 INIT_LIST_HEAD(&dentry->d_subdirs);
d76c446b
AV
1320 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1321 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1322 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1323
3e880fb5 1324 this_cpu_inc(nr_dentry);
312d3ca8 1325
1da177e4
LT
1326 return dentry;
1327}
a4464dbc
AV
1328
1329/**
1330 * d_alloc - allocate a dcache entry
1331 * @parent: parent of entry to allocate
1332 * @name: qstr of the name
1333 *
1334 * Allocates a dentry. It returns %NULL if there is insufficient memory
1335 * available. On a success the dentry is returned. The name passed in is
1336 * copied and the copy passed in may be reused after this call.
1337 */
1338struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1339{
1340 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1341 if (!dentry)
1342 return NULL;
1343
1344 spin_lock(&parent->d_lock);
1345 /*
1346 * don't need child lock because it is not subject
1347 * to concurrency here
1348 */
1349 __dget_dlock(parent);
1350 dentry->d_parent = parent;
d76c446b 1351 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1352 spin_unlock(&parent->d_lock);
1353
1354 return dentry;
1355}
ec4f8605 1356EXPORT_SYMBOL(d_alloc);
1da177e4 1357
4b936885
NP
1358struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1359{
a4464dbc
AV
1360 struct dentry *dentry = __d_alloc(sb, name);
1361 if (dentry)
4b936885 1362 dentry->d_flags |= DCACHE_DISCONNECTED;
4b936885
NP
1363 return dentry;
1364}
1365EXPORT_SYMBOL(d_alloc_pseudo);
1366
1da177e4
LT
1367struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1368{
1369 struct qstr q;
1370
1371 q.name = name;
1372 q.len = strlen(name);
1373 q.hash = full_name_hash(q.name, q.len);
1374 return d_alloc(parent, &q);
1375}
ef26ca97 1376EXPORT_SYMBOL(d_alloc_name);
1da177e4 1377
fb045adb
NP
1378void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1379{
6f7f7caa
LT
1380 WARN_ON_ONCE(dentry->d_op);
1381 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1382 DCACHE_OP_COMPARE |
1383 DCACHE_OP_REVALIDATE |
ecf3d1f1 1384 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1385 DCACHE_OP_DELETE ));
1386 dentry->d_op = op;
1387 if (!op)
1388 return;
1389 if (op->d_hash)
1390 dentry->d_flags |= DCACHE_OP_HASH;
1391 if (op->d_compare)
1392 dentry->d_flags |= DCACHE_OP_COMPARE;
1393 if (op->d_revalidate)
1394 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1395 if (op->d_weak_revalidate)
1396 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1397 if (op->d_delete)
1398 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1399 if (op->d_prune)
1400 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1401
1402}
1403EXPORT_SYMBOL(d_set_d_op);
1404
360da900
OH
1405static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1406{
b23fb0a6 1407 spin_lock(&dentry->d_lock);
9875cf80
DH
1408 if (inode) {
1409 if (unlikely(IS_AUTOMOUNT(inode)))
1410 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
d76c446b 1411 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
9875cf80 1412 }
360da900 1413 dentry->d_inode = inode;
31e6b01f 1414 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1415 spin_unlock(&dentry->d_lock);
360da900
OH
1416 fsnotify_d_instantiate(dentry, inode);
1417}
1418
1da177e4
LT
1419/**
1420 * d_instantiate - fill in inode information for a dentry
1421 * @entry: dentry to complete
1422 * @inode: inode to attach to this dentry
1423 *
1424 * Fill in inode information in the entry.
1425 *
1426 * This turns negative dentries into productive full members
1427 * of society.
1428 *
1429 * NOTE! This assumes that the inode count has been incremented
1430 * (or otherwise set) by the caller to indicate that it is now
1431 * in use by the dcache.
1432 */
1433
1434void d_instantiate(struct dentry *entry, struct inode * inode)
1435{
d76c446b 1436 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
873feea0
NP
1437 if (inode)
1438 spin_lock(&inode->i_lock);
360da900 1439 __d_instantiate(entry, inode);
873feea0
NP
1440 if (inode)
1441 spin_unlock(&inode->i_lock);
1da177e4
LT
1442 security_d_instantiate(entry, inode);
1443}
ec4f8605 1444EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1445
1446/**
1447 * d_instantiate_unique - instantiate a non-aliased dentry
1448 * @entry: dentry to instantiate
1449 * @inode: inode to attach to this dentry
1450 *
1451 * Fill in inode information in the entry. On success, it returns NULL.
1452 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1453 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1454 *
1455 * Note that in order to avoid conflicts with rename() etc, the caller
1456 * had better be holding the parent directory semaphore.
e866cfa9
OD
1457 *
1458 * This also assumes that the inode count has been incremented
1459 * (or otherwise set) by the caller to indicate that it is now
1460 * in use by the dcache.
1da177e4 1461 */
770bfad8
DH
1462static struct dentry *__d_instantiate_unique(struct dentry *entry,
1463 struct inode *inode)
1da177e4
LT
1464{
1465 struct dentry *alias;
1466 int len = entry->d_name.len;
1467 const char *name = entry->d_name.name;
1468 unsigned int hash = entry->d_name.hash;
1469
770bfad8 1470 if (!inode) {
360da900 1471 __d_instantiate(entry, NULL);
770bfad8
DH
1472 return NULL;
1473 }
1474
d76c446b 1475 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
9abca360
NP
1476 /*
1477 * Don't need alias->d_lock here, because aliases with
1478 * d_parent == entry->d_parent are not subject to name or
1479 * parent changes, because the parent inode i_mutex is held.
1480 */
12f8ad4b 1481 if (alias->d_name.hash != hash)
1da177e4
LT
1482 continue;
1483 if (alias->d_parent != entry->d_parent)
1484 continue;
ee983e89
LT
1485 if (alias->d_name.len != len)
1486 continue;
12f8ad4b 1487 if (dentry_cmp(alias, name, len))
1da177e4 1488 continue;
dc0474be 1489 __dget(alias);
1da177e4
LT
1490 return alias;
1491 }
770bfad8 1492
360da900 1493 __d_instantiate(entry, inode);
1da177e4
LT
1494 return NULL;
1495}
770bfad8
DH
1496
1497struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1498{
1499 struct dentry *result;
1500
d76c446b 1501 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
770bfad8 1502
873feea0
NP
1503 if (inode)
1504 spin_lock(&inode->i_lock);
770bfad8 1505 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1506 if (inode)
1507 spin_unlock(&inode->i_lock);
770bfad8
DH
1508
1509 if (!result) {
1510 security_d_instantiate(entry, inode);
1511 return NULL;
1512 }
1513
1514 BUG_ON(!d_unhashed(result));
1515 iput(inode);
1516 return result;
1517}
1518
1da177e4
LT
1519EXPORT_SYMBOL(d_instantiate_unique);
1520
adc0e91a
AV
1521struct dentry *d_make_root(struct inode *root_inode)
1522{
1523 struct dentry *res = NULL;
1524
1525 if (root_inode) {
26fe5750 1526 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1527
1528 res = __d_alloc(root_inode->i_sb, &name);
1529 if (res)
1530 d_instantiate(res, root_inode);
1531 else
1532 iput(root_inode);
1533 }
1534 return res;
1535}
1536EXPORT_SYMBOL(d_make_root);
1537
d891eedb
BF
1538static struct dentry * __d_find_any_alias(struct inode *inode)
1539{
1540 struct dentry *alias;
1541
b3d9b7a3 1542 if (hlist_empty(&inode->i_dentry))
d891eedb 1543 return NULL;
d76c446b 1544 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
d891eedb
BF
1545 __dget(alias);
1546 return alias;
1547}
1548
46f72b34
SW
1549/**
1550 * d_find_any_alias - find any alias for a given inode
1551 * @inode: inode to find an alias for
1552 *
1553 * If any aliases exist for the given inode, take and return a
1554 * reference for one of them. If no aliases exist, return %NULL.
1555 */
1556struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1557{
1558 struct dentry *de;
1559
1560 spin_lock(&inode->i_lock);
1561 de = __d_find_any_alias(inode);
1562 spin_unlock(&inode->i_lock);
1563 return de;
1564}
46f72b34 1565EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1566
4ea3ada2
CH
1567/**
1568 * d_obtain_alias - find or allocate a dentry for a given inode
1569 * @inode: inode to allocate the dentry for
1570 *
1571 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1572 * similar open by handle operations. The returned dentry may be anonymous,
1573 * or may have a full name (if the inode was already in the cache).
1574 *
1575 * When called on a directory inode, we must ensure that the inode only ever
1576 * has one dentry. If a dentry is found, that is returned instead of
1577 * allocating a new one.
1578 *
1579 * On successful return, the reference to the inode has been transferred
44003728
CH
1580 * to the dentry. In case of an error the reference on the inode is released.
1581 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1582 * be passed in and will be the error will be propagate to the return value,
1583 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1584 */
1585struct dentry *d_obtain_alias(struct inode *inode)
1586{
b911a6bd 1587 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1588 struct dentry *tmp;
1589 struct dentry *res;
4ea3ada2
CH
1590
1591 if (!inode)
44003728 1592 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1593 if (IS_ERR(inode))
1594 return ERR_CAST(inode);
1595
d891eedb 1596 res = d_find_any_alias(inode);
9308a612
CH
1597 if (res)
1598 goto out_iput;
1599
a4464dbc 1600 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1601 if (!tmp) {
1602 res = ERR_PTR(-ENOMEM);
1603 goto out_iput;
4ea3ada2 1604 }
b5c84bf6 1605
873feea0 1606 spin_lock(&inode->i_lock);
d891eedb 1607 res = __d_find_any_alias(inode);
9308a612 1608 if (res) {
873feea0 1609 spin_unlock(&inode->i_lock);
9308a612
CH
1610 dput(tmp);
1611 goto out_iput;
1612 }
1613
1614 /* attach a disconnected dentry */
1615 spin_lock(&tmp->d_lock);
9308a612
CH
1616 tmp->d_inode = inode;
1617 tmp->d_flags |= DCACHE_DISCONNECTED;
d76c446b 1618 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1879fd6a 1619 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1620 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1621 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1622 spin_unlock(&tmp->d_lock);
873feea0 1623 spin_unlock(&inode->i_lock);
24ff6663 1624 security_d_instantiate(tmp, inode);
9308a612 1625
9308a612
CH
1626 return tmp;
1627
1628 out_iput:
24ff6663
JB
1629 if (res && !IS_ERR(res))
1630 security_d_instantiate(res, inode);
9308a612
CH
1631 iput(inode);
1632 return res;
4ea3ada2 1633}
adc48720 1634EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1635
1636/**
1637 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1638 * @inode: the inode which may have a disconnected dentry
1639 * @dentry: a negative dentry which we want to point to the inode.
1640 *
1641 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1642 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1643 * and return it, else simply d_add the inode to the dentry and return NULL.
1644 *
1645 * This is needed in the lookup routine of any filesystem that is exportable
1646 * (via knfsd) so that we can build dcache paths to directories effectively.
1647 *
1648 * If a dentry was found and moved, then it is returned. Otherwise NULL
1649 * is returned. This matches the expected return value of ->lookup.
1650 *
1651 */
1652struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1653{
1654 struct dentry *new = NULL;
1655
a9049376
AV
1656 if (IS_ERR(inode))
1657 return ERR_CAST(inode);
1658
21c0d8fd 1659 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1660 spin_lock(&inode->i_lock);
32ba9c3f 1661 new = __d_find_alias(inode, 1);
1da177e4 1662 if (new) {
32ba9c3f 1663 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1664 spin_unlock(&inode->i_lock);
1da177e4 1665 security_d_instantiate(new, inode);
1da177e4
LT
1666 d_move(new, dentry);
1667 iput(inode);
1668 } else {
873feea0 1669 /* already taking inode->i_lock, so d_add() by hand */
360da900 1670 __d_instantiate(dentry, inode);
873feea0 1671 spin_unlock(&inode->i_lock);
1da177e4
LT
1672 security_d_instantiate(dentry, inode);
1673 d_rehash(dentry);
1674 }
1675 } else
1676 d_add(dentry, inode);
1677 return new;
1678}
ec4f8605 1679EXPORT_SYMBOL(d_splice_alias);
1da177e4 1680
9403540c
BN
1681/**
1682 * d_add_ci - lookup or allocate new dentry with case-exact name
1683 * @inode: the inode case-insensitive lookup has found
1684 * @dentry: the negative dentry that was passed to the parent's lookup func
1685 * @name: the case-exact name to be associated with the returned dentry
1686 *
1687 * This is to avoid filling the dcache with case-insensitive names to the
1688 * same inode, only the actual correct case is stored in the dcache for
1689 * case-insensitive filesystems.
1690 *
1691 * For a case-insensitive lookup match and if the the case-exact dentry
1692 * already exists in in the dcache, use it and return it.
1693 *
1694 * If no entry exists with the exact case name, allocate new dentry with
1695 * the exact case, and return the spliced entry.
1696 */
e45b590b 1697struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1698 struct qstr *name)
1699{
9403540c
BN
1700 struct dentry *found;
1701 struct dentry *new;
1702
b6520c81
CH
1703 /*
1704 * First check if a dentry matching the name already exists,
1705 * if not go ahead and create it now.
1706 */
9403540c 1707 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
1708 if (unlikely(IS_ERR(found)))
1709 goto err_out;
9403540c
BN
1710 if (!found) {
1711 new = d_alloc(dentry->d_parent, name);
1712 if (!new) {
4f522a24 1713 found = ERR_PTR(-ENOMEM);
9403540c
BN
1714 goto err_out;
1715 }
b6520c81 1716
9403540c
BN
1717 found = d_splice_alias(inode, new);
1718 if (found) {
1719 dput(new);
1720 return found;
1721 }
1722 return new;
1723 }
b6520c81
CH
1724
1725 /*
1726 * If a matching dentry exists, and it's not negative use it.
1727 *
1728 * Decrement the reference count to balance the iget() done
1729 * earlier on.
1730 */
9403540c
BN
1731 if (found->d_inode) {
1732 if (unlikely(found->d_inode != inode)) {
1733 /* This can't happen because bad inodes are unhashed. */
1734 BUG_ON(!is_bad_inode(inode));
1735 BUG_ON(!is_bad_inode(found->d_inode));
1736 }
9403540c
BN
1737 iput(inode);
1738 return found;
1739 }
b6520c81 1740
9403540c 1741 /*
9403540c 1742 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1743 * already has a dentry.
9403540c 1744 */
4513d899
AV
1745 new = d_splice_alias(inode, found);
1746 if (new) {
1747 dput(found);
1748 found = new;
9403540c 1749 }
4513d899 1750 return found;
9403540c
BN
1751
1752err_out:
1753 iput(inode);
4f522a24 1754 return found;
9403540c 1755}
ec4f8605 1756EXPORT_SYMBOL(d_add_ci);
1da177e4 1757
12f8ad4b
LT
1758/*
1759 * Do the slow-case of the dentry name compare.
1760 *
1761 * Unlike the dentry_cmp() function, we need to atomically
1762 * load the name, length and inode information, so that the
1763 * filesystem can rely on them, and can use the 'name' and
1764 * 'len' information without worrying about walking off the
1765 * end of memory etc.
1766 *
1767 * Thus the read_seqcount_retry() and the "duplicate" info
1768 * in arguments (the low-level filesystem should not look
1769 * at the dentry inode or name contents directly, since
1770 * rename can change them while we're in RCU mode).
1771 */
1772enum slow_d_compare {
1773 D_COMP_OK,
1774 D_COMP_NOMATCH,
1775 D_COMP_SEQRETRY,
1776};
1777
1778static noinline enum slow_d_compare slow_dentry_cmp(
1779 const struct dentry *parent,
1780 struct inode *inode,
1781 struct dentry *dentry,
1782 unsigned int seq,
1783 const struct qstr *name)
1784{
1785 int tlen = dentry->d_name.len;
1786 const char *tname = dentry->d_name.name;
1787 struct inode *i = dentry->d_inode;
1788
1789 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1790 cpu_relax();
1791 return D_COMP_SEQRETRY;
1792 }
1793 if (parent->d_op->d_compare(parent, inode,
1794 dentry, i,
1795 tlen, tname, name))
1796 return D_COMP_NOMATCH;
1797 return D_COMP_OK;
1798}
1799
31e6b01f
NP
1800/**
1801 * __d_lookup_rcu - search for a dentry (racy, store-free)
1802 * @parent: parent dentry
1803 * @name: qstr of name we wish to find
1f1e6e52 1804 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
1805 * @inode: returns dentry->d_inode when the inode was found valid.
1806 * Returns: dentry, or NULL
1807 *
1808 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1809 * resolution (store-free path walking) design described in
1810 * Documentation/filesystems/path-lookup.txt.
1811 *
1812 * This is not to be used outside core vfs.
1813 *
1814 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1815 * held, and rcu_read_lock held. The returned dentry must not be stored into
1816 * without taking d_lock and checking d_seq sequence count against @seq
1817 * returned here.
1818 *
1819 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1820 * function.
1821 *
1822 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1823 * the returned dentry, so long as its parent's seqlock is checked after the
1824 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1825 * is formed, giving integrity down the path walk.
12f8ad4b
LT
1826 *
1827 * NOTE! The caller *has* to check the resulting dentry against the sequence
1828 * number we've returned before using any of the resulting dentry state!
31e6b01f 1829 */
8966be90
LT
1830struct dentry *__d_lookup_rcu(const struct dentry *parent,
1831 const struct qstr *name,
12f8ad4b 1832 unsigned *seqp, struct inode *inode)
31e6b01f 1833{
26fe5750 1834 u64 hashlen = name->hash_len;
31e6b01f 1835 const unsigned char *str = name->name;
26fe5750 1836 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 1837 struct hlist_bl_node *node;
31e6b01f
NP
1838 struct dentry *dentry;
1839
1840 /*
1841 * Note: There is significant duplication with __d_lookup_rcu which is
1842 * required to prevent single threaded performance regressions
1843 * especially on architectures where smp_rmb (in seqcounts) are costly.
1844 * Keep the two functions in sync.
1845 */
1846
1847 /*
1848 * The hash list is protected using RCU.
1849 *
1850 * Carefully use d_seq when comparing a candidate dentry, to avoid
1851 * races with d_move().
1852 *
1853 * It is possible that concurrent renames can mess up our list
1854 * walk here and result in missing our dentry, resulting in the
1855 * false-negative result. d_lookup() protects against concurrent
1856 * renames using rename_lock seqlock.
1857 *
b0a4bb83 1858 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 1859 */
b07ad996 1860 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 1861 unsigned seq;
31e6b01f 1862
31e6b01f 1863seqretry:
12f8ad4b
LT
1864 /*
1865 * The dentry sequence count protects us from concurrent
1866 * renames, and thus protects inode, parent and name fields.
1867 *
1868 * The caller must perform a seqcount check in order
1869 * to do anything useful with the returned dentry,
1870 * including using the 'd_inode' pointer.
1871 *
1872 * NOTE! We do a "raw" seqcount_begin here. That means that
1873 * we don't wait for the sequence count to stabilize if it
1874 * is in the middle of a sequence change. If we do the slow
1875 * dentry compare, we will do seqretries until it is stable,
1876 * and if we end up with a successful lookup, we actually
1877 * want to exit RCU lookup anyway.
1878 */
1879 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
1880 if (dentry->d_parent != parent)
1881 continue;
2e321806
LT
1882 if (d_unhashed(dentry))
1883 continue;
12f8ad4b
LT
1884 *seqp = seq;
1885
830c0f0e 1886 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
1887 if (dentry->d_name.hash != hashlen_hash(hashlen))
1888 continue;
12f8ad4b
LT
1889 switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1890 case D_COMP_OK:
1891 return dentry;
1892 case D_COMP_NOMATCH:
31e6b01f 1893 continue;
12f8ad4b
LT
1894 default:
1895 goto seqretry;
1896 }
31e6b01f 1897 }
12f8ad4b 1898
26fe5750 1899 if (dentry->d_name.hash_len != hashlen)
ee983e89 1900 continue;
26fe5750 1901 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 1902 return dentry;
31e6b01f
NP
1903 }
1904 return NULL;
1905}
1906
1da177e4
LT
1907/**
1908 * d_lookup - search for a dentry
1909 * @parent: parent dentry
1910 * @name: qstr of name we wish to find
b04f784e 1911 * Returns: dentry, or NULL
1da177e4 1912 *
b04f784e
NP
1913 * d_lookup searches the children of the parent dentry for the name in
1914 * question. If the dentry is found its reference count is incremented and the
1915 * dentry is returned. The caller must use dput to free the entry when it has
1916 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1917 */
da2d8455 1918struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 1919{
31e6b01f 1920 struct dentry *dentry;
949854d0 1921 unsigned seq;
1da177e4
LT
1922
1923 do {
1924 seq = read_seqbegin(&rename_lock);
1925 dentry = __d_lookup(parent, name);
1926 if (dentry)
1927 break;
1928 } while (read_seqretry(&rename_lock, seq));
1929 return dentry;
1930}
ec4f8605 1931EXPORT_SYMBOL(d_lookup);
1da177e4 1932
31e6b01f 1933/**
b04f784e
NP
1934 * __d_lookup - search for a dentry (racy)
1935 * @parent: parent dentry
1936 * @name: qstr of name we wish to find
1937 * Returns: dentry, or NULL
1938 *
1939 * __d_lookup is like d_lookup, however it may (rarely) return a
1940 * false-negative result due to unrelated rename activity.
1941 *
1942 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1943 * however it must be used carefully, eg. with a following d_lookup in
1944 * the case of failure.
1945 *
1946 * __d_lookup callers must be commented.
1947 */
a713ca2a 1948struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
1949{
1950 unsigned int len = name->len;
1951 unsigned int hash = name->hash;
1952 const unsigned char *str = name->name;
b07ad996 1953 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1954 struct hlist_bl_node *node;
31e6b01f 1955 struct dentry *found = NULL;
665a7583 1956 struct dentry *dentry;
1da177e4 1957
31e6b01f
NP
1958 /*
1959 * Note: There is significant duplication with __d_lookup_rcu which is
1960 * required to prevent single threaded performance regressions
1961 * especially on architectures where smp_rmb (in seqcounts) are costly.
1962 * Keep the two functions in sync.
1963 */
1964
b04f784e
NP
1965 /*
1966 * The hash list is protected using RCU.
1967 *
1968 * Take d_lock when comparing a candidate dentry, to avoid races
1969 * with d_move().
1970 *
1971 * It is possible that concurrent renames can mess up our list
1972 * walk here and result in missing our dentry, resulting in the
1973 * false-negative result. d_lookup() protects against concurrent
1974 * renames using rename_lock seqlock.
1975 *
b0a4bb83 1976 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 1977 */
1da177e4
LT
1978 rcu_read_lock();
1979
b07ad996 1980 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 1981
1da177e4
LT
1982 if (dentry->d_name.hash != hash)
1983 continue;
1da177e4
LT
1984
1985 spin_lock(&dentry->d_lock);
1da177e4
LT
1986 if (dentry->d_parent != parent)
1987 goto next;
d0185c08
LT
1988 if (d_unhashed(dentry))
1989 goto next;
1990
1da177e4
LT
1991 /*
1992 * It is safe to compare names since d_move() cannot
1993 * change the qstr (protected by d_lock).
1994 */
fb045adb 1995 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
1996 int tlen = dentry->d_name.len;
1997 const char *tname = dentry->d_name.name;
621e155a
NP
1998 if (parent->d_op->d_compare(parent, parent->d_inode,
1999 dentry, dentry->d_inode,
31e6b01f 2000 tlen, tname, name))
1da177e4
LT
2001 goto next;
2002 } else {
ee983e89
LT
2003 if (dentry->d_name.len != len)
2004 goto next;
12f8ad4b 2005 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2006 goto next;
2007 }
2008
b7ab39f6 2009 dentry->d_count++;
d0185c08 2010 found = dentry;
1da177e4
LT
2011 spin_unlock(&dentry->d_lock);
2012 break;
2013next:
2014 spin_unlock(&dentry->d_lock);
2015 }
2016 rcu_read_unlock();
2017
2018 return found;
2019}
2020
3e7e241f
EB
2021/**
2022 * d_hash_and_lookup - hash the qstr then search for a dentry
2023 * @dir: Directory to search in
2024 * @name: qstr of name we wish to find
2025 *
4f522a24 2026 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2027 */
2028struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2029{
3e7e241f
EB
2030 /*
2031 * Check for a fs-specific hash function. Note that we must
2032 * calculate the standard hash first, as the d_op->d_hash()
2033 * routine may choose to leave the hash value unchanged.
2034 */
2035 name->hash = full_name_hash(name->name, name->len);
fb045adb 2036 if (dir->d_flags & DCACHE_OP_HASH) {
4f522a24
AV
2037 int err = dir->d_op->d_hash(dir, dir->d_inode, name);
2038 if (unlikely(err < 0))
2039 return ERR_PTR(err);
3e7e241f 2040 }
4f522a24 2041 return d_lookup(dir, name);
3e7e241f 2042}
4f522a24 2043EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2044
1da177e4 2045/**
786a5e15 2046 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2047 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2048 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2049 *
2050 * An insecure source has sent us a dentry, here we verify it and dget() it.
2051 * This is used by ncpfs in its readdir implementation.
2052 * Zero is returned in the dentry is invalid.
786a5e15
NP
2053 *
2054 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2055 */
d3a23e16 2056int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2057{
786a5e15 2058 struct dentry *child;
d3a23e16 2059
2fd6b7f5 2060 spin_lock(&dparent->d_lock);
d76c446b 2061 list_for_each_entry(child, &dparent->d_subdirs, d_child) {
786a5e15 2062 if (dentry == child) {
2fd6b7f5 2063 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2064 __dget_dlock(dentry);
2fd6b7f5
NP
2065 spin_unlock(&dentry->d_lock);
2066 spin_unlock(&dparent->d_lock);
1da177e4
LT
2067 return 1;
2068 }
2069 }
2fd6b7f5 2070 spin_unlock(&dparent->d_lock);
786a5e15 2071
1da177e4
LT
2072 return 0;
2073}
ec4f8605 2074EXPORT_SYMBOL(d_validate);
1da177e4
LT
2075
2076/*
2077 * When a file is deleted, we have two options:
2078 * - turn this dentry into a negative dentry
2079 * - unhash this dentry and free it.
2080 *
2081 * Usually, we want to just turn this into
2082 * a negative dentry, but if anybody else is
2083 * currently using the dentry or the inode
2084 * we can't do that and we fall back on removing
2085 * it from the hash queues and waiting for
2086 * it to be deleted later when it has no users
2087 */
2088
2089/**
2090 * d_delete - delete a dentry
2091 * @dentry: The dentry to delete
2092 *
2093 * Turn the dentry into a negative dentry if possible, otherwise
2094 * remove it from the hash queues so it can be deleted later
2095 */
2096
2097void d_delete(struct dentry * dentry)
2098{
873feea0 2099 struct inode *inode;
7a91bf7f 2100 int isdir = 0;
1da177e4
LT
2101 /*
2102 * Are we the only user?
2103 */
357f8e65 2104again:
1da177e4 2105 spin_lock(&dentry->d_lock);
873feea0
NP
2106 inode = dentry->d_inode;
2107 isdir = S_ISDIR(inode->i_mode);
b7ab39f6 2108 if (dentry->d_count == 1) {
1fe0c023 2109 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2110 spin_unlock(&dentry->d_lock);
2111 cpu_relax();
2112 goto again;
2113 }
13e3c5e5 2114 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2115 dentry_unlink_inode(dentry);
7a91bf7f 2116 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2117 return;
2118 }
2119
2120 if (!d_unhashed(dentry))
2121 __d_drop(dentry);
2122
2123 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2124
2125 fsnotify_nameremove(dentry, isdir);
1da177e4 2126}
ec4f8605 2127EXPORT_SYMBOL(d_delete);
1da177e4 2128
b07ad996 2129static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2130{
ceb5bdc2 2131 BUG_ON(!d_unhashed(entry));
1879fd6a 2132 hlist_bl_lock(b);
dea3667b 2133 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2134 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2135 hlist_bl_unlock(b);
1da177e4
LT
2136}
2137
770bfad8
DH
2138static void _d_rehash(struct dentry * entry)
2139{
2140 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2141}
2142
1da177e4
LT
2143/**
2144 * d_rehash - add an entry back to the hash
2145 * @entry: dentry to add to the hash
2146 *
2147 * Adds a dentry to the hash according to its name.
2148 */
2149
2150void d_rehash(struct dentry * entry)
2151{
1da177e4 2152 spin_lock(&entry->d_lock);
770bfad8 2153 _d_rehash(entry);
1da177e4 2154 spin_unlock(&entry->d_lock);
1da177e4 2155}
ec4f8605 2156EXPORT_SYMBOL(d_rehash);
1da177e4 2157
fb2d5b86
NP
2158/**
2159 * dentry_update_name_case - update case insensitive dentry with a new name
2160 * @dentry: dentry to be updated
2161 * @name: new name
2162 *
2163 * Update a case insensitive dentry with new case of name.
2164 *
2165 * dentry must have been returned by d_lookup with name @name. Old and new
2166 * name lengths must match (ie. no d_compare which allows mismatched name
2167 * lengths).
2168 *
2169 * Parent inode i_mutex must be held over d_lookup and into this call (to
2170 * keep renames and concurrent inserts, and readdir(2) away).
2171 */
2172void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2173{
7ebfa57f 2174 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2175 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2176
fb2d5b86 2177 spin_lock(&dentry->d_lock);
31e6b01f 2178 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2179 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2180 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2181 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2182}
2183EXPORT_SYMBOL(dentry_update_name_case);
2184
1da177e4
LT
2185static void switch_names(struct dentry *dentry, struct dentry *target)
2186{
2187 if (dname_external(target)) {
2188 if (dname_external(dentry)) {
2189 /*
2190 * Both external: swap the pointers
2191 */
9a8d5bb4 2192 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2193 } else {
2194 /*
2195 * dentry:internal, target:external. Steal target's
2196 * storage and make target internal.
2197 */
321bcf92
BF
2198 memcpy(target->d_iname, dentry->d_name.name,
2199 dentry->d_name.len + 1);
1da177e4
LT
2200 dentry->d_name.name = target->d_name.name;
2201 target->d_name.name = target->d_iname;
2202 }
2203 } else {
2204 if (dname_external(dentry)) {
2205 /*
2206 * dentry:external, target:internal. Give dentry's
2207 * storage to target and make dentry internal
2208 */
2209 memcpy(dentry->d_iname, target->d_name.name,
2210 target->d_name.len + 1);
2211 target->d_name.name = dentry->d_name.name;
2212 dentry->d_name.name = dentry->d_iname;
2213 } else {
2214 /*
2215 * Both are internal. Just copy target to dentry
2216 */
2217 memcpy(dentry->d_iname, target->d_name.name,
2218 target->d_name.len + 1);
dc711ca3
AV
2219 dentry->d_name.len = target->d_name.len;
2220 return;
1da177e4
LT
2221 }
2222 }
9a8d5bb4 2223 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2224}
2225
2fd6b7f5
NP
2226static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2227{
2228 /*
2229 * XXXX: do we really need to take target->d_lock?
2230 */
2231 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2232 spin_lock(&target->d_parent->d_lock);
2233 else {
2234 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2235 spin_lock(&dentry->d_parent->d_lock);
2236 spin_lock_nested(&target->d_parent->d_lock,
2237 DENTRY_D_LOCK_NESTED);
2238 } else {
2239 spin_lock(&target->d_parent->d_lock);
2240 spin_lock_nested(&dentry->d_parent->d_lock,
2241 DENTRY_D_LOCK_NESTED);
2242 }
2243 }
2244 if (target < dentry) {
2245 spin_lock_nested(&target->d_lock, 2);
2246 spin_lock_nested(&dentry->d_lock, 3);
2247 } else {
2248 spin_lock_nested(&dentry->d_lock, 2);
2249 spin_lock_nested(&target->d_lock, 3);
2250 }
2251}
2252
2253static void dentry_unlock_parents_for_move(struct dentry *dentry,
2254 struct dentry *target)
2255{
2256 if (target->d_parent != dentry->d_parent)
2257 spin_unlock(&dentry->d_parent->d_lock);
2258 if (target->d_parent != target)
2259 spin_unlock(&target->d_parent->d_lock);
2260}
2261
1da177e4 2262/*
2fd6b7f5
NP
2263 * When switching names, the actual string doesn't strictly have to
2264 * be preserved in the target - because we're dropping the target
2265 * anyway. As such, we can just do a simple memcpy() to copy over
2266 * the new name before we switch.
2267 *
2268 * Note that we have to be a lot more careful about getting the hash
2269 * switched - we have to switch the hash value properly even if it
2270 * then no longer matches the actual (corrupted) string of the target.
2271 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2272 */
9eaef27b 2273/*
18367501 2274 * __d_move - move a dentry
1da177e4
LT
2275 * @dentry: entry to move
2276 * @target: new dentry
2277 *
2278 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2279 * dcache entries should not be moved in this way. Caller must hold
2280 * rename_lock, the i_mutex of the source and target directories,
2281 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2282 */
18367501 2283static void __d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2284{
1da177e4
LT
2285 if (!dentry->d_inode)
2286 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2287
2fd6b7f5
NP
2288 BUG_ON(d_ancestor(dentry, target));
2289 BUG_ON(d_ancestor(target, dentry));
2290
2fd6b7f5 2291 dentry_lock_for_move(dentry, target);
1da177e4 2292
31e6b01f
NP
2293 write_seqcount_begin(&dentry->d_seq);
2294 write_seqcount_begin(&target->d_seq);
2295
ceb5bdc2
NP
2296 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2297
2298 /*
2299 * Move the dentry to the target hash queue. Don't bother checking
2300 * for the same hash queue because of how unlikely it is.
2301 */
2302 __d_drop(dentry);
789680d1 2303 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2304
2305 /* Unhash the target: dput() will then get rid of it */
2306 __d_drop(target);
2307
d76c446b
AV
2308 list_del(&dentry->d_child);
2309 list_del(&target->d_child);
1da177e4
LT
2310
2311 /* Switch the names.. */
2312 switch_names(dentry, target);
9a8d5bb4 2313 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2314
2315 /* ... and switch the parents */
2316 if (IS_ROOT(dentry)) {
2317 dentry->d_parent = target->d_parent;
2318 target->d_parent = target;
d76c446b 2319 INIT_LIST_HEAD(&target->d_child);
1da177e4 2320 } else {
9a8d5bb4 2321 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2322
2323 /* And add them back to the (new) parent lists */
d76c446b 2324 list_add(&target->d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2325 }
2326
d76c446b 2327 list_add(&dentry->d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2328
31e6b01f
NP
2329 write_seqcount_end(&target->d_seq);
2330 write_seqcount_end(&dentry->d_seq);
2331
2fd6b7f5 2332 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2333 spin_unlock(&target->d_lock);
c32ccd87 2334 fsnotify_d_move(dentry);
1da177e4 2335 spin_unlock(&dentry->d_lock);
18367501
AV
2336}
2337
2338/*
2339 * d_move - move a dentry
2340 * @dentry: entry to move
2341 * @target: new dentry
2342 *
2343 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2344 * dcache entries should not be moved in this way. See the locking
2345 * requirements for __d_move.
18367501
AV
2346 */
2347void d_move(struct dentry *dentry, struct dentry *target)
2348{
2349 write_seqlock(&rename_lock);
2350 __d_move(dentry, target);
1da177e4 2351 write_sequnlock(&rename_lock);
9eaef27b 2352}
ec4f8605 2353EXPORT_SYMBOL(d_move);
1da177e4 2354
e2761a11
OH
2355/**
2356 * d_ancestor - search for an ancestor
2357 * @p1: ancestor dentry
2358 * @p2: child dentry
2359 *
2360 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2361 * an ancestor of p2, else NULL.
9eaef27b 2362 */
e2761a11 2363struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2364{
2365 struct dentry *p;
2366
871c0067 2367 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2368 if (p->d_parent == p1)
e2761a11 2369 return p;
9eaef27b 2370 }
e2761a11 2371 return NULL;
9eaef27b
TM
2372}
2373
2374/*
2375 * This helper attempts to cope with remotely renamed directories
2376 *
2377 * It assumes that the caller is already holding
18367501 2378 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2379 *
2380 * Note: If ever the locking in lock_rename() changes, then please
2381 * remember to update this too...
9eaef27b 2382 */
873feea0
NP
2383static struct dentry *__d_unalias(struct inode *inode,
2384 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2385{
2386 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2387 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2388
2389 /* If alias and dentry share a parent, then no extra locks required */
2390 if (alias->d_parent == dentry->d_parent)
2391 goto out_unalias;
2392
9eaef27b 2393 /* See lock_rename() */
9eaef27b
TM
2394 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2395 goto out_err;
2396 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2397 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2398 goto out_err;
2399 m2 = &alias->d_parent->d_inode->i_mutex;
2400out_unalias:
ee3efa91
AV
2401 if (likely(!d_mountpoint(alias))) {
2402 __d_move(alias, dentry);
2403 ret = alias;
2404 }
9eaef27b 2405out_err:
873feea0 2406 spin_unlock(&inode->i_lock);
9eaef27b
TM
2407 if (m2)
2408 mutex_unlock(m2);
2409 if (m1)
2410 mutex_unlock(m1);
2411 return ret;
2412}
2413
770bfad8
DH
2414/*
2415 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2416 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2417 * returns with anon->d_lock held!
770bfad8
DH
2418 */
2419static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2420{
740da42e 2421 struct dentry *dparent;
770bfad8 2422
2fd6b7f5 2423 dentry_lock_for_move(anon, dentry);
770bfad8 2424
31e6b01f
NP
2425 write_seqcount_begin(&dentry->d_seq);
2426 write_seqcount_begin(&anon->d_seq);
2427
770bfad8 2428 dparent = dentry->d_parent;
770bfad8 2429
2fd6b7f5
NP
2430 switch_names(dentry, anon);
2431 swap(dentry->d_name.hash, anon->d_name.hash);
2432
740da42e 2433 dentry->d_parent = dentry;
d76c446b 2434 list_del_init(&dentry->d_child);
740da42e 2435 anon->d_parent = dparent;
c2ed8c8e
AV
2436 if (likely(!d_unhashed(anon))) {
2437 hlist_bl_lock(&anon->d_sb->s_anon);
2438 __hlist_bl_del(&anon->d_hash);
2439 anon->d_hash.pprev = NULL;
2440 hlist_bl_unlock(&anon->d_sb->s_anon);
2441 }
d76c446b 2442 list_move(&anon->d_child, &dparent->d_subdirs);
770bfad8 2443
31e6b01f
NP
2444 write_seqcount_end(&dentry->d_seq);
2445 write_seqcount_end(&anon->d_seq);
2446
2fd6b7f5
NP
2447 dentry_unlock_parents_for_move(anon, dentry);
2448 spin_unlock(&dentry->d_lock);
2449
2450 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2451 anon->d_flags &= ~DCACHE_DISCONNECTED;
2452}
2453
2454/**
2455 * d_materialise_unique - introduce an inode into the tree
2456 * @dentry: candidate dentry
2457 * @inode: inode to bind to the dentry, to which aliases may be attached
2458 *
2459 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2460 * root directory alias in its place if there is one. Caller must hold the
2461 * i_mutex of the parent directory.
770bfad8
DH
2462 */
2463struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2464{
9eaef27b 2465 struct dentry *actual;
770bfad8
DH
2466
2467 BUG_ON(!d_unhashed(dentry));
2468
770bfad8
DH
2469 if (!inode) {
2470 actual = dentry;
360da900 2471 __d_instantiate(dentry, NULL);
357f8e65
NP
2472 d_rehash(actual);
2473 goto out_nolock;
770bfad8
DH
2474 }
2475
873feea0 2476 spin_lock(&inode->i_lock);
357f8e65 2477
9eaef27b
TM
2478 if (S_ISDIR(inode->i_mode)) {
2479 struct dentry *alias;
2480
2481 /* Does an aliased dentry already exist? */
32ba9c3f 2482 alias = __d_find_alias(inode, 0);
9eaef27b
TM
2483 if (alias) {
2484 actual = alias;
18367501
AV
2485 write_seqlock(&rename_lock);
2486
2487 if (d_ancestor(alias, dentry)) {
2488 /* Check for loops */
2489 actual = ERR_PTR(-ELOOP);
b18dafc8 2490 spin_unlock(&inode->i_lock);
18367501
AV
2491 } else if (IS_ROOT(alias)) {
2492 /* Is this an anonymous mountpoint that we
2493 * could splice into our tree? */
9eaef27b 2494 __d_materialise_dentry(dentry, alias);
18367501 2495 write_sequnlock(&rename_lock);
9eaef27b 2496 goto found;
18367501
AV
2497 } else {
2498 /* Nope, but we must(!) avoid directory
b18dafc8 2499 * aliasing. This drops inode->i_lock */
18367501 2500 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2501 }
18367501 2502 write_sequnlock(&rename_lock);
dd179946
DH
2503 if (IS_ERR(actual)) {
2504 if (PTR_ERR(actual) == -ELOOP)
2505 pr_warn_ratelimited(
2506 "VFS: Lookup of '%s' in %s %s"
2507 " would have caused loop\n",
2508 dentry->d_name.name,
2509 inode->i_sb->s_type->name,
2510 inode->i_sb->s_id);
9eaef27b 2511 dput(alias);
dd179946 2512 }
9eaef27b
TM
2513 goto out_nolock;
2514 }
770bfad8
DH
2515 }
2516
2517 /* Add a unique reference */
2518 actual = __d_instantiate_unique(dentry, inode);
2519 if (!actual)
2520 actual = dentry;
357f8e65
NP
2521 else
2522 BUG_ON(!d_unhashed(actual));
770bfad8 2523
770bfad8
DH
2524 spin_lock(&actual->d_lock);
2525found:
2526 _d_rehash(actual);
2527 spin_unlock(&actual->d_lock);
873feea0 2528 spin_unlock(&inode->i_lock);
9eaef27b 2529out_nolock:
770bfad8
DH
2530 if (actual == dentry) {
2531 security_d_instantiate(dentry, inode);
2532 return NULL;
2533 }
2534
2535 iput(inode);
2536 return actual;
770bfad8 2537}
ec4f8605 2538EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2539
cdd16d02 2540static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2541{
2542 *buflen -= namelen;
2543 if (*buflen < 0)
2544 return -ENAMETOOLONG;
2545 *buffer -= namelen;
2546 memcpy(*buffer, str, namelen);
2547 return 0;
2548}
2549
cdd16d02
MS
2550static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2551{
2552 return prepend(buffer, buflen, name->name, name->len);
2553}
2554
1da177e4 2555/**
208898c1 2556 * prepend_path - Prepend path string to a buffer
9d1bc601 2557 * @path: the dentry/vfsmount to report
02125a82 2558 * @root: root vfsmnt/dentry
f2eb6575
MS
2559 * @buffer: pointer to the end of the buffer
2560 * @buflen: pointer to buffer length
552ce544 2561 *
949854d0 2562 * Caller holds the rename_lock.
1da177e4 2563 */
02125a82
AV
2564static int prepend_path(const struct path *path,
2565 const struct path *root,
f2eb6575 2566 char **buffer, int *buflen)
1da177e4 2567{
9d1bc601
MS
2568 struct dentry *dentry = path->dentry;
2569 struct vfsmount *vfsmnt = path->mnt;
0714a533 2570 struct mount *mnt = real_mount(vfsmnt);
3c2a0909
S
2571 char *orig_buffer = *buffer;
2572 int orig_len = *buflen;
f2eb6575
MS
2573 bool slash = false;
2574 int error = 0;
6092d048 2575
f2eb6575 2576 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2577 struct dentry * parent;
2578
1da177e4 2579 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3c2a0909
S
2580 /* Escaped? */
2581 if (dentry != vfsmnt->mnt_root) {
2582 *buffer = orig_buffer;
2583 *buflen = orig_len;
2584 slash = false;
2585 error = 3;
2586 goto global_root;
2587 }
552ce544 2588 /* Global root? */
676da58d 2589 if (!mnt_has_parent(mnt))
1da177e4 2590 goto global_root;
a73324da 2591 dentry = mnt->mnt_mountpoint;
0714a533
AV
2592 mnt = mnt->mnt_parent;
2593 vfsmnt = &mnt->mnt;
1da177e4
LT
2594 continue;
2595 }
2596 parent = dentry->d_parent;
2597 prefetch(parent);
9abca360 2598 spin_lock(&dentry->d_lock);
f2eb6575 2599 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2600 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2601 if (!error)
2602 error = prepend(buffer, buflen, "/", 1);
2603 if (error)
2604 break;
2605
2606 slash = true;
1da177e4
LT
2607 dentry = parent;
2608 }
2609
f2eb6575
MS
2610 if (!error && !slash)
2611 error = prepend(buffer, buflen, "/", 1);
2612
f2eb6575 2613 return error;
1da177e4
LT
2614
2615global_root:
98dc568b
MS
2616 /*
2617 * Filesystems needing to implement special "root names"
2618 * should do so with ->d_dname()
2619 */
2620 if (IS_ROOT(dentry) &&
2621 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2622 WARN(1, "Root dentry has weird name <%.*s>\n",
2623 (int) dentry->d_name.len, dentry->d_name.name);
2624 }
02125a82
AV
2625 if (!slash)
2626 error = prepend(buffer, buflen, "/", 1);
2627 if (!error)
f7a99c5b 2628 error = is_mounted(vfsmnt) ? 1 : 2;
7ea600b5 2629 return error;
f2eb6575 2630}
be285c71 2631
f2eb6575
MS
2632/**
2633 * __d_path - return the path of a dentry
2634 * @path: the dentry/vfsmount to report
02125a82 2635 * @root: root vfsmnt/dentry
cd956a1c 2636 * @buf: buffer to return value in
f2eb6575
MS
2637 * @buflen: buffer length
2638 *
ffd1f4ed 2639 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2640 *
2641 * Returns a pointer into the buffer or an error code if the
2642 * path was too long.
2643 *
be148247 2644 * "buflen" should be positive.
f2eb6575 2645 *
02125a82 2646 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2647 */
02125a82
AV
2648char *__d_path(const struct path *path,
2649 const struct path *root,
f2eb6575
MS
2650 char *buf, int buflen)
2651{
2652 char *res = buf + buflen;
2653 int error;
2654
2655 prepend(&res, &buflen, "\0", 1);
7ea600b5 2656 br_read_lock(&vfsmount_lock);
949854d0 2657 write_seqlock(&rename_lock);
f2eb6575 2658 error = prepend_path(path, root, &res, &buflen);
949854d0 2659 write_sequnlock(&rename_lock);
7ea600b5 2660 br_read_unlock(&vfsmount_lock);
be148247 2661
02125a82
AV
2662 if (error < 0)
2663 return ERR_PTR(error);
2664 if (error > 0)
2665 return NULL;
2666 return res;
2667}
2668
2669char *d_absolute_path(const struct path *path,
2670 char *buf, int buflen)
2671{
2672 struct path root = {};
2673 char *res = buf + buflen;
2674 int error;
2675
2676 prepend(&res, &buflen, "\0", 1);
7ea600b5 2677 br_read_lock(&vfsmount_lock);
02125a82
AV
2678 write_seqlock(&rename_lock);
2679 error = prepend_path(path, &root, &res, &buflen);
2680 write_sequnlock(&rename_lock);
7ea600b5 2681 br_read_unlock(&vfsmount_lock);
02125a82
AV
2682
2683 if (error > 1)
2684 error = -EINVAL;
2685 if (error < 0)
f2eb6575 2686 return ERR_PTR(error);
f2eb6575 2687 return res;
1da177e4
LT
2688}
2689
ffd1f4ed
MS
2690/*
2691 * same as __d_path but appends "(deleted)" for unlinked files.
2692 */
02125a82
AV
2693static int path_with_deleted(const struct path *path,
2694 const struct path *root,
2695 char **buf, int *buflen)
ffd1f4ed
MS
2696{
2697 prepend(buf, buflen, "\0", 1);
2698 if (d_unlinked(path->dentry)) {
2699 int error = prepend(buf, buflen, " (deleted)", 10);
2700 if (error)
2701 return error;
2702 }
2703
2704 return prepend_path(path, root, buf, buflen);
2705}
2706
8df9d1a4
MS
2707static int prepend_unreachable(char **buffer, int *buflen)
2708{
2709 return prepend(buffer, buflen, "(unreachable)", 13);
2710}
2711
a03a8a70
JB
2712/**
2713 * d_path - return the path of a dentry
cf28b486 2714 * @path: path to report
a03a8a70
JB
2715 * @buf: buffer to return value in
2716 * @buflen: buffer length
2717 *
2718 * Convert a dentry into an ASCII path name. If the entry has been deleted
2719 * the string " (deleted)" is appended. Note that this is ambiguous.
2720 *
52afeefb
AV
2721 * Returns a pointer into the buffer or an error code if the path was
2722 * too long. Note: Callers should use the returned pointer, not the passed
2723 * in buffer, to use the name! The implementation often starts at an offset
2724 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2725 *
31f3e0b3 2726 * "buflen" should be positive.
a03a8a70 2727 */
20d4fdc1 2728char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2729{
ffd1f4ed 2730 char *res = buf + buflen;
6ac08c39 2731 struct path root;
ffd1f4ed 2732 int error;
1da177e4 2733
c23fbb6b
ED
2734 /*
2735 * We have various synthetic filesystems that never get mounted. On
2736 * these filesystems dentries are never used for lookup purposes, and
2737 * thus don't need to be hashed. They also don't need a name until a
2738 * user wants to identify the object in /proc/pid/fd/. The little hack
2739 * below allows us to generate a name for these objects on demand:
3717eee3
EB
2740 *
2741 * Some pseudo inodes are mountable. When they are mounted
2742 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
2743 * and instead have d_path return the mounted path.
c23fbb6b 2744 */
3717eee3
EB
2745 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
2746 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 2747 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2748
f7ad3c6b 2749 get_fs_root(current->fs, &root);
7ea600b5 2750 br_read_lock(&vfsmount_lock);
949854d0 2751 write_seqlock(&rename_lock);
02125a82 2752 error = path_with_deleted(path, &root, &res, &buflen);
7ea600b5
AV
2753 write_sequnlock(&rename_lock);
2754 br_read_unlock(&vfsmount_lock);
02125a82 2755 if (error < 0)
ffd1f4ed 2756 res = ERR_PTR(error);
6ac08c39 2757 path_put(&root);
1da177e4
LT
2758 return res;
2759}
ec4f8605 2760EXPORT_SYMBOL(d_path);
1da177e4 2761
c23fbb6b
ED
2762/*
2763 * Helper function for dentry_operations.d_dname() members
2764 */
2765char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2766 const char *fmt, ...)
2767{
2768 va_list args;
2769 char temp[64];
2770 int sz;
2771
2772 va_start(args, fmt);
2773 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2774 va_end(args);
2775
2776 if (sz > sizeof(temp) || sz > buflen)
2777 return ERR_PTR(-ENAMETOOLONG);
2778
2779 buffer += buflen - sz;
2780 return memcpy(buffer, temp, sz);
2781}
2782
ad4c3cc4
AV
2783char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
2784{
2785 char *end = buffer + buflen;
2786 /* these dentries are never renamed, so d_lock is not needed */
2787 if (prepend(&end, &buflen, " (deleted)", 11) ||
2788 prepend_name(&end, &buflen, &dentry->d_name) ||
2789 prepend(&end, &buflen, "/", 1))
2790 end = ERR_PTR(-ENAMETOOLONG);
2791 return end;
2792}
2793
6092d048
RP
2794/*
2795 * Write full pathname from the root of the filesystem into the buffer.
2796 */
ec2447c2 2797static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2798{
2799 char *end = buf + buflen;
2800 char *retval;
2801
6092d048 2802 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2803 if (buflen < 1)
2804 goto Elong;
2805 /* Get '/' right */
2806 retval = end-1;
2807 *retval = '/';
2808
cdd16d02
MS
2809 while (!IS_ROOT(dentry)) {
2810 struct dentry *parent = dentry->d_parent;
9abca360 2811 int error;
6092d048 2812
6092d048 2813 prefetch(parent);
9abca360
NP
2814 spin_lock(&dentry->d_lock);
2815 error = prepend_name(&end, &buflen, &dentry->d_name);
2816 spin_unlock(&dentry->d_lock);
2817 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2818 goto Elong;
2819
2820 retval = end;
2821 dentry = parent;
2822 }
c103135c
AV
2823 return retval;
2824Elong:
2825 return ERR_PTR(-ENAMETOOLONG);
2826}
ec2447c2
NP
2827
2828char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2829{
2830 char *retval;
2831
949854d0 2832 write_seqlock(&rename_lock);
ec2447c2 2833 retval = __dentry_path(dentry, buf, buflen);
949854d0 2834 write_sequnlock(&rename_lock);
ec2447c2
NP
2835
2836 return retval;
2837}
2838EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2839
2840char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2841{
2842 char *p = NULL;
2843 char *retval;
2844
949854d0 2845 write_seqlock(&rename_lock);
c103135c
AV
2846 if (d_unlinked(dentry)) {
2847 p = buf + buflen;
2848 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2849 goto Elong;
2850 buflen++;
2851 }
2852 retval = __dentry_path(dentry, buf, buflen);
949854d0 2853 write_sequnlock(&rename_lock);
c103135c
AV
2854 if (!IS_ERR(retval) && p)
2855 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2856 return retval;
2857Elong:
6092d048
RP
2858 return ERR_PTR(-ENAMETOOLONG);
2859}
2860
1da177e4
LT
2861/*
2862 * NOTE! The user-level library version returns a
2863 * character pointer. The kernel system call just
2864 * returns the length of the buffer filled (which
2865 * includes the ending '\0' character), or a negative
2866 * error value. So libc would do something like
2867 *
2868 * char *getcwd(char * buf, size_t size)
2869 * {
2870 * int retval;
2871 *
2872 * retval = sys_getcwd(buf, size);
2873 * if (retval >= 0)
2874 * return buf;
2875 * errno = -retval;
2876 * return NULL;
2877 * }
2878 */
3cdad428 2879SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2880{
552ce544 2881 int error;
6ac08c39 2882 struct path pwd, root;
552ce544 2883 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2884
2885 if (!page)
2886 return -ENOMEM;
2887
f7ad3c6b 2888 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2889
552ce544 2890 error = -ENOENT;
7ea600b5 2891 br_read_lock(&vfsmount_lock);
949854d0 2892 write_seqlock(&rename_lock);
f3da392e 2893 if (!d_unlinked(pwd.dentry)) {
552ce544 2894 unsigned long len;
8df9d1a4
MS
2895 char *cwd = page + PAGE_SIZE;
2896 int buflen = PAGE_SIZE;
1da177e4 2897
8df9d1a4 2898 prepend(&cwd, &buflen, "\0", 1);
02125a82 2899 error = prepend_path(&pwd, &root, &cwd, &buflen);
949854d0 2900 write_sequnlock(&rename_lock);
7ea600b5 2901 br_read_unlock(&vfsmount_lock);
552ce544 2902
02125a82 2903 if (error < 0)
552ce544
LT
2904 goto out;
2905
8df9d1a4 2906 /* Unreachable from current root */
02125a82 2907 if (error > 0) {
8df9d1a4
MS
2908 error = prepend_unreachable(&cwd, &buflen);
2909 if (error)
2910 goto out;
2911 }
2912
552ce544
LT
2913 error = -ERANGE;
2914 len = PAGE_SIZE + page - cwd;
2915 if (len <= size) {
2916 error = len;
2917 if (copy_to_user(buf, cwd, len))
2918 error = -EFAULT;
2919 }
949854d0
NP
2920 } else {
2921 write_sequnlock(&rename_lock);
7ea600b5 2922 br_read_unlock(&vfsmount_lock);
949854d0 2923 }
1da177e4
LT
2924
2925out:
6ac08c39
JB
2926 path_put(&pwd);
2927 path_put(&root);
1da177e4
LT
2928 free_page((unsigned long) page);
2929 return error;
2930}
2931
2932/*
2933 * Test whether new_dentry is a subdirectory of old_dentry.
2934 *
2935 * Trivially implemented using the dcache structure
2936 */
2937
2938/**
2939 * is_subdir - is new dentry a subdirectory of old_dentry
2940 * @new_dentry: new dentry
2941 * @old_dentry: old dentry
2942 *
2943 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2944 * Returns 0 otherwise.
2945 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2946 */
2947
e2761a11 2948int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2949{
2950 int result;
949854d0 2951 unsigned seq;
1da177e4 2952
e2761a11
OH
2953 if (new_dentry == old_dentry)
2954 return 1;
2955
e2761a11 2956 do {
1da177e4 2957 /* for restarting inner loop in case of seq retry */
1da177e4 2958 seq = read_seqbegin(&rename_lock);
949854d0
NP
2959 /*
2960 * Need rcu_readlock to protect against the d_parent trashing
2961 * due to d_move
2962 */
2963 rcu_read_lock();
e2761a11 2964 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2965 result = 1;
e2761a11
OH
2966 else
2967 result = 0;
949854d0 2968 rcu_read_unlock();
1da177e4 2969 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2970
2971 return result;
2972}
2973
2974void d_genocide(struct dentry *root)
2975{
949854d0 2976 struct dentry *this_parent;
1da177e4 2977 struct list_head *next;
949854d0 2978 unsigned seq;
58db63d0 2979 int locked = 0;
1da177e4 2980
949854d0 2981 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2982again:
2983 this_parent = root;
2fd6b7f5 2984 spin_lock(&this_parent->d_lock);
1da177e4
LT
2985repeat:
2986 next = this_parent->d_subdirs.next;
2987resume:
2988 while (next != &this_parent->d_subdirs) {
2989 struct list_head *tmp = next;
d76c446b 2990 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 2991 next = tmp->next;
949854d0 2992
da502956
NP
2993 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2994 if (d_unhashed(dentry) || !dentry->d_inode) {
2995 spin_unlock(&dentry->d_lock);
1da177e4 2996 continue;
da502956 2997 }
1da177e4 2998 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2999 spin_unlock(&this_parent->d_lock);
3000 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 3001 this_parent = dentry;
2fd6b7f5 3002 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
3003 goto repeat;
3004 }
949854d0
NP
3005 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3006 dentry->d_flags |= DCACHE_GENOCIDE;
3007 dentry->d_count--;
3008 }
b7ab39f6 3009 spin_unlock(&dentry->d_lock);
1da177e4 3010 }
b102b017
AV
3011 rcu_read_lock();
3012ascend:
1da177e4 3013 if (this_parent != root) {
c826cb7d 3014 struct dentry *child = this_parent;
949854d0
NP
3015 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
3016 this_parent->d_flags |= DCACHE_GENOCIDE;
3017 this_parent->d_count--;
3018 }
b102b017
AV
3019 this_parent = child->d_parent;
3020
3021 spin_unlock(&child->d_lock);
3022 spin_lock(&this_parent->d_lock);
3023
3024 /* might go back up the wrong parent if we have had a rename. */
3025 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 3026 goto rename_retry;
d76c446b 3027 next = child->d_child.next;
b102b017
AV
3028 while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)) {
3029 if (next == &this_parent->d_subdirs)
3030 goto ascend;
3031 child = list_entry(next, struct dentry, d_child);
3032 next = next->next;
3033 }
3034 rcu_read_unlock();
1da177e4
LT
3035 goto resume;
3036 }
58db63d0 3037 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 3038 goto rename_retry;
b102b017
AV
3039 spin_unlock(&this_parent->d_lock);
3040 rcu_read_unlock();
58db63d0
NP
3041 if (locked)
3042 write_sequnlock(&rename_lock);
3043 return;
3044
3045rename_retry:
b102b017
AV
3046 spin_unlock(&this_parent->d_lock);
3047 rcu_read_unlock();
8110e16d
MS
3048 if (locked)
3049 goto again;
58db63d0
NP
3050 locked = 1;
3051 write_seqlock(&rename_lock);
3052 goto again;
1da177e4
LT
3053}
3054
3055/**
3056 * find_inode_number - check for dentry with name
3057 * @dir: directory to check
3058 * @name: Name to find.
3059 *
3060 * Check whether a dentry already exists for the given name,
3061 * and return the inode number if it has an inode. Otherwise
3062 * 0 is returned.
3063 *
3064 * This routine is used to post-process directory listings for
3065 * filesystems using synthetic inode numbers, and is necessary
3066 * to keep getcwd() working.
3067 */
3068
3069ino_t find_inode_number(struct dentry *dir, struct qstr *name)
3070{
3071 struct dentry * dentry;
3072 ino_t ino = 0;
3073
3e7e241f 3074 dentry = d_hash_and_lookup(dir, name);
4f522a24 3075 if (!IS_ERR_OR_NULL(dentry)) {
1da177e4
LT
3076 if (dentry->d_inode)
3077 ino = dentry->d_inode->i_ino;
3078 dput(dentry);
3079 }
1da177e4
LT
3080 return ino;
3081}
ec4f8605 3082EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
3083
3084static __initdata unsigned long dhash_entries;
3085static int __init set_dhash_entries(char *str)
3086{
3087 if (!str)
3088 return 0;
3089 dhash_entries = simple_strtoul(str, &str, 0);
3090 return 1;
3091}
3092__setup("dhash_entries=", set_dhash_entries);
3093
3094static void __init dcache_init_early(void)
3095{
074b8517 3096 unsigned int loop;
1da177e4
LT
3097
3098 /* If hashes are distributed across NUMA nodes, defer
3099 * hash allocation until vmalloc space is available.
3100 */
3101 if (hashdist)
3102 return;
3103
3104 dentry_hashtable =
3105 alloc_large_system_hash("Dentry cache",
b07ad996 3106 sizeof(struct hlist_bl_head),
1da177e4
LT
3107 dhash_entries,
3108 13,
3109 HASH_EARLY,
3110 &d_hash_shift,
3111 &d_hash_mask,
31fe62b9 3112 0,
1da177e4
LT
3113 0);
3114
074b8517 3115 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3116 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3117}
3118
74bf17cf 3119static void __init dcache_init(void)
1da177e4 3120{
074b8517 3121 unsigned int loop;
1da177e4
LT
3122
3123 /*
3124 * A constructor could be added for stable state like the lists,
3125 * but it is probably not worth it because of the cache nature
3126 * of the dcache.
3127 */
0a31bd5f
CL
3128 dentry_cache = KMEM_CACHE(dentry,
3129 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3130
3131 /* Hash may have been set up in dcache_init_early */
3132 if (!hashdist)
3133 return;
3134
3135 dentry_hashtable =
3136 alloc_large_system_hash("Dentry cache",
b07ad996 3137 sizeof(struct hlist_bl_head),
1da177e4
LT
3138 dhash_entries,
3139 13,
3140 0,
3141 &d_hash_shift,
3142 &d_hash_mask,
31fe62b9 3143 0,
1da177e4
LT
3144 0);
3145
074b8517 3146 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3147 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3148}
3149
3150/* SLAB cache for __getname() consumers */
e18b890b 3151struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3152EXPORT_SYMBOL(names_cachep);
1da177e4 3153
1da177e4
LT
3154EXPORT_SYMBOL(d_genocide);
3155
1da177e4
LT
3156void __init vfs_caches_init_early(void)
3157{
3158 dcache_init_early();
3159 inode_init_early();
3160}
3161
3162void __init vfs_caches_init(unsigned long mempages)
3163{
3164 unsigned long reserve;
3165
3166 /* Base hash sizes on available memory, with a reserve equal to
3167 150% of current kernel size */
3168
3169 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3170 mempages -= reserve;
3171
3172 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3173 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3174
74bf17cf
DC
3175 dcache_init();
3176 inode_init();
1da177e4 3177 files_init(mempages);
74bf17cf 3178 mnt_init();
1da177e4
LT
3179 bdev_cache_init();
3180 chrdev_init();
3181}