mtd: remove retlen zeroing duplication
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / devices / lart.c
CommitLineData
1da177e4
LT
1
2/*
3 * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART.
4 *
1da177e4
LT
5 * Author: Abraham vd Merwe <abraham@2d3d.co.za>
6 *
7 * Copyright (c) 2001, 2d3D, Inc.
8 *
9 * This code is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * References:
14 *
15 * [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet
16 * - Order Number: 290644-005
17 * - January 2000
18 *
19 * [2] MTD internal API documentation
631dd1a8 20 * - http://www.linux-mtd.infradead.org/
1da177e4
LT
21 *
22 * Limitations:
23 *
24 * Even though this driver is written for 3 Volt Fast Boot
25 * Block Flash Memory, it is rather specific to LART. With
26 * Minor modifications, notably the without data/address line
27 * mangling and different bus settings, etc. it should be
28 * trivial to adapt to other platforms.
29 *
30 * If somebody would sponsor me a different board, I'll
31 * adapt the driver (:
32 */
33
34/* debugging */
35//#define LART_DEBUG
36
1da177e4
LT
37#include <linux/kernel.h>
38#include <linux/module.h>
39#include <linux/types.h>
40#include <linux/init.h>
41#include <linux/errno.h>
4e57b681 42#include <linux/string.h>
1da177e4 43#include <linux/mtd/mtd.h>
1da177e4 44#include <linux/mtd/partitions.h>
1da177e4
LT
45
46#ifndef CONFIG_SA1100_LART
47#error This is for LART architecture only
48#endif
49
50static char module_name[] = "lart";
51
52/*
53 * These values is specific to 28Fxxxx3 flash memory.
54 * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
55 */
56#define FLASH_BLOCKSIZE_PARAM (4096 * BUSWIDTH)
57#define FLASH_NUMBLOCKS_16m_PARAM 8
58#define FLASH_NUMBLOCKS_8m_PARAM 8
59
60/*
61 * These values is specific to 28Fxxxx3 flash memory.
62 * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
63 */
64#define FLASH_BLOCKSIZE_MAIN (32768 * BUSWIDTH)
65#define FLASH_NUMBLOCKS_16m_MAIN 31
66#define FLASH_NUMBLOCKS_8m_MAIN 15
67
68/*
69 * These values are specific to LART
70 */
71
72/* general */
73#define BUSWIDTH 4 /* don't change this - a lot of the code _will_ break if you change this */
74#define FLASH_OFFSET 0xe8000000 /* see linux/arch/arm/mach-sa1100/lart.c */
75
76/* blob */
77#define NUM_BLOB_BLOCKS FLASH_NUMBLOCKS_16m_PARAM
78#define BLOB_START 0x00000000
79#define BLOB_LEN (NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM)
80
81/* kernel */
82#define NUM_KERNEL_BLOCKS 7
83#define KERNEL_START (BLOB_START + BLOB_LEN)
84#define KERNEL_LEN (NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN)
85
86/* initial ramdisk */
87#define NUM_INITRD_BLOCKS 24
88#define INITRD_START (KERNEL_START + KERNEL_LEN)
89#define INITRD_LEN (NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN)
90
91/*
92 * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
93 */
94#define READ_ARRAY 0x00FF00FF /* Read Array/Reset */
95#define READ_ID_CODES 0x00900090 /* Read Identifier Codes */
96#define ERASE_SETUP 0x00200020 /* Block Erase */
97#define ERASE_CONFIRM 0x00D000D0 /* Block Erase and Program Resume */
98#define PGM_SETUP 0x00400040 /* Program */
99#define STATUS_READ 0x00700070 /* Read Status Register */
100#define STATUS_CLEAR 0x00500050 /* Clear Status Register */
101#define STATUS_BUSY 0x00800080 /* Write State Machine Status (WSMS) */
102#define STATUS_ERASE_ERR 0x00200020 /* Erase Status (ES) */
103#define STATUS_PGM_ERR 0x00100010 /* Program Status (PS) */
104
105/*
106 * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
107 */
108#define FLASH_MANUFACTURER 0x00890089
109#define FLASH_DEVICE_8mbit_TOP 0x88f188f1
110#define FLASH_DEVICE_8mbit_BOTTOM 0x88f288f2
111#define FLASH_DEVICE_16mbit_TOP 0x88f388f3
112#define FLASH_DEVICE_16mbit_BOTTOM 0x88f488f4
113
114/***************************************************************************************************/
115
116/*
117 * The data line mapping on LART is as follows:
e5580fbe 118 *
1da177e4
LT
119 * U2 CPU | U3 CPU
120 * -------------------
121 * 0 20 | 0 12
122 * 1 22 | 1 14
123 * 2 19 | 2 11
124 * 3 17 | 3 9
125 * 4 24 | 4 0
126 * 5 26 | 5 2
127 * 6 31 | 6 7
128 * 7 29 | 7 5
129 * 8 21 | 8 13
130 * 9 23 | 9 15
131 * 10 18 | 10 10
132 * 11 16 | 11 8
133 * 12 25 | 12 1
134 * 13 27 | 13 3
135 * 14 30 | 14 6
136 * 15 28 | 15 4
137 */
138
139/* Mangle data (x) */
140#define DATA_TO_FLASH(x) \
141 ( \
142 (((x) & 0x08009000) >> 11) + \
143 (((x) & 0x00002000) >> 10) + \
144 (((x) & 0x04004000) >> 8) + \
145 (((x) & 0x00000010) >> 4) + \
146 (((x) & 0x91000820) >> 3) + \
147 (((x) & 0x22080080) >> 2) + \
148 ((x) & 0x40000400) + \
149 (((x) & 0x00040040) << 1) + \
150 (((x) & 0x00110000) << 4) + \
151 (((x) & 0x00220100) << 5) + \
152 (((x) & 0x00800208) << 6) + \
153 (((x) & 0x00400004) << 9) + \
154 (((x) & 0x00000001) << 12) + \
155 (((x) & 0x00000002) << 13) \
156 )
157
158/* Unmangle data (x) */
159#define FLASH_TO_DATA(x) \
160 ( \
161 (((x) & 0x00010012) << 11) + \
162 (((x) & 0x00000008) << 10) + \
163 (((x) & 0x00040040) << 8) + \
164 (((x) & 0x00000001) << 4) + \
165 (((x) & 0x12200104) << 3) + \
166 (((x) & 0x08820020) << 2) + \
167 ((x) & 0x40000400) + \
168 (((x) & 0x00080080) >> 1) + \
169 (((x) & 0x01100000) >> 4) + \
170 (((x) & 0x04402000) >> 5) + \
171 (((x) & 0x20008200) >> 6) + \
172 (((x) & 0x80000800) >> 9) + \
173 (((x) & 0x00001000) >> 12) + \
174 (((x) & 0x00004000) >> 13) \
175 )
176
e5580fbe 177/*
1da177e4
LT
178 * The address line mapping on LART is as follows:
179 *
180 * U3 CPU | U2 CPU
181 * -------------------
182 * 0 2 | 0 2
183 * 1 3 | 1 3
184 * 2 9 | 2 9
185 * 3 13 | 3 8
186 * 4 8 | 4 7
187 * 5 12 | 5 6
188 * 6 11 | 6 5
189 * 7 10 | 7 4
190 * 8 4 | 8 10
191 * 9 5 | 9 11
192 * 10 6 | 10 12
193 * 11 7 | 11 13
194 *
195 * BOOT BLOCK BOUNDARY
196 *
197 * 12 15 | 12 15
198 * 13 14 | 13 14
199 * 14 16 | 14 16
e5580fbe 200 *
1da177e4
LT
201 * MAIN BLOCK BOUNDARY
202 *
203 * 15 17 | 15 18
204 * 16 18 | 16 17
205 * 17 20 | 17 20
206 * 18 19 | 18 19
207 * 19 21 | 19 21
208 *
209 * As we can see from above, the addresses aren't mangled across
210 * block boundaries, so we don't need to worry about address
211 * translations except for sending/reading commands during
212 * initialization
213 */
214
215/* Mangle address (x) on chip U2 */
216#define ADDR_TO_FLASH_U2(x) \
217 ( \
218 (((x) & 0x00000f00) >> 4) + \
219 (((x) & 0x00042000) << 1) + \
220 (((x) & 0x0009c003) << 2) + \
221 (((x) & 0x00021080) << 3) + \
222 (((x) & 0x00000010) << 4) + \
223 (((x) & 0x00000040) << 5) + \
224 (((x) & 0x00000024) << 7) + \
225 (((x) & 0x00000008) << 10) \
226 )
227
228/* Unmangle address (x) on chip U2 */
229#define FLASH_U2_TO_ADDR(x) \
230 ( \
231 (((x) << 4) & 0x00000f00) + \
232 (((x) >> 1) & 0x00042000) + \
233 (((x) >> 2) & 0x0009c003) + \
234 (((x) >> 3) & 0x00021080) + \
235 (((x) >> 4) & 0x00000010) + \
236 (((x) >> 5) & 0x00000040) + \
237 (((x) >> 7) & 0x00000024) + \
238 (((x) >> 10) & 0x00000008) \
239 )
240
241/* Mangle address (x) on chip U3 */
242#define ADDR_TO_FLASH_U3(x) \
243 ( \
244 (((x) & 0x00000080) >> 3) + \
245 (((x) & 0x00000040) >> 1) + \
246 (((x) & 0x00052020) << 1) + \
247 (((x) & 0x00084f03) << 2) + \
248 (((x) & 0x00029010) << 3) + \
249 (((x) & 0x00000008) << 5) + \
250 (((x) & 0x00000004) << 7) \
251 )
252
253/* Unmangle address (x) on chip U3 */
254#define FLASH_U3_TO_ADDR(x) \
255 ( \
256 (((x) << 3) & 0x00000080) + \
257 (((x) << 1) & 0x00000040) + \
258 (((x) >> 1) & 0x00052020) + \
259 (((x) >> 2) & 0x00084f03) + \
260 (((x) >> 3) & 0x00029010) + \
261 (((x) >> 5) & 0x00000008) + \
262 (((x) >> 7) & 0x00000004) \
263 )
264
265/***************************************************************************************************/
266
267static __u8 read8 (__u32 offset)
268{
269 volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset);
270#ifdef LART_DEBUG
cb53b3b9 271 printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n", __func__, offset, *data);
1da177e4
LT
272#endif
273 return (*data);
274}
275
276static __u32 read32 (__u32 offset)
277{
278 volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
279#ifdef LART_DEBUG
cb53b3b9 280 printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n", __func__, offset, *data);
1da177e4
LT
281#endif
282 return (*data);
283}
284
285static void write32 (__u32 x,__u32 offset)
286{
287 volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
288 *data = x;
289#ifdef LART_DEBUG
cb53b3b9 290 printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, *data);
1da177e4
LT
291#endif
292}
293
294/***************************************************************************************************/
295
296/*
297 * Probe for 16mbit flash memory on a LART board without doing
298 * too much damage. Since we need to write 1 dword to memory,
299 * we're f**cked if this happens to be DRAM since we can't
300 * restore the memory (otherwise we might exit Read Array mode).
301 *
302 * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise.
303 */
304static int flash_probe (void)
305{
306 __u32 manufacturer,devtype;
307
308 /* setup "Read Identifier Codes" mode */
309 write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000);
310
311 /* probe U2. U2/U3 returns the same data since the first 3
312 * address lines is mangled in the same way */
313 manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000)));
314 devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001)));
315
316 /* put the flash back into command mode */
317 write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000);
318
0bdf77f8 319 return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || devtype == FLASH_DEVICE_16mbit_BOTTOM));
1da177e4
LT
320}
321
322/*
323 * Erase one block of flash memory at offset ``offset'' which is any
324 * address within the block which should be erased.
325 *
326 * Returns 1 if successful, 0 otherwise.
327 */
328static inline int erase_block (__u32 offset)
329{
330 __u32 status;
331
332#ifdef LART_DEBUG
cb53b3b9 333 printk (KERN_DEBUG "%s(): 0x%.8x\n", __func__, offset);
1da177e4
LT
334#endif
335
336 /* erase and confirm */
337 write32 (DATA_TO_FLASH (ERASE_SETUP),offset);
338 write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset);
339
340 /* wait for block erase to finish */
341 do
342 {
343 write32 (DATA_TO_FLASH (STATUS_READ),offset);
344 status = FLASH_TO_DATA (read32 (offset));
345 }
346 while ((~status & STATUS_BUSY) != 0);
347
348 /* put the flash back into command mode */
349 write32 (DATA_TO_FLASH (READ_ARRAY),offset);
350
25985edc 351 /* was the erase successful? */
1da177e4
LT
352 if ((status & STATUS_ERASE_ERR))
353 {
354 printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset);
355 return (0);
356 }
357
358 return (1);
359}
360
361static int flash_erase (struct mtd_info *mtd,struct erase_info *instr)
362{
363 __u32 addr,len;
364 int i,first;
365
366#ifdef LART_DEBUG
cb53b3b9 367 printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n", __func__, instr->addr, instr->len);
1da177e4
LT
368#endif
369
1da177e4
LT
370 /*
371 * check that both start and end of the requested erase are
372 * aligned with the erasesize at the appropriate addresses.
373 *
374 * skip all erase regions which are ended before the start of
375 * the requested erase. Actually, to save on the calculations,
376 * we skip to the first erase region which starts after the
377 * start of the requested erase, and then go back one.
378 */
379 for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ;
380 i--;
381
382 /*
383 * ok, now i is pointing at the erase region in which this
384 * erase request starts. Check the start of the requested
385 * erase range is aligned with the erase size which is in
386 * effect here.
387 */
4c1e6b2c
RK
388 if (i < 0 || (instr->addr & (mtd->eraseregions[i].erasesize - 1)))
389 return -EINVAL;
1da177e4
LT
390
391 /* Remember the erase region we start on */
392 first = i;
393
394 /*
395 * next, check that the end of the requested erase is aligned
396 * with the erase region at that address.
397 *
398 * as before, drop back one to point at the region in which
399 * the address actually falls
400 */
401 for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ;
402 i--;
403
404 /* is the end aligned on a block boundary? */
4c1e6b2c
RK
405 if (i < 0 || ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1)))
406 return -EINVAL;
1da177e4
LT
407
408 addr = instr->addr;
409 len = instr->len;
410
411 i = first;
412
413 /* now erase those blocks */
414 while (len)
415 {
416 if (!erase_block (addr))
417 {
418 instr->state = MTD_ERASE_FAILED;
419 return (-EIO);
420 }
421
422 addr += mtd->eraseregions[i].erasesize;
423 len -= mtd->eraseregions[i].erasesize;
424
425 if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++;
426 }
427
428 instr->state = MTD_ERASE_DONE;
429 mtd_erase_callback(instr);
430
431 return (0);
432}
433
434static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf)
435{
436#ifdef LART_DEBUG
cb53b3b9 437 printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n", __func__, (__u32)from, len);
1da177e4
LT
438#endif
439
440 /* sanity checks */
441 if (!len) return (0);
1da177e4
LT
442
443 /* we always read len bytes */
444 *retlen = len;
445
446 /* first, we read bytes until we reach a dword boundary */
447 if (from & (BUSWIDTH - 1))
448 {
449 int gap = BUSWIDTH - (from & (BUSWIDTH - 1));
450
451 while (len && gap--) *buf++ = read8 (from++), len--;
452 }
453
454 /* now we read dwords until we reach a non-dword boundary */
455 while (len >= BUSWIDTH)
456 {
457 *((__u32 *) buf) = read32 (from);
458
459 buf += BUSWIDTH;
460 from += BUSWIDTH;
461 len -= BUSWIDTH;
462 }
463
464 /* top up the last unaligned bytes */
465 if (len & (BUSWIDTH - 1))
466 while (len--) *buf++ = read8 (from++);
467
468 return (0);
469}
470
471/*
472 * Write one dword ``x'' to flash memory at offset ``offset''. ``offset''
473 * must be 32 bits, i.e. it must be on a dword boundary.
474 *
475 * Returns 1 if successful, 0 otherwise.
476 */
477static inline int write_dword (__u32 offset,__u32 x)
478{
479 __u32 status;
480
481#ifdef LART_DEBUG
cb53b3b9 482 printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, x);
1da177e4
LT
483#endif
484
485 /* setup writing */
486 write32 (DATA_TO_FLASH (PGM_SETUP),offset);
487
488 /* write the data */
489 write32 (x,offset);
490
491 /* wait for the write to finish */
492 do
493 {
494 write32 (DATA_TO_FLASH (STATUS_READ),offset);
495 status = FLASH_TO_DATA (read32 (offset));
496 }
497 while ((~status & STATUS_BUSY) != 0);
498
499 /* put the flash back into command mode */
500 write32 (DATA_TO_FLASH (READ_ARRAY),offset);
501
25985edc 502 /* was the write successful? */
1da177e4
LT
503 if ((status & STATUS_PGM_ERR) || read32 (offset) != x)
504 {
505 printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset);
506 return (0);
507 }
508
509 return (1);
510}
511
512static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
513{
514 __u8 tmp[4];
515 int i,n;
516
517#ifdef LART_DEBUG
cb53b3b9 518 printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n", __func__, (__u32)to, len);
1da177e4
LT
519#endif
520
1da177e4
LT
521 /* sanity checks */
522 if (!len) return (0);
1da177e4
LT
523
524 /* first, we write a 0xFF.... padded byte until we reach a dword boundary */
525 if (to & (BUSWIDTH - 1))
526 {
527 __u32 aligned = to & ~(BUSWIDTH - 1);
528 int gap = to - aligned;
529
530 i = n = 0;
531
532 while (gap--) tmp[i++] = 0xFF;
533 while (len && i < BUSWIDTH) tmp[i++] = buf[n++], len--;
534 while (i < BUSWIDTH) tmp[i++] = 0xFF;
535
536 if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO);
537
538 to += n;
539 buf += n;
540 *retlen += n;
541 }
542
543 /* now we write dwords until we reach a non-dword boundary */
544 while (len >= BUSWIDTH)
545 {
546 if (!write_dword (to,*((__u32 *) buf))) return (-EIO);
547
548 to += BUSWIDTH;
549 buf += BUSWIDTH;
550 *retlen += BUSWIDTH;
551 len -= BUSWIDTH;
552 }
553
554 /* top up the last unaligned bytes, padded with 0xFF.... */
555 if (len & (BUSWIDTH - 1))
556 {
557 i = n = 0;
558
559 while (len--) tmp[i++] = buf[n++];
560 while (i < BUSWIDTH) tmp[i++] = 0xFF;
561
562 if (!write_dword (to,*((__u32 *) tmp))) return (-EIO);
563
564 *retlen += n;
565 }
566
567 return (0);
568}
569
570/***************************************************************************************************/
571
1da177e4
LT
572static struct mtd_info mtd;
573
574static struct mtd_erase_region_info erase_regions[] = {
575 /* parameter blocks */
576 {
577 .offset = 0x00000000,
578 .erasesize = FLASH_BLOCKSIZE_PARAM,
579 .numblocks = FLASH_NUMBLOCKS_16m_PARAM,
580 },
581 /* main blocks */
582 {
583 .offset = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM,
584 .erasesize = FLASH_BLOCKSIZE_MAIN,
585 .numblocks = FLASH_NUMBLOCKS_16m_MAIN,
586 }
587};
588
1da177e4
LT
589static struct mtd_partition lart_partitions[] = {
590 /* blob */
591 {
592 .name = "blob",
593 .offset = BLOB_START,
594 .size = BLOB_LEN,
595 },
596 /* kernel */
597 {
598 .name = "kernel",
599 .offset = KERNEL_START, /* MTDPART_OFS_APPEND */
600 .size = KERNEL_LEN,
601 },
602 /* initial ramdisk / file system */
603 {
604 .name = "file system",
605 .offset = INITRD_START, /* MTDPART_OFS_APPEND */
606 .size = INITRD_LEN, /* MTDPART_SIZ_FULL */
607 }
608};
3761a6dd 609#define NUM_PARTITIONS ARRAY_SIZE(lart_partitions)
1da177e4 610
e4582ea7 611static int __init lart_flash_init (void)
1da177e4
LT
612{
613 int result;
614 memset (&mtd,0,sizeof (mtd));
615 printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n");
616 printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name);
617 if (!flash_probe ())
618 {
619 printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name);
620 return (-ENXIO);
621 }
622 printk ("%s: This looks like a LART board to me.\n",module_name);
623 mtd.name = module_name;
624 mtd.type = MTD_NORFLASH;
783ed81f 625 mtd.writesize = 1;
fcc44a07 626 mtd.writebufsize = 4;
1da177e4
LT
627 mtd.flags = MTD_CAP_NORFLASH;
628 mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN;
629 mtd.erasesize = FLASH_BLOCKSIZE_MAIN;
87d10f3c 630 mtd.numeraseregions = ARRAY_SIZE(erase_regions);
1da177e4 631 mtd.eraseregions = erase_regions;
3c3c10bb
AB
632 mtd._erase = flash_erase;
633 mtd._read = flash_read;
634 mtd._write = flash_write;
1da177e4
LT
635 mtd.owner = THIS_MODULE;
636
637#ifdef LART_DEBUG
638 printk (KERN_DEBUG
639 "mtd.name = %s\n"
640 "mtd.size = 0x%.8x (%uM)\n"
641 "mtd.erasesize = 0x%.8x (%uK)\n"
642 "mtd.numeraseregions = %d\n",
643 mtd.name,
644 mtd.size,mtd.size / (1024*1024),
645 mtd.erasesize,mtd.erasesize / 1024,
646 mtd.numeraseregions);
647
648 if (mtd.numeraseregions)
649 for (result = 0; result < mtd.numeraseregions; result++)
650 printk (KERN_DEBUG
651 "\n\n"
652 "mtd.eraseregions[%d].offset = 0x%.8x\n"
653 "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n"
654 "mtd.eraseregions[%d].numblocks = %d\n",
655 result,mtd.eraseregions[result].offset,
656 result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024,
657 result,mtd.eraseregions[result].numblocks);
658
87d10f3c 659 printk ("\npartitions = %d\n", ARRAY_SIZE(lart_partitions));
1da177e4 660
87d10f3c 661 for (result = 0; result < ARRAY_SIZE(lart_partitions); result++)
1da177e4
LT
662 printk (KERN_DEBUG
663 "\n\n"
664 "lart_partitions[%d].name = %s\n"
665 "lart_partitions[%d].offset = 0x%.8x\n"
666 "lart_partitions[%d].size = 0x%.8x (%uK)\n",
667 result,lart_partitions[result].name,
668 result,lart_partitions[result].offset,
669 result,lart_partitions[result].size,lart_partitions[result].size / 1024);
670#endif
1da177e4 671
ee0e87b1
JI
672 result = mtd_device_register(&mtd, lart_partitions,
673 ARRAY_SIZE(lart_partitions));
1da177e4
LT
674
675 return (result);
676}
677
e4582ea7 678static void __exit lart_flash_exit (void)
1da177e4 679{
ee0e87b1 680 mtd_device_unregister(&mtd);
1da177e4
LT
681}
682
683module_init (lart_flash_init);
684module_exit (lart_flash_exit);
685
686MODULE_LICENSE("GPL");
687MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>");
688MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board");