Disintegrate asm/system.h for IA64
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / ia64 / kernel / mca.c
CommitLineData
1da177e4
LT
1/*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
4 *
1da177e4
LT
5 * Copyright (C) 2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 *
8 * Copyright (C) 2002 Dell Inc.
fe77efb8 9 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
1da177e4
LT
10 *
11 * Copyright (C) 2002 Intel
fe77efb8 12 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
1da177e4
LT
13 *
14 * Copyright (C) 2001 Intel
fe77efb8 15 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
1da177e4
LT
16 *
17 * Copyright (C) 2000 Intel
fe77efb8 18 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
1da177e4 19 *
785285fc 20 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
fe77efb8 21 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
1da177e4 22 *
fe77efb8
HS
23 * Copyright (C) 2006 FUJITSU LIMITED
24 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
1da177e4 25 *
fe77efb8
HS
26 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
27 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28 * added min save state dump, added INIT handler.
1da177e4 29 *
fe77efb8
HS
30 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
31 * Added setup of CMCI and CPEI IRQs, logging of corrected platform
32 * errors, completed code for logging of corrected & uncorrected
33 * machine check errors, and updated for conformance with Nov. 2000
34 * revision of the SAL 3.0 spec.
35 *
36 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
37 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38 * set SAL default return values, changed error record structure to
39 * linked list, added init call to sal_get_state_info_size().
40 *
41 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
42 * GUID cleanups.
43 *
44 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
45 * Added INIT backtrace support.
1da177e4
LT
46 *
47 * 2003-12-08 Keith Owens <kaos@sgi.com>
fe77efb8
HS
48 * smp_call_function() must not be called from interrupt context
49 * (can deadlock on tasklist_lock).
50 * Use keventd to call smp_call_function().
1da177e4
LT
51 *
52 * 2004-02-01 Keith Owens <kaos@sgi.com>
fe77efb8
HS
53 * Avoid deadlock when using printk() for MCA and INIT records.
54 * Delete all record printing code, moved to salinfo_decode in user
55 * space. Mark variables and functions static where possible.
56 * Delete dead variables and functions. Reorder to remove the need
57 * for forward declarations and to consolidate related code.
7f613c7d
KO
58 *
59 * 2005-08-12 Keith Owens <kaos@sgi.com>
fe77efb8
HS
60 * Convert MCA/INIT handlers to use per event stacks and SAL/OS
61 * state.
9138d581
KO
62 *
63 * 2005-10-07 Keith Owens <kaos@sgi.com>
64 * Add notify_die() hooks.
43ed3baf
HS
65 *
66 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
fe77efb8 67 * Add printing support for MCA/INIT.
1612b18c
RA
68 *
69 * 2007-04-27 Russ Anderson <rja@sgi.com>
70 * Support multiple cpus going through OS_MCA in the same event.
1da177e4 71 */
5cf1f7ce 72#include <linux/jiffies.h>
1da177e4
LT
73#include <linux/types.h>
74#include <linux/init.h>
75#include <linux/sched.h>
76#include <linux/interrupt.h>
77#include <linux/irq.h>
1da177e4
LT
78#include <linux/bootmem.h>
79#include <linux/acpi.h>
80#include <linux/timer.h>
81#include <linux/module.h>
82#include <linux/kernel.h>
83#include <linux/smp.h>
84#include <linux/workqueue.h>
4668f0cd 85#include <linux/cpumask.h>
1eeb66a1 86#include <linux/kdebug.h>
ed5d4026 87#include <linux/cpu.h>
5a0e3ad6 88#include <linux/gfp.h>
1da177e4
LT
89
90#include <asm/delay.h>
91#include <asm/machvec.h>
92#include <asm/meminit.h>
93#include <asm/page.h>
94#include <asm/ptrace.h>
1da177e4
LT
95#include <asm/sal.h>
96#include <asm/mca.h>
a7956113 97#include <asm/kexec.h>
1da177e4
LT
98
99#include <asm/irq.h>
100#include <asm/hw_irq.h>
96651896 101#include <asm/tlb.h>
1da177e4 102
d2a28ad9 103#include "mca_drv.h"
7f613c7d
KO
104#include "entry.h"
105
1da177e4
LT
106#if defined(IA64_MCA_DEBUG_INFO)
107# define IA64_MCA_DEBUG(fmt...) printk(fmt)
108#else
109# define IA64_MCA_DEBUG(fmt...)
110#endif
111
4fa2f0e6
HS
112#define NOTIFY_INIT(event, regs, arg, spin) \
113do { \
114 if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \
115 == NOTIFY_STOP) && ((spin) == 1)) \
116 ia64_mca_spin(__func__); \
117} while (0)
118
119#define NOTIFY_MCA(event, regs, arg, spin) \
120do { \
121 if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \
122 == NOTIFY_STOP) && ((spin) == 1)) \
123 ia64_mca_spin(__func__); \
124} while (0)
125
1da177e4 126/* Used by mca_asm.S */
1da177e4
LT
127DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
128DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
129DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
130DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
96651896 131DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */
1da177e4
LT
132
133unsigned long __per_cpu_mca[NR_CPUS];
134
135/* In mca_asm.S */
7f613c7d
KO
136extern void ia64_os_init_dispatch_monarch (void);
137extern void ia64_os_init_dispatch_slave (void);
138
139static int monarch_cpu = -1;
1da177e4
LT
140
141static ia64_mc_info_t ia64_mc_info;
142
143#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
144#define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
145#define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
146#define CPE_HISTORY_LENGTH 5
147#define CMC_HISTORY_LENGTH 5
148
34eac2ab 149#ifdef CONFIG_ACPI
1da177e4 150static struct timer_list cpe_poll_timer;
34eac2ab 151#endif
1da177e4
LT
152static struct timer_list cmc_poll_timer;
153/*
154 * This variable tells whether we are currently in polling mode.
155 * Start with this in the wrong state so we won't play w/ timers
156 * before the system is ready.
157 */
158static int cmc_polling_enabled = 1;
159
160/*
161 * Clearing this variable prevents CPE polling from getting activated
162 * in mca_late_init. Use it if your system doesn't provide a CPEI,
163 * but encounters problems retrieving CPE logs. This should only be
164 * necessary for debugging.
165 */
166static int cpe_poll_enabled = 1;
167
168extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
169
0881fc8d 170static int mca_init __initdata;
1da177e4 171
43ed3baf
HS
172/*
173 * limited & delayed printing support for MCA/INIT handler
174 */
175
176#define mprintk(fmt...) ia64_mca_printk(fmt)
177
178#define MLOGBUF_SIZE (512+256*NR_CPUS)
179#define MLOGBUF_MSGMAX 256
180static char mlogbuf[MLOGBUF_SIZE];
181static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
182static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
183static unsigned long mlogbuf_start;
184static unsigned long mlogbuf_end;
185static unsigned int mlogbuf_finished = 0;
186static unsigned long mlogbuf_timestamp = 0;
187
188static int loglevel_save = -1;
189#define BREAK_LOGLEVEL(__console_loglevel) \
190 oops_in_progress = 1; \
191 if (loglevel_save < 0) \
192 loglevel_save = __console_loglevel; \
193 __console_loglevel = 15;
194
195#define RESTORE_LOGLEVEL(__console_loglevel) \
196 if (loglevel_save >= 0) { \
197 __console_loglevel = loglevel_save; \
198 loglevel_save = -1; \
199 } \
200 mlogbuf_finished = 0; \
201 oops_in_progress = 0;
202
203/*
204 * Push messages into buffer, print them later if not urgent.
205 */
206void ia64_mca_printk(const char *fmt, ...)
207{
208 va_list args;
209 int printed_len;
210 char temp_buf[MLOGBUF_MSGMAX];
211 char *p;
212
213 va_start(args, fmt);
214 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
215 va_end(args);
216
217 /* Copy the output into mlogbuf */
218 if (oops_in_progress) {
219 /* mlogbuf was abandoned, use printk directly instead. */
220 printk(temp_buf);
221 } else {
222 spin_lock(&mlogbuf_wlock);
223 for (p = temp_buf; *p; p++) {
224 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
225 if (next != mlogbuf_start) {
226 mlogbuf[mlogbuf_end] = *p;
227 mlogbuf_end = next;
228 } else {
229 /* buffer full */
230 break;
231 }
232 }
233 mlogbuf[mlogbuf_end] = '\0';
234 spin_unlock(&mlogbuf_wlock);
235 }
236}
237EXPORT_SYMBOL(ia64_mca_printk);
238
239/*
240 * Print buffered messages.
241 * NOTE: call this after returning normal context. (ex. from salinfod)
242 */
243void ia64_mlogbuf_dump(void)
244{
245 char temp_buf[MLOGBUF_MSGMAX];
246 char *p;
247 unsigned long index;
248 unsigned long flags;
249 unsigned int printed_len;
250
251 /* Get output from mlogbuf */
252 while (mlogbuf_start != mlogbuf_end) {
253 temp_buf[0] = '\0';
254 p = temp_buf;
255 printed_len = 0;
256
257 spin_lock_irqsave(&mlogbuf_rlock, flags);
258
259 index = mlogbuf_start;
260 while (index != mlogbuf_end) {
261 *p = mlogbuf[index];
262 index = (index + 1) % MLOGBUF_SIZE;
263 if (!*p)
264 break;
265 p++;
266 if (++printed_len >= MLOGBUF_MSGMAX - 1)
267 break;
268 }
269 *p = '\0';
270 if (temp_buf[0])
271 printk(temp_buf);
272 mlogbuf_start = index;
273
274 mlogbuf_timestamp = 0;
275 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
276 }
277}
278EXPORT_SYMBOL(ia64_mlogbuf_dump);
279
280/*
281 * Call this if system is going to down or if immediate flushing messages to
282 * console is required. (ex. recovery was failed, crash dump is going to be
283 * invoked, long-wait rendezvous etc.)
284 * NOTE: this should be called from monarch.
285 */
286static void ia64_mlogbuf_finish(int wait)
287{
288 BREAK_LOGLEVEL(console_loglevel);
289
290 spin_lock_init(&mlogbuf_rlock);
291 ia64_mlogbuf_dump();
292 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
293 "MCA/INIT might be dodgy or fail.\n");
294
295 if (!wait)
296 return;
297
298 /* wait for console */
299 printk("Delaying for 5 seconds...\n");
300 udelay(5*1000000);
301
302 mlogbuf_finished = 1;
303}
43ed3baf
HS
304
305/*
306 * Print buffered messages from INIT context.
307 */
308static void ia64_mlogbuf_dump_from_init(void)
309{
310 if (mlogbuf_finished)
311 return;
312
5cf1f7ce
ÇO
313 if (mlogbuf_timestamp &&
314 time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
43ed3baf
HS
315 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
316 " and the system seems to be messed up.\n");
317 ia64_mlogbuf_finish(0);
318 return;
319 }
320
321 if (!spin_trylock(&mlogbuf_rlock)) {
322 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
323 "Generated messages other than stack dump will be "
324 "buffered to mlogbuf and will be printed later.\n");
325 printk(KERN_ERR "INIT: If messages would not printed after "
326 "this INIT, wait 30sec and assert INIT again.\n");
327 if (!mlogbuf_timestamp)
328 mlogbuf_timestamp = jiffies;
329 return;
330 }
331 spin_unlock(&mlogbuf_rlock);
332 ia64_mlogbuf_dump();
333}
9138d581
KO
334
335static void inline
336ia64_mca_spin(const char *func)
337{
43ed3baf
HS
338 if (monarch_cpu == smp_processor_id())
339 ia64_mlogbuf_finish(0);
340 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
9138d581
KO
341 while (1)
342 cpu_relax();
343}
1da177e4
LT
344/*
345 * IA64_MCA log support
346 */
347#define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
348#define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
349
350typedef struct ia64_state_log_s
351{
352 spinlock_t isl_lock;
353 int isl_index;
354 unsigned long isl_count;
355 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
356} ia64_state_log_t;
357
358static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
359
360#define IA64_LOG_ALLOCATE(it, size) \
361 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
362 (ia64_err_rec_t *)alloc_bootmem(size); \
363 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
364 (ia64_err_rec_t *)alloc_bootmem(size);}
365#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
366#define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
367#define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
368#define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
369#define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
370#define IA64_LOG_INDEX_INC(it) \
371 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
372 ia64_state_log[it].isl_count++;}
373#define IA64_LOG_INDEX_DEC(it) \
374 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
375#define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
376#define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
377#define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
378
379/*
380 * ia64_log_init
381 * Reset the OS ia64 log buffer
382 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
383 * Outputs : None
384 */
0881fc8d 385static void __init
1da177e4
LT
386ia64_log_init(int sal_info_type)
387{
388 u64 max_size = 0;
389
390 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
391 IA64_LOG_LOCK_INIT(sal_info_type);
392
393 // SAL will tell us the maximum size of any error record of this type
394 max_size = ia64_sal_get_state_info_size(sal_info_type);
395 if (!max_size)
396 /* alloc_bootmem() doesn't like zero-sized allocations! */
397 return;
398
399 // set up OS data structures to hold error info
400 IA64_LOG_ALLOCATE(sal_info_type, max_size);
401 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
402 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
403}
404
405/*
406 * ia64_log_get
407 *
408 * Get the current MCA log from SAL and copy it into the OS log buffer.
409 *
410 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
411 * irq_safe whether you can use printk at this point
412 * Outputs : size (total record length)
413 * *buffer (ptr to error record)
414 *
415 */
416static u64
417ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
418{
419 sal_log_record_header_t *log_buffer;
420 u64 total_len = 0;
c53421b1 421 unsigned long s;
1da177e4
LT
422
423 IA64_LOG_LOCK(sal_info_type);
424
425 /* Get the process state information */
426 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
427
428 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
429
430 if (total_len) {
431 IA64_LOG_INDEX_INC(sal_info_type);
432 IA64_LOG_UNLOCK(sal_info_type);
433 if (irq_safe) {
d4ed8084
HH
434 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
435 __func__, sal_info_type, total_len);
1da177e4
LT
436 }
437 *buffer = (u8 *) log_buffer;
438 return total_len;
439 } else {
440 IA64_LOG_UNLOCK(sal_info_type);
441 return 0;
442 }
443}
444
445/*
446 * ia64_mca_log_sal_error_record
447 *
448 * This function retrieves a specified error record type from SAL
449 * and wakes up any processes waiting for error records.
450 *
7f613c7d
KO
451 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
452 * FIXME: remove MCA and irq_safe.
1da177e4
LT
453 */
454static void
455ia64_mca_log_sal_error_record(int sal_info_type)
456{
457 u8 *buffer;
458 sal_log_record_header_t *rh;
459 u64 size;
7f613c7d 460 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
1da177e4
LT
461#ifdef IA64_MCA_DEBUG_INFO
462 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
463#endif
464
465 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
466 if (!size)
467 return;
468
469 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
470
471 if (irq_safe)
472 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
473 smp_processor_id(),
474 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
475
476 /* Clear logs from corrected errors in case there's no user-level logger */
477 rh = (sal_log_record_header_t *)buffer;
478 if (rh->severity == sal_log_severity_corrected)
479 ia64_sal_clear_state_info(sal_info_type);
480}
481
d2a28ad9
RA
482/*
483 * search_mca_table
484 * See if the MCA surfaced in an instruction range
485 * that has been tagged as recoverable.
486 *
487 * Inputs
488 * first First address range to check
489 * last Last address range to check
490 * ip Instruction pointer, address we are looking for
491 *
492 * Return value:
493 * 1 on Success (in the table)/ 0 on Failure (not in the table)
494 */
495int
496search_mca_table (const struct mca_table_entry *first,
497 const struct mca_table_entry *last,
498 unsigned long ip)
499{
500 const struct mca_table_entry *curr;
501 u64 curr_start, curr_end;
502
503 curr = first;
504 while (curr <= last) {
505 curr_start = (u64) &curr->start_addr + curr->start_addr;
506 curr_end = (u64) &curr->end_addr + curr->end_addr;
507
508 if ((ip >= curr_start) && (ip <= curr_end)) {
509 return 1;
510 }
511 curr++;
512 }
513 return 0;
514}
515
516/* Given an address, look for it in the mca tables. */
517int mca_recover_range(unsigned long addr)
518{
519 extern struct mca_table_entry __start___mca_table[];
520 extern struct mca_table_entry __stop___mca_table[];
521
522 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
523}
524EXPORT_SYMBOL_GPL(mca_recover_range);
525
1da177e4
LT
526#ifdef CONFIG_ACPI
527
55e59c51 528int cpe_vector = -1;
ff741906 529int ia64_cpe_irq = -1;
1da177e4
LT
530
531static irqreturn_t
7d12e780 532ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
1da177e4
LT
533{
534 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
535 static int index;
536 static DEFINE_SPINLOCK(cpe_history_lock);
537
538 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
d4ed8084 539 __func__, cpe_irq, smp_processor_id());
1da177e4
LT
540
541 /* SAL spec states this should run w/ interrupts enabled */
542 local_irq_enable();
543
1da177e4
LT
544 spin_lock(&cpe_history_lock);
545 if (!cpe_poll_enabled && cpe_vector >= 0) {
546
547 int i, count = 1; /* we know 1 happened now */
548 unsigned long now = jiffies;
549
550 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
551 if (now - cpe_history[i] <= HZ)
552 count++;
553 }
554
555 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
556 if (count >= CPE_HISTORY_LENGTH) {
557
558 cpe_poll_enabled = 1;
559 spin_unlock(&cpe_history_lock);
560 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
561
562 /*
563 * Corrected errors will still be corrected, but
564 * make sure there's a log somewhere that indicates
565 * something is generating more than we can handle.
566 */
567 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
568
569 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
570
571 /* lock already released, get out now */
ddb4f0df 572 goto out;
1da177e4
LT
573 } else {
574 cpe_history[index++] = now;
575 if (index == CPE_HISTORY_LENGTH)
576 index = 0;
577 }
578 }
579 spin_unlock(&cpe_history_lock);
ddb4f0df
HS
580out:
581 /* Get the CPE error record and log it */
582 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
583
a3967685
TL
584 local_irq_disable();
585
1da177e4
LT
586 return IRQ_HANDLED;
587}
588
589#endif /* CONFIG_ACPI */
590
1da177e4
LT
591#ifdef CONFIG_ACPI
592/*
593 * ia64_mca_register_cpev
594 *
595 * Register the corrected platform error vector with SAL.
596 *
597 * Inputs
598 * cpev Corrected Platform Error Vector number
599 *
600 * Outputs
601 * None
602 */
1f3b6045 603void
1da177e4
LT
604ia64_mca_register_cpev (int cpev)
605{
606 /* Register the CPE interrupt vector with SAL */
607 struct ia64_sal_retval isrv;
608
609 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
610 if (isrv.status) {
611 printk(KERN_ERR "Failed to register Corrected Platform "
612 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
613 return;
614 }
615
616 IA64_MCA_DEBUG("%s: corrected platform error "
d4ed8084 617 "vector %#x registered\n", __func__, cpev);
1da177e4
LT
618}
619#endif /* CONFIG_ACPI */
620
1da177e4
LT
621/*
622 * ia64_mca_cmc_vector_setup
623 *
624 * Setup the corrected machine check vector register in the processor.
625 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
626 * This function is invoked on a per-processor basis.
627 *
628 * Inputs
629 * None
630 *
631 * Outputs
632 * None
633 */
0881fc8d 634void __cpuinit
1da177e4
LT
635ia64_mca_cmc_vector_setup (void)
636{
637 cmcv_reg_t cmcv;
638
639 cmcv.cmcv_regval = 0;
640 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
641 cmcv.cmcv_vector = IA64_CMC_VECTOR;
642 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
643
d4ed8084
HH
644 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
645 __func__, smp_processor_id(), IA64_CMC_VECTOR);
1da177e4
LT
646
647 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
d4ed8084 648 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
1da177e4
LT
649}
650
651/*
652 * ia64_mca_cmc_vector_disable
653 *
654 * Mask the corrected machine check vector register in the processor.
655 * This function is invoked on a per-processor basis.
656 *
657 * Inputs
658 * dummy(unused)
659 *
660 * Outputs
661 * None
662 */
663static void
664ia64_mca_cmc_vector_disable (void *dummy)
665{
666 cmcv_reg_t cmcv;
667
668 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
669
670 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
671 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
672
d4ed8084
HH
673 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
674 __func__, smp_processor_id(), cmcv.cmcv_vector);
1da177e4
LT
675}
676
677/*
678 * ia64_mca_cmc_vector_enable
679 *
680 * Unmask the corrected machine check vector register in the processor.
681 * This function is invoked on a per-processor basis.
682 *
683 * Inputs
684 * dummy(unused)
685 *
686 * Outputs
687 * None
688 */
689static void
690ia64_mca_cmc_vector_enable (void *dummy)
691{
692 cmcv_reg_t cmcv;
693
694 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
695
696 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
697 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
698
d4ed8084
HH
699 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
700 __func__, smp_processor_id(), cmcv.cmcv_vector);
1da177e4
LT
701}
702
703/*
704 * ia64_mca_cmc_vector_disable_keventd
705 *
706 * Called via keventd (smp_call_function() is not safe in interrupt context) to
707 * disable the cmc interrupt vector.
708 */
709static void
6d5aefb8 710ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
1da177e4 711{
15c8b6c1 712 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
1da177e4
LT
713}
714
715/*
716 * ia64_mca_cmc_vector_enable_keventd
717 *
718 * Called via keventd (smp_call_function() is not safe in interrupt context) to
719 * enable the cmc interrupt vector.
720 */
721static void
6d5aefb8 722ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
1da177e4 723{
15c8b6c1 724 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
1da177e4
LT
725}
726
1da177e4
LT
727/*
728 * ia64_mca_wakeup
729 *
e1b1eb01 730 * Send an inter-cpu interrupt to wake-up a particular cpu.
1da177e4
LT
731 *
732 * Inputs : cpuid
733 * Outputs : None
734 */
735static void
736ia64_mca_wakeup(int cpu)
737{
738 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
1da177e4
LT
739}
740
741/*
742 * ia64_mca_wakeup_all
743 *
e1b1eb01 744 * Wakeup all the slave cpus which have rendez'ed previously.
1da177e4
LT
745 *
746 * Inputs : None
747 * Outputs : None
748 */
749static void
750ia64_mca_wakeup_all(void)
751{
752 int cpu;
753
754 /* Clear the Rendez checkin flag for all cpus */
ddf6d0a0 755 for_each_online_cpu(cpu) {
1da177e4
LT
756 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
757 ia64_mca_wakeup(cpu);
758 }
759
760}
761
762/*
763 * ia64_mca_rendez_interrupt_handler
764 *
765 * This is handler used to put slave processors into spinloop
766 * while the monarch processor does the mca handling and later
e1b1eb01
RA
767 * wake each slave up once the monarch is done. The state
768 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
769 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
770 * the cpu has come out of OS rendezvous.
1da177e4
LT
771 *
772 * Inputs : None
773 * Outputs : None
774 */
775static irqreturn_t
7d12e780 776ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
1da177e4
LT
777{
778 unsigned long flags;
779 int cpu = smp_processor_id();
958b166c
KO
780 struct ia64_mca_notify_die nd =
781 { .sos = NULL, .monarch_cpu = &monarch_cpu };
1da177e4
LT
782
783 /* Mask all interrupts */
784 local_irq_save(flags);
4fa2f0e6
HS
785
786 NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
1da177e4
LT
787
788 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
789 /* Register with the SAL monarch that the slave has
790 * reached SAL
791 */
792 ia64_sal_mc_rendez();
793
4fa2f0e6 794 NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
9138d581 795
7f613c7d
KO
796 /* Wait for the monarch cpu to exit. */
797 while (monarch_cpu != -1)
798 cpu_relax(); /* spin until monarch leaves */
1da177e4 799
4fa2f0e6 800 NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
9138d581 801
e1b1eb01 802 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1da177e4
LT
803 /* Enable all interrupts */
804 local_irq_restore(flags);
805 return IRQ_HANDLED;
806}
807
808/*
809 * ia64_mca_wakeup_int_handler
810 *
811 * The interrupt handler for processing the inter-cpu interrupt to the
812 * slave cpu which was spinning in the rendez loop.
813 * Since this spinning is done by turning off the interrupts and
814 * polling on the wakeup-interrupt bit in the IRR, there is
815 * nothing useful to be done in the handler.
816 *
817 * Inputs : wakeup_irq (Wakeup-interrupt bit)
818 * arg (Interrupt handler specific argument)
1da177e4
LT
819 * Outputs : None
820 *
821 */
822static irqreturn_t
7d12e780 823ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
1da177e4
LT
824{
825 return IRQ_HANDLED;
826}
827
1da177e4
LT
828/* Function pointer for extra MCA recovery */
829int (*ia64_mca_ucmc_extension)
7f613c7d 830 (void*,struct ia64_sal_os_state*)
1da177e4
LT
831 = NULL;
832
833int
7f613c7d 834ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
1da177e4
LT
835{
836 if (ia64_mca_ucmc_extension)
837 return 1;
838
839 ia64_mca_ucmc_extension = fn;
840 return 0;
841}
842
843void
844ia64_unreg_MCA_extension(void)
845{
846 if (ia64_mca_ucmc_extension)
847 ia64_mca_ucmc_extension = NULL;
848}
849
850EXPORT_SYMBOL(ia64_reg_MCA_extension);
851EXPORT_SYMBOL(ia64_unreg_MCA_extension);
852
7f613c7d
KO
853
854static inline void
e088a4ad 855copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
7f613c7d
KO
856{
857 u64 fslot, tslot, nat;
858 *tr = *fr;
859 fslot = ((unsigned long)fr >> 3) & 63;
860 tslot = ((unsigned long)tr >> 3) & 63;
861 *tnat &= ~(1UL << tslot);
862 nat = (fnat >> fslot) & 1;
863 *tnat |= (nat << tslot);
864}
865
e9ac054d
KO
866/* Change the comm field on the MCA/INT task to include the pid that
867 * was interrupted, it makes for easier debugging. If that pid was 0
868 * (swapper or nested MCA/INIT) then use the start of the previous comm
869 * field suffixed with its cpu.
870 */
871
872static void
36c8b586 873ia64_mca_modify_comm(const struct task_struct *previous_current)
e9ac054d
KO
874{
875 char *p, comm[sizeof(current->comm)];
876 if (previous_current->pid)
877 snprintf(comm, sizeof(comm), "%s %d",
878 current->comm, previous_current->pid);
879 else {
880 int l;
881 if ((p = strchr(previous_current->comm, ' ')))
882 l = p - previous_current->comm;
883 else
884 l = strlen(previous_current->comm);
885 snprintf(comm, sizeof(comm), "%s %*s %d",
886 current->comm, l, previous_current->comm,
887 task_thread_info(previous_current)->cpu);
888 }
889 memcpy(current->comm, comm, sizeof(current->comm));
890}
891
29e4e025 892static void
9ee27c76 893finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
29e4e025
TI
894 unsigned long *nat)
895{
9ee27c76 896 const pal_min_state_area_t *ms = sos->pal_min_state;
29e4e025
TI
897 const u64 *bank;
898
899 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
900 * pmsa_{xip,xpsr,xfs}
901 */
902 if (ia64_psr(regs)->ic) {
903 regs->cr_iip = ms->pmsa_iip;
904 regs->cr_ipsr = ms->pmsa_ipsr;
905 regs->cr_ifs = ms->pmsa_ifs;
906 } else {
907 regs->cr_iip = ms->pmsa_xip;
908 regs->cr_ipsr = ms->pmsa_xpsr;
909 regs->cr_ifs = ms->pmsa_xfs;
9ee27c76
TI
910
911 sos->iip = ms->pmsa_iip;
912 sos->ipsr = ms->pmsa_ipsr;
913 sos->ifs = ms->pmsa_ifs;
29e4e025
TI
914 }
915 regs->pr = ms->pmsa_pr;
916 regs->b0 = ms->pmsa_br0;
917 regs->ar_rsc = ms->pmsa_rsc;
918 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &regs->r1, nat);
919 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &regs->r2, nat);
920 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &regs->r3, nat);
921 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &regs->r8, nat);
922 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &regs->r9, nat);
923 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &regs->r10, nat);
924 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &regs->r11, nat);
925 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &regs->r12, nat);
926 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &regs->r13, nat);
927 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &regs->r14, nat);
928 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &regs->r15, nat);
929 if (ia64_psr(regs)->bn)
930 bank = ms->pmsa_bank1_gr;
931 else
932 bank = ms->pmsa_bank0_gr;
933 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &regs->r16, nat);
934 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &regs->r17, nat);
935 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &regs->r18, nat);
936 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &regs->r19, nat);
937 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &regs->r20, nat);
938 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &regs->r21, nat);
939 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &regs->r22, nat);
940 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &regs->r23, nat);
941 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &regs->r24, nat);
942 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &regs->r25, nat);
943 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &regs->r26, nat);
944 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &regs->r27, nat);
945 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &regs->r28, nat);
946 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &regs->r29, nat);
947 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &regs->r30, nat);
948 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &regs->r31, nat);
949}
950
7f613c7d
KO
951/* On entry to this routine, we are running on the per cpu stack, see
952 * mca_asm.h. The original stack has not been touched by this event. Some of
953 * the original stack's registers will be in the RBS on this stack. This stack
954 * also contains a partial pt_regs and switch_stack, the rest of the data is in
955 * PAL minstate.
956 *
957 * The first thing to do is modify the original stack to look like a blocked
958 * task so we can run backtrace on the original task. Also mark the per cpu
959 * stack as current to ensure that we use the correct task state, it also means
960 * that we can do backtrace on the MCA/INIT handler code itself.
961 */
962
36c8b586 963static struct task_struct *
7f613c7d
KO
964ia64_mca_modify_original_stack(struct pt_regs *regs,
965 const struct switch_stack *sw,
966 struct ia64_sal_os_state *sos,
967 const char *type)
968{
e9ac054d 969 char *p;
7f613c7d
KO
970 ia64_va va;
971 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
972 const pal_min_state_area_t *ms = sos->pal_min_state;
36c8b586 973 struct task_struct *previous_current;
7f613c7d
KO
974 struct pt_regs *old_regs;
975 struct switch_stack *old_sw;
976 unsigned size = sizeof(struct pt_regs) +
977 sizeof(struct switch_stack) + 16;
e088a4ad
MW
978 unsigned long *old_bspstore, *old_bsp;
979 unsigned long *new_bspstore, *new_bsp;
980 unsigned long old_unat, old_rnat, new_rnat, nat;
7f613c7d
KO
981 u64 slots, loadrs = regs->loadrs;
982 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
983 u64 ar_bspstore = regs->ar_bspstore;
984 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
7f613c7d
KO
985 const char *msg;
986 int cpu = smp_processor_id();
987
988 previous_current = curr_task(cpu);
989 set_curr_task(cpu, current);
990 if ((p = strchr(current->comm, ' ')))
991 *p = '\0';
992
993 /* Best effort attempt to cope with MCA/INIT delivered while in
994 * physical mode.
995 */
996 regs->cr_ipsr = ms->pmsa_ipsr;
997 if (ia64_psr(regs)->dt == 0) {
998 va.l = r12;
999 if (va.f.reg == 0) {
1000 va.f.reg = 7;
1001 r12 = va.l;
1002 }
1003 va.l = r13;
1004 if (va.f.reg == 0) {
1005 va.f.reg = 7;
1006 r13 = va.l;
1007 }
1008 }
1009 if (ia64_psr(regs)->rt == 0) {
1010 va.l = ar_bspstore;
1011 if (va.f.reg == 0) {
1012 va.f.reg = 7;
1013 ar_bspstore = va.l;
1014 }
1015 va.l = ar_bsp;
1016 if (va.f.reg == 0) {
1017 va.f.reg = 7;
1018 ar_bsp = va.l;
1019 }
1020 }
1021
1022 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1023 * have been copied to the old stack, the old stack may fail the
1024 * validation tests below. So ia64_old_stack() must restore the dirty
1025 * registers from the new stack. The old and new bspstore probably
1026 * have different alignments, so loadrs calculated on the old bsp
1027 * cannot be used to restore from the new bsp. Calculate a suitable
1028 * loadrs for the new stack and save it in the new pt_regs, where
1029 * ia64_old_stack() can get it.
1030 */
e088a4ad
MW
1031 old_bspstore = (unsigned long *)ar_bspstore;
1032 old_bsp = (unsigned long *)ar_bsp;
7f613c7d 1033 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
e088a4ad 1034 new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
7f613c7d
KO
1035 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1036 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1037
1038 /* Verify the previous stack state before we change it */
1039 if (user_mode(regs)) {
1040 msg = "occurred in user space";
e9ac054d
KO
1041 /* previous_current is guaranteed to be valid when the task was
1042 * in user space, so ...
1043 */
1044 ia64_mca_modify_comm(previous_current);
7f613c7d
KO
1045 goto no_mod;
1046 }
d2a28ad9 1047
1612b18c
RA
1048 if (r13 != sos->prev_IA64_KR_CURRENT) {
1049 msg = "inconsistent previous current and r13";
1050 goto no_mod;
1051 }
1052
d2a28ad9 1053 if (!mca_recover_range(ms->pmsa_iip)) {
d2a28ad9
RA
1054 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1055 msg = "inconsistent r12 and r13";
1056 goto no_mod;
1057 }
1058 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1059 msg = "inconsistent ar.bspstore and r13";
1060 goto no_mod;
1061 }
1062 va.p = old_bspstore;
1063 if (va.f.reg < 5) {
1064 msg = "old_bspstore is in the wrong region";
1065 goto no_mod;
1066 }
1067 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1068 msg = "inconsistent ar.bsp and r13";
1069 goto no_mod;
1070 }
1071 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1072 if (ar_bspstore + size > r12) {
1073 msg = "no room for blocked state";
1074 goto no_mod;
1075 }
7f613c7d
KO
1076 }
1077
e9ac054d 1078 ia64_mca_modify_comm(previous_current);
7f613c7d
KO
1079
1080 /* Make the original task look blocked. First stack a struct pt_regs,
1081 * describing the state at the time of interrupt. mca_asm.S built a
1082 * partial pt_regs, copy it and fill in the blanks using minstate.
1083 */
1084 p = (char *)r12 - sizeof(*regs);
1085 old_regs = (struct pt_regs *)p;
1086 memcpy(old_regs, regs, sizeof(*regs));
7f613c7d 1087 old_regs->loadrs = loadrs;
7f613c7d 1088 old_unat = old_regs->ar_unat;
9ee27c76 1089 finish_pt_regs(old_regs, sos, &old_unat);
7f613c7d
KO
1090
1091 /* Next stack a struct switch_stack. mca_asm.S built a partial
1092 * switch_stack, copy it and fill in the blanks using pt_regs and
1093 * minstate.
1094 *
1095 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1096 * ar.pfs is set to 0.
1097 *
1098 * unwind.c::unw_unwind() does special processing for interrupt frames.
1099 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1100 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1101 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1102 * switch_stack on the original stack so it will unwind correctly when
1103 * unwind.c reads pt_regs.
1104 *
1105 * thread.ksp is updated to point to the synthesized switch_stack.
1106 */
1107 p -= sizeof(struct switch_stack);
1108 old_sw = (struct switch_stack *)p;
1109 memcpy(old_sw, sw, sizeof(*sw));
1110 old_sw->caller_unat = old_unat;
1111 old_sw->ar_fpsr = old_regs->ar_fpsr;
1112 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1113 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1114 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1115 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1116 old_sw->b0 = (u64)ia64_leave_kernel;
1117 old_sw->b1 = ms->pmsa_br1;
1118 old_sw->ar_pfs = 0;
1119 old_sw->ar_unat = old_unat;
1120 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1121 previous_current->thread.ksp = (u64)p - 16;
1122
1123 /* Finally copy the original stack's registers back to its RBS.
1124 * Registers from ar.bspstore through ar.bsp at the time of the event
1125 * are in the current RBS, copy them back to the original stack. The
1126 * copy must be done register by register because the original bspstore
1127 * and the current one have different alignments, so the saved RNAT
1128 * data occurs at different places.
1129 *
1130 * mca_asm does cover, so the old_bsp already includes all registers at
1131 * the time of MCA/INIT. It also does flushrs, so all registers before
1132 * this function have been written to backing store on the MCA/INIT
1133 * stack.
1134 */
1135 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1136 old_rnat = regs->ar_rnat;
1137 while (slots--) {
1138 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1139 new_rnat = ia64_get_rnat(new_bspstore++);
1140 }
1141 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1142 *old_bspstore++ = old_rnat;
1143 old_rnat = 0;
1144 }
1145 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1146 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1147 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1148 *old_bspstore++ = *new_bspstore++;
1149 }
1150 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1151 old_sw->ar_rnat = old_rnat;
1152
1153 sos->prev_task = previous_current;
1154 return previous_current;
1155
1156no_mod:
ef23cdbe 1157 mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
7f613c7d 1158 smp_processor_id(), type, msg);
29e4e025 1159 old_unat = regs->ar_unat;
9ee27c76 1160 finish_pt_regs(regs, sos, &old_unat);
7f613c7d
KO
1161 return previous_current;
1162}
1163
1164/* The monarch/slave interaction is based on monarch_cpu and requires that all
1165 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1166 * not entered rendezvous yet then wait a bit. The assumption is that any
1167 * slave that has not rendezvoused after a reasonable time is never going to do
1168 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1169 * interrupt, as well as cpus that receive the INIT slave event.
1170 */
1171
1172static void
356a5c1c 1173ia64_wait_for_slaves(int monarch, const char *type)
7f613c7d 1174{
2bc5c282
RA
1175 int c, i , wait;
1176
1177 /*
1178 * wait 5 seconds total for slaves (arbitrary)
1179 */
1180 for (i = 0; i < 5000; i++) {
1181 wait = 0;
1182 for_each_online_cpu(c) {
1183 if (c == monarch)
1184 continue;
1185 if (ia64_mc_info.imi_rendez_checkin[c]
1186 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1187 udelay(1000); /* short wait */
1188 wait = 1;
1189 break;
1190 }
7f613c7d 1191 }
2bc5c282
RA
1192 if (!wait)
1193 goto all_in;
7f613c7d 1194 }
2bc5c282 1195
43ed3baf
HS
1196 /*
1197 * Maybe slave(s) dead. Print buffered messages immediately.
1198 */
1199 ia64_mlogbuf_finish(0);
1200 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
9336b083
KO
1201 for_each_online_cpu(c) {
1202 if (c == monarch)
1203 continue;
1204 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
43ed3baf 1205 mprintk(" %d", c);
9336b083 1206 }
43ed3baf 1207 mprintk("\n");
9336b083
KO
1208 return;
1209
1210all_in:
43ed3baf 1211 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
9336b083 1212 return;
7f613c7d
KO
1213}
1214
96651896
XZ
1215/* mca_insert_tr
1216 *
1217 * Switch rid when TR reload and needed!
1218 * iord: 1: itr, 2: itr;
1219 *
1220*/
1221static void mca_insert_tr(u64 iord)
1222{
1223
1224 int i;
1225 u64 old_rr;
1226 struct ia64_tr_entry *p;
1227 unsigned long psr;
1228 int cpu = smp_processor_id();
1229
6c57a332
TL
1230 if (!ia64_idtrs[cpu])
1231 return;
1232
96651896
XZ
1233 psr = ia64_clear_ic();
1234 for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
6c57a332 1235 p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
96651896
XZ
1236 if (p->pte & 0x1) {
1237 old_rr = ia64_get_rr(p->ifa);
1238 if (old_rr != p->rr) {
1239 ia64_set_rr(p->ifa, p->rr);
1240 ia64_srlz_d();
1241 }
1242 ia64_ptr(iord, p->ifa, p->itir >> 2);
1243 ia64_srlz_i();
1244 if (iord & 0x1) {
1245 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1246 ia64_srlz_i();
1247 }
1248 if (iord & 0x2) {
1249 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1250 ia64_srlz_i();
1251 }
1252 if (old_rr != p->rr) {
1253 ia64_set_rr(p->ifa, old_rr);
1254 ia64_srlz_d();
1255 }
1256 }
1257 }
1258 ia64_set_psr(psr);
1259}
1260
1da177e4 1261/*
7f613c7d 1262 * ia64_mca_handler
1da177e4
LT
1263 *
1264 * This is uncorrectable machine check handler called from OS_MCA
1265 * dispatch code which is in turn called from SAL_CHECK().
1266 * This is the place where the core of OS MCA handling is done.
1267 * Right now the logs are extracted and displayed in a well-defined
1268 * format. This handler code is supposed to be run only on the
1269 * monarch processor. Once the monarch is done with MCA handling
1270 * further MCA logging is enabled by clearing logs.
1271 * Monarch also has the duty of sending wakeup-IPIs to pull the
1272 * slave processors out of rendezvous spinloop.
1612b18c
RA
1273 *
1274 * If multiple processors call into OS_MCA, the first will become
1275 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1276 * bitmask. After the first monarch has processed its MCA, it
1277 * will wake up the next cpu in the mca_cpu bitmask and then go
1278 * into the rendezvous loop. When all processors have serviced
1279 * their MCA, the last monarch frees up the rest of the processors.
1da177e4
LT
1280 */
1281void
7f613c7d
KO
1282ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1283 struct ia64_sal_os_state *sos)
1da177e4 1284{
7f613c7d 1285 int recover, cpu = smp_processor_id();
36c8b586 1286 struct task_struct *previous_current;
958b166c 1287 struct ia64_mca_notify_die nd =
4fa2f0e6 1288 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1612b18c
RA
1289 static atomic_t mca_count;
1290 static cpumask_t mca_cpu;
7f613c7d 1291
1612b18c
RA
1292 if (atomic_add_return(1, &mca_count) == 1) {
1293 monarch_cpu = cpu;
1294 sos->monarch = 1;
1295 } else {
1296 cpu_set(cpu, mca_cpu);
1297 sos->monarch = 0;
1298 }
43ed3baf
HS
1299 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1300 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
9336b083 1301
7f613c7d 1302 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1612b18c 1303
4fa2f0e6 1304 NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
e1b1eb01
RA
1305
1306 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1612b18c
RA
1307 if (sos->monarch) {
1308 ia64_wait_for_slaves(cpu, "MCA");
e1b1eb01
RA
1309
1310 /* Wakeup all the processors which are spinning in the
1311 * rendezvous loop. They will leave SAL, then spin in the OS
1312 * with interrupts disabled until this monarch cpu leaves the
1313 * MCA handler. That gets control back to the OS so we can
1314 * backtrace the other cpus, backtrace when spinning in SAL
1315 * does not work.
1316 */
1317 ia64_mca_wakeup_all();
1612b18c 1318 } else {
1612b18c
RA
1319 while (cpu_isset(cpu, mca_cpu))
1320 cpu_relax(); /* spin until monarch wakes us */
284e5427
HS
1321 }
1322
4fa2f0e6 1323 NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
7f613c7d 1324
1da177e4
LT
1325 /* Get the MCA error record and log it */
1326 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1327
618b206f
RA
1328 /* MCA error recovery */
1329 recover = (ia64_mca_ucmc_extension
1da177e4
LT
1330 && ia64_mca_ucmc_extension(
1331 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
7f613c7d 1332 sos));
1da177e4
LT
1333
1334 if (recover) {
1335 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1336 rh->severity = sal_log_severity_corrected;
1337 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
7f613c7d 1338 sos->os_status = IA64_MCA_CORRECTED;
43ed3baf
HS
1339 } else {
1340 /* Dump buffered message to console */
1341 ia64_mlogbuf_finish(1);
1da177e4 1342 }
b0247a55 1343
96651896
XZ
1344 if (__get_cpu_var(ia64_mca_tr_reload)) {
1345 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1346 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1347 }
71b264f8 1348
4fa2f0e6 1349 NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1da177e4 1350
1612b18c
RA
1351 if (atomic_dec_return(&mca_count) > 0) {
1352 int i;
1353
1354 /* wake up the next monarch cpu,
1355 * and put this cpu in the rendez loop.
1356 */
1612b18c
RA
1357 for_each_online_cpu(i) {
1358 if (cpu_isset(i, mca_cpu)) {
1359 monarch_cpu = i;
1360 cpu_clear(i, mca_cpu); /* wake next cpu */
1361 while (monarch_cpu != -1)
1362 cpu_relax(); /* spin until last cpu leaves */
1612b18c 1363 set_curr_task(cpu, previous_current);
e1b1eb01
RA
1364 ia64_mc_info.imi_rendez_checkin[cpu]
1365 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1612b18c
RA
1366 return;
1367 }
1368 }
1369 }
7f613c7d 1370 set_curr_task(cpu, previous_current);
e1b1eb01
RA
1371 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1372 monarch_cpu = -1; /* This frees the slaves and previous monarchs */
1da177e4
LT
1373}
1374
6d5aefb8
DH
1375static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1376static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1da177e4
LT
1377
1378/*
1379 * ia64_mca_cmc_int_handler
1380 *
1381 * This is corrected machine check interrupt handler.
1382 * Right now the logs are extracted and displayed in a well-defined
1383 * format.
1384 *
1385 * Inputs
1386 * interrupt number
1387 * client data arg ptr
1da177e4
LT
1388 *
1389 * Outputs
1390 * None
1391 */
1392static irqreturn_t
7d12e780 1393ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1da177e4
LT
1394{
1395 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1396 static int index;
1397 static DEFINE_SPINLOCK(cmc_history_lock);
1398
1399 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
d4ed8084 1400 __func__, cmc_irq, smp_processor_id());
1da177e4
LT
1401
1402 /* SAL spec states this should run w/ interrupts enabled */
1403 local_irq_enable();
1404
1da177e4
LT
1405 spin_lock(&cmc_history_lock);
1406 if (!cmc_polling_enabled) {
1407 int i, count = 1; /* we know 1 happened now */
1408 unsigned long now = jiffies;
1409
1410 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1411 if (now - cmc_history[i] <= HZ)
1412 count++;
1413 }
1414
1415 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1416 if (count >= CMC_HISTORY_LENGTH) {
1417
1418 cmc_polling_enabled = 1;
1419 spin_unlock(&cmc_history_lock);
76e677e2
BS
1420 /* If we're being hit with CMC interrupts, we won't
1421 * ever execute the schedule_work() below. Need to
1422 * disable CMC interrupts on this processor now.
1423 */
1424 ia64_mca_cmc_vector_disable(NULL);
1da177e4
LT
1425 schedule_work(&cmc_disable_work);
1426
1427 /*
1428 * Corrected errors will still be corrected, but
1429 * make sure there's a log somewhere that indicates
1430 * something is generating more than we can handle.
1431 */
1432 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1433
1434 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1435
1436 /* lock already released, get out now */
ddb4f0df 1437 goto out;
1da177e4
LT
1438 } else {
1439 cmc_history[index++] = now;
1440 if (index == CMC_HISTORY_LENGTH)
1441 index = 0;
1442 }
1443 }
1444 spin_unlock(&cmc_history_lock);
ddb4f0df
HS
1445out:
1446 /* Get the CMC error record and log it */
1447 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1448
1da177e4
LT
1449 return IRQ_HANDLED;
1450}
1451
1452/*
1453 * ia64_mca_cmc_int_caller
1454 *
1455 * Triggered by sw interrupt from CMC polling routine. Calls
1456 * real interrupt handler and either triggers a sw interrupt
1457 * on the next cpu or does cleanup at the end.
1458 *
1459 * Inputs
1460 * interrupt number
1461 * client data arg ptr
1da177e4
LT
1462 * Outputs
1463 * handled
1464 */
1465static irqreturn_t
7d12e780 1466ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1da177e4
LT
1467{
1468 static int start_count = -1;
1469 unsigned int cpuid;
1470
1471 cpuid = smp_processor_id();
1472
1473 /* If first cpu, update count */
1474 if (start_count == -1)
1475 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1476
7d12e780 1477 ia64_mca_cmc_int_handler(cmc_irq, arg);
1da177e4 1478
5dd3c994 1479 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1da177e4 1480
5dd3c994 1481 if (cpuid < nr_cpu_ids) {
1da177e4
LT
1482 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1483 } else {
1484 /* If no log record, switch out of polling mode */
1485 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1486
1487 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1488 schedule_work(&cmc_enable_work);
1489 cmc_polling_enabled = 0;
1490
1491 } else {
1492
1493 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1494 }
1495
1496 start_count = -1;
1497 }
1498
1499 return IRQ_HANDLED;
1500}
1501
1502/*
1503 * ia64_mca_cmc_poll
1504 *
1505 * Poll for Corrected Machine Checks (CMCs)
1506 *
1507 * Inputs : dummy(unused)
1508 * Outputs : None
1509 *
1510 */
1511static void
1512ia64_mca_cmc_poll (unsigned long dummy)
1513{
1514 /* Trigger a CMC interrupt cascade */
1515 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1516}
1517
1518/*
1519 * ia64_mca_cpe_int_caller
1520 *
1521 * Triggered by sw interrupt from CPE polling routine. Calls
1522 * real interrupt handler and either triggers a sw interrupt
1523 * on the next cpu or does cleanup at the end.
1524 *
1525 * Inputs
1526 * interrupt number
1527 * client data arg ptr
1da177e4
LT
1528 * Outputs
1529 * handled
1530 */
1531#ifdef CONFIG_ACPI
1532
1533static irqreturn_t
7d12e780 1534ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1da177e4
LT
1535{
1536 static int start_count = -1;
1537 static int poll_time = MIN_CPE_POLL_INTERVAL;
1538 unsigned int cpuid;
1539
1540 cpuid = smp_processor_id();
1541
1542 /* If first cpu, update count */
1543 if (start_count == -1)
1544 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1545
7d12e780 1546 ia64_mca_cpe_int_handler(cpe_irq, arg);
1da177e4 1547
5dd3c994 1548 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1da177e4
LT
1549
1550 if (cpuid < NR_CPUS) {
1551 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1552 } else {
1553 /*
1554 * If a log was recorded, increase our polling frequency,
1555 * otherwise, backoff or return to interrupt mode.
1556 */
1557 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1558 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1559 } else if (cpe_vector < 0) {
1560 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1561 } else {
1562 poll_time = MIN_CPE_POLL_INTERVAL;
1563
1564 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1565 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1566 cpe_poll_enabled = 0;
1567 }
1568
1569 if (cpe_poll_enabled)
1570 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1571 start_count = -1;
1572 }
1573
1574 return IRQ_HANDLED;
1575}
1576
1da177e4
LT
1577/*
1578 * ia64_mca_cpe_poll
1579 *
1580 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1581 * on first cpu, from there it will trickle through all the cpus.
1582 *
1583 * Inputs : dummy(unused)
1584 * Outputs : None
1585 *
1586 */
1587static void
1588ia64_mca_cpe_poll (unsigned long dummy)
1589{
1590 /* Trigger a CPE interrupt cascade */
1591 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1592}
1593
b655913b
PC
1594#endif /* CONFIG_ACPI */
1595
9138d581
KO
1596static int
1597default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1598{
1599 int c;
1600 struct task_struct *g, *t;
1601 if (val != DIE_INIT_MONARCH_PROCESS)
1602 return NOTIFY_DONE;
311f594d
JL
1603#ifdef CONFIG_KEXEC
1604 if (atomic_read(&kdump_in_progress))
1605 return NOTIFY_DONE;
1606#endif
43ed3baf
HS
1607
1608 /*
1609 * FIXME: mlogbuf will brim over with INIT stack dumps.
1610 * To enable show_stack from INIT, we use oops_in_progress which should
1611 * be used in real oops. This would cause something wrong after INIT.
1612 */
1613 BREAK_LOGLEVEL(console_loglevel);
1614 ia64_mlogbuf_dump_from_init();
1615
9138d581
KO
1616 printk(KERN_ERR "Processes interrupted by INIT -");
1617 for_each_online_cpu(c) {
1618 struct ia64_sal_os_state *s;
1619 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1620 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1621 g = s->prev_task;
1622 if (g) {
1623 if (g->pid)
1624 printk(" %d", g->pid);
1625 else
1626 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1627 }
1628 }
1629 printk("\n\n");
1630 if (read_trylock(&tasklist_lock)) {
1631 do_each_thread (g, t) {
1632 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1633 show_stack(t, NULL);
1634 } while_each_thread (g, t);
1635 read_unlock(&tasklist_lock);
1636 }
43ed3baf
HS
1637 /* FIXME: This will not restore zapped printk locks. */
1638 RESTORE_LOGLEVEL(console_loglevel);
9138d581
KO
1639 return NOTIFY_DONE;
1640}
1641
1da177e4
LT
1642/*
1643 * C portion of the OS INIT handler
1644 *
7f613c7d 1645 * Called from ia64_os_init_dispatch
1da177e4 1646 *
7f613c7d
KO
1647 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1648 * this event. This code is used for both monarch and slave INIT events, see
1649 * sos->monarch.
1da177e4 1650 *
7f613c7d
KO
1651 * All INIT events switch to the INIT stack and change the previous process to
1652 * blocked status. If one of the INIT events is the monarch then we are
1653 * probably processing the nmi button/command. Use the monarch cpu to dump all
1654 * the processes. The slave INIT events all spin until the monarch cpu
1655 * returns. We can also get INIT slave events for MCA, in which case the MCA
1656 * process is the monarch.
1da177e4 1657 */
7f613c7d 1658
1da177e4 1659void
7f613c7d
KO
1660ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1661 struct ia64_sal_os_state *sos)
1da177e4 1662{
7f613c7d
KO
1663 static atomic_t slaves;
1664 static atomic_t monarchs;
36c8b586 1665 struct task_struct *previous_current;
9138d581 1666 int cpu = smp_processor_id();
958b166c
KO
1667 struct ia64_mca_notify_die nd =
1668 { .sos = sos, .monarch_cpu = &monarch_cpu };
1da177e4 1669
4fa2f0e6 1670 NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
958b166c 1671
43ed3baf 1672 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
7f613c7d
KO
1673 sos->proc_state_param, cpu, sos->monarch);
1674 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1da177e4 1675
7f613c7d
KO
1676 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1677 sos->os_status = IA64_INIT_RESUME;
1678
1679 /* FIXME: Workaround for broken proms that drive all INIT events as
1680 * slaves. The last slave that enters is promoted to be a monarch.
1681 * Remove this code in September 2006, that gives platforms a year to
1682 * fix their proms and get their customers updated.
1da177e4 1683 */
7f613c7d 1684 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
43ed3baf 1685 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
d4ed8084 1686 __func__, cpu);
7f613c7d
KO
1687 atomic_dec(&slaves);
1688 sos->monarch = 1;
1689 }
1da177e4 1690
7f613c7d
KO
1691 /* FIXME: Workaround for broken proms that drive all INIT events as
1692 * monarchs. Second and subsequent monarchs are demoted to slaves.
1693 * Remove this code in September 2006, that gives platforms a year to
1694 * fix their proms and get their customers updated.
1695 */
1696 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
43ed3baf 1697 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
d4ed8084 1698 __func__, cpu);
7f613c7d
KO
1699 atomic_dec(&monarchs);
1700 sos->monarch = 0;
1701 }
1702
1703 if (!sos->monarch) {
1704 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
0cced40e
HS
1705
1706#ifdef CONFIG_KEXEC
1707 while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1708 udelay(1000);
1709#else
7f613c7d 1710 while (monarch_cpu == -1)
0cced40e
HS
1711 cpu_relax(); /* spin until monarch enters */
1712#endif
4fa2f0e6
HS
1713
1714 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1715 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1716
0cced40e
HS
1717#ifdef CONFIG_KEXEC
1718 while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1719 udelay(1000);
1720#else
7f613c7d 1721 while (monarch_cpu != -1)
0cced40e
HS
1722 cpu_relax(); /* spin until monarch leaves */
1723#endif
4fa2f0e6
HS
1724
1725 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1726
43ed3baf 1727 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
7f613c7d
KO
1728 set_curr_task(cpu, previous_current);
1729 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1730 atomic_dec(&slaves);
1731 return;
1732 }
1733
1734 monarch_cpu = cpu;
4fa2f0e6 1735 NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
7f613c7d
KO
1736
1737 /*
1738 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1739 * generated via the BMC's command-line interface, but since the console is on the
1740 * same serial line, the user will need some time to switch out of the BMC before
1741 * the dump begins.
1742 */
43ed3baf 1743 mprintk("Delaying for 5 seconds...\n");
7f613c7d 1744 udelay(5*1000000);
356a5c1c 1745 ia64_wait_for_slaves(cpu, "INIT");
9138d581
KO
1746 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1747 * to default_monarch_init_process() above and just print all the
1748 * tasks.
1749 */
4fa2f0e6
HS
1750 NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1751 NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1752
43ed3baf 1753 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
7f613c7d
KO
1754 atomic_dec(&monarchs);
1755 set_curr_task(cpu, previous_current);
1756 monarch_cpu = -1;
1757 return;
1da177e4
LT
1758}
1759
1760static int __init
1761ia64_mca_disable_cpe_polling(char *str)
1762{
1763 cpe_poll_enabled = 0;
1764 return 1;
1765}
1766
1767__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1768
1769static struct irqaction cmci_irqaction = {
1770 .handler = ia64_mca_cmc_int_handler,
121a4226 1771 .flags = IRQF_DISABLED,
1da177e4
LT
1772 .name = "cmc_hndlr"
1773};
1774
1775static struct irqaction cmcp_irqaction = {
1776 .handler = ia64_mca_cmc_int_caller,
121a4226 1777 .flags = IRQF_DISABLED,
1da177e4
LT
1778 .name = "cmc_poll"
1779};
1780
1781static struct irqaction mca_rdzv_irqaction = {
1782 .handler = ia64_mca_rendez_int_handler,
121a4226 1783 .flags = IRQF_DISABLED,
1da177e4
LT
1784 .name = "mca_rdzv"
1785};
1786
1787static struct irqaction mca_wkup_irqaction = {
1788 .handler = ia64_mca_wakeup_int_handler,
121a4226 1789 .flags = IRQF_DISABLED,
1da177e4
LT
1790 .name = "mca_wkup"
1791};
1792
1793#ifdef CONFIG_ACPI
1794static struct irqaction mca_cpe_irqaction = {
1795 .handler = ia64_mca_cpe_int_handler,
121a4226 1796 .flags = IRQF_DISABLED,
1da177e4
LT
1797 .name = "cpe_hndlr"
1798};
1799
1800static struct irqaction mca_cpep_irqaction = {
1801 .handler = ia64_mca_cpe_int_caller,
121a4226 1802 .flags = IRQF_DISABLED,
1da177e4
LT
1803 .name = "cpe_poll"
1804};
1805#endif /* CONFIG_ACPI */
1806
7f613c7d
KO
1807/* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1808 * these stacks can never sleep, they cannot return from the kernel to user
1809 * space, they do not appear in a normal ps listing. So there is no need to
1810 * format most of the fields.
1811 */
1812
0881fc8d 1813static void __cpuinit
7f613c7d
KO
1814format_mca_init_stack(void *mca_data, unsigned long offset,
1815 const char *type, int cpu)
1816{
1817 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1818 struct thread_info *ti;
1819 memset(p, 0, KERNEL_STACK_SIZE);
ab03591d 1820 ti = task_thread_info(p);
7f613c7d
KO
1821 ti->flags = _TIF_MCA_INIT;
1822 ti->preempt_count = 1;
1823 ti->task = p;
1824 ti->cpu = cpu;
f7e4217b 1825 p->stack = ti;
7f613c7d 1826 p->state = TASK_UNINTERRUPTIBLE;
4668f0cd 1827 cpu_set(cpu, p->cpus_allowed);
7f613c7d
KO
1828 INIT_LIST_HEAD(&p->tasks);
1829 p->parent = p->real_parent = p->group_leader = p;
1830 INIT_LIST_HEAD(&p->children);
1831 INIT_LIST_HEAD(&p->sibling);
1832 strncpy(p->comm, type, sizeof(p->comm)-1);
1833}
1834
056e6d89
SR
1835/* Caller prevents this from being called after init */
1836static void * __init_refok mca_bootmem(void)
1837{
785285fc
RA
1838 return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
1839 KERNEL_STACK_SIZE, 0);
056e6d89
SR
1840}
1841
1842/* Do per-CPU MCA-related initialization. */
0881fc8d 1843void __cpuinit
1da177e4
LT
1844ia64_mca_cpu_init(void *cpu_data)
1845{
1846 void *pal_vaddr;
785285fc
RA
1847 void *data;
1848 long sz = sizeof(struct ia64_mca_cpu);
1849 int cpu = smp_processor_id();
ff741906 1850 static int first_time = 1;
1da177e4 1851
7f613c7d 1852 /*
785285fc
RA
1853 * Structure will already be allocated if cpu has been online,
1854 * then offlined.
7f613c7d 1855 */
785285fc
RA
1856 if (__per_cpu_mca[cpu]) {
1857 data = __va(__per_cpu_mca[cpu]);
1858 } else {
1859 if (first_time) {
1860 data = mca_bootmem();
1861 first_time = 0;
1862 } else
c1d036c4
JM
1863 data = (void *)__get_free_pages(GFP_KERNEL,
1864 get_order(sz));
785285fc
RA
1865 if (!data)
1866 panic("Could not allocate MCA memory for cpu %d\n",
1867 cpu);
1868 }
1869 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1870 "MCA", cpu);
1871 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1872 "INIT", cpu);
1873 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[cpu] = __pa(data);
1da177e4
LT
1874
1875 /*
1876 * Stash away a copy of the PTE needed to map the per-CPU page.
1877 * We may need it during MCA recovery.
1878 */
1879 __get_cpu_var(ia64_mca_per_cpu_pte) =
1880 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1881
7f613c7d
KO
1882 /*
1883 * Also, stash away a copy of the PAL address and the PTE
1884 * needed to map it.
1885 */
1886 pal_vaddr = efi_get_pal_addr();
1da177e4
LT
1887 if (!pal_vaddr)
1888 return;
1889 __get_cpu_var(ia64_mca_pal_base) =
1890 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1891 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1892 PAGE_KERNEL));
1893}
1894
ed5d4026
HS
1895static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy)
1896{
1897 unsigned long flags;
1898
1899 local_irq_save(flags);
1900 if (!cmc_polling_enabled)
1901 ia64_mca_cmc_vector_enable(NULL);
1902 local_irq_restore(flags);
1903}
1904
1905static int __cpuinit mca_cpu_callback(struct notifier_block *nfb,
1906 unsigned long action,
1907 void *hcpu)
1908{
1909 int hotcpu = (unsigned long) hcpu;
1910
1911 switch (action) {
1912 case CPU_ONLINE:
1913 case CPU_ONLINE_FROZEN:
1914 smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
8691e5a8 1915 NULL, 0);
ed5d4026
HS
1916 break;
1917 }
1918 return NOTIFY_OK;
1919}
1920
1921static struct notifier_block mca_cpu_notifier __cpuinitdata = {
1922 .notifier_call = mca_cpu_callback
1923};
1924
1da177e4
LT
1925/*
1926 * ia64_mca_init
1927 *
1928 * Do all the system level mca specific initialization.
1929 *
1930 * 1. Register spinloop and wakeup request interrupt vectors
1931 *
1932 * 2. Register OS_MCA handler entry point
1933 *
1934 * 3. Register OS_INIT handler entry point
1935 *
1936 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1937 *
1938 * Note that this initialization is done very early before some kernel
1939 * services are available.
1940 *
1941 * Inputs : None
1942 *
1943 * Outputs : None
1944 */
1945void __init
1946ia64_mca_init(void)
1947{
7f613c7d
KO
1948 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1949 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1da177e4
LT
1950 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1951 int i;
e088a4ad 1952 long rc;
1da177e4 1953 struct ia64_sal_retval isrv;
e088a4ad 1954 unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
9138d581
KO
1955 static struct notifier_block default_init_monarch_nb = {
1956 .notifier_call = default_monarch_init_process,
1957 .priority = 0/* we need to notified last */
1958 };
1da177e4 1959
d4ed8084 1960 IA64_MCA_DEBUG("%s: begin\n", __func__);
1da177e4
LT
1961
1962 /* Clear the Rendez checkin flag for all cpus */
1963 for(i = 0 ; i < NR_CPUS; i++)
1964 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1965
1966 /*
1967 * Register the rendezvous spinloop and wakeup mechanism with SAL
1968 */
1969
1970 /* Register the rendezvous interrupt vector with SAL */
1971 while (1) {
1972 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1973 SAL_MC_PARAM_MECHANISM_INT,
1974 IA64_MCA_RENDEZ_VECTOR,
1975 timeout,
1976 SAL_MC_PARAM_RZ_ALWAYS);
1977 rc = isrv.status;
1978 if (rc == 0)
1979 break;
1980 if (rc == -2) {
1981 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1982 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1983 timeout = isrv.v0;
4fa2f0e6 1984 NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1da177e4
LT
1985 continue;
1986 }
1987 printk(KERN_ERR "Failed to register rendezvous interrupt "
1988 "with SAL (status %ld)\n", rc);
1989 return;
1990 }
1991
1992 /* Register the wakeup interrupt vector with SAL */
1993 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1994 SAL_MC_PARAM_MECHANISM_INT,
1995 IA64_MCA_WAKEUP_VECTOR,
1996 0, 0);
1997 rc = isrv.status;
1998 if (rc) {
1999 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
2000 "(status %ld)\n", rc);
2001 return;
2002 }
2003
d4ed8084 2004 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1da177e4
LT
2005
2006 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
2007 /*
2008 * XXX - disable SAL checksum by setting size to 0; should be
2009 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
2010 */
2011 ia64_mc_info.imi_mca_handler_size = 0;
2012
2013 /* Register the os mca handler with SAL */
2014 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
2015 ia64_mc_info.imi_mca_handler,
2016 ia64_tpa(mca_hldlr_ptr->gp),
2017 ia64_mc_info.imi_mca_handler_size,
2018 0, 0, 0)))
2019 {
2020 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
2021 "(status %ld)\n", rc);
2022 return;
2023 }
2024
d4ed8084 2025 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
1da177e4
LT
2026 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
2027
2028 /*
2029 * XXX - disable SAL checksum by setting size to 0, should be
2030 * size of the actual init handler in mca_asm.S.
2031 */
7f613c7d 2032 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1da177e4 2033 ia64_mc_info.imi_monarch_init_handler_size = 0;
7f613c7d 2034 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1da177e4
LT
2035 ia64_mc_info.imi_slave_init_handler_size = 0;
2036
d4ed8084 2037 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
1da177e4
LT
2038 ia64_mc_info.imi_monarch_init_handler);
2039
2040 /* Register the os init handler with SAL */
2041 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2042 ia64_mc_info.imi_monarch_init_handler,
2043 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2044 ia64_mc_info.imi_monarch_init_handler_size,
2045 ia64_mc_info.imi_slave_init_handler,
2046 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2047 ia64_mc_info.imi_slave_init_handler_size)))
2048 {
2049 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2050 "(status %ld)\n", rc);
2051 return;
2052 }
9138d581
KO
2053 if (register_die_notifier(&default_init_monarch_nb)) {
2054 printk(KERN_ERR "Failed to register default monarch INIT process\n");
2055 return;
2056 }
1da177e4 2057
d4ed8084 2058 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
1da177e4 2059
1da177e4
LT
2060 /* Initialize the areas set aside by the OS to buffer the
2061 * platform/processor error states for MCA/INIT/CMC
2062 * handling.
2063 */
2064 ia64_log_init(SAL_INFO_TYPE_MCA);
2065 ia64_log_init(SAL_INFO_TYPE_INIT);
2066 ia64_log_init(SAL_INFO_TYPE_CMC);
2067 ia64_log_init(SAL_INFO_TYPE_CPE);
2068
2069 mca_init = 1;
2070 printk(KERN_INFO "MCA related initialization done\n");
2071}
2072
2073/*
2074 * ia64_mca_late_init
2075 *
2076 * Opportunity to setup things that require initialization later
2077 * than ia64_mca_init. Setup a timer to poll for CPEs if the
2078 * platform doesn't support an interrupt driven mechanism.
2079 *
2080 * Inputs : None
2081 * Outputs : Status
2082 */
2083static int __init
2084ia64_mca_late_init(void)
2085{
2086 if (!mca_init)
2087 return 0;
2088
c75f2aa1
TL
2089 /*
2090 * Configure the CMCI/P vector and handler. Interrupts for CMC are
2091 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2092 */
2093 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2094 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2095 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
2096
2097 /* Setup the MCA rendezvous interrupt vector */
2098 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2099
2100 /* Setup the MCA wakeup interrupt vector */
2101 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2102
2103#ifdef CONFIG_ACPI
2104 /* Setup the CPEI/P handler */
2105 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2106#endif
2107
ed5d4026
HS
2108 register_hotcpu_notifier(&mca_cpu_notifier);
2109
1da177e4
LT
2110 /* Setup the CMCI/P vector and handler */
2111 init_timer(&cmc_poll_timer);
2112 cmc_poll_timer.function = ia64_mca_cmc_poll;
2113
2114 /* Unmask/enable the vector */
2115 cmc_polling_enabled = 0;
2116 schedule_work(&cmc_enable_work);
2117
d4ed8084 2118 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
1da177e4
LT
2119
2120#ifdef CONFIG_ACPI
2121 /* Setup the CPEI/P vector and handler */
bb68c12b 2122 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1da177e4
LT
2123 init_timer(&cpe_poll_timer);
2124 cpe_poll_timer.function = ia64_mca_cpe_poll;
2125
2126 {
1da177e4
LT
2127 unsigned int irq;
2128
2129 if (cpe_vector >= 0) {
2130 /* If platform supports CPEI, enable the irq. */
a1287476
RA
2131 irq = local_vector_to_irq(cpe_vector);
2132 if (irq > 0) {
2133 cpe_poll_enabled = 0;
a2178334 2134 irq_set_status_flags(irq, IRQ_PER_CPU);
a1287476
RA
2135 setup_irq(irq, &mca_cpe_irqaction);
2136 ia64_cpe_irq = irq;
2137 ia64_mca_register_cpev(cpe_vector);
2138 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
d4ed8084 2139 __func__);
a1287476 2140 return 0;
1da177e4 2141 }
a1287476
RA
2142 printk(KERN_ERR "%s: Failed to find irq for CPE "
2143 "interrupt handler, vector %d\n",
d4ed8084 2144 __func__, cpe_vector);
a1287476
RA
2145 }
2146 /* If platform doesn't support CPEI, get the timer going. */
2147 if (cpe_poll_enabled) {
2148 ia64_mca_cpe_poll(0UL);
d4ed8084 2149 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
1da177e4
LT
2150 }
2151 }
2152#endif
2153
2154 return 0;
2155}
2156
2157device_initcall(ia64_mca_late_init);