page allocator: do not check NUMA node ID when the caller knows the node is valid
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / ia64 / kernel / mca.c
CommitLineData
1da177e4
LT
1/*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
4 *
1da177e4
LT
5 * Copyright (C) 2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 *
8 * Copyright (C) 2002 Dell Inc.
fe77efb8 9 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
1da177e4
LT
10 *
11 * Copyright (C) 2002 Intel
fe77efb8 12 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
1da177e4
LT
13 *
14 * Copyright (C) 2001 Intel
fe77efb8 15 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
1da177e4
LT
16 *
17 * Copyright (C) 2000 Intel
fe77efb8 18 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
1da177e4 19 *
785285fc 20 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
fe77efb8 21 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
1da177e4 22 *
fe77efb8
HS
23 * Copyright (C) 2006 FUJITSU LIMITED
24 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
1da177e4 25 *
fe77efb8
HS
26 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
27 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28 * added min save state dump, added INIT handler.
1da177e4 29 *
fe77efb8
HS
30 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
31 * Added setup of CMCI and CPEI IRQs, logging of corrected platform
32 * errors, completed code for logging of corrected & uncorrected
33 * machine check errors, and updated for conformance with Nov. 2000
34 * revision of the SAL 3.0 spec.
35 *
36 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
37 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38 * set SAL default return values, changed error record structure to
39 * linked list, added init call to sal_get_state_info_size().
40 *
41 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
42 * GUID cleanups.
43 *
44 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
45 * Added INIT backtrace support.
1da177e4
LT
46 *
47 * 2003-12-08 Keith Owens <kaos@sgi.com>
fe77efb8
HS
48 * smp_call_function() must not be called from interrupt context
49 * (can deadlock on tasklist_lock).
50 * Use keventd to call smp_call_function().
1da177e4
LT
51 *
52 * 2004-02-01 Keith Owens <kaos@sgi.com>
fe77efb8
HS
53 * Avoid deadlock when using printk() for MCA and INIT records.
54 * Delete all record printing code, moved to salinfo_decode in user
55 * space. Mark variables and functions static where possible.
56 * Delete dead variables and functions. Reorder to remove the need
57 * for forward declarations and to consolidate related code.
7f613c7d
KO
58 *
59 * 2005-08-12 Keith Owens <kaos@sgi.com>
fe77efb8
HS
60 * Convert MCA/INIT handlers to use per event stacks and SAL/OS
61 * state.
9138d581
KO
62 *
63 * 2005-10-07 Keith Owens <kaos@sgi.com>
64 * Add notify_die() hooks.
43ed3baf
HS
65 *
66 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
fe77efb8 67 * Add printing support for MCA/INIT.
1612b18c
RA
68 *
69 * 2007-04-27 Russ Anderson <rja@sgi.com>
70 * Support multiple cpus going through OS_MCA in the same event.
1da177e4 71 */
5cf1f7ce 72#include <linux/jiffies.h>
1da177e4
LT
73#include <linux/types.h>
74#include <linux/init.h>
75#include <linux/sched.h>
76#include <linux/interrupt.h>
77#include <linux/irq.h>
1da177e4
LT
78#include <linux/bootmem.h>
79#include <linux/acpi.h>
80#include <linux/timer.h>
81#include <linux/module.h>
82#include <linux/kernel.h>
83#include <linux/smp.h>
84#include <linux/workqueue.h>
4668f0cd 85#include <linux/cpumask.h>
1eeb66a1 86#include <linux/kdebug.h>
ed5d4026 87#include <linux/cpu.h>
1da177e4
LT
88
89#include <asm/delay.h>
90#include <asm/machvec.h>
91#include <asm/meminit.h>
92#include <asm/page.h>
93#include <asm/ptrace.h>
94#include <asm/system.h>
95#include <asm/sal.h>
96#include <asm/mca.h>
a7956113 97#include <asm/kexec.h>
1da177e4
LT
98
99#include <asm/irq.h>
100#include <asm/hw_irq.h>
96651896 101#include <asm/tlb.h>
1da177e4 102
d2a28ad9 103#include "mca_drv.h"
7f613c7d
KO
104#include "entry.h"
105
1da177e4
LT
106#if defined(IA64_MCA_DEBUG_INFO)
107# define IA64_MCA_DEBUG(fmt...) printk(fmt)
108#else
109# define IA64_MCA_DEBUG(fmt...)
110#endif
111
4fa2f0e6
HS
112#define NOTIFY_INIT(event, regs, arg, spin) \
113do { \
114 if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \
115 == NOTIFY_STOP) && ((spin) == 1)) \
116 ia64_mca_spin(__func__); \
117} while (0)
118
119#define NOTIFY_MCA(event, regs, arg, spin) \
120do { \
121 if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \
122 == NOTIFY_STOP) && ((spin) == 1)) \
123 ia64_mca_spin(__func__); \
124} while (0)
125
1da177e4 126/* Used by mca_asm.S */
1da177e4
LT
127DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
128DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
129DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
130DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
96651896 131DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */
1da177e4
LT
132
133unsigned long __per_cpu_mca[NR_CPUS];
134
135/* In mca_asm.S */
7f613c7d
KO
136extern void ia64_os_init_dispatch_monarch (void);
137extern void ia64_os_init_dispatch_slave (void);
138
139static int monarch_cpu = -1;
1da177e4
LT
140
141static ia64_mc_info_t ia64_mc_info;
142
143#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
144#define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
145#define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
146#define CPE_HISTORY_LENGTH 5
147#define CMC_HISTORY_LENGTH 5
148
34eac2ab 149#ifdef CONFIG_ACPI
1da177e4 150static struct timer_list cpe_poll_timer;
34eac2ab 151#endif
1da177e4
LT
152static struct timer_list cmc_poll_timer;
153/*
154 * This variable tells whether we are currently in polling mode.
155 * Start with this in the wrong state so we won't play w/ timers
156 * before the system is ready.
157 */
158static int cmc_polling_enabled = 1;
159
160/*
161 * Clearing this variable prevents CPE polling from getting activated
162 * in mca_late_init. Use it if your system doesn't provide a CPEI,
163 * but encounters problems retrieving CPE logs. This should only be
164 * necessary for debugging.
165 */
166static int cpe_poll_enabled = 1;
167
168extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
169
0881fc8d 170static int mca_init __initdata;
1da177e4 171
43ed3baf
HS
172/*
173 * limited & delayed printing support for MCA/INIT handler
174 */
175
176#define mprintk(fmt...) ia64_mca_printk(fmt)
177
178#define MLOGBUF_SIZE (512+256*NR_CPUS)
179#define MLOGBUF_MSGMAX 256
180static char mlogbuf[MLOGBUF_SIZE];
181static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
182static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
183static unsigned long mlogbuf_start;
184static unsigned long mlogbuf_end;
185static unsigned int mlogbuf_finished = 0;
186static unsigned long mlogbuf_timestamp = 0;
187
188static int loglevel_save = -1;
189#define BREAK_LOGLEVEL(__console_loglevel) \
190 oops_in_progress = 1; \
191 if (loglevel_save < 0) \
192 loglevel_save = __console_loglevel; \
193 __console_loglevel = 15;
194
195#define RESTORE_LOGLEVEL(__console_loglevel) \
196 if (loglevel_save >= 0) { \
197 __console_loglevel = loglevel_save; \
198 loglevel_save = -1; \
199 } \
200 mlogbuf_finished = 0; \
201 oops_in_progress = 0;
202
203/*
204 * Push messages into buffer, print them later if not urgent.
205 */
206void ia64_mca_printk(const char *fmt, ...)
207{
208 va_list args;
209 int printed_len;
210 char temp_buf[MLOGBUF_MSGMAX];
211 char *p;
212
213 va_start(args, fmt);
214 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
215 va_end(args);
216
217 /* Copy the output into mlogbuf */
218 if (oops_in_progress) {
219 /* mlogbuf was abandoned, use printk directly instead. */
220 printk(temp_buf);
221 } else {
222 spin_lock(&mlogbuf_wlock);
223 for (p = temp_buf; *p; p++) {
224 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
225 if (next != mlogbuf_start) {
226 mlogbuf[mlogbuf_end] = *p;
227 mlogbuf_end = next;
228 } else {
229 /* buffer full */
230 break;
231 }
232 }
233 mlogbuf[mlogbuf_end] = '\0';
234 spin_unlock(&mlogbuf_wlock);
235 }
236}
237EXPORT_SYMBOL(ia64_mca_printk);
238
239/*
240 * Print buffered messages.
241 * NOTE: call this after returning normal context. (ex. from salinfod)
242 */
243void ia64_mlogbuf_dump(void)
244{
245 char temp_buf[MLOGBUF_MSGMAX];
246 char *p;
247 unsigned long index;
248 unsigned long flags;
249 unsigned int printed_len;
250
251 /* Get output from mlogbuf */
252 while (mlogbuf_start != mlogbuf_end) {
253 temp_buf[0] = '\0';
254 p = temp_buf;
255 printed_len = 0;
256
257 spin_lock_irqsave(&mlogbuf_rlock, flags);
258
259 index = mlogbuf_start;
260 while (index != mlogbuf_end) {
261 *p = mlogbuf[index];
262 index = (index + 1) % MLOGBUF_SIZE;
263 if (!*p)
264 break;
265 p++;
266 if (++printed_len >= MLOGBUF_MSGMAX - 1)
267 break;
268 }
269 *p = '\0';
270 if (temp_buf[0])
271 printk(temp_buf);
272 mlogbuf_start = index;
273
274 mlogbuf_timestamp = 0;
275 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
276 }
277}
278EXPORT_SYMBOL(ia64_mlogbuf_dump);
279
280/*
281 * Call this if system is going to down or if immediate flushing messages to
282 * console is required. (ex. recovery was failed, crash dump is going to be
283 * invoked, long-wait rendezvous etc.)
284 * NOTE: this should be called from monarch.
285 */
286static void ia64_mlogbuf_finish(int wait)
287{
288 BREAK_LOGLEVEL(console_loglevel);
289
290 spin_lock_init(&mlogbuf_rlock);
291 ia64_mlogbuf_dump();
292 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
293 "MCA/INIT might be dodgy or fail.\n");
294
295 if (!wait)
296 return;
297
298 /* wait for console */
299 printk("Delaying for 5 seconds...\n");
300 udelay(5*1000000);
301
302 mlogbuf_finished = 1;
303}
43ed3baf
HS
304
305/*
306 * Print buffered messages from INIT context.
307 */
308static void ia64_mlogbuf_dump_from_init(void)
309{
310 if (mlogbuf_finished)
311 return;
312
5cf1f7ce
ÇO
313 if (mlogbuf_timestamp &&
314 time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
43ed3baf
HS
315 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
316 " and the system seems to be messed up.\n");
317 ia64_mlogbuf_finish(0);
318 return;
319 }
320
321 if (!spin_trylock(&mlogbuf_rlock)) {
322 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
323 "Generated messages other than stack dump will be "
324 "buffered to mlogbuf and will be printed later.\n");
325 printk(KERN_ERR "INIT: If messages would not printed after "
326 "this INIT, wait 30sec and assert INIT again.\n");
327 if (!mlogbuf_timestamp)
328 mlogbuf_timestamp = jiffies;
329 return;
330 }
331 spin_unlock(&mlogbuf_rlock);
332 ia64_mlogbuf_dump();
333}
9138d581
KO
334
335static void inline
336ia64_mca_spin(const char *func)
337{
43ed3baf
HS
338 if (monarch_cpu == smp_processor_id())
339 ia64_mlogbuf_finish(0);
340 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
9138d581
KO
341 while (1)
342 cpu_relax();
343}
1da177e4
LT
344/*
345 * IA64_MCA log support
346 */
347#define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
348#define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
349
350typedef struct ia64_state_log_s
351{
352 spinlock_t isl_lock;
353 int isl_index;
354 unsigned long isl_count;
355 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
356} ia64_state_log_t;
357
358static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
359
360#define IA64_LOG_ALLOCATE(it, size) \
361 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
362 (ia64_err_rec_t *)alloc_bootmem(size); \
363 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
364 (ia64_err_rec_t *)alloc_bootmem(size);}
365#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
366#define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
367#define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
368#define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
369#define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
370#define IA64_LOG_INDEX_INC(it) \
371 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
372 ia64_state_log[it].isl_count++;}
373#define IA64_LOG_INDEX_DEC(it) \
374 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
375#define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
376#define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
377#define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
378
379/*
380 * ia64_log_init
381 * Reset the OS ia64 log buffer
382 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
383 * Outputs : None
384 */
0881fc8d 385static void __init
1da177e4
LT
386ia64_log_init(int sal_info_type)
387{
388 u64 max_size = 0;
389
390 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
391 IA64_LOG_LOCK_INIT(sal_info_type);
392
393 // SAL will tell us the maximum size of any error record of this type
394 max_size = ia64_sal_get_state_info_size(sal_info_type);
395 if (!max_size)
396 /* alloc_bootmem() doesn't like zero-sized allocations! */
397 return;
398
399 // set up OS data structures to hold error info
400 IA64_LOG_ALLOCATE(sal_info_type, max_size);
401 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
402 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
403}
404
405/*
406 * ia64_log_get
407 *
408 * Get the current MCA log from SAL and copy it into the OS log buffer.
409 *
410 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
411 * irq_safe whether you can use printk at this point
412 * Outputs : size (total record length)
413 * *buffer (ptr to error record)
414 *
415 */
416static u64
417ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
418{
419 sal_log_record_header_t *log_buffer;
420 u64 total_len = 0;
c53421b1 421 unsigned long s;
1da177e4
LT
422
423 IA64_LOG_LOCK(sal_info_type);
424
425 /* Get the process state information */
426 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
427
428 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
429
430 if (total_len) {
431 IA64_LOG_INDEX_INC(sal_info_type);
432 IA64_LOG_UNLOCK(sal_info_type);
433 if (irq_safe) {
d4ed8084
HH
434 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
435 __func__, sal_info_type, total_len);
1da177e4
LT
436 }
437 *buffer = (u8 *) log_buffer;
438 return total_len;
439 } else {
440 IA64_LOG_UNLOCK(sal_info_type);
441 return 0;
442 }
443}
444
445/*
446 * ia64_mca_log_sal_error_record
447 *
448 * This function retrieves a specified error record type from SAL
449 * and wakes up any processes waiting for error records.
450 *
7f613c7d
KO
451 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
452 * FIXME: remove MCA and irq_safe.
1da177e4
LT
453 */
454static void
455ia64_mca_log_sal_error_record(int sal_info_type)
456{
457 u8 *buffer;
458 sal_log_record_header_t *rh;
459 u64 size;
7f613c7d 460 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
1da177e4
LT
461#ifdef IA64_MCA_DEBUG_INFO
462 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
463#endif
464
465 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
466 if (!size)
467 return;
468
469 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
470
471 if (irq_safe)
472 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
473 smp_processor_id(),
474 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
475
476 /* Clear logs from corrected errors in case there's no user-level logger */
477 rh = (sal_log_record_header_t *)buffer;
478 if (rh->severity == sal_log_severity_corrected)
479 ia64_sal_clear_state_info(sal_info_type);
480}
481
d2a28ad9
RA
482/*
483 * search_mca_table
484 * See if the MCA surfaced in an instruction range
485 * that has been tagged as recoverable.
486 *
487 * Inputs
488 * first First address range to check
489 * last Last address range to check
490 * ip Instruction pointer, address we are looking for
491 *
492 * Return value:
493 * 1 on Success (in the table)/ 0 on Failure (not in the table)
494 */
495int
496search_mca_table (const struct mca_table_entry *first,
497 const struct mca_table_entry *last,
498 unsigned long ip)
499{
500 const struct mca_table_entry *curr;
501 u64 curr_start, curr_end;
502
503 curr = first;
504 while (curr <= last) {
505 curr_start = (u64) &curr->start_addr + curr->start_addr;
506 curr_end = (u64) &curr->end_addr + curr->end_addr;
507
508 if ((ip >= curr_start) && (ip <= curr_end)) {
509 return 1;
510 }
511 curr++;
512 }
513 return 0;
514}
515
516/* Given an address, look for it in the mca tables. */
517int mca_recover_range(unsigned long addr)
518{
519 extern struct mca_table_entry __start___mca_table[];
520 extern struct mca_table_entry __stop___mca_table[];
521
522 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
523}
524EXPORT_SYMBOL_GPL(mca_recover_range);
525
1da177e4
LT
526#ifdef CONFIG_ACPI
527
55e59c51 528int cpe_vector = -1;
ff741906 529int ia64_cpe_irq = -1;
1da177e4
LT
530
531static irqreturn_t
7d12e780 532ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
1da177e4
LT
533{
534 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
535 static int index;
536 static DEFINE_SPINLOCK(cpe_history_lock);
537
538 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
d4ed8084 539 __func__, cpe_irq, smp_processor_id());
1da177e4
LT
540
541 /* SAL spec states this should run w/ interrupts enabled */
542 local_irq_enable();
543
1da177e4
LT
544 spin_lock(&cpe_history_lock);
545 if (!cpe_poll_enabled && cpe_vector >= 0) {
546
547 int i, count = 1; /* we know 1 happened now */
548 unsigned long now = jiffies;
549
550 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
551 if (now - cpe_history[i] <= HZ)
552 count++;
553 }
554
555 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
556 if (count >= CPE_HISTORY_LENGTH) {
557
558 cpe_poll_enabled = 1;
559 spin_unlock(&cpe_history_lock);
560 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
561
562 /*
563 * Corrected errors will still be corrected, but
564 * make sure there's a log somewhere that indicates
565 * something is generating more than we can handle.
566 */
567 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
568
569 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
570
571 /* lock already released, get out now */
ddb4f0df 572 goto out;
1da177e4
LT
573 } else {
574 cpe_history[index++] = now;
575 if (index == CPE_HISTORY_LENGTH)
576 index = 0;
577 }
578 }
579 spin_unlock(&cpe_history_lock);
ddb4f0df
HS
580out:
581 /* Get the CPE error record and log it */
582 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
583
1da177e4
LT
584 return IRQ_HANDLED;
585}
586
587#endif /* CONFIG_ACPI */
588
1da177e4
LT
589#ifdef CONFIG_ACPI
590/*
591 * ia64_mca_register_cpev
592 *
593 * Register the corrected platform error vector with SAL.
594 *
595 * Inputs
596 * cpev Corrected Platform Error Vector number
597 *
598 * Outputs
599 * None
600 */
1f3b6045 601void
1da177e4
LT
602ia64_mca_register_cpev (int cpev)
603{
604 /* Register the CPE interrupt vector with SAL */
605 struct ia64_sal_retval isrv;
606
607 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
608 if (isrv.status) {
609 printk(KERN_ERR "Failed to register Corrected Platform "
610 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
611 return;
612 }
613
614 IA64_MCA_DEBUG("%s: corrected platform error "
d4ed8084 615 "vector %#x registered\n", __func__, cpev);
1da177e4
LT
616}
617#endif /* CONFIG_ACPI */
618
1da177e4
LT
619/*
620 * ia64_mca_cmc_vector_setup
621 *
622 * Setup the corrected machine check vector register in the processor.
623 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
624 * This function is invoked on a per-processor basis.
625 *
626 * Inputs
627 * None
628 *
629 * Outputs
630 * None
631 */
0881fc8d 632void __cpuinit
1da177e4
LT
633ia64_mca_cmc_vector_setup (void)
634{
635 cmcv_reg_t cmcv;
636
637 cmcv.cmcv_regval = 0;
638 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
639 cmcv.cmcv_vector = IA64_CMC_VECTOR;
640 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
641
d4ed8084
HH
642 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
643 __func__, smp_processor_id(), IA64_CMC_VECTOR);
1da177e4
LT
644
645 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
d4ed8084 646 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
1da177e4
LT
647}
648
649/*
650 * ia64_mca_cmc_vector_disable
651 *
652 * Mask the corrected machine check vector register in the processor.
653 * This function is invoked on a per-processor basis.
654 *
655 * Inputs
656 * dummy(unused)
657 *
658 * Outputs
659 * None
660 */
661static void
662ia64_mca_cmc_vector_disable (void *dummy)
663{
664 cmcv_reg_t cmcv;
665
666 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
667
668 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
669 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
670
d4ed8084
HH
671 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
672 __func__, smp_processor_id(), cmcv.cmcv_vector);
1da177e4
LT
673}
674
675/*
676 * ia64_mca_cmc_vector_enable
677 *
678 * Unmask the corrected machine check vector register in the processor.
679 * This function is invoked on a per-processor basis.
680 *
681 * Inputs
682 * dummy(unused)
683 *
684 * Outputs
685 * None
686 */
687static void
688ia64_mca_cmc_vector_enable (void *dummy)
689{
690 cmcv_reg_t cmcv;
691
692 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
693
694 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
695 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
696
d4ed8084
HH
697 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
698 __func__, smp_processor_id(), cmcv.cmcv_vector);
1da177e4
LT
699}
700
701/*
702 * ia64_mca_cmc_vector_disable_keventd
703 *
704 * Called via keventd (smp_call_function() is not safe in interrupt context) to
705 * disable the cmc interrupt vector.
706 */
707static void
6d5aefb8 708ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
1da177e4 709{
15c8b6c1 710 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
1da177e4
LT
711}
712
713/*
714 * ia64_mca_cmc_vector_enable_keventd
715 *
716 * Called via keventd (smp_call_function() is not safe in interrupt context) to
717 * enable the cmc interrupt vector.
718 */
719static void
6d5aefb8 720ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
1da177e4 721{
15c8b6c1 722 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
1da177e4
LT
723}
724
1da177e4
LT
725/*
726 * ia64_mca_wakeup
727 *
e1b1eb01 728 * Send an inter-cpu interrupt to wake-up a particular cpu.
1da177e4
LT
729 *
730 * Inputs : cpuid
731 * Outputs : None
732 */
733static void
734ia64_mca_wakeup(int cpu)
735{
736 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
1da177e4
LT
737}
738
739/*
740 * ia64_mca_wakeup_all
741 *
e1b1eb01 742 * Wakeup all the slave cpus which have rendez'ed previously.
1da177e4
LT
743 *
744 * Inputs : None
745 * Outputs : None
746 */
747static void
748ia64_mca_wakeup_all(void)
749{
750 int cpu;
751
752 /* Clear the Rendez checkin flag for all cpus */
ddf6d0a0 753 for_each_online_cpu(cpu) {
1da177e4
LT
754 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
755 ia64_mca_wakeup(cpu);
756 }
757
758}
759
760/*
761 * ia64_mca_rendez_interrupt_handler
762 *
763 * This is handler used to put slave processors into spinloop
764 * while the monarch processor does the mca handling and later
e1b1eb01
RA
765 * wake each slave up once the monarch is done. The state
766 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
767 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
768 * the cpu has come out of OS rendezvous.
1da177e4
LT
769 *
770 * Inputs : None
771 * Outputs : None
772 */
773static irqreturn_t
7d12e780 774ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
1da177e4
LT
775{
776 unsigned long flags;
777 int cpu = smp_processor_id();
958b166c
KO
778 struct ia64_mca_notify_die nd =
779 { .sos = NULL, .monarch_cpu = &monarch_cpu };
1da177e4
LT
780
781 /* Mask all interrupts */
782 local_irq_save(flags);
4fa2f0e6
HS
783
784 NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
1da177e4
LT
785
786 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
787 /* Register with the SAL monarch that the slave has
788 * reached SAL
789 */
790 ia64_sal_mc_rendez();
791
4fa2f0e6 792 NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
9138d581 793
7f613c7d
KO
794 /* Wait for the monarch cpu to exit. */
795 while (monarch_cpu != -1)
796 cpu_relax(); /* spin until monarch leaves */
1da177e4 797
4fa2f0e6 798 NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
9138d581 799
e1b1eb01 800 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1da177e4
LT
801 /* Enable all interrupts */
802 local_irq_restore(flags);
803 return IRQ_HANDLED;
804}
805
806/*
807 * ia64_mca_wakeup_int_handler
808 *
809 * The interrupt handler for processing the inter-cpu interrupt to the
810 * slave cpu which was spinning in the rendez loop.
811 * Since this spinning is done by turning off the interrupts and
812 * polling on the wakeup-interrupt bit in the IRR, there is
813 * nothing useful to be done in the handler.
814 *
815 * Inputs : wakeup_irq (Wakeup-interrupt bit)
816 * arg (Interrupt handler specific argument)
1da177e4
LT
817 * Outputs : None
818 *
819 */
820static irqreturn_t
7d12e780 821ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
1da177e4
LT
822{
823 return IRQ_HANDLED;
824}
825
1da177e4
LT
826/* Function pointer for extra MCA recovery */
827int (*ia64_mca_ucmc_extension)
7f613c7d 828 (void*,struct ia64_sal_os_state*)
1da177e4
LT
829 = NULL;
830
831int
7f613c7d 832ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
1da177e4
LT
833{
834 if (ia64_mca_ucmc_extension)
835 return 1;
836
837 ia64_mca_ucmc_extension = fn;
838 return 0;
839}
840
841void
842ia64_unreg_MCA_extension(void)
843{
844 if (ia64_mca_ucmc_extension)
845 ia64_mca_ucmc_extension = NULL;
846}
847
848EXPORT_SYMBOL(ia64_reg_MCA_extension);
849EXPORT_SYMBOL(ia64_unreg_MCA_extension);
850
7f613c7d
KO
851
852static inline void
853copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
854{
855 u64 fslot, tslot, nat;
856 *tr = *fr;
857 fslot = ((unsigned long)fr >> 3) & 63;
858 tslot = ((unsigned long)tr >> 3) & 63;
859 *tnat &= ~(1UL << tslot);
860 nat = (fnat >> fslot) & 1;
861 *tnat |= (nat << tslot);
862}
863
e9ac054d
KO
864/* Change the comm field on the MCA/INT task to include the pid that
865 * was interrupted, it makes for easier debugging. If that pid was 0
866 * (swapper or nested MCA/INIT) then use the start of the previous comm
867 * field suffixed with its cpu.
868 */
869
870static void
36c8b586 871ia64_mca_modify_comm(const struct task_struct *previous_current)
e9ac054d
KO
872{
873 char *p, comm[sizeof(current->comm)];
874 if (previous_current->pid)
875 snprintf(comm, sizeof(comm), "%s %d",
876 current->comm, previous_current->pid);
877 else {
878 int l;
879 if ((p = strchr(previous_current->comm, ' ')))
880 l = p - previous_current->comm;
881 else
882 l = strlen(previous_current->comm);
883 snprintf(comm, sizeof(comm), "%s %*s %d",
884 current->comm, l, previous_current->comm,
885 task_thread_info(previous_current)->cpu);
886 }
887 memcpy(current->comm, comm, sizeof(current->comm));
888}
889
7f613c7d
KO
890/* On entry to this routine, we are running on the per cpu stack, see
891 * mca_asm.h. The original stack has not been touched by this event. Some of
892 * the original stack's registers will be in the RBS on this stack. This stack
893 * also contains a partial pt_regs and switch_stack, the rest of the data is in
894 * PAL minstate.
895 *
896 * The first thing to do is modify the original stack to look like a blocked
897 * task so we can run backtrace on the original task. Also mark the per cpu
898 * stack as current to ensure that we use the correct task state, it also means
899 * that we can do backtrace on the MCA/INIT handler code itself.
900 */
901
36c8b586 902static struct task_struct *
7f613c7d
KO
903ia64_mca_modify_original_stack(struct pt_regs *regs,
904 const struct switch_stack *sw,
905 struct ia64_sal_os_state *sos,
906 const char *type)
907{
e9ac054d 908 char *p;
7f613c7d
KO
909 ia64_va va;
910 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
911 const pal_min_state_area_t *ms = sos->pal_min_state;
36c8b586 912 struct task_struct *previous_current;
7f613c7d
KO
913 struct pt_regs *old_regs;
914 struct switch_stack *old_sw;
915 unsigned size = sizeof(struct pt_regs) +
916 sizeof(struct switch_stack) + 16;
917 u64 *old_bspstore, *old_bsp;
918 u64 *new_bspstore, *new_bsp;
919 u64 old_unat, old_rnat, new_rnat, nat;
920 u64 slots, loadrs = regs->loadrs;
921 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
922 u64 ar_bspstore = regs->ar_bspstore;
923 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
924 const u64 *bank;
925 const char *msg;
926 int cpu = smp_processor_id();
927
928 previous_current = curr_task(cpu);
929 set_curr_task(cpu, current);
930 if ((p = strchr(current->comm, ' ')))
931 *p = '\0';
932
933 /* Best effort attempt to cope with MCA/INIT delivered while in
934 * physical mode.
935 */
936 regs->cr_ipsr = ms->pmsa_ipsr;
937 if (ia64_psr(regs)->dt == 0) {
938 va.l = r12;
939 if (va.f.reg == 0) {
940 va.f.reg = 7;
941 r12 = va.l;
942 }
943 va.l = r13;
944 if (va.f.reg == 0) {
945 va.f.reg = 7;
946 r13 = va.l;
947 }
948 }
949 if (ia64_psr(regs)->rt == 0) {
950 va.l = ar_bspstore;
951 if (va.f.reg == 0) {
952 va.f.reg = 7;
953 ar_bspstore = va.l;
954 }
955 va.l = ar_bsp;
956 if (va.f.reg == 0) {
957 va.f.reg = 7;
958 ar_bsp = va.l;
959 }
960 }
961
962 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
963 * have been copied to the old stack, the old stack may fail the
964 * validation tests below. So ia64_old_stack() must restore the dirty
965 * registers from the new stack. The old and new bspstore probably
966 * have different alignments, so loadrs calculated on the old bsp
967 * cannot be used to restore from the new bsp. Calculate a suitable
968 * loadrs for the new stack and save it in the new pt_regs, where
969 * ia64_old_stack() can get it.
970 */
971 old_bspstore = (u64 *)ar_bspstore;
972 old_bsp = (u64 *)ar_bsp;
973 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
974 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
975 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
976 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
977
978 /* Verify the previous stack state before we change it */
979 if (user_mode(regs)) {
980 msg = "occurred in user space";
e9ac054d
KO
981 /* previous_current is guaranteed to be valid when the task was
982 * in user space, so ...
983 */
984 ia64_mca_modify_comm(previous_current);
7f613c7d
KO
985 goto no_mod;
986 }
d2a28ad9 987
1612b18c
RA
988 if (r13 != sos->prev_IA64_KR_CURRENT) {
989 msg = "inconsistent previous current and r13";
990 goto no_mod;
991 }
992
d2a28ad9 993 if (!mca_recover_range(ms->pmsa_iip)) {
d2a28ad9
RA
994 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
995 msg = "inconsistent r12 and r13";
996 goto no_mod;
997 }
998 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
999 msg = "inconsistent ar.bspstore and r13";
1000 goto no_mod;
1001 }
1002 va.p = old_bspstore;
1003 if (va.f.reg < 5) {
1004 msg = "old_bspstore is in the wrong region";
1005 goto no_mod;
1006 }
1007 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1008 msg = "inconsistent ar.bsp and r13";
1009 goto no_mod;
1010 }
1011 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1012 if (ar_bspstore + size > r12) {
1013 msg = "no room for blocked state";
1014 goto no_mod;
1015 }
7f613c7d
KO
1016 }
1017
e9ac054d 1018 ia64_mca_modify_comm(previous_current);
7f613c7d
KO
1019
1020 /* Make the original task look blocked. First stack a struct pt_regs,
1021 * describing the state at the time of interrupt. mca_asm.S built a
1022 * partial pt_regs, copy it and fill in the blanks using minstate.
1023 */
1024 p = (char *)r12 - sizeof(*regs);
1025 old_regs = (struct pt_regs *)p;
1026 memcpy(old_regs, regs, sizeof(*regs));
1027 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1028 * pmsa_{xip,xpsr,xfs}
1029 */
1030 if (ia64_psr(regs)->ic) {
1031 old_regs->cr_iip = ms->pmsa_iip;
1032 old_regs->cr_ipsr = ms->pmsa_ipsr;
1033 old_regs->cr_ifs = ms->pmsa_ifs;
1034 } else {
1035 old_regs->cr_iip = ms->pmsa_xip;
1036 old_regs->cr_ipsr = ms->pmsa_xpsr;
1037 old_regs->cr_ifs = ms->pmsa_xfs;
1038 }
1039 old_regs->pr = ms->pmsa_pr;
1040 old_regs->b0 = ms->pmsa_br0;
1041 old_regs->loadrs = loadrs;
1042 old_regs->ar_rsc = ms->pmsa_rsc;
1043 old_unat = old_regs->ar_unat;
1044 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1045 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1046 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1047 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1048 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1049 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1050 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1051 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1052 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1053 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1054 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1055 if (ia64_psr(old_regs)->bn)
1056 bank = ms->pmsa_bank1_gr;
1057 else
1058 bank = ms->pmsa_bank0_gr;
1059 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1060 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1061 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1062 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1063 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1064 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1065 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1066 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1067 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1068 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1069 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1070 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1071 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1072 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1073 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1074 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1075
1076 /* Next stack a struct switch_stack. mca_asm.S built a partial
1077 * switch_stack, copy it and fill in the blanks using pt_regs and
1078 * minstate.
1079 *
1080 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1081 * ar.pfs is set to 0.
1082 *
1083 * unwind.c::unw_unwind() does special processing for interrupt frames.
1084 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1085 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1086 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1087 * switch_stack on the original stack so it will unwind correctly when
1088 * unwind.c reads pt_regs.
1089 *
1090 * thread.ksp is updated to point to the synthesized switch_stack.
1091 */
1092 p -= sizeof(struct switch_stack);
1093 old_sw = (struct switch_stack *)p;
1094 memcpy(old_sw, sw, sizeof(*sw));
1095 old_sw->caller_unat = old_unat;
1096 old_sw->ar_fpsr = old_regs->ar_fpsr;
1097 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1098 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1099 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1100 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1101 old_sw->b0 = (u64)ia64_leave_kernel;
1102 old_sw->b1 = ms->pmsa_br1;
1103 old_sw->ar_pfs = 0;
1104 old_sw->ar_unat = old_unat;
1105 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1106 previous_current->thread.ksp = (u64)p - 16;
1107
1108 /* Finally copy the original stack's registers back to its RBS.
1109 * Registers from ar.bspstore through ar.bsp at the time of the event
1110 * are in the current RBS, copy them back to the original stack. The
1111 * copy must be done register by register because the original bspstore
1112 * and the current one have different alignments, so the saved RNAT
1113 * data occurs at different places.
1114 *
1115 * mca_asm does cover, so the old_bsp already includes all registers at
1116 * the time of MCA/INIT. It also does flushrs, so all registers before
1117 * this function have been written to backing store on the MCA/INIT
1118 * stack.
1119 */
1120 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1121 old_rnat = regs->ar_rnat;
1122 while (slots--) {
1123 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1124 new_rnat = ia64_get_rnat(new_bspstore++);
1125 }
1126 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1127 *old_bspstore++ = old_rnat;
1128 old_rnat = 0;
1129 }
1130 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1131 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1132 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1133 *old_bspstore++ = *new_bspstore++;
1134 }
1135 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1136 old_sw->ar_rnat = old_rnat;
1137
1138 sos->prev_task = previous_current;
1139 return previous_current;
1140
1141no_mod:
ef23cdbe 1142 mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
7f613c7d
KO
1143 smp_processor_id(), type, msg);
1144 return previous_current;
1145}
1146
1147/* The monarch/slave interaction is based on monarch_cpu and requires that all
1148 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1149 * not entered rendezvous yet then wait a bit. The assumption is that any
1150 * slave that has not rendezvoused after a reasonable time is never going to do
1151 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1152 * interrupt, as well as cpus that receive the INIT slave event.
1153 */
1154
1155static void
356a5c1c 1156ia64_wait_for_slaves(int monarch, const char *type)
7f613c7d 1157{
2bc5c282
RA
1158 int c, i , wait;
1159
1160 /*
1161 * wait 5 seconds total for slaves (arbitrary)
1162 */
1163 for (i = 0; i < 5000; i++) {
1164 wait = 0;
1165 for_each_online_cpu(c) {
1166 if (c == monarch)
1167 continue;
1168 if (ia64_mc_info.imi_rendez_checkin[c]
1169 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1170 udelay(1000); /* short wait */
1171 wait = 1;
1172 break;
1173 }
7f613c7d 1174 }
2bc5c282
RA
1175 if (!wait)
1176 goto all_in;
7f613c7d 1177 }
2bc5c282 1178
43ed3baf
HS
1179 /*
1180 * Maybe slave(s) dead. Print buffered messages immediately.
1181 */
1182 ia64_mlogbuf_finish(0);
1183 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
9336b083
KO
1184 for_each_online_cpu(c) {
1185 if (c == monarch)
1186 continue;
1187 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
43ed3baf 1188 mprintk(" %d", c);
9336b083 1189 }
43ed3baf 1190 mprintk("\n");
9336b083
KO
1191 return;
1192
1193all_in:
43ed3baf 1194 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
9336b083 1195 return;
7f613c7d
KO
1196}
1197
96651896
XZ
1198/* mca_insert_tr
1199 *
1200 * Switch rid when TR reload and needed!
1201 * iord: 1: itr, 2: itr;
1202 *
1203*/
1204static void mca_insert_tr(u64 iord)
1205{
1206
1207 int i;
1208 u64 old_rr;
1209 struct ia64_tr_entry *p;
1210 unsigned long psr;
1211 int cpu = smp_processor_id();
1212
1213 psr = ia64_clear_ic();
1214 for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1215 p = &__per_cpu_idtrs[cpu][iord-1][i];
1216 if (p->pte & 0x1) {
1217 old_rr = ia64_get_rr(p->ifa);
1218 if (old_rr != p->rr) {
1219 ia64_set_rr(p->ifa, p->rr);
1220 ia64_srlz_d();
1221 }
1222 ia64_ptr(iord, p->ifa, p->itir >> 2);
1223 ia64_srlz_i();
1224 if (iord & 0x1) {
1225 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1226 ia64_srlz_i();
1227 }
1228 if (iord & 0x2) {
1229 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1230 ia64_srlz_i();
1231 }
1232 if (old_rr != p->rr) {
1233 ia64_set_rr(p->ifa, old_rr);
1234 ia64_srlz_d();
1235 }
1236 }
1237 }
1238 ia64_set_psr(psr);
1239}
1240
1da177e4 1241/*
7f613c7d 1242 * ia64_mca_handler
1da177e4
LT
1243 *
1244 * This is uncorrectable machine check handler called from OS_MCA
1245 * dispatch code which is in turn called from SAL_CHECK().
1246 * This is the place where the core of OS MCA handling is done.
1247 * Right now the logs are extracted and displayed in a well-defined
1248 * format. This handler code is supposed to be run only on the
1249 * monarch processor. Once the monarch is done with MCA handling
1250 * further MCA logging is enabled by clearing logs.
1251 * Monarch also has the duty of sending wakeup-IPIs to pull the
1252 * slave processors out of rendezvous spinloop.
1612b18c
RA
1253 *
1254 * If multiple processors call into OS_MCA, the first will become
1255 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1256 * bitmask. After the first monarch has processed its MCA, it
1257 * will wake up the next cpu in the mca_cpu bitmask and then go
1258 * into the rendezvous loop. When all processors have serviced
1259 * their MCA, the last monarch frees up the rest of the processors.
1da177e4
LT
1260 */
1261void
7f613c7d
KO
1262ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1263 struct ia64_sal_os_state *sos)
1da177e4 1264{
7f613c7d 1265 int recover, cpu = smp_processor_id();
36c8b586 1266 struct task_struct *previous_current;
958b166c 1267 struct ia64_mca_notify_die nd =
4fa2f0e6 1268 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1612b18c
RA
1269 static atomic_t mca_count;
1270 static cpumask_t mca_cpu;
7f613c7d 1271
1612b18c
RA
1272 if (atomic_add_return(1, &mca_count) == 1) {
1273 monarch_cpu = cpu;
1274 sos->monarch = 1;
1275 } else {
1276 cpu_set(cpu, mca_cpu);
1277 sos->monarch = 0;
1278 }
43ed3baf
HS
1279 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1280 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
9336b083 1281
7f613c7d 1282 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1612b18c 1283
4fa2f0e6 1284 NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
e1b1eb01
RA
1285
1286 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1612b18c
RA
1287 if (sos->monarch) {
1288 ia64_wait_for_slaves(cpu, "MCA");
e1b1eb01
RA
1289
1290 /* Wakeup all the processors which are spinning in the
1291 * rendezvous loop. They will leave SAL, then spin in the OS
1292 * with interrupts disabled until this monarch cpu leaves the
1293 * MCA handler. That gets control back to the OS so we can
1294 * backtrace the other cpus, backtrace when spinning in SAL
1295 * does not work.
1296 */
1297 ia64_mca_wakeup_all();
1612b18c 1298 } else {
1612b18c
RA
1299 while (cpu_isset(cpu, mca_cpu))
1300 cpu_relax(); /* spin until monarch wakes us */
284e5427
HS
1301 }
1302
4fa2f0e6 1303 NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
7f613c7d 1304
1da177e4
LT
1305 /* Get the MCA error record and log it */
1306 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1307
618b206f
RA
1308 /* MCA error recovery */
1309 recover = (ia64_mca_ucmc_extension
1da177e4
LT
1310 && ia64_mca_ucmc_extension(
1311 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
7f613c7d 1312 sos));
1da177e4
LT
1313
1314 if (recover) {
1315 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1316 rh->severity = sal_log_severity_corrected;
1317 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
7f613c7d 1318 sos->os_status = IA64_MCA_CORRECTED;
43ed3baf
HS
1319 } else {
1320 /* Dump buffered message to console */
1321 ia64_mlogbuf_finish(1);
1da177e4 1322 }
b0247a55 1323
96651896
XZ
1324 if (__get_cpu_var(ia64_mca_tr_reload)) {
1325 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1326 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1327 }
71b264f8 1328
4fa2f0e6 1329 NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1da177e4 1330
1612b18c
RA
1331 if (atomic_dec_return(&mca_count) > 0) {
1332 int i;
1333
1334 /* wake up the next monarch cpu,
1335 * and put this cpu in the rendez loop.
1336 */
1612b18c
RA
1337 for_each_online_cpu(i) {
1338 if (cpu_isset(i, mca_cpu)) {
1339 monarch_cpu = i;
1340 cpu_clear(i, mca_cpu); /* wake next cpu */
1341 while (monarch_cpu != -1)
1342 cpu_relax(); /* spin until last cpu leaves */
1612b18c 1343 set_curr_task(cpu, previous_current);
e1b1eb01
RA
1344 ia64_mc_info.imi_rendez_checkin[cpu]
1345 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1612b18c
RA
1346 return;
1347 }
1348 }
1349 }
7f613c7d 1350 set_curr_task(cpu, previous_current);
e1b1eb01
RA
1351 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1352 monarch_cpu = -1; /* This frees the slaves and previous monarchs */
1da177e4
LT
1353}
1354
6d5aefb8
DH
1355static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1356static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1da177e4
LT
1357
1358/*
1359 * ia64_mca_cmc_int_handler
1360 *
1361 * This is corrected machine check interrupt handler.
1362 * Right now the logs are extracted and displayed in a well-defined
1363 * format.
1364 *
1365 * Inputs
1366 * interrupt number
1367 * client data arg ptr
1da177e4
LT
1368 *
1369 * Outputs
1370 * None
1371 */
1372static irqreturn_t
7d12e780 1373ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1da177e4
LT
1374{
1375 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1376 static int index;
1377 static DEFINE_SPINLOCK(cmc_history_lock);
1378
1379 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
d4ed8084 1380 __func__, cmc_irq, smp_processor_id());
1da177e4
LT
1381
1382 /* SAL spec states this should run w/ interrupts enabled */
1383 local_irq_enable();
1384
1da177e4
LT
1385 spin_lock(&cmc_history_lock);
1386 if (!cmc_polling_enabled) {
1387 int i, count = 1; /* we know 1 happened now */
1388 unsigned long now = jiffies;
1389
1390 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1391 if (now - cmc_history[i] <= HZ)
1392 count++;
1393 }
1394
1395 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1396 if (count >= CMC_HISTORY_LENGTH) {
1397
1398 cmc_polling_enabled = 1;
1399 spin_unlock(&cmc_history_lock);
76e677e2
BS
1400 /* If we're being hit with CMC interrupts, we won't
1401 * ever execute the schedule_work() below. Need to
1402 * disable CMC interrupts on this processor now.
1403 */
1404 ia64_mca_cmc_vector_disable(NULL);
1da177e4
LT
1405 schedule_work(&cmc_disable_work);
1406
1407 /*
1408 * Corrected errors will still be corrected, but
1409 * make sure there's a log somewhere that indicates
1410 * something is generating more than we can handle.
1411 */
1412 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1413
1414 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1415
1416 /* lock already released, get out now */
ddb4f0df 1417 goto out;
1da177e4
LT
1418 } else {
1419 cmc_history[index++] = now;
1420 if (index == CMC_HISTORY_LENGTH)
1421 index = 0;
1422 }
1423 }
1424 spin_unlock(&cmc_history_lock);
ddb4f0df
HS
1425out:
1426 /* Get the CMC error record and log it */
1427 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1428
1da177e4
LT
1429 return IRQ_HANDLED;
1430}
1431
1432/*
1433 * ia64_mca_cmc_int_caller
1434 *
1435 * Triggered by sw interrupt from CMC polling routine. Calls
1436 * real interrupt handler and either triggers a sw interrupt
1437 * on the next cpu or does cleanup at the end.
1438 *
1439 * Inputs
1440 * interrupt number
1441 * client data arg ptr
1da177e4
LT
1442 * Outputs
1443 * handled
1444 */
1445static irqreturn_t
7d12e780 1446ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1da177e4
LT
1447{
1448 static int start_count = -1;
1449 unsigned int cpuid;
1450
1451 cpuid = smp_processor_id();
1452
1453 /* If first cpu, update count */
1454 if (start_count == -1)
1455 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1456
7d12e780 1457 ia64_mca_cmc_int_handler(cmc_irq, arg);
1da177e4 1458
5dd3c994 1459 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1da177e4 1460
5dd3c994 1461 if (cpuid < nr_cpu_ids) {
1da177e4
LT
1462 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1463 } else {
1464 /* If no log record, switch out of polling mode */
1465 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1466
1467 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1468 schedule_work(&cmc_enable_work);
1469 cmc_polling_enabled = 0;
1470
1471 } else {
1472
1473 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1474 }
1475
1476 start_count = -1;
1477 }
1478
1479 return IRQ_HANDLED;
1480}
1481
1482/*
1483 * ia64_mca_cmc_poll
1484 *
1485 * Poll for Corrected Machine Checks (CMCs)
1486 *
1487 * Inputs : dummy(unused)
1488 * Outputs : None
1489 *
1490 */
1491static void
1492ia64_mca_cmc_poll (unsigned long dummy)
1493{
1494 /* Trigger a CMC interrupt cascade */
1495 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1496}
1497
1498/*
1499 * ia64_mca_cpe_int_caller
1500 *
1501 * Triggered by sw interrupt from CPE polling routine. Calls
1502 * real interrupt handler and either triggers a sw interrupt
1503 * on the next cpu or does cleanup at the end.
1504 *
1505 * Inputs
1506 * interrupt number
1507 * client data arg ptr
1da177e4
LT
1508 * Outputs
1509 * handled
1510 */
1511#ifdef CONFIG_ACPI
1512
1513static irqreturn_t
7d12e780 1514ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1da177e4
LT
1515{
1516 static int start_count = -1;
1517 static int poll_time = MIN_CPE_POLL_INTERVAL;
1518 unsigned int cpuid;
1519
1520 cpuid = smp_processor_id();
1521
1522 /* If first cpu, update count */
1523 if (start_count == -1)
1524 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1525
7d12e780 1526 ia64_mca_cpe_int_handler(cpe_irq, arg);
1da177e4 1527
5dd3c994 1528 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1da177e4
LT
1529
1530 if (cpuid < NR_CPUS) {
1531 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1532 } else {
1533 /*
1534 * If a log was recorded, increase our polling frequency,
1535 * otherwise, backoff or return to interrupt mode.
1536 */
1537 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1538 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1539 } else if (cpe_vector < 0) {
1540 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1541 } else {
1542 poll_time = MIN_CPE_POLL_INTERVAL;
1543
1544 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1545 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1546 cpe_poll_enabled = 0;
1547 }
1548
1549 if (cpe_poll_enabled)
1550 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1551 start_count = -1;
1552 }
1553
1554 return IRQ_HANDLED;
1555}
1556
1da177e4
LT
1557/*
1558 * ia64_mca_cpe_poll
1559 *
1560 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1561 * on first cpu, from there it will trickle through all the cpus.
1562 *
1563 * Inputs : dummy(unused)
1564 * Outputs : None
1565 *
1566 */
1567static void
1568ia64_mca_cpe_poll (unsigned long dummy)
1569{
1570 /* Trigger a CPE interrupt cascade */
1571 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1572}
1573
b655913b
PC
1574#endif /* CONFIG_ACPI */
1575
9138d581
KO
1576static int
1577default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1578{
1579 int c;
1580 struct task_struct *g, *t;
1581 if (val != DIE_INIT_MONARCH_PROCESS)
1582 return NOTIFY_DONE;
311f594d
JL
1583#ifdef CONFIG_KEXEC
1584 if (atomic_read(&kdump_in_progress))
1585 return NOTIFY_DONE;
1586#endif
43ed3baf
HS
1587
1588 /*
1589 * FIXME: mlogbuf will brim over with INIT stack dumps.
1590 * To enable show_stack from INIT, we use oops_in_progress which should
1591 * be used in real oops. This would cause something wrong after INIT.
1592 */
1593 BREAK_LOGLEVEL(console_loglevel);
1594 ia64_mlogbuf_dump_from_init();
1595
9138d581
KO
1596 printk(KERN_ERR "Processes interrupted by INIT -");
1597 for_each_online_cpu(c) {
1598 struct ia64_sal_os_state *s;
1599 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1600 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1601 g = s->prev_task;
1602 if (g) {
1603 if (g->pid)
1604 printk(" %d", g->pid);
1605 else
1606 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1607 }
1608 }
1609 printk("\n\n");
1610 if (read_trylock(&tasklist_lock)) {
1611 do_each_thread (g, t) {
1612 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1613 show_stack(t, NULL);
1614 } while_each_thread (g, t);
1615 read_unlock(&tasklist_lock);
1616 }
43ed3baf
HS
1617 /* FIXME: This will not restore zapped printk locks. */
1618 RESTORE_LOGLEVEL(console_loglevel);
9138d581
KO
1619 return NOTIFY_DONE;
1620}
1621
1da177e4
LT
1622/*
1623 * C portion of the OS INIT handler
1624 *
7f613c7d 1625 * Called from ia64_os_init_dispatch
1da177e4 1626 *
7f613c7d
KO
1627 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1628 * this event. This code is used for both monarch and slave INIT events, see
1629 * sos->monarch.
1da177e4 1630 *
7f613c7d
KO
1631 * All INIT events switch to the INIT stack and change the previous process to
1632 * blocked status. If one of the INIT events is the monarch then we are
1633 * probably processing the nmi button/command. Use the monarch cpu to dump all
1634 * the processes. The slave INIT events all spin until the monarch cpu
1635 * returns. We can also get INIT slave events for MCA, in which case the MCA
1636 * process is the monarch.
1da177e4 1637 */
7f613c7d 1638
1da177e4 1639void
7f613c7d
KO
1640ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1641 struct ia64_sal_os_state *sos)
1da177e4 1642{
7f613c7d
KO
1643 static atomic_t slaves;
1644 static atomic_t monarchs;
36c8b586 1645 struct task_struct *previous_current;
9138d581 1646 int cpu = smp_processor_id();
958b166c
KO
1647 struct ia64_mca_notify_die nd =
1648 { .sos = sos, .monarch_cpu = &monarch_cpu };
1da177e4 1649
4fa2f0e6 1650 NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
958b166c 1651
43ed3baf 1652 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
7f613c7d
KO
1653 sos->proc_state_param, cpu, sos->monarch);
1654 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1da177e4 1655
7f613c7d
KO
1656 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1657 sos->os_status = IA64_INIT_RESUME;
1658
1659 /* FIXME: Workaround for broken proms that drive all INIT events as
1660 * slaves. The last slave that enters is promoted to be a monarch.
1661 * Remove this code in September 2006, that gives platforms a year to
1662 * fix their proms and get their customers updated.
1da177e4 1663 */
7f613c7d 1664 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
43ed3baf 1665 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
d4ed8084 1666 __func__, cpu);
7f613c7d
KO
1667 atomic_dec(&slaves);
1668 sos->monarch = 1;
1669 }
1da177e4 1670
7f613c7d
KO
1671 /* FIXME: Workaround for broken proms that drive all INIT events as
1672 * monarchs. Second and subsequent monarchs are demoted to slaves.
1673 * Remove this code in September 2006, that gives platforms a year to
1674 * fix their proms and get their customers updated.
1675 */
1676 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
43ed3baf 1677 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
d4ed8084 1678 __func__, cpu);
7f613c7d
KO
1679 atomic_dec(&monarchs);
1680 sos->monarch = 0;
1681 }
1682
1683 if (!sos->monarch) {
1684 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1685 while (monarch_cpu == -1)
1686 cpu_relax(); /* spin until monarch enters */
4fa2f0e6
HS
1687
1688 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1689 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1690
7f613c7d
KO
1691 while (monarch_cpu != -1)
1692 cpu_relax(); /* spin until monarch leaves */
4fa2f0e6
HS
1693
1694 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1695
43ed3baf 1696 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
7f613c7d
KO
1697 set_curr_task(cpu, previous_current);
1698 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1699 atomic_dec(&slaves);
1700 return;
1701 }
1702
1703 monarch_cpu = cpu;
4fa2f0e6 1704 NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
7f613c7d
KO
1705
1706 /*
1707 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1708 * generated via the BMC's command-line interface, but since the console is on the
1709 * same serial line, the user will need some time to switch out of the BMC before
1710 * the dump begins.
1711 */
43ed3baf 1712 mprintk("Delaying for 5 seconds...\n");
7f613c7d 1713 udelay(5*1000000);
356a5c1c 1714 ia64_wait_for_slaves(cpu, "INIT");
9138d581
KO
1715 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1716 * to default_monarch_init_process() above and just print all the
1717 * tasks.
1718 */
4fa2f0e6
HS
1719 NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1720 NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1721
43ed3baf 1722 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
7f613c7d
KO
1723 atomic_dec(&monarchs);
1724 set_curr_task(cpu, previous_current);
1725 monarch_cpu = -1;
1726 return;
1da177e4
LT
1727}
1728
1729static int __init
1730ia64_mca_disable_cpe_polling(char *str)
1731{
1732 cpe_poll_enabled = 0;
1733 return 1;
1734}
1735
1736__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1737
1738static struct irqaction cmci_irqaction = {
1739 .handler = ia64_mca_cmc_int_handler,
121a4226 1740 .flags = IRQF_DISABLED,
1da177e4
LT
1741 .name = "cmc_hndlr"
1742};
1743
1744static struct irqaction cmcp_irqaction = {
1745 .handler = ia64_mca_cmc_int_caller,
121a4226 1746 .flags = IRQF_DISABLED,
1da177e4
LT
1747 .name = "cmc_poll"
1748};
1749
1750static struct irqaction mca_rdzv_irqaction = {
1751 .handler = ia64_mca_rendez_int_handler,
121a4226 1752 .flags = IRQF_DISABLED,
1da177e4
LT
1753 .name = "mca_rdzv"
1754};
1755
1756static struct irqaction mca_wkup_irqaction = {
1757 .handler = ia64_mca_wakeup_int_handler,
121a4226 1758 .flags = IRQF_DISABLED,
1da177e4
LT
1759 .name = "mca_wkup"
1760};
1761
1762#ifdef CONFIG_ACPI
1763static struct irqaction mca_cpe_irqaction = {
1764 .handler = ia64_mca_cpe_int_handler,
121a4226 1765 .flags = IRQF_DISABLED,
1da177e4
LT
1766 .name = "cpe_hndlr"
1767};
1768
1769static struct irqaction mca_cpep_irqaction = {
1770 .handler = ia64_mca_cpe_int_caller,
121a4226 1771 .flags = IRQF_DISABLED,
1da177e4
LT
1772 .name = "cpe_poll"
1773};
1774#endif /* CONFIG_ACPI */
1775
7f613c7d
KO
1776/* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1777 * these stacks can never sleep, they cannot return from the kernel to user
1778 * space, they do not appear in a normal ps listing. So there is no need to
1779 * format most of the fields.
1780 */
1781
0881fc8d 1782static void __cpuinit
7f613c7d
KO
1783format_mca_init_stack(void *mca_data, unsigned long offset,
1784 const char *type, int cpu)
1785{
1786 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1787 struct thread_info *ti;
1788 memset(p, 0, KERNEL_STACK_SIZE);
ab03591d 1789 ti = task_thread_info(p);
7f613c7d
KO
1790 ti->flags = _TIF_MCA_INIT;
1791 ti->preempt_count = 1;
1792 ti->task = p;
1793 ti->cpu = cpu;
f7e4217b 1794 p->stack = ti;
7f613c7d 1795 p->state = TASK_UNINTERRUPTIBLE;
4668f0cd 1796 cpu_set(cpu, p->cpus_allowed);
7f613c7d
KO
1797 INIT_LIST_HEAD(&p->tasks);
1798 p->parent = p->real_parent = p->group_leader = p;
1799 INIT_LIST_HEAD(&p->children);
1800 INIT_LIST_HEAD(&p->sibling);
1801 strncpy(p->comm, type, sizeof(p->comm)-1);
1802}
1803
056e6d89
SR
1804/* Caller prevents this from being called after init */
1805static void * __init_refok mca_bootmem(void)
1806{
785285fc
RA
1807 return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
1808 KERNEL_STACK_SIZE, 0);
056e6d89
SR
1809}
1810
1811/* Do per-CPU MCA-related initialization. */
0881fc8d 1812void __cpuinit
1da177e4
LT
1813ia64_mca_cpu_init(void *cpu_data)
1814{
1815 void *pal_vaddr;
785285fc
RA
1816 void *data;
1817 long sz = sizeof(struct ia64_mca_cpu);
1818 int cpu = smp_processor_id();
ff741906 1819 static int first_time = 1;
1da177e4 1820
7f613c7d 1821 /*
785285fc
RA
1822 * Structure will already be allocated if cpu has been online,
1823 * then offlined.
7f613c7d 1824 */
785285fc
RA
1825 if (__per_cpu_mca[cpu]) {
1826 data = __va(__per_cpu_mca[cpu]);
1827 } else {
1828 if (first_time) {
1829 data = mca_bootmem();
1830 first_time = 0;
1831 } else
6484eb3e 1832 data = __get_free_pages(GFP_KERNEL, get_order(sz));
785285fc
RA
1833 if (!data)
1834 panic("Could not allocate MCA memory for cpu %d\n",
1835 cpu);
1836 }
1837 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1838 "MCA", cpu);
1839 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1840 "INIT", cpu);
1841 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[cpu] = __pa(data);
1da177e4
LT
1842
1843 /*
1844 * Stash away a copy of the PTE needed to map the per-CPU page.
1845 * We may need it during MCA recovery.
1846 */
1847 __get_cpu_var(ia64_mca_per_cpu_pte) =
1848 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1849
7f613c7d
KO
1850 /*
1851 * Also, stash away a copy of the PAL address and the PTE
1852 * needed to map it.
1853 */
1854 pal_vaddr = efi_get_pal_addr();
1da177e4
LT
1855 if (!pal_vaddr)
1856 return;
1857 __get_cpu_var(ia64_mca_pal_base) =
1858 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1859 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1860 PAGE_KERNEL));
1861}
1862
ed5d4026
HS
1863static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy)
1864{
1865 unsigned long flags;
1866
1867 local_irq_save(flags);
1868 if (!cmc_polling_enabled)
1869 ia64_mca_cmc_vector_enable(NULL);
1870 local_irq_restore(flags);
1871}
1872
1873static int __cpuinit mca_cpu_callback(struct notifier_block *nfb,
1874 unsigned long action,
1875 void *hcpu)
1876{
1877 int hotcpu = (unsigned long) hcpu;
1878
1879 switch (action) {
1880 case CPU_ONLINE:
1881 case CPU_ONLINE_FROZEN:
1882 smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
8691e5a8 1883 NULL, 0);
ed5d4026
HS
1884 break;
1885 }
1886 return NOTIFY_OK;
1887}
1888
1889static struct notifier_block mca_cpu_notifier __cpuinitdata = {
1890 .notifier_call = mca_cpu_callback
1891};
1892
1da177e4
LT
1893/*
1894 * ia64_mca_init
1895 *
1896 * Do all the system level mca specific initialization.
1897 *
1898 * 1. Register spinloop and wakeup request interrupt vectors
1899 *
1900 * 2. Register OS_MCA handler entry point
1901 *
1902 * 3. Register OS_INIT handler entry point
1903 *
1904 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1905 *
1906 * Note that this initialization is done very early before some kernel
1907 * services are available.
1908 *
1909 * Inputs : None
1910 *
1911 * Outputs : None
1912 */
1913void __init
1914ia64_mca_init(void)
1915{
7f613c7d
KO
1916 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1917 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1da177e4
LT
1918 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1919 int i;
1920 s64 rc;
1921 struct ia64_sal_retval isrv;
1922 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
9138d581
KO
1923 static struct notifier_block default_init_monarch_nb = {
1924 .notifier_call = default_monarch_init_process,
1925 .priority = 0/* we need to notified last */
1926 };
1da177e4 1927
d4ed8084 1928 IA64_MCA_DEBUG("%s: begin\n", __func__);
1da177e4
LT
1929
1930 /* Clear the Rendez checkin flag for all cpus */
1931 for(i = 0 ; i < NR_CPUS; i++)
1932 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1933
1934 /*
1935 * Register the rendezvous spinloop and wakeup mechanism with SAL
1936 */
1937
1938 /* Register the rendezvous interrupt vector with SAL */
1939 while (1) {
1940 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1941 SAL_MC_PARAM_MECHANISM_INT,
1942 IA64_MCA_RENDEZ_VECTOR,
1943 timeout,
1944 SAL_MC_PARAM_RZ_ALWAYS);
1945 rc = isrv.status;
1946 if (rc == 0)
1947 break;
1948 if (rc == -2) {
1949 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1950 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1951 timeout = isrv.v0;
4fa2f0e6 1952 NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1da177e4
LT
1953 continue;
1954 }
1955 printk(KERN_ERR "Failed to register rendezvous interrupt "
1956 "with SAL (status %ld)\n", rc);
1957 return;
1958 }
1959
1960 /* Register the wakeup interrupt vector with SAL */
1961 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1962 SAL_MC_PARAM_MECHANISM_INT,
1963 IA64_MCA_WAKEUP_VECTOR,
1964 0, 0);
1965 rc = isrv.status;
1966 if (rc) {
1967 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1968 "(status %ld)\n", rc);
1969 return;
1970 }
1971
d4ed8084 1972 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1da177e4
LT
1973
1974 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1975 /*
1976 * XXX - disable SAL checksum by setting size to 0; should be
1977 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1978 */
1979 ia64_mc_info.imi_mca_handler_size = 0;
1980
1981 /* Register the os mca handler with SAL */
1982 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1983 ia64_mc_info.imi_mca_handler,
1984 ia64_tpa(mca_hldlr_ptr->gp),
1985 ia64_mc_info.imi_mca_handler_size,
1986 0, 0, 0)))
1987 {
1988 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1989 "(status %ld)\n", rc);
1990 return;
1991 }
1992
d4ed8084 1993 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
1da177e4
LT
1994 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1995
1996 /*
1997 * XXX - disable SAL checksum by setting size to 0, should be
1998 * size of the actual init handler in mca_asm.S.
1999 */
7f613c7d 2000 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1da177e4 2001 ia64_mc_info.imi_monarch_init_handler_size = 0;
7f613c7d 2002 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1da177e4
LT
2003 ia64_mc_info.imi_slave_init_handler_size = 0;
2004
d4ed8084 2005 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
1da177e4
LT
2006 ia64_mc_info.imi_monarch_init_handler);
2007
2008 /* Register the os init handler with SAL */
2009 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2010 ia64_mc_info.imi_monarch_init_handler,
2011 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2012 ia64_mc_info.imi_monarch_init_handler_size,
2013 ia64_mc_info.imi_slave_init_handler,
2014 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2015 ia64_mc_info.imi_slave_init_handler_size)))
2016 {
2017 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2018 "(status %ld)\n", rc);
2019 return;
2020 }
9138d581
KO
2021 if (register_die_notifier(&default_init_monarch_nb)) {
2022 printk(KERN_ERR "Failed to register default monarch INIT process\n");
2023 return;
2024 }
1da177e4 2025
d4ed8084 2026 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
1da177e4
LT
2027
2028 /*
2029 * Configure the CMCI/P vector and handler. Interrupts for CMC are
2030 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2031 */
2032 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2033 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2034 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
2035
2036 /* Setup the MCA rendezvous interrupt vector */
2037 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2038
2039 /* Setup the MCA wakeup interrupt vector */
2040 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2041
2042#ifdef CONFIG_ACPI
bb68c12b 2043 /* Setup the CPEI/P handler */
1da177e4
LT
2044 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2045#endif
2046
2047 /* Initialize the areas set aside by the OS to buffer the
2048 * platform/processor error states for MCA/INIT/CMC
2049 * handling.
2050 */
2051 ia64_log_init(SAL_INFO_TYPE_MCA);
2052 ia64_log_init(SAL_INFO_TYPE_INIT);
2053 ia64_log_init(SAL_INFO_TYPE_CMC);
2054 ia64_log_init(SAL_INFO_TYPE_CPE);
2055
2056 mca_init = 1;
2057 printk(KERN_INFO "MCA related initialization done\n");
2058}
2059
2060/*
2061 * ia64_mca_late_init
2062 *
2063 * Opportunity to setup things that require initialization later
2064 * than ia64_mca_init. Setup a timer to poll for CPEs if the
2065 * platform doesn't support an interrupt driven mechanism.
2066 *
2067 * Inputs : None
2068 * Outputs : Status
2069 */
2070static int __init
2071ia64_mca_late_init(void)
2072{
2073 if (!mca_init)
2074 return 0;
2075
ed5d4026
HS
2076 register_hotcpu_notifier(&mca_cpu_notifier);
2077
1da177e4
LT
2078 /* Setup the CMCI/P vector and handler */
2079 init_timer(&cmc_poll_timer);
2080 cmc_poll_timer.function = ia64_mca_cmc_poll;
2081
2082 /* Unmask/enable the vector */
2083 cmc_polling_enabled = 0;
2084 schedule_work(&cmc_enable_work);
2085
d4ed8084 2086 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
1da177e4
LT
2087
2088#ifdef CONFIG_ACPI
2089 /* Setup the CPEI/P vector and handler */
bb68c12b 2090 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1da177e4
LT
2091 init_timer(&cpe_poll_timer);
2092 cpe_poll_timer.function = ia64_mca_cpe_poll;
2093
2094 {
2095 irq_desc_t *desc;
2096 unsigned int irq;
2097
2098 if (cpe_vector >= 0) {
2099 /* If platform supports CPEI, enable the irq. */
a1287476
RA
2100 irq = local_vector_to_irq(cpe_vector);
2101 if (irq > 0) {
2102 cpe_poll_enabled = 0;
2103 desc = irq_desc + irq;
2104 desc->status |= IRQ_PER_CPU;
2105 setup_irq(irq, &mca_cpe_irqaction);
2106 ia64_cpe_irq = irq;
2107 ia64_mca_register_cpev(cpe_vector);
2108 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
d4ed8084 2109 __func__);
a1287476 2110 return 0;
1da177e4 2111 }
a1287476
RA
2112 printk(KERN_ERR "%s: Failed to find irq for CPE "
2113 "interrupt handler, vector %d\n",
d4ed8084 2114 __func__, cpe_vector);
a1287476
RA
2115 }
2116 /* If platform doesn't support CPEI, get the timer going. */
2117 if (cpe_poll_enabled) {
2118 ia64_mca_cpe_poll(0UL);
d4ed8084 2119 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
1da177e4
LT
2120 }
2121 }
2122#endif
2123
2124 return 0;
2125}
2126
2127device_initcall(ia64_mca_late_init);